Entanglement purification via separable superoperators

Eric M. Rains
AT&T Research, Room C290, 180 Park Ave., Florham Park, NJ 07932-0971, USA
(February 16, 1998)

One of the fundamental concepts of quantum information theory is that of entanglement purification; that is, the transformation of a partially entangled state into a smaller-dimensional, more completely entangled state. Of particular interest are protocols for entanglement purification (EPPs) that alternate purely local operations with one- or two-way classical communication. In the present work, we consider a more general, but simpler, class of transformations, called separable superoperators. Since every EPP is a separable superoperator, bounds on separable superoperators apply as well to EPPs; we use this fact to give a new upper bound on the rate of EPPs on Bell-diagonal states, and thus on the capacity of Bell-diagonal channels.

One of the central questions in quantum information theory is that of determining the capacity of quantum channels; that is, the transmission rate below which noiseless transmission of entanglement is possible. In [1], Bennett et al. reduce this problem to that of entanglement purification, the production of maximally entangled states from non-maximally entangled states. In particular, Bennett et al. define two measures of distillable entanglement for a given state ρ: $D_1(\rho)$, the rate at which singlet states can be produced from a stream of systems in state ρ using local operations together with one-way classical communication, and $D_2(\rho)$, the rate when two-way classical communication is allowed. While $D_2(\rho)$ is clearly the maximum that can be physically achieved, the set of allowed transformations is extremely complicated. For this reason, we will introduce a third measure $D_4(\rho)$, or separably distillable entanglement, which, while it allows unphysical operations, is more amenable to analysis. In particular, we will derive an upper bound on $D_4(\rho)$, which then immediately gives a bound on $D_2(\rho)$.

Let ρ be a mixed state on a bipartite Hilbert space $V \otimes V$. We define the entanglement fidelity of ρ as

$$F(\rho) = \phi^+(V)\rho\phi^+(V),$$

where $\phi^+(V)$ is the maximally entangled state

$$\frac{1}{\sqrt{\dim(V)}} \sum_{0 \leq i < \dim(V)} |i\rangle \otimes |i\rangle.

(2)

Note that $\phi^+(V)$ does depend on the basis chosen for V, but only up to local unitary operations. For any set S of physical transformations, the distillable entanglement $D_S(\rho)$ is defined as the largest number such that there exists a sequence of transformations $P_i \in S$, with P_i mapping states on $V^\otimes n_i$ to states on W_i, such that

$$\lim_{i \to \infty} F(P_i(\rho)) = 1$$

and

$$\lim_{i \to \infty} \frac{\log_2 \dim W_i}{n_i} = D_S(\rho).$$

(4)

In other words, $D_S(\rho)$ is the rate at which entanglement can be distilled from a stream of systems in the state ρ, using only transformations from S. The 1-locally distillable entanglement $D_1(\rho)$ corresponds to the case when S consists of 1-local operations, that is local operations together with one-way classical communication, and analogously for $D_2(\rho)$.

For the new measure $D_4(\rho)$, we take the set S to be the set of separable superoperators. Recall that if V and W are (finite-dimensional) Hilbert spaces, a superoperator (more correctly, a completely positive trace-preserving map) A from V to W is a linear transformation from operators on V to operators on W, such that $A \otimes \text{Id}(V')$ maps density operators on $V \otimes V'$ to density operators on $W \otimes V'$, for any V'. Clearly, any physical transformation must be a superoperator; moreover, it can be shown [2] that any superoperator is realizable via unitary operations and partial traces. Moreover, a superoperator can always be written in the form

$$\rho \mapsto \sum_i A_i \rho A_i^\dagger,$$

(5)

where the A_i are linear transformations from V to W such that

$$\sum_i A_i^\dagger A_i = \text{Id}(V),$$

(6)

although such representation is by no means unique. If $V = V_1 \otimes V_2$ and $W = W_1 \otimes W_2$, a separable superoperator is one which has a representation of the form (5), in which each $A_i = A_i^{(1)} \otimes A_i^{(2)}$, with $A_i^{(1)}$ a linear transformation from V_j to W_j. Clearly, the space of separable superoperators contains that of 1-local superoperators. Since the space of separable superoperators is closed under multiplication, and symmetric under exchanging of V_1 and V_2, it follows that every 2-local superoperator is separable.

