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ABSTRACT

Four–dimensional string backgrounds with local realizations of N = 4 world–

sheet supersymmetry have, in the presence of a rotational Killing symmetry,

only one complex structure which is an SO(2) singlet, while the other two

form an SO(2) doublet. Although N = 2 world–sheet supersymmetry is al-

ways preserved under Abelian T–duality transformations, N = 4 breaks down

to N = 2 in the rotational case. A non–local realization of N = 4 supersym-

metry emerges, instead, with world–sheet parafermions. For SO(3)–invariant

metrics of purely rotational type, like the Taub–NUT and the Atiyah–Hitchin

metrics, none of the locally realized extended world–sheet supersymmetries

can be preserved under non–Abelian duality.
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The duality symmetries of string theory describe a quantum equivalence between the

underlying conformal field theories of various backgrounds with different geometrical (or

even topological) properties. The target space duality between string backgrounds with

Abelian isometries is the most notable example, known as T–duality (see, for instance, [1]

and references therein). The toroidal compactification of the heterotic string theory seems

to exhibit another remarkable symmetry under an SL(2, Z) group of transformations

that act on the coupling constant of the theory. This is the S–duality and it is more

conveniently described as a symmetry of the axion–dilaton system in the Einstein frame

of string theory [2, 3]. It is natural, once both types of duality symmetries exist in a string

theory, to intertwine them in order to construct new discrete symmetries [4, 5, 6]. It has

recently been recognized, however, that such a procedure is not always compatible with

the N = 4 world–sheet supersymmetry of superconformal string vacua [6]. The condition

that characterizes the occurrence of such an obstruction was linked to the nature of the

Abelian isometries of the corresponding string vacua.

The purpose of the present work is to provide a natural explanation of this obstruc-

tion by considering the explicit behaviour of the locally realized extended world–sheet

supersymmetries under generic T–duality transformations. As we will see later, the local

realizations of N = 4 world–sheet supersymmetry cannot be preserved by performing

T–duality transformations with respect to rotational Killing vector fields, due to the pe-

culiar behaviour of the three underlying independent complex structures. This problem

does not arise for translational Killing symmetries. Hence, the standard arguments that

relate the N = 4 world–sheet supersymmetry to the geometrical properties of the target

space manifold will not be applicable after dualizing with respect to rotational Killing

symmetries. The rotational Killing symmetries also spoil the standard supersymmetry

transformations in the target space after T–duality [6, 7], but we will not elaborate on

this issue. We will only remark at the end that the space–time supersymmetry may be

realized differently in terms of the new target space fields after a rotational T–duality

transformation. The question we are addressing here is also interesting for exploring the

supersymmetric properties of the O(d, d) deformations of a given conformal field theory

background, in general, and in particular along the JJ̄–line of marginal deformations [8]

(see also [9]).

The behaviour of extended world–sheet supersymmetry under T–duality transforma-

tions is important for understanding the sense in which target space dualities are string

symmetries. It is true that the N = 2 world–sheet supersymmetry remains local un-

der generic Abelian T–duality transformations. This problem was investigated in the

literature before by constructing explicitly the relevant complex structure in the dual

formulation (see [10] and references therein). On target spaces with torsion, there are

two complex structures, a left and a right one, which are relevant for N = 2 supersym-

metry. When the torsion is zero the left and the right complex structures are identical,

but they transform differently under Abelian T–duality transformations. This issue and

the properties of their commutator have already been considered in the most general case

and we will not deal with them further. Our question is more elementary and refers to
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the local properties of the three independent complex structures (either the left or the

right) in superconformal theories with N = 4 supersymmetry. Such complications are

certainly not present in theories with only N = 2 supersymmetry.

