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1 Introduction

A very convenient way to non{perturbatively regularize a QFT is to put the dynamical vari-

ables of the theory on a regular spacetime lattice (in the functional{integral formulation) or

on a regular space lattice (in the hamiltonian framework). This introduces a \natural" cuto�,

roughtly equal to the inverse of the lattice spacing, either on both energy and momentum or on

momentum alone. Usually this procedure breaks the symmetry properties of the action down to

a lower level: Lorentz or Euclidean invariance reduces to invariance under discrete subgroups,

scale invariance in massless theory is broken explicitly by the cuto�, and very often also internal

symmetries, either global or local, are di�cult to keep.

Therefore it is very interesting to �nd regularization procedures that preserve as much as

possible of the characteristics of the continuum theory. This issue is particularly important in

the case of two{dimensional models which are integrable at tree level and are supposed to be

so also at the full quantum level. One would like to have a non{perturbative lattice de�nition

of such quantum theories which preserves integrability.

A quite general solution to this problem is based on the so{called light{cone approach [5], in

which the 2D Minkowski spacetime is discretized in light{cone coordinates. The basic object in

this approach is the R{matrix, that is a solution of the Yang{Baxter equations which character-

ize the factorized scattering of a 2D integrable QFT. This R{matrix is regarded as a collection

of quantum amplitudes for the scattering of \bare" objects, which move with the rapidity cuto�

�, on each vertex of the light{cone lattice, casting the model in question in the form of a vertex

model. Then the full machinery based on monodromy and transfer matrices [1][2] [3] can be

set up and the algebrized or analityc Bethe ansatz (BA) can be used to completely diagonalize

the transfer matrix and, with it, the total momentum, the Hamiltonian and all other conserved

charges. The continuum limit may then be explicitly performed by letting � go to in�nity in a

well de�ned way as the lattice spacing vanishes.

A drawback of the standard light{cone approach is the nonlocality of the lattice Hamiltonian.

While this does not constitute a real problem for the continuum limit, either at the bare or

renormalized level, it makes more di�cult to properly handle the full excitation spectrum

and to study the conformal limit, which allows to identify the integrable model at hand as a

perturbed CFT. A sligthly modi�ed version of the light{cone approach without such di�culties

was recently put forward in [4]: rather than as logarithm of the unit time evolution operator (or

diagonal{to{diagonal transfer matrix), the lattice Hamiltonian is identi�ed as the �rst of the

series of local charges obtained by suitably di�erentiating the alternating transfer matrix with

respect to the spectral parameter. Such identi�cation was made before, whithin a di�erent

context, in [14]. The basic property of this modi�ed approach is the locality of the lattice

Hamiltonian, which allows to safely regard the time as continuous while the space is still discrete,

restricting the UV cuto� only to the space momentum.

In this work we present a detailed application of the local light{cone approach to the massive
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Thirring model. This is probably the simplest case, being based on the well known, almost

paradigmatic six{vertex R{matrix, without any quantum group restriction, and was for such

reason the �rst model studied also in the nonlocal approach [6]. Nonetheless there are some

interesting non{trivial points that require a careful examination.

First of all one must take into account the Nielsen{Ninomiya theorem [10], since the lattice

Hamiltonian is local and chiral{invariant in the �!1 limit (this is one of the most important

di�erences of the light{cone approach with respect to L�uscher's regularization based on the

XYZ spin chain [13]: the latter is indeed integrable but has neither U(1) invariance nor a local

implementation of chiral transformations). As a consequence one �nds the \fermion doublers"

both in the perturbative spectrum and in the exact Bethe ansatz spectrum. It is then important

to check whether these massless doublers indeed decouple from the massive Thirring particles.

We show the answer to be a�rmative even o� shell, for the local continuum �elds, although

the mechanism is quite non{trivial.

Secondarily, we examine in detail the problem of boundary conditions and their e�ects on

the exact spectrum. In particular, by carefully handling a completely fermionic formulation we

are able to show that the excitations over the ground state carry the correct U(1) charge which

corresponds to dressed fermions interpolated by the bare �elds. This should be compared with

the result proper of the periodic spin chain, with excitations carrying half the U(1) charge of

the fermions.

Another interesting point concerns the structure of the perturbative vacuum on the lattice:

while the one{particle spectrum over the emptied Dirac sea (the state killed by the local fermi

�elds) has a anisotropy{dependent zeroes and no simmetry between positive and negative ener-

gies, this simmetry is restored and the anomalous zeroes move to the boundary of the Brillouin

zone simply by normal{ordering the U(1) currents in the lattice Hamiltonian. This facts allows

to isolate the e�ects of the interaction, even before the continuum limit, in a cuto�{dependent

mass renormalization and in a �nite rescaling of the velocity of light.

The �nite renormalization of the speed of light is one last subtlety that requires a proper

treatment. While such renormalization is absent in the nonlocal light{cone approach, where

the simmetry between space and time is mantained all along, nothing forbids it in the local

formulation, since time may be regarded as already continuous while space is still discrete. We

handle this by intruducing a time unit at which is independent from the lattice spacing a of the

space chain. The velocity of light, either bare or renormalized, emerges quite naturally as �nite

ratio a=at.

This paper is organized as follows. In section 2 we describe the basic framework of vertex

models and derive in a purely algebraic way the local lattice Hamiltonian, using �rst the R{

matrix written in spin language. In section 3 we discuss the subleties related to the formulation

on the ligh{cone lattice of the system using a fermionic approach. Indeed the translation of the

R{matrix in fermionic variable is quick (after taking in account some important changes of sign
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due to the Fermi statistic), but involves a careful de�nition of the boundary condition. The

explicit form of the hamiltonian and the dispersion laws for the lattice fermions derived in this

fermionic setup are shown in section 4, where it is also discussed the normal{ordering prescrip-

tion we adopt for the U(1) currents over a completely occupied Dirac sea. This corresponds to

antiferromagnetic ground state in spin language. The continuum limit is considered in section

5, where abelian bosonization tricks are used to disentangle the mixed currents terms that arise

in the naive continuum limit. In this way we shows that in the continuum Hamiltonian does

describe two fermi �elds, one massless and one massive. In section 6 the results of the Bethe

ansatz are brie
y rewieved, showing some novelty regarding the meaning of the hole charge in

the framework with antiperiodic boundary conditions and the matching between the disper-

sion laws perturbatively derived from the lattice Hamiltonian and the exact one based on the

Bethe ansatz. Finally, in 7, we study the e�ects of renormalization and of the trasformation to

the decoupled description on the relation between the various coupling constants: for instance,

the current{current Thirring coupling and the sine{Gordon coupling constant � are related in

the standard one only after a suitable power serie rede�nition. Some comments on the results

obtained and on possible further developments can be found in 8.