Remark. Separable superoperators were implicitly introduced in [3]. There, however, it was implied that the
space of separable superoperators is identical to the space
of 2-local superoperators, which is certainly not obviously
true (and, indeed, can be shown to be false [4]). It is
quite possible, therefore, that $D_i(\rho)$ is strictly greater
than $D_2(\rho)$ for some states ρ.

It will be helpful to observe that there is a natural
correspondence between linear transformations from V
to W and vectors in $V \otimes W$. If $|i\rangle$ is an orthonormal
basis of V, and A is a linear transformation from V to
W, then we define a vector

$$|A\rangle = \sum_i |i\rangle \otimes A|i\rangle = \sqrt{\dim(V)} (|i\rangle \otimes A) \phi^+(V). \quad (7)$$

We have the following identities:

$$|A\rangle = \sqrt{\dim(W)} (A^\dagger \otimes \text{Id}(W)) \phi^+(W) \quad (8)$$
$$\langle A|B\rangle = \text{Tr}(A^\dagger B) \quad (9)$$
$$\text{Tr}_V(|B\rangle \langle A|) = BA^\dagger \quad (10)$$
$$\text{Tr}_W(|B\rangle \langle A|) = (A^\dagger B)^t \quad (11)$$

In particular, it follows that for a superoperator \mathcal{P},

$$\text{Tr}_W(\sum_i |P_i\rangle \langle P_i|) = \text{Id}(V). \quad (12)$$

Fix a separable superoperator \mathcal{P} from $V \otimes V$ to $W \otimes W$, where V is an n-qubit Hilbert space, and W has
dimension K; to be explicit, take

$$\mathcal{P}(\rho) = \sum_i (P_i^{(1)} \otimes P_i^{(2)}) \rho (P_i^{(1)} \otimes P_i^{(2)})^t. \quad (13)$$

To any state ρ on $V \otimes V$, we can associate a fidelity $F_\mathcal{P}(\rho)$
between 0 and 1, namely the fidelity of $\mathcal{P}(\rho)$. Consider,
in particular, the case in which ρ is the pure state

$$\rho(U) = 2^{-n} |U^t\rangle \langle U^t|, \quad (14)$$

where U is an arbitrary unitary operation. Then

$$F_\mathcal{P}(U) \overset{\text{def}}{=} F_\mathcal{P}(\rho(U)) \quad (15)$$
$$= \frac{1}{2^{nK}} \sum_i \left| \text{Tr}(\text{Id}(W)(P_i^{(1)} U \otimes P_i^{(2)}) |P_i^{(1)} \otimes P_i^{(2)})(W) \right|^2$$
$$= \frac{1}{2^{nK}} \sum_i \left| \text{Tr}(P_i^{(1)} (U \otimes \text{Id}(W)) |P_i^{(2)})(W) \right|^2 \quad (16)$$
$$= \frac{1}{2^{nK}} \sum_i \text{Tr}(\rho_i^{(1)} (U \otimes \text{Id}(W)) \rho_i^{(2)} (U^t \otimes \text{Id}(W))), \quad (17)$$

where

$$\rho_i^{(1)} = |P_i^{(1)}\rangle \langle P_i^{(1)}|, \quad (18)$$

and similarly for $\rho_i^{(2)}$. In particular, $\rho_i^{(1)}$ and $\rho_i^{(2)}$ are positive semi-definite Hermitian operators on $V \otimes W$.

