
ar
X

iv
:h

ep
-p

h/
99

12
39

9v
1 

 1
7 

D
ec

 1
99

9

CERN–TH/99–408
Cavendish-HEP-99/18

hep-ph/9912399

Theoretical Aspects of Particle Production 1

B.R. Webber
Theory Division, CERN, 1211 Geneva 23, Switzerland

and
Cavendish Laboratory, University of Cambridge,

Cambridge CB3 0HE, U.K.2

1 Introduction

In these lectures I shall describe some of the latest data on particle production in high-
energy collisions and compare them with theoretical calculations and models based on
QCD. The discussion will concentrate mainly on hadron distributions in jets, which are
the manifestation at the hadronic level of hard (high-momentum-transfer) scattering of the
partons (quarks and gluons) which are the fundamental fields of QCD.

In sect. 2, the connection between parton and hadron distributions is made more precise
using the concept of fragmentation functions. I concentrate in particular on the region of
small momentum fractions, where interesting characteristic features of QCD are manifest.
Next, in sect. 3, the various available models for the conversion of partons into hadrons are
reviewed. In sect. 4, the predictions of theory and models are compared with experimental
data. After that, sect. 5 focuses on new data that show clearly the differences between jets
that originate from quark and gluon fragmentation.

Deep inelastic lepton scattering (DIS) at HERA is a copious source of jets; sect. 6 dis-
cusses new results on the properties of jets in the so-called current and target fragmentation
regions.

In sect. 7 I discuss new data on the fragmentation of heavy (b) quark jets into B mesons,
and finally sect. 8 draws some brief conclusions.

Many of the topics mentioned here are discussed more fully in ref. [1]. In order to
bring the discussion up to date, I have tried wherever possible to refer to the very latest
experimental data. Therefore many of the references and figures concern preliminary data
shown only at conferences, in particular at the International Europhysics Conference on
High Energy Physics (EPS-HEP 99) held in Tampere, Finland, in July 1999. The cited
contributed papers can be found through the EPS-HEP 99 web page [2] or, in the case of
the large collaborations, through the collaboration pages [3]-[10].

1Lectures at International Summer School on Particle Production Spanning MeV and TeV Energies,
Nijmegen, The Netherlands, August 1999.

2Permanent address.
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Figure 1: Factorization structure of e+e− → hX.

2 Jet fragmentation – theory

We start with the basic factorization structure [11] of the single-particle inclusive distribu-
tion, e.g. in e+e− → hX (fig. 1):

F h(x, s) =
∑

i

∫ 1

x

dz

z
Ci(z, αS(s))D

h
i (x/z, s) , (1)

s = q2 , x = 2ph · q/q2 = 2Eh/Ecm (2)

where Ci are the coefficient functions for this particular process (including all selection cuts
etc.) and Dh

i is the universal fragmentation function [12] for parton i → hadron h.

Although universal, fragmentation functions are factorization scheme dependent [11].
If one tries to calculate them in perturbation theory, one encounters divergences associ-
ated with the propagation of partons over long distances. In reality, however, partons are
confined and cannot travel long distances. The perturbative divergences can be collected
into overall factors that are replaced by non-perturbative factors taken from experiment.
In this way the incorrect long-distance behaviour of perturbation theory is replaced by the
correct long-distance features of QCD. However, the factorization of the divergent terms is
ambiguous: one can choose to include different finite parts as well. This is the factorization
scheme ambiguity. To specify the scheme requires calculation of the coefficient functions
to (at least) next-to-leading order. This has only been done in a few cases. Thus there is
need for theoretical work to make full use of the data on fragmentation functions.

In certain kinematic regions, higher-order corrections are enhanced by large logarithms,
which need to be resummed to all orders. Large logarithms of ratios of invariants may
appear inside the coefficient functions Ci, for example in multi-jet processes when the
angles between jets become small. In some cases these can be absorbed into a change of
scale in the fragmentation functions. Examples of this will be encountered in sects. 4 and
5.

The fragmentation functions Dh
i are not perturbatively calculable but their s-dependence

(scaling violation) is given by the DGLAP evolution equation [13, 14, 15]:

s
∂

∂s
Dh

i (x, s) =
∑

j

∫ 1

x

dz

z
Pji(z, αS(s))D

h
j (x/z, s) (3)

where Pji is the parton i → j splitting function. Thus fragmentation functions can be
parametrized at some fixed scale s0 and then predicted at other energies [12].