2 The basic framework

It is well known [2] [3] that the 6V model, as well as the XXZ spin chain related to it, may

be formulated starting from a collection of two{dimensional vector spaces fVj; j = 1; 2 : : : ; Ng
and local R-matrices Rij acting on the tensorial product Vi 
Vj of two such spaces. These Rij

are written in terms of the Pauli's matrices �xj ; �
y
j ; �

z
j , j = 1; 2; : : : ; N , as

Rij(�) =
1 + c

2
+

1� c
2

�zi �
z
j + b

h
�+i �

�

j + ��i �
+
j

i
(2.1)

where the �� = �x � i�y and the trigonometric Boltzmann weights b; c are parametrized as

follows by the spectral parameter �:

b = b(�) � sinh �

sinh (i
 � �)
c = c(�) � i sin 


sinh (i
 � �) (2.2)

The choice of weights made here guarantees that the R{matrices are unitary for real � and 
,

that is Ry

jkRjk = 1. It is straightforward to check that this reduces to the identities jbj2+jcj2 = 1

and �bc+ b�c = 0. As we shall see below, the unitarity property is important in order to interpret

the transfer matrix as a temporal evolution operator. The regularity condition of the R-matrix

is ful�lled by eq.(2.1) as Rjk(0) = 1. Most importantly, the R{matrices satisfy the Yang-Baxter

equations (YBE)[7]

Rij(�)Rjk(�+ �)Rij(�) = Rjk(�)Rij(�+ �)Rjk(�) (2.3)
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which ensure the integrability of the 6V model in any framework.

The `bare scattering' S{matrices are de�ned as

Sij(�) = PijRij(�) (2.4)

where the permutation operators Pij interchange the vector space Vi and Vj : PijVi
Vj = Vj
Vi.
In terms of the S{matrices the YBE eq.(2.3) can be reformulated as

Sjk(�)Sik(�+ �)Sij(�) = Sij(�)Sik(�+ �)Sjk(�) (2.5)

Let's now introduce the fully inhomogeneous monodromy matrix T (�jf�ig) associated with

the auxiliary \horizontal" vector space V0

T (�jf�ig) = S10(�+ �1)S20(�+ �2) : : :SN0(�+ �N) �
 
A B

C D

!
(2.6)

where the operators A; B; C; D act in the full Hilbert space V1
V2 : : :
VN . The monodromy
matrix, thanks to the YBE, satis�es the Yang{Baxter algebra (YBA)

R(�� �) [T (�j f�ig)
 T (�j f�ig)] = [T (�j f�ig)
 T (�j f�ig)]R(�� �) : (2.7)

These implies a set of commutation rules for A; B; C; D, among which the following play a

central rôle in the algebraic Bethe ansatz:

b(�� �)A(�)B(�) = +B(�)A(�)� c(�� �)B(�)A(�)
g(�� �)D(�)B(�) = +B(�)D(�)� c(�� �)B(�)D(�) (2.8)

B(�)B(�) = B(�)B(�) :

Taking the trace of the monodromy matrix over the horizontal space we obtain the transfer

matrix

t(�jf�ig) = tr0T(�jf�ig) (2.9)

For �xed arbitrary set of vertical inhomogeneities f�ig, thanks again to the YBE, the transfer

matrices form an in�nite set of commuting operators.

[t(�jf�ig) ; t(�jf�ig)] = 0

Since we are trying to regolarize a relativistic QFT on a light-cone lattice, we choose the vertical

inhomogeneities in a particular way, consistent with the propagation of `bare particles' moving

along the two diagonal directions with cuto� rapidity ��, respectively:

�i = (�1)i+1� ; i = 1; 2; : : : ; 2N : (2.10)

We have changed N to 2N to ensure periodic boundary conditions.
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Inserting these alternating inhomogeneities in eq.(2.6) we obtain the alternatingmonodromy

matrix

T (�j�) = S10(�+ �)S20(�� �) : : :S2N 0(�� �) (2.11)

and, taking the trace as in eq.(2.9, the alternating) transfer matrix t(�j�) = tr0T(�j�).
The regularity condition Rjk(0) = 1 and the permutation algebra

PijAkn =

8><
>:
AknPij i; j; k; n all distinct

AinPij j = k; i; j; n all distinct

AkiPij j = n; i; j; k all distinct

; (2.12)

which holds for any operator Aij acting nontrivially only on Vi 
 Vj, imply the fundamental

relation

t(�j�) = UL ; t(��j�) = U y

R : (2.13)

Here UR and UL are the right and left diagonal transfer matrices (they move by one lattice

spacing in right{upward x+ t and left{upward x� t direction respectively) de�ned as

UL = VR12R34 : : :R2N�12N (2.14)

UR = V �1R12R34 : : :R2N�12N (2.15)

where Rjk = Rjk(2�) and V is the left shift operator V = P1 2NP22N : : :P2N�12N . The deriva-

tion of these formulae is purely algebraic; for UL(�) we have

t(�j�) = tr0

NY
j=1

S2j�10(2�)P2j 0

= (tr0 P2N 0)

2
4N�1Y
j=1

S2j�12N(2�)P2j 2N

3
5S2N�12N(2�)

=

0
@N�1Y

j=1

P2j 2N

1
A NY

j=1

P2j�12jR2j�12j(2�)

= V

NY
j=1

R2j�12j(2�)

= UL (2.16)

with a similar calculation for UR.

The unit time evolution operator is Û = URUL: it causes a displacement at, the lattice spac-

ing in the time direction, upwards on the light-cone lattice, leading to the following de�nition

of the lattice Hamiltonian:

Ĥ = ia�1t log Û : (2.17)

Evidently this Hamiltonian is nonlocal. Similarly nonlocal is the lattice momentum operator,

naturally de�ned as

P = �ia�1 log V 2 ;
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where a is the lattice spacing in the space direction. On the other hand, from the commuting

family of alternating transfer matrices it is possible to obtain a full hierarchy of local charges

in involution. It su�ces to take the logaritmic derivative of t(�j�) with respect to the spectral

parameter at � = ��:
H�

n = i�1�n
@

@�n
log t(�j�)

���
�=��

: (2.18)

By purely algebraic calculations similar to those of eq.(2.16), one veri�es that H�

n (�) couples

2n+1 neighboring sites. Unlike in eq.(2.16), in this derivation it is crucial that the R{matrices

satisfy the YBE. Since H�

n (�) commutes also with U(�), it is a conserved charge.