The target space metric in N = 4 superconformal theories with torsion is constrained

to satisfy the conditions

g = Ωg′ , ✷
′Ω = 0 , (1)

where g′ is a hyper–Kahler metric [11] (see also [12]). This theorem is true provided

that the three underlying complex structures are locally realized, in which case they

are covariantly constant (including torsion). Recall that there are examples of N = 4,

ĉ = 4 models where the above geometric conditions are not satisfied; in all such models,

the N = 4 supersymmetry is non–locally realized on the world–sheet [13]. We will

demonstrate that T–duality with respect to rotational Killing symmetries always leads

to such a peculiar world–sheet behaviour. For example, the string background which

is dual to flat space with respect to any one of its rotational Killing symmetries can

be easily shown to contradict the conditions (1). It is also conceivable that all models

with non–local realizations of N = 4 supersymmetry may admit a local description,

in an appropriately chosen T–dual formulation, with respect to some rotational Killing

symmetry.

In the following, we simplify our presentation by considering first the supersymmetric

behaviour of pure gravitational string backgrounds under generic T–duality transforma-

tions and review some of the basic concepts. The geometric description of the Abelian

duality in terms of canonical transformations in the target space [14, 15] will be partic-

ularly useful in finding the explicit form of the dual complex structures. We will also

discuss these issues for some more general string backgrounds, including the worm–hole

solution [12, 16]. Finally we will conclude with some generic features of non–Abelian

duality and supersymmetry.

Four–dimensional pure gravitational backgrounds with N = 4 world–sheet supersym-

metry are known to be hyper–Kahler manifolds (i.e. Ω = 1 in eq. (1)). Their Riemann

tensor satisfies the self–duality conditions

Rµνρσ = ±1

2

√
detG ǫρσ

κλRµνκλ (2)

with the ± sign corresponding to self–dual or anti–self–dual metrics respectively, depend-

ing on the conventions. If these backgrounds also admit (at least) one Killing symmetry,

then, in the special coordinate system where the Killing symmetry becomes manifest,

their metric will take a particularly simple form. There are two kinds of Killing sym-

metries that are in fact distinct from each other. The first kind, which is usually called

translational, corresponds to Killing vector fields Kν with self–dual covariant derivatives,

∇µKν = ±1

2

√
detG ǫµν

ρσ∇ρKσ , (3)

according to the two cases (2) respectively [17]. The translational symmetries are also

known as triholomorphic, because of their special character in Kahlerian coordinates. The
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second kind, which is usually called rotational, encompasses all other Killing vector fields.

It is true that rotational symmetries are more rare than translational ones, although

simple examples of self–dual metrics admit both; these include the flat space, the Taub–

NUT and the Eguchi–Hanson gravitational instanton.

In the case of 4–dim hyper–Kahler manifolds with a translational Killing symmetry,

the metric assumes the form

ds2 = V (dT + Ω1dX + Ω2dY + Ω3dZ)2 + V −1(dX2 + dY 2 + dZ2) , (4)

where T is a coordinate adapted for the translational Killing vector field ∂/∂T . Moreover,

Ωi are constrained to satisfy the special conditions

∂iV
−1 = ±1

2
ǫijk(∂jΩk − ∂kΩj) , (5)

depending on the self–dual or the anti–self–dual character of the metric respectively

[18]. It also follows that V −1 satisfies the 3–dim flat space Laplace equation. Localized

solutions of this equation correspond to the familiar series of multi–centre Eguchi–Hanson

gravitational instantons or to the multi–Taub–NUT family, depending on the asymptotic

conditions on V −1 (see, for instance, [19] and references therein).

The three independent complex structures associated to self–dual metrics with trans-

lational symmetry have been explicitly constructed in the literature [20]. In the special

coordinate system (4) they assume the particularly simple form

F1 = (dT + Ω2dY ) ∧ dX − V −1dY ∧ dZ , (6)

F2 = (dT + Ω1dX) ∧ dY + V −1dX ∧ dZ , (7)

F3 = (dT + Ω1dX + Ω2dY ) ∧ dZ − V −1dX ∧ dY , (8)

where Ω3 has been set equal to zero by a gauge transformation. It is straightforward to

verify that they are covariantly constant on–shell and satisfy the SU(2) Clifford algebra.

The property that is important for our purposes is that all three complex structures

remain invariant under T–shifts. This will be crucial for understanding the way the local

realizations of N = 4 world–sheet supersymmetry behave, in a string setting, under T–

duality transformations. It is also useful to note at this point that S± = b± V , where b

is the nut potential of the metric (4), is constant for self–dual or anti–self–dual metrics

respectively [6].

