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ABSTRACT

Sum rules for B(M1; 0+1 ! 1+i ) strength are derived for even-even nuclei in
the isospin-invariant forms of the IBM, IBM-3 and IBM-4, in the cases where
the respective natural internal symmetries, isospin U(3) and U(6) � SU(4),
are conserved. Subsequently, the total strength is resolved into its component
partial sums to the allowed isospins (and SU(4) representations in IBM-4). In
cases where the usual IBM dynamical symmetries are also valid, a complete
description of all B(M1; 0+1 ! 1+i ) is given. In contrast to IBM-2, there
is fragmentation of the strength even in the dynamical symmetry cases, for
T 6= 0, over two states in IBM-3, and over three states in IBM-4. The presence
of pn bosons in the ground state of the extended versions reduces the expected
strength from that for IBM-2, allowing in principle the possibility of using
B(M1) data for a given nucleus to infer which version is the most appropriate.
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One of the most important areas of research arising from use of the proton-neutron Inter-

acting Boson Model (IBM-2) is the investigation of properties of nuclear levels corresponding to

boson states of mixed symmetry in the pn and orbital degrees of freedom [1]. (Such structures

are also present in other collective models.) Prominent amongst these are the so-called \scis-

sor" modes in even-even nuclei, corresponding in the geometrical models to an oscillation in

the angle between the symmetry axes of the deformed proton and neutron distributions, whose

J�=1+ level is strongly excited by a largely orbital M1 process in (e; e0) from the ground state

[2]. Recently, an expression for the summed B(M1) strength in IBM-2 has been derived [3]. It

is found to depend upon the mean number of d-bosons in the ground state, and so can be used

to estimate that number from the B(M1) data.

For nuclei where the dominant shell model states involve valence protons and neutrons in

the same orbits, the manifest isospin invariance suggests the inclusion of this feature also in

the IBM. Two versions have received most attention: IBM-3 [4], the minimal isospin invariant

model completing an isospin triplet of sd bosons by the addition of a T=1, MT=0 complement

(sometimes referred to as �) to the � (MT=1) and � (MT=-1) bosons of IBM-2, and so allowing

classi�cation by an isospin U(3) group containing a boson realisation of the usual isospin SU(2);

IBM-4 [5], further augmented by the addition of a T=0, S=1 boson (sometimes referred to as

�), allowing classi�cation by an isospin-spin U(6) group that can be reduced via a Wigner

supermultiplet SU(4) to separate SU(2) groups for the isospin and spin.

In this letter, we present IBM-3 and IBM-4 B(M1) sum rules for even-even nuclei in cases

where the above internal symmetries are conserved, and subsequently resolve the total strength

into its components to each internal symmetry representation (isospin, SU(4) label). Finally,

for the usual IBM dynamical symmetries, individual B(M1)'s are completely speci�ed. Thus

we obtain various expressions appropriate to the symmetry-limit cases, which may be used to

give \benchmark" values as have often proved useful in IBM work. In addition, these will be

seen to allow the possibility of using the B(M1) data to infer which version of the IBM is the

most appropriate; the uncertainties involved are discussed.

M1 Sum Rules

Although the IBM-4 magnetic dipole operator could in principle contain many terms involv-

ing combinations of the various orbital, spin, and isospin operators, the one-boson analogues

of those in the nucleon operator are expected to be the most important,

T(1) =

s
3

4�
(gl0L+

1

2
gl1
X
k

T0(k)L(k) + gs0S+ gs1Y0); (1)
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gl1 = g� � g� : (2)

This restricted form has indeed proved satisfactory in previous applications [6, 7].

The summed B(M1) strength can be equated to a ground state expectation value

X
i

B(M1; 0+1 ! 1+i ) = h0+1 jT(1) �T(1)j0+1 i; (3)

where the dot denotes the angular momentum scalar product. Natural U(6) � SU(4) and

TS labels for the IBM-4 N -boson isospin-T ground state are [N ] (0T0) T 0 [5], in which case

analysis of selection rules reveals that only the (tl).(tl) term in the product contributes:
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3

16�
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T0(k)L(k)

!
j0+1 i: (4)

The situation for IBM-3, where the natural magnetic dipole operator is obtained by omitting

the spin terms from that for IBM-4, thus di�ers only in the labels for the ground state, which

are [N ] T with respect to U(3) � SU(2) [4]. Indeed, the expression (4) also accommodates the

case of IBM-2, where 1
2
T0 would be written as F0, and the ground state carries the (F-spin)

U(2) label [N ]. In all cases, we have

MT = N� �N�; T = jMT j: (5)

The assumed total symmetry of the ground state allows the replacement [6] X
k
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X
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X
k 6=k0

L(k) � L(k0): (6)