If ρ is a mixture of states of the form $\rho(U)$, then $F_\mathcal{P}(\rho)$
can be written as a linear combination of the relevant
$F_\mathcal{P}(\rho(U))$. Of particular interest is the case of the “depo-
larizing” qubit state; that is, the state $\Delta(\epsilon)$ with density matrix

$$\frac{\epsilon}{4} \text{Id} + \frac{1-\epsilon}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|), \quad (19)$$
on a two-state Hilbert space. We can also write

$$\Delta(\epsilon) = f \rho(1) + \frac{1-f}{3} (\rho(\sigma_x) + \rho(\sigma_y) + \rho(\sigma_z)), \quad (20)$$
with $f = 1 - (3/4) \epsilon = F(\Delta(\epsilon))$. We can then write:

$$F_\mathcal{P}(\Delta(\epsilon)^{\otimes n}) = \sum_j f^j \left(\frac{1-f}{3} \right)^{n-j} \sum_{\text{wt}(E)=j} F_\mathcal{P}(E), \quad (21)$$

where E ranges over the set \mathcal{E} of tensor products of matrices
from the set $\{1, \sigma_x, \sigma_y, \sigma_z\}$, and $\text{wt}(E)$ is the number
of components in the tensor product not equal to the identity.
The quantity

$$B_j(\mathcal{P}) = \sum_{\text{wt}(E)=j} F_\mathcal{P}(E) \quad (22)$$
has a form very similar to that of the weight enumerators
studied in [5] and [6]; this suggests that we should consider
the quantity

$$B'_S(\mathcal{P}) = \frac{1}{2^n K} \sum_i \text{Tr}(\text{Tr}_S(\rho_i^{(1)})) \text{Tr}_S(\rho_i^{(2)})), \quad (23)$$
where $\text{Tr}_S(\rho)$ is the partial trace of ρ with respects to the
qubits of V indexed by S, as well as W if $0 \in S$. We can
then define a polynomial

$$B'(u, v, x, y) = \sum_{i \neq j} x^i y^{n-i} \sum_{s \subseteq \{i \neq j\}, \text{wt}(s) = n} (u B'_S(\mathcal{P}) + v B'_{\{0\} \cup S}(\mathcal{P})). \quad (24)$$

The arguments in [6] tell us that

$$B'(1, 0, x - y, 2y) = B(x, y) = \sum_i B_i(\mathcal{P}) x^i y^i. \quad (25)$$

On the other hand,

$$B'_{\{0\} \cup S}(\mathcal{P}) = \frac{1}{2^n K} \sum_i \text{Tr} \left(\text{Tr}_S(\text{Tr}_W(\rho_i^{(1)})) \text{Tr}_S(\text{Tr}_W(\rho_i^{(2)})) \right) \quad (26)$$
$$= \frac{1}{2^n K} \sum_i \langle \text{Id} | \text{Tr}_{S \times S} (\text{Tr}_W(\rho_i^{(1)} \otimes S)(\rho_i^{(2)})) | \text{Id} \rangle \quad (27)$$

Since \mathcal{P} is a superoperator, (12) tells us that

$$\sum_i \text{Tr}_W(\rho_i^{(1)} \otimes S)(\rho_i^{(2)})) = \text{Id}(V \otimes V). \quad (28)$$
It follows that

\[B'_{(0,1,S)}(P) = 2^{|S|}/K, \]

and thus that

\[B'(u, v, x, y) = uB(x + y/2, y/2) + v(x + 2y)^n/K. \]

Since each \(\rho_i^{(1)} \) and \(\rho_i^{(2)} \) is positive semi-definite, the theory of weight enumerators \([6]\) tells us that the polynomials \(B'(u - v, Kv, x - y, 2y) \) and \(B'(v - u, u + v, y - x, x + y) \) have nonnegative coefficients; note that the latter is the analogue of the “shadow” enumerator, which was shown to be nonnegative in \([7]\). These polynomials can be written in terms of \(B(x, y) \), using (30):

\[
\begin{align*}
B'(u - v, Kv, x - y, 2y) &= uB(x, y) + v((x + 3y)^n - B(x, y)), \\
B'(v - u, u + v, y - x, x + y) &= u(1/K)(x + 3y)^n - S(x, y)) \\
&
\end{align*}
\]

where

\[S(x, y) = B(3x - 3y/2, x + y/2). \]