The most common strategy for solving the DGLAP equation is to take moments (Mellin
transforms) with respect to x:

D̃(N, s) =
∫ 1

0
dx xN−1 D(x, s) , (4)
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the inverse Mellin transform being

D(x, s) =
1

2πi

∫

C
dN x−N D̃(N, s) , (5)

where the integration contour C in the complex N plane is parallel to the imaginary axis
and to the right of all singularities of the integrand. After Mellin transformation, the
convolution on the right-hand side of eq. (3) becomes simply a product.

The moments P̃ji of the splitting functions are called anomalous dimensions, usually
denoted by γji(N, αS). They have perturbative expansions of the form

γji(N, αS) =
∞
∑

n=0

γ
(n)
ji (N)

(

αS

2π

)n+1

. (6)

We can consider fragmentation function combinations which are non-singlet in flavour,
such as DV = Dqi

− Dq̄i
or Dqi

− Dqj
. In these combinations the mixing with the flavour-

singlet gluon drops out and for a fixed value of αS the solution is simply

D̃V (N, s) = D̃V (N, s0)
(

s

s0

)γqq(N,αS)

. (7)

For a running coupling αS(s), the scaling violation is no longer power-behaved in s. The
lowest-order form of the running coupling is

αS(s) =
1

b ln(s/Λ2)
(8)

with b = (11CA −2nf )/12π, where CA = 3 for QCD and nf is the number of ‘active’ quark
flavours, i.e. the number with m2

q ≪ s. Using this we find the solution

D̃V (N, s) = D̃V (N, s0)

(

αS(s0)

αS(s)

)dqq(N)

, dqq(N) =
γ(0)

qq (N)

2πb
, (9)

which varies like a power of ln s.

For the singlet fragmentation function

DS =
∑

i

(Dqi
+ Dq̄i

) (10)

we have mixing with the fragmentation of the gluon and the evolution equation becomes a
matrix relation of the form

s
∂

∂s

(

DS

Dg

)

=

(

γqq 2nfγgq

γqg γgg

)(

DS

Dg

)

. (11)

The anomalous dimension matrix in this equation has two real eigenvalues γ± given by

γ± = 1
2
[γgg + γqq ±

√

(γgg − γqq)2 + 8nfγgqγqg] . (12)

Expressing DS and Dg as linear combinations of the corresponding eigenvectors D+ and
D−, we find that they evolve as superpositions of terms of the form (9) with γ+ and γ− in
the place of γqq.
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At small x, corresponding to N → 1, the q → g and g → g anomalous dimensions have
a singularity,

γgq →
CF αS

π(N − 1)
+ O(α2

S
) , γgg → CAαS

π(N − 1)
+ O(α2

S
) (13)

(CF = 4/3), and we find γ+ → γgg → ∞, γ− → γqq → 0. Thus the low-x region requires
special treatment, as we discuss in the following subsection.

2.1 Small-x fragmentation

At small x, multiple soft parton emission gives rise to terms enhanced by up to two powers
of ln x for each power of αS. The leading enhanced terms can be resummed by changing
the DGLAP equation (3) to

s
∂

∂s
Dh

i (x, s) =
∑

j

∫ 1

x

dz

z
Pji(z, αS(s))D

h
j (x/z, z2s) . (14)

The fact that the scale on the right-hand side should be z2s rather than s follows from
angular ordering of successive parton emissions [16, 17].

For simplicity, consider first the solution of eq. (14) for gluon fragmentation, taking αS

fixed and neglecting the sum over different partons. Then taking moments as before we
have

s
∂

∂s
D̃(N, s) =

∫ 1

0
dz zN−1P (z, αS)D̃(N, z2s) . (15)

Now if we try a solution of the form

D(N, s) ∝ sγ(N,αS) (16)

we find that the anomalous dimension γ(N, αS) must satisfy the implicit equation

γ(N, αS) =
∫ 1

0
dz zN−1+2γ(N,αS)P (z, αS) . (17)