Continuing, we have for expectation values in the L = 0; jMT j = T ground state

X
k 6=k0

L(k) �L(k0) = L � L�X
k

L(k) �L(k)! �X
l

l(l+ 1)nl; (7)

X
k 6=k0

T0(k)T0(k
0) = T 2

0 �
X
k

T0(k)T0(k)! T 2 � (N � hNpni); (8)

where Npn is the number operator for pn (MT=0) bosons, i.e. � and � in IBM-4, � in IBM-3,

the expectation value being trivially zero in IBM-2. Thus we have

X
i

B(M1; 0+1 ! 1+i ) =
3

16�
g2l1 �ll(l+ 1)hnli(N � T )(N + T )�NhNpni

N(N � 1)
: (9)
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X
i

B(M1; 0+1 ! 1+i ) =
9

8�
g2l1 hndi

(N � T )(N + T )�NhNpni
N(N � 1)

: (10)

For IBM-2, with Npn=0, this reduces to the expression derived previously by Ginocchio [3],

X
i

B(M1; 0+1 ! 1+i ) =
9

4�
g2l1 hndi

2N�N�

N(N � 1)
: (11)

It is apparent that the inclusion of the pn bosons reduces the expected B(M1) strength, which

opens up the possibility of using data on B(M1)'s to infer which version of the model is the

most appropriate; we return to this point below.

Now consider the derivation of hNpni in IBM-4 and IBM-3; in fact, it is of interest to

calculate the separate values hN�i and hN�i in IBM-4. It is convenient to introduce

N� =
1

2
(N ��); � = N(10) �N�; (12)

N� =
1

3

 
N(10) +

X
k

Q0(k)

!
: (13)

where Q0 is the isospin quadrupole operator, normalised to have matrix elements -1, 2, -1 for

�; �; � respectively.

The homomorphism SU(4) � SO(6) suggests that the structure U(6) � SU(4), as well as

U(3) � SO(3), should be associated with a complementary boson quasispin group SU(1; 1) [8],

allowing the use of reduction formulae in the evaluation of matrix elements. Indeed, explicit

realisations are given by the canonical forms, where 
 equals half the number of internal states,


 = 3 and 3/2 for IBM-4 and IBM-3 respectively, and B+ creates the SO(2
) scalar (seniority

zero) pair:

S+ =
p

 B+ =

8><
>:
q

3
2
B+(0) = 1

2
b+(10) � b+(10) (IBM� 3)

p
3 B+(000)(00) = 1

2
(b+(10) � b+(10) � b+(01) � b+(01)) (IBM� 4)

;

S� = (S+)
+ ; S0 =

1

2
(N + 
): (14)

Under commutation with the relevant generators, the operators � (in IBM-4) and Q0 (in IBM-

3 and IBM-4) both transform according to the �nite dimensional representations labeled by

(S = 1; M = 0), while the states j[N ](0T0)i and j[N ]T i transform according to the in�nite

dimensional unitary representations labeled by (S = (T +
)=2;M = (N +
)=2). Thus, using

analytic continuations of the usual SU(2) 3-j symbols [8],

hSM j(10)jSMi = (�)S�M
0
B@ �S �S 1

M �M 0

1
CA =

0
B@ �S �S 1

S �S 0

1
CA� hSSj(10)jSSi

=
M

S
hSSj(10)jSSi: (15)
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h[N ](0T0)(T0)j�j[N ](0T0)(T0)i =
T (N + 3)

T + 3
; (16)

h[N ](0T0)(T0)jQ0j[N ](0T0)(T0)i = �T (N + 3)

T + 3
; (17)

h[N ]T jQ0j[N ]T i = �T (N + 3=2)

T + 3=2
= �T (2N + 3)

2T + 3
; (18)

so that

h[N ](0T0)(T0)jN�j[N ](0T0)(T0)i = 3(N � T )

2(T + 3)
; (19)

h[N ](0T0)(T0)jN�j[N ](0T0)(T0)i = N � T

2(T + 3)
; (20)

h[N ](0T0)(T0)jNpnj[N ](0T0)(T0)i = 2(N � T )

T + 3
; (21)

h[N ]T jN�j[N ]T i = N � T

2T + 3
; (22)

where Eqn.(22) may also be obtained using the standard matrix elements of Q0 in the SU(3) �
SO(3) representations (N0) T [8].