Since both of those polynomials have nonnegative coefficients, we can conclude that the four polynomials

\[B(x, y), (x + 3y)^n - B(x, y), \]

\[1/K(3x + 3y)^n - S(x, y), 1/K(x + 3y)^n + S(x, y), \]

each have nonnegative coefficients. The first two polynomials simply correspond to the fact that

\[0 \leq F_p(E) \leq 1 \]

for all \(E \). The second pair of polynomials roughly say that

\[|S_p(E)| \leq 1/K, \]

for an appropriate definition of \(S_p(E) \); it is not clear what, if anything, this corresponds to physically.

We can now begin to obtain bounds on \(D_s \):

Theorem 1 Let \(P \) be a separable superoperator from \(V \otimes V \) to \(W \otimes W \), where \(V \) is an \(n \)-qubit Hilbert space, and \(W \) is a \(K \)-dimensional Hilbert space. Then for any \(f \leq 1/2 \),

\[F_p(f) \overset{\text{def}}{=} F_p(\Delta((4/3)(1-f))) \leq 1/K. \]

In particular, \(D_s(f) = 0 \).

Proof. We have:

\[F_p(f) = B(f, 1 - f/3) \]

\[= S(1/2 - f, 1/6 + f/3). \]

Now, the coefficients of \((x + 3y)^n/K - S(x, y)\) are nonnegative, so, for any specific numbers \(x, y \geq 0 \),

\[(x + 3y)^n/K \geq S(x, y). \]

In particular, this is true for \(x = (1/2) - f \) and \(y = (1/6) + (f/3) \); the result follows immediately. QED

In particular, we obtain the known fact that distillation is impossible for \(f \leq 1/2 \). Moreover, we obtain the following:

Corollary 1 If \(\rho \) is a separable state on \(W \otimes W \), where \(W \) has dimension \(K \), then \(\rho \) has fidelity at most \(1/K \). In particular, for any separable state \(\chi \), and any separable superoperator \(P \), \(F_p(\chi) \leq 1/K \).

Proof. Suppose, on the other hand, that \(\rho \) had fidelity greater than \(1/K \). Since \(\rho \) is separable, we could then produce a \(K \times K \)-dimensional bipartite state of fidelity greater than \(1/K \) from any input state, using only local operations and classical communication. But this contradicts the bound (36). The second statement follows from the fact that the image of a separable state under a separable superoperator is separable. QED

It should also be noted that (36) is tight, since a uniformly distributed ensemble of states \(\psi \otimes \psi \) is certainly separable, and is easily shown to have fidelity \(1/K \); the argument of the corollary then applies in reverse to construct a separable superoperator of fidelity \(1/K \).

So far, we have not used the first two constraints. It turns out that these can be used to control how much the output fidelity of a given superoperator can vary as the input fidelity changes. In particular, we will be able to establish, for each rate, a neighborhood of \(f = 1/2 \) for which the output fidelity must still tend to 0.

Theorem 2 Let \(f \geq 1/2 \). The separably distillable entanglement \(D_s(f) \) of the depolarizing state \(\Delta(\epsilon) \) with fidelity \(f \), satisfies the bound

\[D_s(f) \leq 1 - H_2(f) \]

\[= 1 + f \log_2(f) + (1-f) \log_2(1-f). \]

Indeed, any family of separable superoperators of rate greater than \(1 - H_2(f) \) must have output fidelity tending to 0.

Proof. Suppose the theorem were false. Then there would exist a sequence of separable superoperators \(\{P_i\} \), producing a \(K_1 \times K_1 \) bipartite state from \(n_1 + n_2 \) qubits such that \(F_{P_i}(f) \) did not tend to 0, and such that
\(\log_2(K_i)/n_i \) tended to a limit strictly greater than \(1 - H_2(f) \).

