Pasting quantum codes

Daniel Gottesman*

California Institute of Technology, Pasadena, CA 91125

Abstract

I describe a method for pasting together certain quantum error-correcting codes that correct one error to make a single larger one-error quantum code. I show how to construct codes encoding 7 qubits in 13 qubits using the method, as well as 15 qubits in 21 qubits and all the other “perfect” codes.

03.65.Bz,89.80.+h
Quantum computers have a great deal of promise, but they are likely to be inherently much noisier than classical computers. One approach to dealing with noise and decoherence in quantum computers and quantum communications is to encode the data using a quantum error-correcting code. A number of such codes and classes of codes are known [1–8]. However, the only known method of automatically generating such codes is to find a suitable classical error-correcting code and convert it into a quantum code [2,3]. This method is limited to producing less efficient codes (i.e., with smaller ratio of encoded qubits to total qubits) than dedicated quantum codes, so a method of automatically producing highly efficient quantum codes is desirable. I will present here a method to create one-error quantum codes from smaller ones with almost no effort.

The conditions for a set of n-qubit states $|\psi_1\rangle, \ldots, |\psi_{2^k}\rangle$ to form an error-correcting code for the errors E_a is

$$\langle \psi_i|E_a^\dagger E_b|\psi_j\rangle = C_{ab}\delta_{ij},$$

(1)

where C_{ab} is independent of i and j [5,9]. A code with 2^k states encodes k qubits. Typically, a code will be designed to correct all possible errors affecting less than or equal to t qubits. The basis errors E_a are usually tensor products of

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X_i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y_i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad Z_i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

(2)

where the subscript i refers to the qubit which the error acts on.

If the matrix C_{ab} has maximum rank, the code is called a nondegenerate code. If C_{ab} has determinant 0, it is a degenerate code. Most known codes are nondegenerate codes (in fact, for most known codes, $C_{ab} = \delta_{ab}$). For a nondegenerate code, each error acting on each code word must produce a linearly independent state. In order to have enough room in the Hilbert space for all of these states, there is a maximum possible efficiency for the code, known as the quantum Hamming bound [10]. For codes to correct one error, the quantum Hamming bound takes the form

$$(3n + 1)2^k \leq 2^n.$$

(3)
If equality holds, the code is known as a perfect code. For a perfect code, $3n + 1$ must be a power of 2. Since $4^j - 1$ is divisible by 3, while $2^{2j+1} - 1$ is not, there are possible one-error perfect codes for $n = (4^j - 1)/3$. The perfect codes have $n - k = 2j$. The two smallest such codes are for $n = 5, 21$, but there is a full infinite class of them. Multiple-error perfect codes are much rarer. There are known $n = 5$ codes $[4,5]$, but until now, it was unknown if the other perfect codes existed.

Finding a set of states that satisfies condition (1) without guidance is difficult at best. In [6] and [7], more powerful group theoretic methods are presented that reduce the task to an admittedly still difficult combinatorial problem. Using the terminology of [6], a quantum error-correcting code is defined in terms of its stabilizer \mathcal{H}, which is the set of operators M formed from products of X_i, Y_i, and Z_i that fix all of the states in the coding space T. T forms the joint $+1$-eigenspace of the operators in \mathcal{H}. In order for this to be non-empty, the elements of \mathcal{H} must all commute with each other and square to $+1$. If \mathcal{H} is generated by a elements, the code encodes $n - a$ qubits.

If an error E anticommutes with $M \in \mathcal{H}$, when E acts on a state $|\psi\rangle$ in T, it will take it from the $+1$-eigenspace of M to the -1-eigenspace, where we can recognize it as an incorrect state, and hopefully correct it. Since all products of X_i, Y_i, and Z_i commute or anticommute, we can define functions f_M and f:

$$f_M(E) = \begin{cases} 0 & \text{if } [M, E] = 0 \\ 1 & \text{if } \{M, E\} = 0 \end{cases}$$

$$f(E) = (f_{M_1}(E), f_{M_2}(E), \ldots, f_{M_a}(E)),$$ (5)

where M_1, \ldots, M_a are the generators of \mathcal{H}. Given two errors E and F, if $f(E) \neq f(F)$, then $E|\psi\rangle$ and $F|\psi\rangle$ are in different eigenspaces for some element of \mathcal{H}, so they are orthogonal, and we can distinguish them and correct them. Conversely, if $f(E) = f(F)$, then we cannot properly distinguish E and F, which will cause a problem unless $E|\psi\rangle$ is actually equal to $F|\psi\rangle$, giving us a degenerate code. In this case, $F^\dagger E|\psi\rangle = |\psi\rangle$, so $F^\dagger E \in \mathcal{H}$. For a
nondegenerate code, all of the values $f(E)$ must therefore be distinct, allowing $f(E)$ to serve as the error syndrome. Note that $f(I) = 0$, so $f(E)$ must be nonzero for nontrivial E.