The charges of level 1 read

H+
1 =

NX
j=1

h2j�1(2�) ; H�

1 =
NX
j=1

h2j(�2�) (2.19)

in terms of the `Hamiltonian density'

hn(�) = �Rnn+1(�)
�1
h
_Rnn+1(�) + _Rn�1n(0)Rnn+1(�)

i
: (2.20)

With them, one can now de�ne the local Hamiltonian

H =
1

2at

�
H+

1 +H�

1

�
; (2.21)

which is indeed hermitean thanks to the unitarity of R�matrix. Of course, with this choice of

hamiltonian, the evolution operator is U(t) = e�itH , with the time t continuous and at merely

�xing the scale of time or energy.

3 Fermionic formulation

The U(1) invariance of the 6V R�matrix corresponds, in the light{cone framework, to the

conservation of bare particles. In fact the ferromagnetic state with all spins up, j++ : : :+i,
may be regarded as `bare vacuum state' (the state with no bare particles). Then we can say

that a state with r 
ipped spins located at 1 � j1 � j2 : : : � jr � 2N , that is the state

jj1; j2; : : : ; jri = ��j1�
�

j2
: : :��jr j+ + : : :+i

contains exactly r bare particles at the same locations. The particle number r is conserved in

time, that is along the vertical direction throughout the lattice, thanks to the U(1) invariance

of the R�matrix.
It is clear that these particles are identical and satisfy the Pauli exclusion principle, since

(��j )
2 = 0. On the other hand, since [��j ; �

�

k ] = 0 for j 6= k, they are of bosonic type. This can

be remedied by means of the well known Jordan{Wigner transformation from the spin operators

��j and �+j to lattice fermion �elds

 j = �+j

j�1Y
n=1

�zn  
y

j = ��j

j�1Y
n=1

�zn (3.1)
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satisfying the canonical anticommutation rules

f j ;  kg = 0 = f yj ;  ykg f j ;  ykg = �jk : (3.2)

The string of �zn in eq.(3.1) has a nontrivial e�ect only on the boundary conditions. In fact

it cancels completely out of all local R�matrices with neighboring indices such Rj j+1 (with

1 � j � 2N � 1), which have the fermionic form

Rj j+1 = 1 + bKj j+1 + (c� 1)(Qj �Qj+1)
2 (3.3)

where

Kij =  yi j +  yj i ; Qj =  yj j =
1
2
(1� �zj ) :

Thus the string of �zn would also drop out of the evolution operator U and of the local hamilto-

nian H1, if it were not for the periodic boundary conditions. The troblesome object is R2N 1(2�),

which reads in terms of fermion operators

R2N 1 = 1� b
h
 
y

2N 1(�)F + (�)F y1 2N
i
+ (c� 1)(Q1 �Q2N)

2 (3.4)

where

(�)F �
2NY
j=1

�zj = ei�Q

is the longest possible string, that is the fermion signature, and Q =
P

j Qj is the total bare

particle number. Similarly, since the left shift operator V acts on the Pauli matrices as

V y
�jV = �j+1

it cannot shift exactly also the fermion �elds. Rather we have

V y jV = �+j+1

jY
n=2

�zn =  j+1e
i�Q1 ; (3.5)

for j = 1; 2; : : : ; 2N � 1, and

V y 2NV �  2N+1 = � 1(�)F :

Together with eq.(3.4), this last relation suggests that PBC on the spin operators become a

sort of F-twisted boundary conditions

 2N+1 � � 1(�)F (3.6)

on the fermion operators. However, if it is true that this guarantees R2N 2N+1 = R2N 1, eq.(3.5)

prevents the identi�cation of V with an exponential of the fermion total momentum. In par-

ticular, V 2N is the identity in the full vector space V (2N), and hence V �2N jV
2N =  j, which

shows the con
it between  j+2N � V �2N jV
2N and the extension  j+2N = � j(�)F of the
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F-twisted relation (3.6) to all fermion operators. Of course, we could de�ne the true fermion

shift operator ~V through

~V y j ~V =  j+1

for any j, and impose uniform F{twisted boundary conditions via

~V �2N j ~V
2N = � j(�)F : (3.7)

Certainly ~V commutes with U and H1 but, unlike them, it is not related in any obvious way to

the transfer matrix t(�j�), which is the object we are able to actually diagonalize by means of

the algebraic BA. Therefore the translation of the light{cone 6V model and its BA solution from

its original spin formulation into a fermionic theory, by means of a straightforward application

of the Jordan{Wigner transformation, remains unsatisfactory due to boundary e�ects.

Although we expect that these boundary e�ects will loose importance in the limit N !1,

it is convenient to look for a purely fermionic formulation, in which all basic objects, like

R�matrices and exchange operators, are written from the start in term of fermion �elds for

any pair of indices.

To this end, let us notice that the matrices Rj j+1(�), whether written in spin (eq.(2.1)) or

fermion language (eq.(3.3)), satisfy the YBE in the restricted form

Rj�1j(�)Rj j+1(�+ �)Rj�1j(�) = Rj j+1(�)Rj�1j(�+ �)Rj j+1(�) :

But since j� 1, j and j+1 simply refer to three distinct anticommuting fermions, the matrices

~Rij(�) = 1 + b(�)Kij + [c(�)� 1](Qi � Qj)
2

will ful�ll the general form (2.3) of the YBE, providing another solution distinct from Rij(�).

In fact, ~Rij(�) 6= Rij(�) for ji� jj > 1.

Next we build the fermion permutation operators ~Pij , de�ned by the relations

~Pij i ~P
�1
ij =  j ~Pij = ~P�1ij = ~P yij :

They are written in terms of the �elds simply as

~Pij = 1�Qi �Qj +Kij :

Then we can build the S�matrices

~Sij = ~Pij ~Rij = 1� 2QiQj + cKij + (b� 1)(Qi �Qj)
2 : (3.8)

Unlike in the spin framework, now the relation between 6V R� and S�matrix does not reduce
simply to the exchange c *) b, since Fermi statistics requires that ~Sij must be �1 in the doubly

occupied state, rather than 1. This is taken care by the last term in eq.(3.8). The matrices ~Sij
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and ~Rij manifestly commute with the bare particle number Q which generates the symmetry

group U(1). To lightens the notation, from now on we drop the~throughout, reinstating it only

when strictly necessary.