In the case of 4–dim hyper–Kahler manifolds with a rotational Killing symmetry,

there exists a coordinate system (τ , x, y, z) in which the corresponding line element

takes the form

ds2 = v(dτ + ω1dx+ ω2dy)
2 + v−1

(

eΨdx2 + eΨdy2 + dz2
)

. (9)

In these adapted coordinates the rotational Killing vector field is ∂/∂τ and all the com-

ponents of the metric are expressed in terms of a single scalar field Ψ(x, y, z) [17], so

that

v−1 = ∂zΨ , ω1 = ∓∂yΨ , ω2 = ±∂xΨ , (10)

3



where Ψ(x, y, z) satisfies the continual Toda equation:

(∂x
2 + ∂y

2)Ψ + ∂z
2eΨ = 0 . (11)

These coordinates actually provide the geodesic form of the corresponding 3–dim line

element for which S± = b±v = −z, and hence is not constant [6]. We use capital (small)

letters to distinguish the special coordinates in the presence of translational (rotational)

Killing symmetries.

Metrics with rotational Killing symmetry differ from those with translational sym-

metry in that not all three independent complex structures can be chosen to be τ–shift

invariant. In fact, only one complex structure can be chosen to be an SO(2) singlet,

while the other two necessarily form an SO(2) doublet. We have explicitly

F3 = (dτ + ω1dx+ ω2dy) ∧ dz + v−1eΨdx ∧ dy (12)

for the singlet and









F1

F2









= e
1

2
Ψ









cos τ
2

sin τ
2

sin τ
2

− cos τ
2

















f1

f2









(13)

for the doublet, where

f1 = (dτ + ω2dy) ∧ dx− v−1dz ∧ dy , (14)

f2 = (dτ + ω1dx) ∧ dy + v−1dz ∧ dx . (15)

It can be easily verified, once the right guess has been made, that F1, F2 and F3 are

covariantly constant on–shell (11) and satisfy the SU(2) Clifford algebra ∗. The general

explicit construction of all three complex structures in the rotational frame (9) has not

appeared in the literature before, to the best of our knowledge. The expressions (12)–(15)

are strictly speaking correct only for self–dual metrics. Their anti–self–dual counterparts,

together with the metric (9), can simply be obtained using the substitution τ → −τ .
It is possible to guess the general form of the three complex structures in the rotational

frame by considering the special example of the Eguchi–Hanson gravitational instanton.

This background is SO(3)–symmetric, and with respect to one of its three translational

Killing symmetries it can be written in the form (4), where

V −1 =
1

R+
+

1

R−

, Ω1 = − Y

X2 + Y 2

(

Z+

R+
+
Z−

R−

)

, Ω2 =
X

X2 + Y 2

(

Z+

R+
+
Z−

R−

)

, (16)

with Ω3 = 0 and

Z± = Z ± a , R2
± = X2 + Y 2 + Z2

± . (17)

∗It is known that the continual Toda equation (11) exhibits a W∞ symmetry on–shell [21]. This

symmetry preserves the sphere of complex structures defined by F1, F2 and F3.
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The moduli parameter is a. The Eguchi–Hanson instanton also has an additional U(1)

Killing symmetry which is rotational. The coordinate transformation that makes the

latter manifest is








X

Y









= e
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2
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cos τ
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sin τ
2

sin τ
2

− cos τ
2

















x
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, Z = z
1 − 1

8
(x2 + y2)

1 + 1
8
(x2 + y2)

, T = 2 tan−1 y

x
,

(18)

where

Ψ(x, y, z) = log
z2 − a2

2
(

1 + 1
8
(x2 + y2)

)2 (19)

is the corresponding Toda potential. It follows that the three independent complex

structures (6)–(8) are mapped to (12)–(15) by the coordinate transformation described

above. Similar remarks apply to the flat space metric, which has Ψ(x, y, z) = log z in the

rotational frame (9).