In [6], I gave a construction for one-error codes with $n = 2^j$, $k = n - j - 2$. For all of these codes, the first two generators have the form $M_1 = X_1 \ldots X_n$ and $M_2 = Z_1 \ldots Z_n$. Therefore, all of the error syndromes for these codes start with 01 for an X_i error, with 10 for a Z_i error, and 11 for a Y_i error. None of the error syndromes beginning with 00 are used. Therefore, we can add more qubits and thus more possible errors to the code, so long as all the error syndromes for the new errors begin with 00. The new error syndromes will all have to be different, of course, which will necessitate extending most of the generators of \mathcal{H} to have nontrivial action on the new qubits.

We want the new errors to have $f_{M_1}(E) = f_{M_2}(E) = 0$, so we will leave M_1 and M_2 alone, letting them act trivially on the new qubits. If we extend the remaining generators by pasting on the generators of a nondegenerate code with two fewer generators, all of the new error syndromes are guaranteed to be distinct, since the smaller code must distinguish them to be a good code. See figure 1 for a schematic picture of this process.

Just distinguishing all errors is not sufficient for \mathcal{H} to define a code. It must also be Abelian and all elements must square to 1. However, each new generator $M = NP$, where N and P are generators from existing codes. They must individually square to 1, so the product also squares to 1. Similarly, another generator $M' = N'P'$ commutes with M: $NN' = N'N$ and $PP' = P'P$. The Ns and Ps act on different qubits, and therefore commute. Thus,
TABLE I. The stabilizer for $n = 13$ formed by pasting an $n = 5$ code to an $n = 8$ code.

$$MM' = (NP)(N'P') = (N'P')(NP) = M'M.$$ \hfill (6)

Therefore, \mathcal{H} formed by this method will always form a new error-correcting code.

The smallest code we can create this way from existing codes is given by pasting a 5-qubit code [4,5] onto an 8-qubit code [6–8]. Since the 5-qubit code has four generators, while the 8-qubit code has only five, we must first augment the 8-qubit code by adding a trivial sixth generator. The resulting stabilizer (using the stabilizer from [6] for the 8-qubit code and from [7] for the 5-qubit code) is given in table I. Since the stabilizer has six generators, this code encodes seven qubits in 13 qubits. This is the best code on 13 qubits allowed by the quantum Hamming bound.

We can also paste a 5-qubit code to the 16-qubit code of the class given in [6]. Since the 16-qubit code already has six generators, no augmentation is needed. This produces a 21-qubit code encoding 15 qubits. This is the second perfect code. In general, if we paste the $(j - 1)$th perfect code (with $n = (4^j - 1)/3$ and $2j$ generators) to a $n = 2^{2j}$ code, we get a code with $2j + 2$ generators on $4^j + (4^j - 1)/3 = (4^{j+1} - 1)/3$ qubits. This is therefore the jth perfect code, and we can produce all the perfect codes using this construction.

Pasting other combinations of codes is also possible, but not all combinations can be used. The larger code must always have a generator formed from the product of all X_is and a generator equal to the product of all Z_is, or some equivalent set of generators that can be used to distinguish errors on the original set of qubits from those on the new qubits added.
after the pasting operation. Both codes must be nondegenerate, because when $F^\dagger E$ is in \mathcal{H} before the pasting, it is unlikely to remain in \mathcal{H} after the pasting operation, which lengthens most of the generators. Also, the smaller code must have exactly two fewer generators than the larger code. This requirement can be largely circumvented, however, by adding on identity generators to either the larger or smaller code, as seen in the above construction of a 13-qubit code.

In addition, this method does not work at all on codes to correct two or more errors. Suppose we used a similar method to distinguish one- or two-qubit errors on the original qubits from those on the new qubits. A new two-qubit error formed of one error on the original qubits and one on the new qubits would look like an error on the original qubits, since it does actually affect them, and would not typically be distinguishable from errors on the original qubits. Of course, in some special cases, the new code might distinguish such errors, but we cannot be sure that it will based purely on the pasting method described here.

ACKNOWLEDGEMENTS

I would like to thank John Preskill for helpful comments, as well as the ISI Foundation for sponsoring the Quantum Computation workshop, where much of this work was performed. This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG03-92-ER40701 and by DARPA through a grant to ARO.
REFERENCES