When N − 1 is not small, we can neglect the 2γ(N, αS) in the exponent of eq. (17) and
then we obtain the usual explicit formula for the anomalous dimension. For N ≃ 1, the
region we are interested in, the z → 0 behaviour Pgg → CAαS/πz dominates, which implies
that near N = 1

γgg(N, αS) =
CAαS

π

1

N − 1 + 2γgg(N, αS)
(18)

and hence

γgg(N, αS) =
1

4





√

(N − 1)2 +
8CAαS

π
− (N − 1)





=

√

CAαS

2π
− 1

4
(N − 1) +

1

32

√

2π

CAαS

(N − 1)2 + · · · (19)

Thus for N → 1 the gluon-gluon anomalous dimension behaves like the square root of
αS. How can this behaviour emerge from perturbation theory, which deals only in integer
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powers of αS? The answer is that at any fixed N 6= 1 we can expand eq. (19) in a different
way for sufficiently small αS:

γgg(N, αS) =
CAαS

π(N − 1)
− 2

(

CAαS

π

)2 1

(N − 1)3
+ · · · . (20)

This series displays the terms that are most singular as N → 1 in each order. These
terms have been resummed in the expression (19), allowing the perturbation series to
be analytically continued outside its circle of convergence |αS| < (π/8CA)|N − 1|2. By
definition, the behaviour outside this circle (in particular, at N = 1) cannot be represented
by the series any more, even though it is fully implied by it.

At sufficiently small x, the N → 1 singularity of the gluon-gluon anomalous dimension
dominates in all fragmentation functions, and this in turn determines the asymptotic be-
haviour of the single-particle inclusive distributions F h in eq. (1). To predict this behaviour
quantitatively we need to take account of the running of αS, which can be done by writing
eq. (16) in the form

D̃(N, s) ∼ exp

[

∫ s

γgg(N, αS)
ds′

s′

]

(21)

and noting that αS in the integrand should be αS(s
′). We then use eq. (8) to write

∫ s

γgg(N, αS(s
′))

ds′

s′
= −1

b

∫ αS(s)

γgg(N, αS)
dαS

α2
S

, (22)

and hence

D̃(N, s) ∝ exp

[

1

b

√

2CA

παS

− 1

4bαS

(N − 1)

+
1

48b

√

2π

CAα3
S

(N − 1)2 + · · ·
]

αS=αS(s)

. (23)

The value of D̃(N, s) at N = 1 is simply the integral of the fragmentation function,
which gives the average multiplicity,

Nh
i (s) ∼ D̃h

i (1, s) ∝ exp

[

1

b

√

2CA

παS(s)

]

∼ exp

√

2CA

πb
ln s . (24)

Thus the average multiplicity of any hadron species should increase asymptotically faster
than any power of ln s but slower than any positive power of s. Furthermore the relations
(13) imply that the average multiplicities in gluon and quark jets are asymptotically in the
ratio of their ‘colour charges’ CA and CF [18]:

Nh
g (s)

Nh
q (s)

→ CA

CF
=

9

4
. (25)

The behaviour of D̃(N, s) near N = 1 determines the form of small-x fragmentation
functions via the inverse Mellin transformation (5). Keeping the first three terms in the
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Taylor expansion of the exponent, as displayed in eq. (23), gives a simple Gaussian function
of N which transforms into a Gaussian in the variable ξ ≡ ln(1/x):

xD(x, s) ∝ exp
[

− 1

2σ2
(ξ − ξp)

2
]

, (26)

where the peak position is

ξp =
1

4bαS(s)
∼ 1

4
ln s (27)

and the width of the distribution of ξ is

σ =

(

1

24b

√

2π

CAα3
S
(s)

)

1

2

∝ (ln s)
3

4 . (28)

Thus the effect of resummation is to generate a characteristic hump-backed shape in
the variable ξ = ln(1/x), with a peak that moves up and expands slowly with increasing
s. Including also next-to-leading logarithms, one obtains what is commonly known as the
modified leading-logarithmic approximation (MLLA) [19, 20, 21].

3 Hadronization Models

3.1 General ideas

Before discussing specific models for the hadronization process, we should review some
general ideas that have proved useful in interpreting hadronization data.