We have now all the ingredients to build the relevant global objects, which are the fermionic

analog of V , UR, UL, T (�j f�ig) and t(�j f�ig), with all the relations that we found in section (2

valid also for the new objects, since they are based solely on algebraic properties like regularity,

YB algebra and permutation algebra. In particular, the alternating monodromy matrix

T = T (�j f�ig) = S10S20 : : :S2N 0

can be written

T = A +B 0 + C y0 + (D � A) y0 0

where  0 and  
y

0 are new auxiliary fermion operators anticommuting with all the previous ones,

and A; B; C; D are global operators in the full fermionic Fock space. Notice that  0 commutes

with A and D but anticommutes with B and C. In fact, one easily veri�es that A and D have

an even fermionic grade (that is they are sums of terms containing an even number of  j and

 yj , j = 1; : : : ; 2N), while B and C have an odd fermionic grade.

To write the YB algebra it is convenient to rename  0 into, say, �1, and introduce another

pair �2, �
y

2, anticommuting with all  j, j = 1; : : : ; 2N as well as with �1. Then we can write

Tr = A+B�r + C�yr + (D � A)�yr�r

and the YB algebra takes the form of Eq. (2.7)

S12(�� �)T1(�j f�ig)T2(�j f�ig) = T2(�j f�ig)T1(�j f�ig)S12(�� �)

where (see eq.(3.8))

S12 = 1 + c[�y1�2 + �
y

2�1] + (b� 1)(�y1�1 + �
y

2�2)� 2b�y1�1�
y

2�2

To obtain the commutation rules for A; B; C; D the algebra is now straightforward: one �nds

some di�erences of sign with respect to the rules expressed in eq.(2.8), namely

b(�� �)A(�)B(�) = +B(�)A(�)� c(�� �)B(�)A(�)
g(�� �)D(�)B(�) = �B(�)D(�) + c(�� �)B(�)D(�) (3.9)

B(�)B(�) = �B(�)B(�) :

Of course, the anticommuting nature of the \creation operators" B(�) appears very natural in

this fermionic setup. The other changes of sign concern only the commutation rules between

D(�) and B(�), and could be traced to the fact that Sij = �1 in the doubly occupied state.
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One last subtlety concerns the meaning of the trace operation. In this fermionic setup the

correct de�nition would be

t � tr0T = h0jT j0i � h1jT j1i = A� D

where j0i is the state with no auxiliary fermion and j1i the state with one. Then tr0 Pj0 = 1 for

any j and we �nd the fermionic light{cone version of eqs.(2.13) in the form

t(�j�) = UL ; t(��j�) = U y

R : (3.10)

This choice corresponds to periodic boundary conditions on the fermions, that is  j+2N �  j.

On the other hand, we may take as trace what is other contexts is actually called `supertrace',

that is

t0 � str0 T = h0jT j0i+ h1jT j1i = A+ D :

Then we �nd str0Pj0 = 1� 2Qj and correspondingly (see eqs.(2.16 and eq.(2.13))

t0(�j�) = (1� 2Q2N)UL ; t0(��j�) = U y

R(1� 2Q1) :

In this case we could take the unit{time evolution operator to be

e�iaĤ = t0(�j�)t0(��j�)y = U 0

LUR

where as before U1 = R12R34 : : :R2N�12N (see eq.(2.14)), while

U 0

L = (1� 2Q2N)UL(1� 2Q1)

= (1� 2Q1)U2(1� 2Q2N)

= R23R45 : : : (1� 2Q1)R2N 1(1� 2Q1)V : (3.11)

Similarly we now de�ne the unit{space traslation as

eiaP = t0(�j�)t0(��j�) = [(1� 2Q2N)V ]
2 :

Since (1� 2Qj) j(1 � 2Qj) =  j, this choices correspond to antiperiodic b.c. on the fermion

�elds

 j+2N � e�iLP je
iLP = � j (3.12)

where we have introduced the spatial size of the system L = Na.

In summary, we see that for both choices of trace, leading to either periodic or antiperiodic

fermions, as well as in the case of periodic spins, the nonlocal hamiltonian and total momentum

are related to the tranfer matrix as

e�iaĤ = t(�j�)t(��j�)y ; eiaP = t(�j�)t(��j�) (3.13)

where we may now drop the 0 for the antiperiodic case, provided we keep in mind the two

di�erent ways in which t(�j�) is written in terms of the diagonal elements of the monodromy

matrix, either A�D or A+D. It should be clear that identical conclusions about the the b.c.

apply in the framework based on the local hamiltonian of Eq. (2.21).
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4 Explicit form of the local hamiltonian

We shall now obtain the explicit form of the local hamiltonian H in terms of the fermionic �elds

 j, j = 1; 2; : : : ; 2N . By means of the Jordan{Wigner transformation one can always revert to

the spin formulation, keeping in mind the e�ects on the boundary conditions. For de�niteness

we shall choose the antiperiodic b.c. for the fermion �elds. When we insert the expression (3.8)

for the 6V R� matrix into the formula for the hamiltonian density h(�) (see eq.(2.19)), we need

to perform rather long albeit trivial algebraic manipulations with the fermi �elds. In particular

we �nd

Rjn(�)
y _Rjn(�) = (�b _c+ _b�c)Kjn + (�b_b+ _c�c)K2

jn (4.1)

Rjn(�)
y _Rij(0)Rjn(�) = _b0[ 

y

i (b n+ c j) + h:c:]

+ _c0[b�c j n + h:c:) + Qi + c�cQj + b�bQn]

+ _b0[(b+ �b)QjKin + (c� �c)Qn( 
y

j i �  yi j)]
� 2 _c0[b�cQi( 

y

j n �  yn j) + Qi(c�cQj + b�bQn)] (4.2)

where b = b(�), c = c(�), _b0 = b0(0) and _c0 = c0(0). In the derivation of these results the

unitarity relations b�b+ c�cj = 1 and b�c+ �bc = 0 have been used. To obtain H we must now set

(i; j; n) = (j � 1; j; j + 1), then put � = 2� when j is odd and � = �2� when j is even, and