It is useful to recall, before we proceed further, that the Taub–NUT and the Atiyah–

Hitchin metric on the moduli space of the SU(2) 2–monopole solutions (in the BPS

limit) [22] provide another two non–trivial examples of 4–dim hyper–Kahler manifolds

with rotational Killing symmetries. Both of them admit an SO(3) isometry of purely

rotational type, but the Taub–NUT metric also admits an additional U(1) symmetry

which is translational. (This should be compared with the opposite character of the

Eguchi–Hanson Killing symmetries.) Moreover, this completes the classification of the

complete SO(3)–invariant self–dual metrics [20]. The Atiyah–Hitchin metric can be

regarded as the simplest example of hyper–Kahler manifolds with only rotational Killing

symmetries. Since the existence of only two rotational symmetries (and no other of

either type) is not allowed from general considerations [17], it follows that the next more

complicated solutions of this kind (if they exist at all) will exhibit only one rotational

Killing symmetry and no other symmetries of either type. Work in this direction is in

progress, while determining the Toda potential that corresponds to the Atiyah–Hitchin

metric, its possible generalization to a new series of rotational instantons, and its use as

a supersymmetric gravitational string background [23].

We have already seen that, in metrics with (at least) one Killing symmetry, either

all complex structures behave as singlets or one of them is a singlet and the remaining

two form an SO(2) doublet. This applies to the conformal class of 4–dim metrics (1)

and we will next investigate the effect of the T–duality on them. We first recall the

essential ingredients for describing the Abelian T–duality transformation as a canonical

transformation in the target space [15] (see also [14] for some earlier ideas). The classical

propagation of strings in a general target space with metric Gµν(X) and antisymmetric

tensor field Bµν(X) is described by the 2–dim σ–model density Qµν∂X
µ∂̄Xν , where

Qµν = Gµν +Bµν . (20)

Consider backgrounds with a Killing symmetry generated by the vector field ∂/∂X0 (X0

will be T or τ in the translational or in the rotational frame, respectively). Let P0 be
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the canonical momentum conjugate to the string variable X0; we perform the canonical

transformation (X0, P0) → (X̃0, P̃0), as is prescribed by the interchange P0 ↔ ∂σX
0,

where σ denotes the spatial coordinate on the string world–sheet. This is equivalent to

the transformation

∂X0 → 1

G00

(∂X0 −Qi0∂X
i) , ∂̄X0 → − 1

G00

(∂̄X0 +Q0i∂̄X
i) , (21)

using the expression for the canonical momentum P0. It is then straightforward to read–

off the form of the dual string background by substituting (21) into the Hamiltonian form

of the 2–dim action. The result,

G̃00 =
1

G00
, Q̃0i =

Q0i

G00
, Q̃i0 = −Qi0

G00
, Q̃ij = Qij −

Qi0Q0j

G00
, (22)

indeed describes the Abelian T–duality transformation in all generality. The conformal

invariance also requires that the corresponding dilaton field 2Φ is shifted by − logG00

(see, for instance, [1]).

The transformation (21) amounts to a non–local redefinition of the target space vari-

able associated with the Killing symmetry,

X0 →
∫ 1

G00

(

(∂X0 −Qi0∂X
i)dz − (∂̄X0 +Q0i∂̄X

i)dz̄
)

. (23)

Despite the non–localities, the dual target space fields (22) are locally related to the

original ones. However, other geometrical quantities in the target space, such as the

Kahler 2–forms describing the complex structures, are not bound to be always local in

the dual picture. This is precisely our concern for addressing the question of local versus

non–local realizations of N = 4 world–sheet supersymmetry, in general, upon duality. We

are considering the local behaviour of three independent almost complex structures, which

are actually Hermitian, without worrying about their integrability, since the Nijenhuis

conditions are not necessary for the existence of extended world–sheet supersymmetry

[24].

