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Abstract

We discuss the renormalization group improved e�ective action and run-
ning surface couplings in curved spacetime with boundary. Using scalar self-
interacting theory as an example, we study the in
uence of boundary e�ects
to e�ective equations of motion in spherical cap and the relevance of surface
running couplings to quantum cosmology and symmetry breaking phenomenon.
Running surface couplings in the asymptotically free SU(2) gauge theory are
found.
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1 Introduction

Boundary terms may play an important role in quantum cosmology and in par-
ticular in connection with the quantum state of the universe [1]. That is why,
starting from the 80'ties [7], there has been a continued interest to study bound-
ary divergences (see, for example, [2-6,8] and references therein). In [5, 6] some
misprints of previous calculations have been corrected and the surface diver-
gences have been found in a form of conformal anomalies for various boundary
conditions.

In [9] the running surface couplings have been introduced. The motivation
to do it was the fact that in order to make a theory multiplicatively renor-
malizable in curved spacetime with boundary one has to include the surface
Lagrangian with arbitrary coupling constants in the total Lagrangian. When
the renormalization group is constructed, each coupling becomes a running ef-
fective coupling. A similiar idea has been persued in [10], where running surface
couplings have been discussed in spacetime with boundaries and have been re-
lated to the �nite size e�ects. It is quite well-known that running couplings have
di�erent physical applications. It is the purpose of this work to discuss the run-
ning surface couplings for di�erent theories and to look for the consequences to
which they may lead.

In the next section we discuss the self-interacting scalar theory on curved
spacetime with boundary using Dirichlet boundary conditions. The explicit
expressions for the volume and running surface couplings are given. The pro-
cedure to construct the RG improved e�ective action in such a spacetime is
discussed. In the section 3 we �nd the RG improved e�ective action in a spher-
ical cap and show how boundary terms become relevant in the e�ective �eld
equations. For the example of a disc we show the possible in
uence of bound-
ary terms to symmetry breaking phenomena. In section 4, we show how the
above discussion can be generalized to arbitrary GUTs, and in particular to
the asymptotically free SU(2) gauge theory with scalars and spinors, in curved
spacetime with boundary. Some discussions are presented in the last section.

2 Self-interacting scalar theory in curved space

with boundary.

Consider the self-interacting scalar theory in curved spacetime M with bound-
ary @M. The renormalization of the theory maybe done in close analogy with
the renormalization in curved spacetime without boundary (for a general intro-
duction see [11]). The boundary conditions for scalar �elds maybe chosen to be
of Dirichlet type
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�(x) = 0 , x 2 @M (1)

or Robin type

( + n�r�)�(x) = 0 , x 2 @M: (2)

Here n� is the outward normal on @M and  is an arbitrary scalar function.
The euclidean action corresponding to a massless multiplicatively renormal-

izable theory maybe written as the following:

S = SM + SV + SS ; (3)

where

SM =

Z
d4x
p
g
n1
2
g��@�'@�'+

1

2
�R'2 +

�'4

4!

o
;

SV =

Z
d4x
p
g
n
a1R

2 + a2C
2
���� + a3G+ a4R

o
;

(4)

and C���� is the Weyl tensor, G the Gauss-Bonnet invariant and a1; a2; a3; a4
are coupling constants in the external �elds sector.

In the discussion of the surface action we will limit ourselves to Dirichlet
boundary conditions. We use two invariants of dimension L�3 expressed in
terms of R���� and the extrinsic curvature of the boundary K�� [3, 6]

q =
8

3
K3 +

16

3
K �
� K

�
� K

�
� � 8KK��K

�� + 4KR

� 8R��(Kn
�n� +K��) + 8R����K

��n�n�;

g = K �
� K

�
� K

�
� �KK��K

�� +
2

9
K3:

(5)

Then, the surface action maybe rewritten as

SS =

Z
@M

d3x
p

 LS

with

LS = �Dq + �Dg + 
DRK + �Dn
�r�R+ �DC����K

��n�n�; (6)

where 
�� is the induced metric of the boundary and �D; : : : ; �D are surface
coupling constants. In the same way one can write SS for other boundary
conditions.