�nally sum up over j. H is the sum of a piece quadratic in the �elds and a piece quartic in

them

H = H2 +H4 (4.3)

H2 =
�a�1t
2 sin 


NX
j=1

h
d y2j( 2j�1+  2j+1) + �d( y2j�1+  y2j+1) 2j

+ b( y2j+1 2j�1+  
y

2j 2j+2) + �b( y2j�1 2j+1 +  
y

2j+2 2j)

+ 2(v + cos
)(Q2j�1+ Q2j)]

H4 =
�a�1t
2 sin 


NX
j=1

��(b+ �b)(Q2j�1K2j�22j +Q2jK2j�12j+1)

+ (c� �c)
h
Q2j( 

y

2j�1 2j�2�  y2j�2 2j�1) + Q2j+1( 
y

2j�1 2j �  
y

2j 2j�1)
i

+ 2iw cos 

h
Q2j�2( 

y

2j�1 2j �  y2j 2j�1) +Q2j�1( 
y

2j+1 2j �  y2j 2j+1)
i

� 2(v + cos
 �u)Q2j (Q2j�1 +Q2j+1)� 2 cos
 b�b(Q2j�1Q2j+1 +Q2jQ2j+2)
	

where

u = i sin 
(�b _c+ _b�c)

v = i(�b_b+ �c _c

w = ib�c = �i�bc
d = u+ iw cos
 + c ;

11



The quadratic part H2 is better analyzed via the following Fourier transformation (recall the

antiperiodic b.c.)  
 2j�1

 2j

!
=

1

N

X
k

 
~ +(q)

~ �(q)

!
eiqkj ; (4.4)

qk =
2�

N
(k + 1=2); k = �N;�N + 1; : : : ; N � 1 :

In the limit N !1 of an in�nite chain, the sum over k becomes an integral over q running in

the �rst Brillouin zone (��; �). Then H2 takes the form

H2 =

Z �

��

dq ~ (q)yh(q) ~ (q)

where h(q) is the two{by{two matrix

h(q) =
�1

2 sin 


 
be�iq + �beiq + 2(v + cos 
) �d(1 + e�iq)

d(1 + eiq) beiq + �be�iq + 2(v + cos 
)

!
:

The two eigenvalues of h(q) represent the bare energy branches of our lattice model

E�(q) =
�1

a sin 


n
2(v + cos
) + (b+ �b) cosq � �[�(b� �b)2 sin2 q + 2d �d(1 + cos q)]1=2

o
(4.5)

where � is +1 in the �rst Brillouin zone and in all the odd ones, while it is �1 in the even zones.

These dispersion relations are depicted in �g.1.

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8

Fig.1: Energy branches for � = 2,
 = 6�=10 and � = �1

Evidently all negative energy levels, for both branches within the �rst Brillouin zone, should

be �lled to obtain the lowest energy state. One must take into account, however, that these

bare fermions are interacting and that this might very well change the shape of the dispersion

relations themselves. The algebraic Bethe Ansatz will take care of this exactly. At this stage it

is enough to assume, as natural, that in the interaction picture there exist an equal amount of

12



positive and negative energy levels, so that the perturbative �lled Dirac sea (the perturbative

vacuum state of the QFT) is characterized by half{�lling, namely hQji = 1=2. This is an

antiferromagnetic state in spin language. It giusti�es the following normal{ordering prescription

Qn =:Qn : +
1

2
(4.6)

which has a dramatic e�ect on the quadratic part of the Hamiltonian, leading to the perturbative

one{particle energy spectrum (see �g.2)

E = �1
2
�a�1t

sinh 4�

sinh
2
2� + sin2 


�
sin2 q +

1

2
(m0at)

2(1 + cos q)

�1=2
(4.7)

where

m0 = 2a�1t
sin 


sinh(2�)

�!1' 4a�1t sin 
 e�2� (4.8)

-8 -6 -4 -2 0 2 4 6 8
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig.2: Energy branches after normal{ordering for � = 2,
 = 6�=10 and � = �1

This dispersion relations are manifestly simmetric under reversal of energy, showing the self{

consistency of our normal{ordering assumption. Once all negative energies in (4.7) are �lled,

one obtains a positive spectrum of particles and holes all with the positive energy of eq.(4.7).

It is also clear that eq.(4.7) represents a lattice approximation to the relativistic spectrum

of massive particles. To see this we set q = pa and let a; at ! 0. Then we obtain

E = c0

q
p2 +m2

0c
2
0

where c0 = a=at is the (bare) velocity of light. It appears natural to choose spacetime units so

that c0 = 1. Of course one should expect this choice not to necessarily work in the renormalized

limit to be discussed later.

The dispersion laws of eq.(4.7) has a peculiarity though: it also describes massless particles

at the boundaries of the �rst Brillouin zone. This is inevitable, since we are working with a local

13



lattice Hamiltonian which for � ! 1, that is in the massless limit m0 ! 0, becomes chiral

invariant. The Nielsen{Ninomiya theorem [10] then implies the existence of the (in)famous

`fermion doublers'. In the model at hand, the left and right modes around q = 0 are massive for

�nite �, while the left and right doubler around q = �� remain massless. In the limit �! 1
at �xed lattice spacing the model becomes gapless and it corresponds therefore to a regularized

Conformal Field Theory. According to the general rules, the neighborood of the critical point

� =1 de�nes a regularized Perturbed CFT. By letting �!1 and a! 0 simultanously in a

suitable way one recovers the continuum PCFT. The CFT describing the critical point and the

perturbing operator will be identi�ed in the next section.

5 The continuum limit

We now consider the continuum limit a ! 0 where only the small energy excitations (as

compared with a�1) of the �elds are retained and the massless dispersion relations are linearized

around their zeroes [8]. In this limit the bare massm0 is kept �xed (the renormalized continuum

limit will be considered in the Bethe ansatz framework). Thus we must let � ! 1 in such a

way that m0 � 4a�1 sin 
 e�2� stays �nite.