• Local parton-hadron duality [22]. Hadronization is long-distance process, involving
only small momentum transfers. Hence the flows of energy-momentum and flavour
quantum numbers at hadron level should follow those at parton level. Results on
inclusive spectra and multiplicities support this hypothesis.

• Universal low-scale αS [23, 24, 25]. Perturbation theory works well down to low
scales, Q ∼ 1 GeV. Assume therefore that αS(Q

2) can be defined non-perturbatively
for all Q, and use it in evaluation of Feynman graphs. This approach gives a good
description of heavy quark spectra and event shapes.

3.2 Specific models

The above general ideas do not try to describe the mechanism of hadron formation. For this
we must resort to models. The main current models are cluster and string hadronization.
We describe briefly the versions used in the HERWIG and JETSET Monte Carlo event
generators, respectively. In both cases, a parton shower initiated by the hard process evolves
perturbatively, according to the DGLAP equation, until the scale of parton virtualities has
fallen to some low value Q0 ∼ 1 GeV, whereupon the non-perturbative processes assumed
in the model take over (fig. 2).
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Figure 2: Cluster and string hadronization models.

• Cluster model [26]-[29]. The model starts with non-perturbative splitting of all gluons
after the parton shower, g → qq̄. Colour-singlet qq̄ combinations have lower masses
and a universal spectrum due to the preconfinement [30, 31] property of the shower
(fig. 3 [32]). These colour-singlet combinations are assumed to form clusters, which
mostly undergo simple isotropic decay into pairs of hadrons, chosen according to the
density of states with appropriate quantum numbers [27]. This model has few param-
eters and a natural mechanism for generating transverse momenta and suppressing
heavy particle production in hadronization. However, it has problems in dealing with
the decay of very massive clusters, and in adequately suppressing baryon and heavy
quark production.

• String model [33]-[36]. This model is based on the dynamics of a relativistic string,
representing the colour flux stretched between the initial qq̄. The string produces a
linear confinement potential and an area law for matrix elements:

|M(qq̄ → h1 · · ·hn)|2 ∝ e−bA (29)

where A is the space-time area swept out (fig. 4). The string breaks up into hadrons
via qq̄ pair production in its intense colour field. Gluons produced in the parton
shower give rise to ‘kinks’ on the string. The model has extra parameters for the
transverse momentum distribution and heavy particle suppression. It has some prob-
lems describing baryon production, but less than the cluster model.

• The UCLA model [37, 38] is a variant of the JETSET string model which takes the
above area law for matrix elements more seriously, using it to determine the relative
rates of production of different hadron species. This results in heavy particle suppres-
sion without extra parameters, the mass-squared of a hadron being proportional to
its space-time area. At present the model still uses extra parameters for pT spectra,
and again has some problems describing baryon production.
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Particle Multiplicity HERWIG JETSET UCLA Expts
5.9 7.4 7.4

Charged 20.96(18) 20.95 20.95 20.88 ADLMO
π± 17.06(24) 17.41 16.95 17.04 ADO
π0 9.43(38) 9.97 9.59 9.61 ADLO
η 0.99(4) 1.02 1.00 0.78 ALO

ρ(770)0 1.24(10) 1.18 1.50 1.17 AD
ω(782) 1.09(9) 1.17 1.35 1.01 ALO
η

′(958) 0.159(26) 0.097 0.155 0.121 ALO
f0(980) 0.155(8) 0.111 ∼0.1 — ADO
a0(980)

± 0.14(6) 0.240 — — O
φ(1020) 0.097(7) 0.104 0.194 0.132 ADO
f2(1270) 0.188(14) 0.186 ∼ 0.2 — ADO
f′2(1525) 0.012(6) 0.021 — — D

K± 2.26(6) 2.16 2.30 2.24 ADO
K0 2.074(14) 2.05 2.07 2.06 ADLO

K∗(892)± 0.718(44) 0.670 1.10 0.779 ADO
K∗(892)0 0.759(32) 0.676 1.10 0.760 ADO
K∗

2(1430)
0 0.084(40) 0.111 — — DO

D± 0.187(14) 0.276 0.174 0.196 ADO
D0 0.462(26) 0.506 0.490 0.497 ADO

D∗(2010)± 0.181(10) 0.161 0.242 0.227 ADO
D±

s 0.131(20) 0.115 0.129 0.130 O

B∗ 0.28(3) 0.201 0.260 0.254 D
B∗∗

u,d 0.118(24) 0.013 — — D

J/ψ 0.0054(4) 0.0018 0.0050 0.0050 ADLO
ψ(3685) 0.0023(5) 0.0009 0.0019 0.0019 DO
χc1 0.0086(27) 0.0001 — — DL

Table 1: Meson yields in Z0 decay. Experiments: A=Aleph, D=Delphi, L=L3, M=Mark
II, O=Opal. Bold: new data this year. Underlined: disagreement with data by more than
3σ.