The complex structures come in pairs in the presence of torsion and define the 2–forms

F±
I = (F±

I )µνdX
µ ∧ dXν = 2(F±

I )0idX
0 ∧ dX i + (F±

I )ijdX
i ∧ dXj (24)

that satisfy all the necessary conditions (they are covariantly constant, including the

torsion, and each + or − set forms separately an SU(2) Clifford algebra). The F±
I are

associated to right or left–handed fermions and in order to find the correct transformation

properties under T–duality, we simply have to use the replacement dXµ → ∂Xµ for F+
I

and dXµ → ∂̄Xµ for F−
I . Of course, this is only meant to be a prescription for extracting

the relevant part of the complex structures under the duality transformation (21). With

this explanation in mind, we first consider the simplest case having all (F±
I )µν independent

of X0. The result we obtain for the dual complex structures in component form is

(F̃+
I )0i =

1

G00
(F+

I )0i , (F̃+
I )ij = (F+

I )ij +
1

G00

(

(F+
I )0iQj0 − (F+

I )0jQi0

)

(25)
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and

(F̃−
I )0i = − 1

G00
(F−

I )0i , (F̃−
I )ij = (F−

I )ij +
1

G00

(

(F−
I )0iQ0j − (F−

I )0jQ0i

)

. (26)

If we were computing (F̃±
I )

µ

ν = G̃µλ(F̃±
I )λν in this case, the result would coincide with

the expressions for the dual complex stuctures derived before [10].

It follows from the previous analysis that all the components (F±
I )µν will be indepen-

dent of X0 if the Killing vector field ∂/∂X0 ≡ ∂/∂T is translational. We consider the

effect of T–duality on the self–dual gravitational backgrounds (4), (5) as an application

in this case. The dual background is conformally flat,

ds̃2 = V −1(dT 2 + dX2 + dY 2 + dZ2) , (27)

with a non–trivial antisymmetric tensor field

B̃ = 2 dT ∧ (Ω1dX + Ω2dY ) (28)

and dilaton field 2Φ̃ = log V −1. The corresponding dual complex structures can be

obtained from eqs. (6)–(8) and they assume the form

F̃±
I = V −1

(

±dT ∧ dXI − 1

2
ǫIJKdX

J ∧ dXK

)

, (29)

where {XI} = {X, Y, Z}. The dual background is consistent with the condition (1),

because the conformal factor Ω = V −1 satisfies the Laplace equation in flat space that

was imposed by the self–duality of the original metric. The resulting backgrounds are

the axionic instantons introduced in the toroidal compactification of the heterotic string

theory [12, 25]. In this case, the solutions exhibit N = 4 world–sheet supersymmetry,

which is locally realized and hence compatible with the geometric characterization (1) of

the target space metric before and after duality.

The situation is radically different when the T–duality is performed with respect to

a rotational Killing symmetry. A generic string background with locally realized N = 4

world–sheet supersymmetry has a hyper–Kahler metric g′ associated with it, according to

eq. (1). Using the rotational frame (9), in which X0 = τ , the T–duality transformation

yields the background

ds̃2 = v−1(eΨdx2 + eΨdy2 + dz2 + dτ 2) , (30)

with antisymmetric tensor field

B̃ = 2 dτ ∧ (ω1dx+ ω2dy) (31)

and dilaton field 2Φ̃ = log v−1. The complex structure (12) will remain local in the dual

picture, assuming the form

F̃±
3 = v−1(±dτ ∧ dz + eΨdx ∧ dy) . (32)
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The 2–forms (14), (15) become similarly

f̃±
1 = v−1(±dτ ∧ dx− dz ∧ dy) , f̃±

2 = v−1(±dτ ∧ dy + dz ∧ dx) . (33)

The duality transformation amounts to the canonical transformation

τ →
∫

(v−1∂τ − ω1∂x− ω2∂y)dz − (v−1∂̄τ + ω1∂̄x+ ω2∂̄y)dz̄ (34)

and so the components of the forms F1 and F2, which depend explicitly on τ via trigono-

metric functions, will become non–local after the rotational T–duality. Moreover, the

resulting F̃±
1 and F̃±

2 are not covariantly constant on–shell, including the torsion coming

from eq. (31).