The observation of the previous section concerning the doublers provides the basis for the

following representation of the Fermi �elds in the continuum limit

 (2j) ' p
a
�
�L(ja) + (�)j�R(ja)

�
 (2j+1) ' p

a
�
�R(ja) + (�)j�L(ja)

�
(5.1)

where � and � are quantum relativistic Dirac �elds. The hopping operator Ki;i+2 and the local

charge operator Qi, e.g. for i even, read

Ki;i+2 ' 2a :�yL�L : � :�yR�R :

:Q2j : ' a[:�yL�L : + :�yR�R : �(�1)j(�yR�L + �yL�R)] :

The symbol : : : : : on the r.h.s. refers to the usual normal{ordering for continuum �elds in

the interaction picture. This holds because the operators on the l.h.s. have vanishing vacuum

expectation value. The complementary cases, namely Q2j�1 and K2j�1;2j+1, can be handled

analogously simply by exchanging right and left modes. These are all the calculations needed

to obtain the continuum limit of H4, since all quartic terms except the �rst and the last are

suppressed as a! 0. As for the quadratic piece H2, the typical calculation reads

 
y

2j 2j+2 ' a
h
�
y

L(x)�L(x+ a)� �
y

R(x)�R(x+ a)
i

+(�)j
h
�yR(x)�L(x+ a)� �yL(x)�R(x+ a)

i
;
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so that, dropping the oscillating terms and developping to �rst order in a we can calculate the

non-vanishing terms in the quadratic Hamiltonian as

 y2j 2j+2�  y2j+2 2j ' 2a(�yL@x�L � �yR@x�R) :

Thus, taking into account the normal{ordering and dropping as above all fast oscillating terms,

the continuum form of the Hamiltonian reads (here �!1 as a! 0 so that the bare mass m0

stays �xed)

H �! H0 +Hm +Hint (5.2)

where H0 is the kinetic energy

H0 = �i
Z
dx
�
�yR@x�R � �yL@x�L + �yR@x�R � �yL@x�L

�
; (5.3)

Hm is the mass term

Hm = m0

Z
dx
�
�yL�R + �yR�L

�
(5.4)

and Hint the quartic interaction

Hint = 2g0
Z
dx (J�RJ

�
L � J�RJ�L � J�RJ�L � J�RJ

�
L) : (5.5)

Here g0 = �2 cot
 and the J 's are free{�eld normal{ordered U(1) currents:

J�� = :�y��� : ; J�� = :�y��� : ; � = R;L :

The nice feature of this result is that all terms surviving the na��ve continuum limit are manifestly

Lorentz{invariant, unlike those obtained in the analogous treatment of the XXZ spin chain in

[8]. It is natural to regard the mass term Hm as `bare' perturbation of the CFT de�ned by

H0+Hint. The troublesome aspect is that �, the �eld describing the doublers, does not decouples

from the putative massive Thirring �eld � and prevents a straightforward identi�cation of the

CFT.

In order to �nd the right decoupled description, we use abelian bosonization:

�� = �1=2 : exp(i�
p
4� ��) :

�� = �1=2 : exp(i�
p
4� ��) :

(5.6)

where � = � (+ � R and � � L), � is a normalization mass scale, and the �elds

u�(x) =

Z x

�1

dy J��(y) ; v��(x) =

Z x

�1

dy J��(y)

can be identi�ed with the chiral components of two free massless Bose �elds. The symbols : : : : :

in eq.(5.6) now stand for bosonic free{�eld normal ordering at the mass scale �, so that the

expressions (5.6) are e�ectively �-independent.

15



With the standard rules of abelian bosonization, the Hamiltonian now takes the form, up

to irrelevant constants,

H =

Z
dx

�
(@xuR)

2 + (@xuL)
2 + (@xvR)

2 + (@xvL)
2

+ g0 [(@xuR)(@xuL)� (@xvR)(@xvL)� (@xuR)(@xvL)� (@xvR)(@xuL)]

+ m0� : cos[
p
4�(uR + uL)] :

o
(5.7)

Notice that only one boson �eld is involved in the sine{Gordon interaction, but the mixed

terms in the third line still couple the two boson �elds. In order to elimate them we can use the

canonical transformations that leave invariant the commmutation rules between left and right

components of the boson �elds:

[u�(x); u�0(x0)] = i

4
����0�(x� x0)

[v�(x); v�0(x0)] = i

4
����0�(x� x0)

[u�(x); v�0(x0)] = 0 ; (5.8)

Thus it must be a O(2; 2) trasformation. We �nd it combining two canonical U(1; 1) transfor-

mation and a canonical ortogonal SO(2)�SO(2) transformation acting on right and left sectors
separately. We obtain in this way:0

BBBB@
�R(x)

�R(x)

�L(x)

�L(x)

1
CCCCA =

0
BBBB@

r t �s �t
t �r t �s
�s �t r t

t �s t �r

1
CCCCA

0
BBBB@
uR(x)

vR(x)

uL(x)

vL(x)

1
CCCCA (5.9)

with

r =
cosh2 � cosh�+ sinh2 � sinh�p

cosh 2�

s =
cosh2 � sinh�+ sinh2 � cosh�p

cosh 2�

t =
cosh � sinh � (cosh�� sinh �)p

cosh 2�

and

tanh(2�) = � g0

2�
; tanh(2�) = � sinh(2�) :

In terms of the new �elds the Hamiltonian reads

H =

�
1� g02

2�2

�1=2 Z
dx
�
(@x�R)

2 + (@x�L)
2 + (@x�R)

2 + (@x�L)
2
	

+ m0�

Z
dx : cos[

p
4� e�(�R + �L)] : (5.10)
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and we see that it correspond to a sine{Gordon model plus a decoupled free massless �eld. More

precisely, in passing to lagrangian form, we should scale the �elds � and � so that the kinetic

term is properly normalized. In this way one arrives at the Lagrangian:

L = 1
2
(@��)

2 + 1
2
(@��)

2 +m0� cos�� (5.11)

where � = �L + �R and � = �L + �R. The relation of Coleman's coupling constant � with g0

reads
�2

4�
=

1 + g0=�

1� 2(g0=�)2
: (5.12)

We could now perform the inverse bosonization trick on � and �, according to the standard

rules [9], or with canonical transformation analogous to those done above. This yields at the

end two decoupled Thirring models, one massive, with Dirac �eld  , and one massless, with

�eld  0:

L = � (i
�@� �m0) + 1
2
g( � 
� )2+ � 0(i
�@�) 

0 + 1
2
g( � 0
� 0)2 : (5.13)

We see therefore the fermion doubling, charateristic of any local lattice regularization with local

chiral currents, is completely harmless in our case: it only adds a decoupled massless �eld to

the Lagrangian.