Now, from the point of view of the renormalization group, each coupling
constant has the correspondent e�ective coupling constant. Using the well-
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known results for the one-loop divergences of the volume terms one easily �nds
the running volume couplings:

�(t) =
�

�(t)
; �(t) =

1

6
+
�
�� 1

6

�
�(t)�

1

3

a1(t) = a1 �
1

2�

�
�� 1

6

�2�
�(t)

1

3 � 1
�

; a2(t) = a2 +
t

120(4�)2

a3(t) = a3 �
t

360(4�)2
; a4(t) = a4 �

t

180(4�)2
�
�� 1

6

12�

�
�(t)

2

3 � 1
�
;

(7)

where t is renormalization group parameter and

�(t) = 1� 3�t

(4�)2
:

Using the explicit results for the boundary conterterms [3, 6] we can write down
the explicit expressions for the running surface couplings in theory (3) [9, 10]:

�D(t) = �D �
t

360(4�)2
; �D(t) = �D +

2t

35(4�)2


D(t) = 
D +
D(t)

3
; �D(t) = �D +

D(t)

2
; �D = �D +

t

15(4�)2

(8)

where

D(t) =
�� 1

6

2�

�
�(t)2=3 � 1

�
:

As usually the t ! 1 limit de�nes the theory at very high energies (strong
gravitational �eld). As we see from Eqs. (8) there is already some mixture of
the volume with the surface couplings when they are running.

Now, after this overview of the situation with running surface couplings in
curved spacetime, the interesting question is { what new phenomena may be

encountered using the renormalization group. In particular, as it was already
mentioned, the boundary e�ects are expected to be important in quantum cos-
mology. Hence it is interesting to understand the relevance of renormalization
group in this respect.

Let us consider the situation where the volume Lagrangian (as well as LS)
is independent of one of the coordinates. Then, in the volume action we may
integrate explicitly over this coordinate and as a result we can write the action
(assuming that there is only a gravitational background �eld) as

Sgrav: =

Z
d3
p
g
n
l1LV + l2LS

o
; (9)

where l1; l2 are some dimensionful constants, for example, l1 =
R
dx (where x is
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the variable on which the Lagrangean does not depend). Due to the fact that
the theory is multiplicatively renormalizable, we may now write explicitly the
RG equation for e�ective Lagrangian:

(�
@

@�
+ �i

@

@�i
� 
i�i

�

��i
) Le� (�; �i ; �i) = 0; (10)

where � is a mass parameter, �i are volume and surface coupling constants with
corresponding beta-functions �i and �i are the �elds. For an alternative deriva-
tion of (10), where � is replaced by the inverse diameter of the spacetime M
see [10].

Solving Eq.(10) by the method of characteristics, with Lagrangean (9) as
initial condition at t = 0 and assuming a gravitational background �eld only
(the other background �elds are set to zero) we �nd the following contribution
to Leff

Leff (�; �i; �i) = Leff (�e
t; �i(t); �i(t))

= l1

n
a1(t)R

2 + a2(t)C
2
���� + a3(t)G+ a4(t)R

o
+l2

n
�D(t)q + �D(t)g + 
D(t)RK + �D(t)n

�r�R

+�D(t)C����K
��n�n�

o
;

(11)

where the running volume and surface couplings are given by eqs.(7,8). The
above discussion which yielded the RG improved Lagrangian in curved space
is very similar to standard RG improvement of the e�ective potential in 
at
[12, 13] or in curved space [14, 15]. The problem now is the choice of RG
parameter t. Motivated by the one-loop considerations of the theory under
discussion, the natural choice is (let R be positive)

t =
1

2
log

R

�2
: (12)

With this choice, we get the improved e�ective Lagrangian (the summation over
all leading logarithms of perturbation theory). In that sense the result is be-
yond one-loop order. The important implication of (11,12) is that due to the
RG, the surface terms cease to be surface terms. They give contributions to
the equations of motion, and hence, they in
uence quantum cosmology dynam-
ically. Classically the surface terms maybe dropped. On the quantum level,
however, these terms are important, as after RG improvement they contribute
to the equations of motion. We give an explicit example in the next section.
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3 RG improved Lagrangian in scalar theory on

four-sphere with boundary

In what follows we will limit ourselves to the spaces of the type R�� = �g��
which are of interest for quantum cosmology as they describe the in
ation-
ary Universes. In this case the structure of the initial Lagrangian signi�cally
simpli�es.