4 Single-particle yields and spectra

Tables 1 and 23 compare predictions of the above models4 with data on Z0 decay from
LEP and SLC. Of course, the models have tunable parameters, but the overall agreement
is encouraging. As stated earlier, the main problems are in the baryon sector, especially
for HERWIG.

It is remarkable that most measured yields (except for the 0− mesons, which have special
status as Goldstone bosons) lie on the family of curves

〈n〉 = a(2J + 1)e−M/T (30)

where M is the mass and T ≃ 100 MeV (fig. 5 [40]). This suggests that mass, rather
than quantum numbers, is the primary factor in determining production rates. Note that,

3Updated from ref. [32].
4Recent ALEPH HERWIG tuning with strangeness suppression 0.8 [39].
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Particle Multiplicity HERWIG JETSET UCLA Expts
5.9 7.4 7.4

p 1.04(4) 0.863 1.19 1.09 ADO

∆++ 0.079(15) 0.156 0.189 0.139 D
0.22(6) 0.156 0.189 0.139 O

Λ 0.399(8) 0.387 0.385 0.382 ADLO
Λ(1520) 0.0229(25) — — — DO

Σ± 0.174(16) 0.154 0.140 0.118 DO
Σ0 0.074(9) 0.068 0.073 0.074 ADO
Σ⋆± 0.0474(44) 0.111 0.074 0.074 ADO

Ξ− 0.0265(9) 0.0493 0.0271 0.0220 ADO
Ξ(1530)0 0.0058(10) 0.0205 0.0053 0.0081 ADO

Ω− 0.0012(2) 0.0056 0.00072 0.0011 ADO

Λ+
c 0.078(17) 0.0123 0.059 0.026 O

Table 2: Baryon yields in Z0 decay. Legend as in table 1.

surprisingly, the orbitally-excited J = 3
2

baryon Λ(1520) (not yet included in models) is
produced almost as much as the unexcited J = 3

2
baryon Σ(1385) [41, 42].

At other energies, model predictions for identified particle yields are in broad agreement
with e+e− data (fig. 6 [43]), but statistics are of course poorer. Charged particle spectra at
low x agree well with the resummed (MLLA) predictions discussed in sect. 2 over a wide
energy range, as illustrated in fig. 7 [44].

In pp̄ → dijets [45] the relevant scale is taken to be Q = MJJ sin θ where MJJ is the
dijet mass and θ is the jet cone angle (fig. 8). Results are then in striking agreement with
MLLA predictions and with data from e+e− annihilation at Q =

√
s (fig. 9).

New SLD data include hadron spectra in light quark (rather than antiquark) fragmen-
tation, selected by hemisphere using the SLC beam polarization [46]. One sees strong
particle/antiparticle differences in the expected directions (fig. 10), bearing in mind the
predominance of down-type quarks in Z0 decay.

5 Quark and gluon jets

DELPHI [47] select gluon jets by anti-tagging heavy quark jets in ‘Y’ and ‘Mercedes’
three-jet events (fig. 11). As expected, the higher colour charge of the gluon (CA = 3 vs.
CF = 4/3) leads to a softer spectrum and higher overall multiplicity (fig. 12). In general
the relative multiplicities of identified particles are consistent with those of all charged,
with no clear excess of any species in gluon jets (fig. 13). In particular there is no enhanced
φ(1020) or η production:

DELPHI [47]: Ng(φ)/Nq(φ) = 0.7 ± 0.3
OPAL [48]: Ng(η)/Nq(η) = 1.29 ± 0.11

OPAL [49] select gluon jets recoiling against two tagged b-jets in the same hemisphere.
Monte Carlo studies indicate that such jets should be similar to those emitted by a point
source of gluon pairs. The qualitative message from the data is again clear (fig. 14): Gluon

10



Figure 5: Particle yields in Z0 decay.