Our derivation is now complete: we have shown that the fermion Hamiltonian (4.3) provides

a local lattice regularization of the massive Thirring model. The important point is that this

Hamiltonian is completely integrable, being just the �rst of an in�nite hierarchy of conserved

charges in involution. One may regard all terms in the lattice Hamiltonian which are of order

a as irrelevant operators needed to preserve the integrability on the lattice.

Of course we have performed a `bare' continuum limit which does not take into account

renormalization e�ects. However, the integrability of the model allows to include them exactly

through the explicit diagonalization of the lattice Hamiltonian. This is carried through by

means of the algebraic Bethe ansatz, or Quantum Inverse Scattering Method, whose main steps

will be outlined in the next section.

6 Main results of the Bethe ansatz

By de�nition, the algebraic Bethe ansatz will work in the fermionic formulation just like in the

standard spin framework. All changes of sign due to the fermionic commutation rules (3.9) can

be easily traced down. Wee need not repeat here any derivation, referring to the various review

articles on the subject (see for instance [3]).

The eigenvectors of the alternating tranfer matrix are written (see eq.(2.6))

j	i = B(�1 + i
=2j�)B(�2+ i
=2j�) : : :B(�r + i
=2j�) j
i (6.1)
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where j
i is the bare vacuum state and the parameters �1; �2; : : : ; �r satisfy the Bethe ansatz

equations (BAE)

�
sinh(�m + �+ i
=2)

sinh(�m + �� i
=2)

�N �
sinh(�m � �+ i
=2)

sinh(�m � �� i
=2)

�N
= (�)r+1

rY
n=1

sinh(�m � �n + i
)

sinh(�m � �n � i
) : (6.2)

The eigenvalues read

� = �A + �D

�A =
rY

k=1

sinh(i
=2+ �� �k)
sinh(i
=2� �+ �k)

(6.3)

�D = (�)rb(�+�)N b(���)N
rY

k=1

sinh(3i
=2� �+ �k)

sinh(�i
=2 + �� �k) : (6.4)

Since one easily veri�es that [Q ; B] = �B, the BA states (6.1) contain exactly r bare particles.

Notice also that eigenvectors and eigenvalues depend on � both explicitly and through the

dependence forced on the numbers �k by the BAE. We do not need to consider states with

more than N bare particles, since they are obtained by particle{hole symmetry, i.e.  j *)  yj ,

corresponding to spin inversion in spin language, from the states (6.1).

As usual, we introduce the so{called counting function [3]

ZN (�) = N [�(�+ �; 
=2)+ �(���; 
=2)]�
rX

k=1

�(�� �k; 
)

where

�(�; x) � i log
sinh(ix+ �)

sinh(ix� �)

has the cut structure chosen so that it is analytic in the strip j=�j � x. The BAE now read

ZN(�j) = 2�Ij ; j = 1; 2; : : : ; r

where the quantum numbers Ij are always half{odd{integers (we choose N to be even). This

should be compared with the spin formulation where the Ij are half{odd{integers for even r

and integers for odd r. This appears very natural if we compare the b.c. of antiperiodic fermion

�elds, eq.(3.12), with those corresponding to periodic spins, eq.(3.7). This di�erence will play

a crucial role in determining the U(1) charge of the physical particles.

The energy (both local and nonlocal) and momentum of a given BA state are calculated

from eqs.(2.18), (2.21), (3.13) and (6.3). The momentum reads

P = a�1
rX

j=1

[�(� + �j; 
=2)� �(�� �j; 
=2)] (6.5)

while the local energy is

E = �1
2
a�1t

rX
j=1

�
d

d�
�(� + �j; 
=2)+

d

d�
�(�� �j; 
=2)

�
: (6.6)
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The physical vacuum state, or �lled Dirac sea, is the ground state of the local Hamiltonian H ,

that is the lowest possible value of E for �xed N . It corresponds to the unique solution of the

BAE with N real roots. In the limit N ! 1 at �xed lattice spacing a (hence in the in�nite

volume limit), this solution is described by a smooth density [3]. The same applies to all particle

states characterized by a �nite number of holes in the ground state distribution. The energy

and momentum of one of this holes (a physical fermion) can be calculated exactly to be

E(') = 1
2
a�1t

dp(')

d'
; p(') = 2

a

at
arctan

�
sinh �'=


cosh ��=


�
(6.7)

where ' is the position of the hole in the Dirac sea. This is all rather standard. The important

novelty concerns the U(1) charge of the holes.

In the usual spin formulation with periodic b.c., to the removal of a single BA root there

corresponds the appearence of two holes. Therefore each hole has a renormalized charge Q =

�1=2. This is clearly incompatible with the interpretation of such holes as fermions, since they

would not be interpolated by the fermi �elds  n. The sign di�erences proper of the fermionic

framework, and in particular the factor (�1)r in eq.(6.2), exactly remedy this. An accurate

analysis of the phase space available for N � 1 BA roots, using the asimptotic value of the

counting function ZN (�), shows that only one hole is present in the Dirac sea. This is the

dressed antiparticle of the original fermion and has charge Q = �1. As a matter of fact one can
consider also states with N + 1 BA roots, one of which has imaginary part equal to i�=2: one

�nds the same energy{momentum spectrum of eq.(6.7), while evidently Q = 1. The dressed

particle is obtained by particle{hole symmetry.

The states with one particle and one hole are obtained by removing one real BA root and

introducing a root with immaginary part equal to �=2.This naturally follows by looking at the

dependence of energy and momentum on the \lattice rapidities" �j in eqs.(6.5) and (6.6): the

replacement �j ! �j + i�=2 exchanges the two energy branches in eq.(4.5).

It is possible to identify the solutions of the BAE corresponding to states with arbitrary

many fermions and antifermions as well as with breathers (fermion-antifermion bound states

in the attractive regime 
 > �=2). A complete and detailed analysis is still lacking in the

literature (parts can be found in the early BA approaches to the continuum massive Thirring

model [15][16] and in the general study of the BA equations for the XXZ chain [17]), but is

outside the scopes of this work.