Consider as an example a spherical cap C, i.e. region of the four-sphere with
maximum colatitude �. Then, the RG improved action is

Seff =

Z
M

d4x
p
g SV;eff +

Z
@M

d3x
p

 SS;eff

= 24�2

(h
16a1(t) +

8

3
a3(t)

i
�
h1
2
� 3

4
cos � +

1

4
cos3 �

i

+ cos3 �
h
2�D(t)

i
+

9

2
cos � sin2 �

�

D(t)

	)
;

(13)

where t = 1

2
log 4�

�2
. We supposed Dirichlet boundary conditions for the scalar

�eld. One may consider other conditions as well. The calculation of conformal
anomaly in above-described situationes has been given in [6]. For comparison
we may give the RG improved action in case of the 4-sphere(for the discussion
of the e�ective action in De Sitter space see, also [16] and [18])

Seff = 24�2
�
16a1(t) +

8

3
a3(t)

�
: (14)

The e�ective equations of motion are given by

@Seff

@�
= 0: (15)

Classically a1 and a3 are constant and the cosmological constant is not deter-
mined. On quantum level we get from from (14,15)

8
�
�� 1

6

�2
�(t)�2=3 � 1

135
= 0;

where �(t) has been introduced below (7), the selfconsistent quantum solution

1

2
log

4�

�2
=

(4�)2

3�

(
1�

h
8 � 135(�� 1

6
)2
i3=2)

:

Hence, the e�ective cosmological constant is de�ned from the back-reaction of
the quantum matter on the geometry. The corresponding non-singular universe
is a De-Sitter spacetime (for free theory see also[21]).
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Let us now consider a universe which is a spherical cap C. Its RG improved
gravitational action is given by (13). The e�ective equation is found to be

h
8(�� 1

6
)2�(t)�2=3 � 1

135

ih1
2
� 3

4
cos � +

1

4
cos3 �

i
�2 cos3 �

360
� 3

2
cos � sin2 �(�� 1

6
)�(t)�1=3 = 0:

(16)

This e�ective equation of motion in which the boundary e�ects have been taken
into account, cannot be solved explicitly. Assuming �t (on which � depends)
to be small and keeping only terms which are linear in this parameter we get
the quantum solution

�1

2
log

4�

�2
=

(h
8(�� 1

6
)2 � 1

135

ih1
2
� 3 cos �

4
+

cos3 �

4

i

�cos3 �

180
� 3

2
cos � sin2 �(�� 1

6
)

)

�
(
16(�� 1

6
)2�

(4�)2

h1
2
� 3 cos �

4
+

cos3 �

4

i
� 3

2
cos � sin2 �(�� 1

6
)

�

(4�)2

)
�1

:

(17)

As one sees the boundary terms play an important role. They change the struc-
ture of the self-consistent e�ective equation qualitatively. Our considerations
provides an example how through the RG the boundary terms may become
relevant in quantum cosmology.

Moreover, this feature is quite general and maybe extended to any renor-
malizable theory - this only changes the coe�cients in (13) and possibly 
(t).
One may further admit a scalar background �eld in which case Leff becomes
quite complicated and leads to two sets of e�ective equations of motion.

As another application one can consider the wave function of the Universe
[1] which is de�ned (in our example) as path integral with a spherical cap as
boundary surface

 (�) = e�Seff : (18)

The solution of the �eld equations is given by (17) and yields the curvature
R = 4� of such a spacetime or equivalently its radius R = 1

a2
. The e�ective

action is the obtained by substituting (17) into (13) and with (18) yields to the
wave function of the system and to the probability distribution on the set of
boundary conditions.