Figure 6: Particle yields in e+e− annihilation.
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Figure 12: Charged particle spectra in quark and gluon jets.
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Figure 14: Momentum fraction and rapidity distributions in quark and gluon jets.

jets have softer fragmentation than light quark jets, and higher multiplicity. The precision
of the data is now such that next-to-leading order calculations of the relevant coefficient
functions, taking into account the experimental selection procedures, are needed to check
universality of the extracted gluon fragmentation function.

The ratio of gluon/quark multiplicities at low rapidity (large angle) is close to the ratio
of colour charges r ≡ CA/CF = 2.25, in agreement with local parton-hadron duality:

OPAL: rch(|y| < 1) = 1.919 ± 0.047 ± 0.095 .

According to eq. (25), the overall multiplicity ratio should also approach the value CA/CF

asymptotically, but at present energies the contribution from higher rapidities is substantial
and this leads to a smaller ratio.

Monte Carlo studies [49] suggest that a better measure of CA/CF is obtained by selecting
low-momentum hadrons with relatively large transverse momentum (i.e. low rapidity). This
gives

OPAL: rch(p < 4, 0.8 < pT < 3 GeV) = 2.29 ± 0.09 ± 0.015 .

DELPHI [50] have observed scaling violation in quark and gluon jet fragmentation
separately (fig. 15) by studying the dependence on the scale

κH = Ejet sin(θ/2) ≃ 1
2

√
sy3 (31)

where θ is the angle to the closest jet and y3 is the Durham jet resolution [51] at which 3
jets are just resolved. This is expected to be the relevant scale when y3 becomes small. One
sees clearly that there is more scaling violation in gluon jets (fig. 16). The ratio provides
another measure of CA/CF :

DELPHI: rsc.viol. = 2.23 ± 0.09 ± 0.06 .

A crucial point in the DELPHI analysis is that 3-jet events are not selected using a
fixed jet resolution ycut, but rather each event is clustered to precisely 3 jets. This avoids
‘biasing’ the gluon jet sample by preventing further jet emission above ycut.
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The same point is well illustrated in analyses of average multiplicities in 2- and 3-jet
events [52, 53, 54]. If Nqq̄(s) is the ‘unbiased’ qq̄ multiplicity, then in events with precisely
2 jets at resolution ycut there is a rapidity plateau of length ln(1/ycut) (see fig. 17) and the
multiplicity is

N2(s, ycut) ≃ Nqq̄(sycut) + ln(1/ycut)N
′

qq̄(sycut) (32)

where N ′(s) ≡ sdN/ds. Clustering each event to 3 jets we get this multiplicity with y3 in
place of ycut, plus an unbiased gluon jet:

N3(s) ≃ N2(s, y3) + 1
2
Ngg(sy3) . (33)

Thus one can extract the unbiased gg multiplicity, plotted in fig. 18 vs. pT
1 ∼ √

sy3 [55].
The ratio of gg/qq̄ slopes gives yet another measure of CA/CF [54]:

rmult = 2.246 ± 0.062(stat.) ± 0.080(sys.) ± 0.095(theo.) .

6 Current and target fragmentation in DIS

The H1 [56] and ZEUS [57] experiments at HERA have studied the distributions of xp =
2|p|/Q in the current and target hemispheres in the Breit frame of reference. The Breit
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Figure 20: Contributions to the final state in DIS.

frame is the one in which the 4-momentum of the virtual photon exchanged in DIS lies
entirely along the negative z-axis, qµ = (0, 0, 0,−Q), while the target proton has P µ =
(Q, 0, 0, Q)/2x (neglecting the proton mass), where x = −q2/2p · q is the Bjorken variable.
In this frame, to zeroth order in αS, the virtual photon simply strikes a constituent of the
target with momentum Q/2 and reverses its momentum. The remnant of the target is then
left with momentum (1 − x)Q/2x (fig. 19).

In higher orders one expects the current hemisphere to contain fragmentation products
of the current jet (C in fig. 20), similar to half an e+e− event. In the target hemisphere,
the contribution T1 is similar to C, T2 gives extra particles with xp < 1, while T3 gives
xp∼>1, generally outside detector acceptance.