We found that the local realization of N = 4 world–sheet supersymmetry breaks down

to N = 2, with F̃±
3 providing the relevant pair of complex structures in the presence of

torsion. This is also consistent with the fact that the dual background (30) is not con-

formally equivalent to a hyper–Kahler metric, as would have been required otherwise by

N = 4 world–sheet supersymmetry. It should be noted, though, that general arguments

from superconformal field theory indicate that the N = 4 world–sheet supersymmetry

will remain present, but part of it will become hidden into a non–local realization. We

do not have an exact conformal field theory description of the string gravitational back-

ground (30), (31) in order to illustrate this point in all generality. For this reason we

will examine the question in the special case of the 4–dim worm–hole solution and its

rotational dual background, where an exact description is available in terms of the SU(2)

WZW model and its derivatives. We will see later that the parafermion currents of the

SU(2)/U(1) coset model describe the non–local structure of the dual 2–forms F̃±
1 , F̃±

2 ,

thus providing the explicit construction of a non–locally realized N = 4 superconformal

algebra with ĉ = 4 [13].

An analogous situation arises when a string background exhibits a non–Abelian sym-

metry group. Various Killing symmetries that do not commute with a rotational isometry

will become non–locally realized after performing the T–duality. They all remain sym-

metries of the dual model, but some of them are hidden in the non–local realization of the

corresponding symmetry algebra. This issue is illustrated with a simple 2–dim example,

which we give separately as an appendix.

The worm–hole solution of 4–dim string theory provides an exact conformal field the-

ory background with N = 4 world–sheet supersymmetry [12, 13, 16]. The N = 4 super-

conformal algebra is locally realized in terms of four bosonic currents, three non–Abelian

SU(2)k currents and one Abelian current with background charge Q =
√

2/(k + 2), so

that the central charge is ĉ = 4. There are also four free–fermion superpartners and

the solution is described by the SU(2)k
⊗

U(1)Q supersymmetric WZW model †. The

background fields of this model are given in holomorphic target space coordinates

ds2 = V −1(dudū+ dwdw̄) , V = uū+ ww̄ , (35)
†The realization of the N = 4 superconformal algebra in terms of SU(2) currents was first considered

in ref. [26].
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B =
1

2
V −1(uū− ww̄)

(

1

uw̄
du ∧ dw̄ +

1

ūw
dū ∧ dw

)

, (36)

with a non–trivial dilaton field 2Φ = log V −1. This background is conformally flat and it

satisfies the condition (1) as required. We note for completeness that it is not T–dual to a

pure gravitational self–dual background with respect to a translational Killing symmetry.

We have also determined the three independent pairs of the underlying complex structures

of the model,

F+
1 =

1

2
V −1(du ∧ dw + dū ∧ dw̄) , F−

1 =
i

2
V −1(du ∧ dw̄ − dū ∧ dw) , (37)

F+
2 =

i

2
V −1(du ∧ dw − dū ∧ dw̄) , F−

2 =
1

2
V −1(du ∧ dw̄ + dū ∧ dw) , (38)

F+
3 =

i

2
V −1(du ∧ dū+ dw ∧ dw̄) , F−

3 =
i

2
V −1(−du ∧ dū+ dw ∧ dw̄) , (39)

which satisfy all the necessary conditions for having N = 4 supersymmetry.

It is known that the worm–hole solution is dual to the exact superconformal field

theory based on the WZW model SU(2)k/U(1)
⊗

U(1)
⊗

U(1)Q with ĉ = 4 [10, 13] (see

also [27]). This can be demonstrated by introducing the polar coordinates ρ, τ , ψ and ϕ

in the target space, so that

u = eρ+iτ cosϕ , w = eρ+iψ sinϕ , (40)

and performing the T–duality transformation in the rotational τ direction. It is actually

more convenient for calculational purposes to consider the target space variables

α =
1

2
ψ − τ , β =

1

2
ψ + τ . (41)

Then, the duality transformation reads

τ → τ̃ ≡
∫

(∂β − tan2ϕ ∂α)dz − (∂̄β − tan2ϕ ∂̄α)dz̄ (42)

and the resulting new background has no antisymmetric tensor field. The dual metric

assumes the form

ds̃2 = dρ2 + dβ2 + dϕ2 + tan2ϕ dα2 , (43)

while the corresponding dilaton field is −2Φ̃ = 2ρ+ log(cos2ϕ). This string background,

which corresponds to the SU(2)/U(1)k
⊗

U(1)
⊗

U(1)Q coset model, has the special fea-

ture that the metric (43) is not hyper–Kahler. Both conformal field theories admit an

N = 4 superconformal symmetry, but it is not surprising that it is non–locally realized

in the latter.