As an another interesting example let us consider a ball D, i.e. the region
in 
at spacetime bounded by a three-sphere. We suppose that the scalar back-
ground is non-zero and constant. Then we may calculate Seff in (11) as the
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follows:

Seff = V4 �
n�(t)'4

4!
� 2c1�D(t)

o
(19)

where V4 is 'volume' of the ball and c1 is a dimensionless constant. It is
evident that in this case t = 1

2
log'2=�2, as in Coleman-Weinberg approach

[12]. Now one may discuss the symmetry breaking induced by boundary e�ects
(for the �rst study of symmetry breaking under external curvature ,see [22]).
Solving the equation of motion �S

�'
= 0 to �rst order in � we get

'4 =
c1

120�(4�)2
: (20)

Classically ' = 0, and no symmetry breaking occurs. This simple example
shows how boundary e�ects may trigger the spontaneous symmetry breaking.
Now we turn to the discussion of more complicated theories.

4 Running surface constants in GUTs.

Let us show now that one can easily generalize the above picture to the (for
simplicity) massless GUT's in curved spacetime. We will consider an arbitrary
asymptotically free GUT (for a list of such GUTs, see for example [19]). In this
case, we have for running gauge, Yukawa and scalar couplings

g2(t) =
g2

1 + a2g2t
; h2(t) = k2g

2(t) and f(t) = k1g
2(t); (21)

where for Yukawa and scalar couplings k1 and k2 are constant matrices. The
scalar-gravitational running coupling is generally of the form [11]

�(t) =
1

6
+ (�� 1

6
)(1 + a2g2t)B; (22)

where B maybe positive or negative, depending on the detailed �eld-content of
the theory. The running volume couplings have the structure similar as those
in section 1 (powers of terms connected with � are changing according to (22)),
so we will not present them here (for details, see [11]). As regards to the run-
ning surface couplings they maybe easily found using the general results of refs.
[3, 6]. To be more speci�c let us consider the asymptotically free SU(2) gauge
theory with one scalar and two spinor triplets [19]. Imposing the boundary con-
ditions of refs. [17, 10] for the fermions and absolute boundary conditions for
the scalars and gauge �elds and assumingRab = �gab we �nd now the boundary
action
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SS =

Z
@M

d3x
p

 LS

LS = �1�K + �2K
3 + �3KK��K

��

+�4K
�
� K

�
� K

�
� + �5C����K

��n�n� ;

(23)

where the corresponding running couplings are

�1(t) = �1 �
t

(4�)2
(
62nA

135
� 11nF

135
)�

4(�� 1

6
)

3(4�)2(B + 1)a2
[(1 + a2t)B+1 � 1]

�2(t) = �2 +
t

(4�)2
(
ns

27
+

17nF
945

� 338nA
945

)

�3(t) = �3 +
t

(4�)2
(
ns

45
+

13nF
315

+
58nA
63

)

�4(t) = �4 +
t

(4�)2
(
4ns

135
� 116nF

945
� 436nA

945
)

�5(t) = �5 +
t

(4�)2
(
2ns
45

� 7nF
45

� 26nA
45

);

(24)

where for the SU(2) model nA = 3; ns = 3; nF = 3 or nF = 6 and [20]

�(t) =
1

6
+
�
�� 1

6
)(1 + a2g2t

�
�

�
12�

5

3
k1�8k2

b2

�
:

Here b2 is constant and k1; k2 can be found in [19]. For nF = 3 we have

�
12� 5

3
k1 � 8

k2

b2

�
< 0

and for nF = 6 we have B > 0. The running surface couplings in other GUTs
can be found similarly as for the scalar theory considered in the previous section.
They lead to corrections of the quantum states in quantum cosmology.

5 Conclusion.

We have discussed RG improved e�ective action in curved spacetime with
boundaries. The running surface couplings are getting important in this ap-
proach as they maybe relevant in di�erent physical applications. Among ex-
amples given in this work we have studied the in
uence of the boundary terms
to the e�ective �eld equations, possible application to quantum cosmology and
symmetry breaking. Note that we have studied all these questions using the
e�ective action on constant curvature spaces. Nevertheless, one may apply sim-
ilar technique to the non-local e�ective action and black hole physics where
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boundary e�ects may also play an important role. We hope to return to some
of these questions in near future.
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