• In the current hemisphere the charged multiplicity is indeed similar to e+e− (fig. 21
[57]). Differences at low Q2 are consistent with the expected boson-gluon fusion
contribution. The distribution of ξ = ln(1/xp) is also similar to e+e−, i.e. close to
Gaussian with little Bjorken x dependence (fig. 22).

At low Q2 there is evidence of strong subleading corrections. The distribution is
skewed towards higher values of ξ (smaller xp), contrary to MLLA predictions (fig. 23).
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Figure 21: Charged multiplicity in current hemisphere.

Figure 22: Fragmentation in DIS. Upper data (heavy curve) target region, lower data (light
curve) current region.
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Figure 23: Skewness in current fragmentation region.

The quantity plotted is

Skewness ≡
〈

(ξ − ξ̄)3
〉

/
〈

(ξ − ξ̄)2
〉

3
2 . (34)

On the other hand, the data lie well below the fixed-order perturbative prediction [58]
at low xp and Q2 (fig. 24). Discrepancies could be due to power-suppressed (1/Q2)
corrections, of dynamical and/or kinematical origin. The bands in fig. 24 correspond
to an ad-hoc correction factor



1 +

(

meff

Qxp

)2




−1

(0.1 < meff < 1 GeV). (35)

• In the target hemisphere there is also disagreement with MLLA [57], possibly due
to the T3 contribution “leaking” into the region xp < 1. If anything, Monte Carlo
models predict too much leakage (fig. 25). Little Q2 dependence is evident.

7 Heavy quark fragmentation

New data on b → B fragmentation from SLD [59], using high-precision vertexing, discrim-
inate between parton-shower plus hadronization models (fig. 26). Note that the data have
not yet been corrected for detector effects.

In general one expects the b quark to lose energy by gluon emission in the parton shower,
and then to suffer a further non-perturbative energy loss during hadronization. The latter
is conventionally parametrized by convoluting with the Peterson function [60]:

f(z) =
1

z

(

1 − 1

z
− ǫb

1 − z

)−2

(z = xB/xb) (36)
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Figure 24: Scaling violation in DIS fragmentation.

Figure 25: Target fragmentation compared with models.
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Figure 26: SLD data on b → B fragmentation compared with models.

Including more perturbative QCD leads to a reduction in the amount of non-perturbative
smearing required to fit the data, and hence to a smaller fitted value of the Peterson
parameter ǫb:

Pure Peterson [59]: ǫb = 0.036.
JETSET parton shower + Peterson [59]: ǫb = 0.006.
NLLA QCD + Peterson [61]: ǫb = 0.002.

Here NLLA (next-to-leading logarithmic approximation) refers to an analytical pertur-
bative calculation that goes beyond the parton shower approximation. The calculation of
ref. [61] was fitted to earlier ALEPH data [62], as shown in fig. 27.

In the universal low-scale αS model, the perturbative prediction is extrapolated smoothly
to the non-perturbative region, with no Peterson function at all [24].

8 Conclusions

We have seen that experimental studies of fragmentation are yielding large amounts of
new data for comparison with theoretical predictions and models. Especially impressive
is the success of the MLLA perturbative predictions in accounting for the general shape
and energy-dependence of fragmentation at small momentum fractions. We are now at the
stage when more detailed comparisons await new theoretical input, in the form of coefficient
functions that take account of selection procedures, especially for gluon jets in e+e− final
states.

Comparisons between data and hadronization models suggest that particle masses,
rather than quantum numbers, are the dominant factor in suppressing heavy particle pro-
duction. Baryon production is not yet well described by any model.
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Figure 27: ALEPH data on b → B fragmentation compared with NLLA QCD.

Quark and gluon jets have the expected differences and these can be used to measure
the ratio of colour factors CA/CF . There is no strong evidence yet for different particle
content in gluon jets.

Fragmentation in deep inelastic lepton scattering shows some disagreements with per-
turbative predictions. It is not yet clear whether these are due to higher-order or non-
perturbative effects.

New precise b quark fragmentation data from Z0 decay are now available and put strong
constraints on models for heavy quark hadronization. The data suggest that perturbative
effects dominate.
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