Consider \(B(f, \frac{1-f}{3}) \). For a fixed value of \(B(f, \frac{1-f}{3}) \), the lowest possible value of \(B(1/2, 1/6) \) (ignoring all other constraints) is attained when the weight of the \(B \), is concentrated at low \(i \); these are the coefficients for which \(f'((1-f)/3)^{n-i} \) is decreased the most when \(f \) is replaced by \(1/2 \). In that case, we have:

\[
B(f, \frac{1-f}{3}) \simeq \sum_{0 \leq i < j} \binom{n}{i} f^i (1-f)^{n-i} \tag{42}
\]

for some \(j \). In order for this not to tend to 0 as \(n \) increases, we must have \(j \geq n(1-f) \). But then

\[
B(\frac{1}{2}, \frac{1}{6}) \simeq 2^{-n} \sum_{0 \leq i < j} \binom{n}{i}, \tag{43}
\]

so

\[
B(\frac{1}{2}, \frac{1}{6}) \simeq 2^n \left(H_2(j/n) - 1 \right) \simeq 2^n \left(H_2(f) - 1 \right). \tag{44}
\]

On the other hand, by (36), we know \(B(1/2, 1/6) \leq 1/K \). But then

\[
\log_2(K)/n \lesssim 1 - H_2(f). \tag{45}
\]

QED

This bound is plotted in Figure 1, as well as the weaker bound

\[
D_2(f) \leq E(f) = H_2(\frac{1}{2} + \sqrt{f(1-f)}) \tag{46}
\]

from [1]. In particular, note that the new bound is strictly stronger than the old bound ("entanglement of formation") for \(1/2 < f < 1 \). Since every 1-local operator is separable, we also get the bound \(D_2(f) \leq 1 - H_2(f) \), which actually improves on the best known upper bounds, for some range of \(f \). For \(1/2 \leq f \leq 3/4 \), it is known that 1-local operators cannot achieve fidelity close to 1 at any positive rate; if this could be strengthened to more precise bounds on fidelity, the above technique would then provide bounds on \(D_2(f) \) for \(f \geq 3/4 \).

The above argument can be extended to arbitrary Bell-diagonals states; to bound \(D_4(\chi) \) where \(\chi \) is Bell-diagonal with eigenvalues \(\beta_0 \geq \beta_1 \geq \beta_2 \geq \beta_3 \), with \(\beta_0 \geq 1/2 \), simply compare \(\chi \) to the separable Bell-diagonal state \(\chi_0 \) with eigenvalues \(1/2, \beta_1/(2-2\beta_0), \beta_2/(2-2\beta_0), \) and \(\beta_3/(2-2\beta_0) \). The separability of \(\chi_0 \) implies, by corollary 1, that \(F_\pi(\chi_0) \leq 1/K \); but then (34) allows us to deduce that \(F_\pi(\chi) \) tends to 0 unless

\[
\frac{\log_2(K)}{n} \lesssim 1 - H_2(\beta_0). \tag{47}
\]

In other words, \(D_4(\chi) \leq 1 - H_2(\beta_0) \). Note that this bound is tight in the case \(\beta_2 = \beta_3 = 0 \); in this case, the noise is purely classical in nature, and can be corrected using classical codes.

Vedral and Plenio [8] have independently proved (assuming a certain additivity conjecture) a more general bound on \(D_4 \), which apparently agrees with (47) on Bell-diagonal states.

The author would like to thank André Berthiaume for helpful comments, as well as David DiVincenzo, Peter Shor, and John Smolin for helpful conversations about separable superoperators.

\[\begin{array}{c|c|c}
\hline
f & 1 - H_2(f) & E(f) \\
\hline
0.1 & 0.4 & 0.4 \\
0.2 & 0.6 & 0.6 \\
0.3 & 0.8 & 0.8 \\
0.4 & 1.0 & 1.0 \\
\hline
\end{array} \]

FIG. 1. Bounds on \(D_2(f) \)