We will demonstrate that this non–local realization of the N = 4 world–sheet super-

symmetry provides a simple example of our general framework. The complex structure,

which is dual to (39), turns out to be local:

F̃3 = dρ ∧ dβ + tanϕ dϕ ∧ dα , (44)
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and there is no distinction between the + and − components, since B̃ = 0. The complex

structures (37) and (38), on the other hand, become non–locally realized in the dual

model. The resulting expressions, up to an irrelevant factor of 1/2, are

F̃+
1 = (dρ+ i dβ) ∧ Ψ+ + (dρ− i dβ) ∧ Ψ− , (45)

F̃−
1 = i(dρ− i dβ) ∧ Ψ̄+ − i(dρ+ i dβ) ∧ Ψ̄− (46)

and

F̃+
2 = i(dρ+ i dβ) ∧ Ψ+ − i(dρ− i dβ) ∧ Ψ− , (47)

F̃−
2 = (dρ− i dβ) ∧ Ψ̄+ + (dρ+ i dβ) ∧ Ψ̄− , (48)

where

Ψ± = (dϕ± i tanϕ dα)e±i(τ̃+α+β) , Ψ̄± = (dϕ∓ i tanϕ dα)e±i(τ̃−α−β) (49)

are non–local 1–forms with τ̃ given by eq. (42). The above 2–forms are not covariantly

constant on–shell and they are responsible for having a non–local realization of the N = 4

world–sheet supersymmetry in the dual to the worm–hole string model [13].

The non–local 1–forms (49) can be naturally decomposed into (1, 0) and (0, 1) forms

on the string world–sheet,

Ψ± = Ψ
(1,0)
± dz + Ψ

(0,1)
± dz̄ , Ψ̄± = Ψ̄

(1,0)
± dz + Ψ̄

(0,1)
± dz̄ . (50)

It can be easily verified that

∂̄Ψ
(1,0)
± = 0 , ∂Ψ̄

(0,1)
± = 0 (51)

are chirally conserved, using the classical equations of motion of the dual model, and in

fact Ψ
(1,0)
± and Ψ̄

(0,1)
± coincide with the classical parafermions that exist in this case; the

field β actually provides the dressing of the SU(2)/U(1) parafermions to the full 4–dim

coset model. Hence, the usual N = 4 world–sheet supersymmetry of the 4–dim worm–

hole background breaks down to N = 2 and a non–local realization of N = 4 emerges

instead in the dual model with world–sheet parafermions. The T–duality transformation

with respect to a rotational Killing symmetry is clearly the reason for this behaviour in

string theory.

We conclude with a few remarks concerning the effect of the non–Abelian duality

transformations on gravitational backgrounds with extended world–sheet supersymmetry.

For SO(3)–invariant metrics, the complex structures either can be SO(3) singlets, thus

remaining invariant under the non–Abelian group action,

£J(FI)µν = 0 , (52)

or form an SO(3) triplet when

£J(FI)µν = ǫJIK(FK)µν . (53)
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The Lie derivative is taken with respect to the SO(3) generators of the isometry. The

Eguchi–Hanson metric corresponds to the first case, while the Taub–NUT and the Atiyah–

Hitchin metrics to the second [20]. Although there is no systematic formulation of the

non–Abelian duality in terms of canonical transformations in the target space, we can

easily find the dual complex structures for backgrounds where the original complex struc-

tures are SO(3) singlets. In this case, the complex structures are written in terms of the

left–invariant Maurer–Cartan forms of SO(3). In the dual model they are obtained by

replacing ordinary derivatives by covariant ones, using gauge fields, and then substituting

the on–shell solution for the gauge fields and fixing a unitary gauge. Such an algorithm

will certainly not be applicable if the complex structures form an SO(3) triplet. Accord-

ing to this, the dual version of the Eguchi–Hanson instanton with respect to SO(3) will

have an N = 4 world–sheet supersymmetry locally realized. In fact, the non–Abelian

duality has already been performed in this case, producing a conformally flat metric

that satisfies the condition (1) [28]. On the other hand, performing the non–Abelian

SO(3)–duality to the Taub–NUT and the Atiyah–Hitchin metrics will result in a total

loss of all the locally realized extended world–sheet supersymmetries. We expect to have

a non–local realization of supersymmetry in such cases with non–Abelian parafermions.