Thus �nal expressions for the B(M1) sum rules in IBM-3 and IBM-4 are

IBM� 3 :
X
i

B(M1; 0+1 ! 1+i ) =
9

8�
g2l1 hndi

N � T

N(N � 1)

�
N + T � N

2T + 3

�

=
9

8�
g2l1 hndi

(N � T )(2N(T + 1) + T (2T + 3))

(N � 1)N(2T + 3)
; (23)

IBM� 4 :
X
i

B(M1; 0+1 ! 1+i ) =
9

8�
g2l1 hndi

N � T

N(N � 1)

�
N + T � 2N

T + 3

�

=
9

8�
g2l1 hndi

(N � T )(N(T + 1) + T (T + 3))

(N � 1)N(T + 3)
: (24)

Resolution over Isospins and Wigner Supermultiplets

Comparison of the �nal state internal symmetry representations contained in the U(2
)

representation [N � 1; 1] with those arising in the Kronecker products for the ground state

(isospin T ) and
P

k T0(k)L(k), yields

IBM� 3 : [N � 1; 1] T (T 6= 0 or N); T + 1 (T 6= N); (25)

IBM� 4 : [N � 1; 1] (0T0)(T0) (T 6= 0 or N)

(1T1)(T0) (T 6= 0 or N); (T + 1; 0)(T 6= N): (26)

The ratios of B(M1) strength to subspaces de�ned by the representations of the various sym-

metry labels, including the experimentally accessible isospin, involve simply ratios of the group

coupling coe�cients.
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P
iB(M1; 0+1 ! (1+; T )i)P

iB(M1; 0+1 ! (1+; T + 1)i)
=

h(N0)T (10)1j(N � 1; 1)T i2
h(N0)T (10)1j(N � 1; 1)T + 1i2 �

hTT 10jTT i2
hTT 10jT + 1 T i2

=
T (2T + 3)(N + T + 1)

(T + 2)N
; (27)

so that

X
i

B(M1; 0+1 ! (1+; T )i) =
9

8�
g2l1 hndi

T (N � T )(N + T + 1)

(T + 1)N(N � 1)
; (28)

X
i

B(M1; 0+1 ! (1+; T + 1)i) =
9

8�
g2l1 hndi

(T + 2)(N � T )

(T + 1)(2T + 3)(N � 1)
: (29)

For IBM-4, SU(4) � SU(2) � SU(2) and Clebsch-Gordan coe�cients yieldP
iB(M1; 0+1 ! (1+; (1T1)T )i)P

iB(M1; 0+1 ! (1+; (1T1)T + 1)i)
=

h(0T0)T0 (101)10j(1T1)T0i2
h(0T0)T0 (101)10j(N � 1; 1)T + 1; 0i2

� hTT 10jTT i2
hTT 10jT + 1 T i2 =

3T

T + 4
: (30)

Ratios involving the B(M1) sum to (0T0) could also be derived, using in addition coe�cients

for U(6) � SU(4). However, we note that the complete resolution of the strength can be

simply obtained in this case by evaluating the B(M1) sum to (1T1) T + 1 via the ground

state expectation value of T (1) T�T+ T (1)=2(T + 1) (for MT = +T ); this follows the derivation

presented above. One �nds

X
i

B(M1; 0+1 ! (1+; (0T0)T )i) =
9

16�
g2l1 hndi

2T (N � T )(N + T + 4)

(T + 4)N(N � 1)
; (31)

X
i

B(M1; 0+1 ! (1+; (1T1)T )i) =
9

16�
g2l1 hndi

3T (T + 2)(N � T )

(T + 1)(T + 3)(T + 4)(N � 1)
; (32)

X
i

B(M1; 0+1 ! (1+; (1T1)T + 1)i) =
9

16�
g2l1 hndi

(T + 2)(N � T )

(T + 1)(T + 3)(N � 1)
: (33)

B(M1)'s in Dynamical Symmetries

In cases where the sd space dynamical symmetries (U(5); O(6); SU(3)) are valid, transitions

proceed to at most one orbital representation [1]. However, from the presentation above it is

seen that there is still generally fragmentation of the M1 strength, in contrast to IBM-2, over

two states in IBM-3, and three in IBM-4, unless T = 0 when only one transition is allowed in

both versions. Furthermore, analytic values are available for hndi [1],

U(5) : hndi = 0; (34)

SO(6) : hndi =
N(N � 1)

2(N + 1)
; (35)

SU(3) : hndi =
4N(N � 1)

3(2N � 1)
; (36)
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relevant expression (Eqns.(28,29) and (31-33)).

Discussion

Since the above expressions for M1 strength di�er between IBM-2, -3, and -4, they furnish

a possible means of inferring from M1 data which version is the most appropriate for a given

nucleus. However, it should be noted that: 1) The extended versions are indicated by succes-

sively reduced strength, and so might be wrongly implicated by some M1's being undetected.

2) The e�ects of departures from the assumed internal symmetries are not known; in partic-

ular, SU(4) breaking in IBM-4 may lead to involvement of the strong isovector spin term. 3)

Another extension of the IBM(-2), to include g-bosons, leads to increased M1 strength [10],

which could o�set or even reverse any decrease due to the presence of pn bosons.
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