For our purposes, it is enough here to examine the continuum limit of the massive part of

the renormalized energy{momentum. As a ; at ! 0 and � ! 1 we �nd from eqs.(6.7) the

relativistic expressions in terms of the rapidity � =
�'



:

E = mc2 cosh � ; p = mc sinh � (6.8)

provided we identify the renormalized velocity of light and mass as:

c =
�a

2
at
; mc =

4

at
e���=
 : (6.9)
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Notice that the velocity of light undergoes a �nite renormalization from the bare value c0 = a=at

found before. Of course, we could set the conventional c = 1 by adjusting a=at to 2
=�. Notice

also that eliminating ' from the two relations in (6.7) one obtains, still on the lattice

E = a�1c tanh
�
��



� �
sin2 pa+ 1

2
(mcat)

2(1 + cos pa)
�1=2

(6.10)

with the more precise mass de�nition mcat = 2= sinh(��=
). This renormalized dispersion

relation should be compared with the perturbative one, eq.(4.7): apart from an overall factor

which tends to 1 as � ! 1, all renormalization e�ects are concentrated in the rescalings

m0 ! m and c0 ! c. In particular the exact spectrum (6.10) has the same fermion doublers

of the perturbative one: on the lattice they are still coupled to the massive modes, as could be

checked with the direct calculation of the relevant scattering phase shifts. In the continuum

limits the characteristic momenta of the massless and massive modes get separated by a quantity

of order a�1 and these scattering phase shifts tend to (non{trivial) constants. The decoupling

shown even o� shell in the previous section ensures that a proper additional dressing of the

massive particles exists that decouples them altogether from the massless infra{particles.

7 On the relation between the coupling costants

We may now investigate more in details the connection between the parameters of the lat-

tice Hamiltonian and those of the continuum ones, either bosonic (sine{Gordon) or fermionic

(massive Thirring).

The standard relation between � in eq.(5.11) and the coupling constant g in eq.(5.13) reads

(see e.g. [11][9])
�2

4�
=

1

1� g=�
(7.1)

and di�ers from the relation (5.12) derived above with g0. The sine{Gordon coupling constant

� is a regularization{independent parameter, since, for �2 < 8�2, the sine{Gordon model can

be uniquely de�ned as a perturbated conformal theory [12]. Hence we may safely take � as a

reference parameter to relate g and g0:

g = g0
1 + 2g0=�

1 + g0�
= g0

�
1 +

g0=�

1 + g0=�

�
= g0

"
1 +

1X
n=1

(�1)n�1
�
g0

�

�n#
: (7.2)

They di�er by a formal power series rede�nition, as to be expected in the Thirring model, since

the current{current coupling in two dimensions is cuto� independent but regularization{scheme

dependent.

Let us observe, moreover, that the relation (7.2) holds in the interaction picture, since we

are applying to the interacting sine{Gordon �eld theory the bosonization rules proper of the

free bose �eld. We can relate more precisely � to the well{de�ned lattice parameter 
, and

then to g0 = �2 cot
 (see eq.(5.5)), by using exact scaling arguments as follows. The scaling
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dimension of cos�� is �2=4�, since it is �xed by the ultraviolet �xed point, namely the free

massless bose �eld. Through bosonisation cos �� maps into �  , which enters the lagrangian

of the massive Thirring model multiplied by m0. Hence m0 has scaling dimension 2 � �2=4�.

From the exact Bethe ansatz solution one learns that the physical mass scale is proportional to

exp(���=
) (see eq.(6.9)). On the other hand, eq.(4.8) shows that m0 scales like exp(�2�),
so that it has scale dimension 2
=�. Therefore we must have 2
=� = 2 � �2=4�, which is the

exact relation we sought.

This argument is quick but rather too sketchy. A more precise derivation goes at follows. The

rede�nitions of the normalization mass scale � and those of the the bare mass m0 are connected

by the normal{ordering renormalization group [11], in order to keep m0
�  = m0� : cos �� :

invariant. This leads to the relation

m0�

m0

0�
0
=

�
�

�0

��

where � = �2=4�. On dimensional grounds, the physical mass scale has the form

m = m0f(�; z) ; z =
m0

�

and must be renormalization{group invariant, that is

m = m0�
�+1f(�; z��+2) ; � =

�

�0
:

Hence f is a homogeneous function of z and we obtain

m = m0z
�y f(�; 1) = m

1�y
0 �yf(�; 1) (7.3)

where y = �+1
�+2

.

The exact Bethe ansatz solution of the lattice model provides the following relation for the

fermion mass in the continuum limit

m ' 4
at

a2
2


�
e���=g =

2


�

�
at

a

�2� m0

sin 


��=2
 �at
4

��=2
�1

where eq.(4.8) was used in the second equality. Choosing � = a�1t and a=at = 2
=�, to enforce

c = 1, we obtain, comparing to eq.(7.3),

�2

8�
= 1� 


�
; f(�; 1) =

16�

8� � �2
�
4 sin(�2=8)

�4�=(�2�8�)
:

The relation between 
 and � is that we found above. In addition we found an expression for

f(�; 1). Of course this expression is scheme{dependent.

Coming back to the Thirring coupling constants g and g0, we have the following situation: g is

de�ned through bosonization of the massive Thirring model alone and is given by g = ��4�2=�2
(see eq.(7.1)). Hence we have the exact relation

g =
�

2

� � 2


� � 
 : (7.4)
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g0 may be analogously de�ned through bosonization of the complete continuum hamiltonian

(5.2) (which contains the fermion doublers). This leads to the exact relation (7.2). On the

other hand we have the relation g0 = �2 cot
 (see below eq.(5.5)), which follows from the

continuum limit of the lattice hamiltonian in the interaction picture (using free{�eld normal{

ordering), and therefore is only approximate or \bare". Combining eqs.(7.2) and (7.4) we obtain

the exact relation
2g0

�

1 + 2g0=�

1 + g0�
=

1� 2
=�

1� 
=�
which can be regarded as the renormalization of the bare relation g0 = �2 cot
.

8 Final comments and outlook

The local lattice regularization of the massive Thirring model presented here applies equally

well to the vast class of integrable models already under control by means of the standard

light{cone approach. The local character of the lattice Hamiltonian should help in extending

even further this class, since it allows for a better control of the continuum limit and an easier

identi�cation of each model as a perturbed CFT. From the �eld{theoretic point of view, the

most important step remains the proper de�nition of the local lattice �elds in terms of which

the R{matrices are to be written. When this is done, the Hamiltonian as well as all other

conserved charge, either local or nonlocal, would follow by the standard techniques of vertex

models, since only the algebraic properties of the R{matrices and the permutation operators

are needed. In the case of the massive Thirring models this program may be pursued explicitly

starting from the local R{matrices written in terms of canonical lattice fermi �elds (eq.3.3) and

handling the continuum limit as in section 5.
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