Of course, the N = 1 supersymmetry will not be affected by any kind of T–duality trans-

formations. Clearly, the relation of non–abelian duality with supersymmetry deserves a

more thorough study.

In summary, we found that the T–duality transformations with respect to rotational

Killing symmetries always break the local realizations of the N = 4 world–sheet super-

symmetry to N = 2 (or even to N = 1 in the non–Abelian case). The effect of the

intertwined T–S–T duality can be even more severe. For example, the T–S–T transfor-

mation of a purely gravitational background with N = 4 world–sheet supersymmetry

will always yield a purely gravitational metric, which is Ricci–flat, but not Kahler, if

T is rotational [6]. In this case, all the complex structures of the target spece mani-

fold will be destroyed and therefore, no space–time supersymmetry can exist in the usual

sense. These issues raise the question whether some new space–time supersymmetry gen-

erators can be defined by intertwining the standard ones with the rotational T–duality

transformations,

Q̃i = [T, Qi] . (54)

If this is possible, the Q̃i will have a very different realization in terms of the new back-

ground fields. The main example for this investigation is again provided by the coset

model SU(2)/U(1)k
⊗

U(1)
⊗

U(1)Q. We hope to return to this problem elsewhere.
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APPENDIX

In this appendix we illustrate with a simple example the non–local realization of Killing

symmetries after performing a rotational T–duality transformation. Similar ideas were

presented by Kiritsis in the context of parafermionic symmetries [8] (see also [15]).

Consider the 2–dim action of two free bosons written in polar coordinates ρ, ϕ,

S =
∫

∂ρ∂̄ρ+ ρ2∂ϕ∂̄ϕ . (A.1)

This action exhibits isometries associated with the following variations,

δϕ = ǫ0 + ǫ+
1

ρ
eiϕ + ǫ−

1

ρ
e−iϕ , δρ = −iǫ+eiϕ + iǫ−e

−iϕ , (A.2)

where ǫ0 and ǫ± are constant. It can be verified that the corresponding vector fields

J0 = i∂ϕ , J± = e∓iϕ
(

1

ρ
∂ϕ ± i∂ρ

)

(A.3)

generate the Euclidean group in two dimensions, i.e. [J0, J±] = ±J± and [J+, J−] = 0.

The dual action with respect to the rotational Killing vector field J0 is

S̃ =
∫

∂ρ∂̄ρ+
1

ρ2
∂ϕ∂̄ϕ , (A.4)

while ϕ itself transforms non–locally under T–duality,

ϕ→
∫

1

ρ2
(dz∂ϕ − dz̄∂̄ϕ) . (A.5)

The conformal invariance of the model determines the corresponding dilaton field, which

is irrelevant for the present purposes. According to this, J± become non–locally realized

in the dual formulation of our toy model. Only J0 remains local in this case, generating

with J± the same symmetry algebra as before.

The 2–dim theory (A.1) describes two free bosons and so it possesses a chiral U(1)×
U(1) world–sheet current algebra. The two chiral currents in question are simply ∂(ρe±iϕ)

in polar coordinates. In the dual formulation they become non–locally realized and

assume the form

Ψ± = ∂
(

ρe
±i
∫

1

ρ2
(dz∂ϕ−dz̄∂̄ϕ)

)

, (A.6)

using eq. (A.5). Since they are chirally conserved, ∂̄Ψ± = 0, they are the parafermions of

the dual model substituting the original U(1)×U(1) local currents. The parafermions of

opposite chirality may be introduced in a similar way. The vector fields J± are also non–

local in the dual formulation, but they do not deserve the name parafermions, because

they are not chirally conserved.
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