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Abstract. On-line scheduling is often required in real life situations.
This is the case of the one machine scheduling with variable capacity and
tardiness minimization problem, denoted (1, Cap(t)||

∑
Ti). This prob-

lem arose from a charging station where the charging periods for large
fleets of electric vehicles (EV) must be scheduled under limited power
and other technological constraints. The control system of the charging
station requires solving many instances of this problem on-line. The char-
acteristics of these instances being strongly dependent on the load and
restrictions of the charging station at a given time. In this paper, the goal
is to evolve small ensembles of priority rules such that for any instance
of the problem at least one of the rules in the ensemble has high chance
to produce a good solution. To do that, we propose a Genetic Algorithm
(GA) that evolves ensembles of rules from a large set of rules previously
calculated by a Genetic Program (GP). We conducted an experimental
study showing that the GA is able to evolve ensembles or rules covering
instances with different characteristics and so they outperform ensembles
of both classic priority rules and the best rules obtained by GP.

Keywords: One machine scheduling, Priority Rules, Ensembles of Rules, Ge-
netic Algorithm, Hyperheuristics, Electric Vehicle Charging Scheduling

1 Introduction

This paper tackles the one machine scheduling problem with variable capacity,
denoted (1, Cap(t)||

∑
Ti). In this problem, a number of jobs must be sched-

uled on a single machine, whose capacity varies over time, with the objective of
minimizing the total tardiness objective function. This problem arose from the
Electric Vehicle Charging Scheduling (EVCS) problem confronted in [5]. Indeed,
solving this problem requires solving many instances of the (1, Cap(t)||

∑
Ti)

problem on-line.
Priority rules are of common use in on-line scheduling. For example, in [5],

the (1, Cap(t)||
∑
Ti) problem is solved by means of the Apparent Tardiness



Cost (ATC) priority rule. Priority rules can be defined manually by experts on
the problem domain, as it is the case of the ATC rule [8], although it is clear
that automatic methods could capture some characteristics of the scheduling
problem that are not clear to human experts. For this purpose, hyper-heuristics
as Genetic Programming (GP) are a good choice.

As it may be expected, a single rule, even being very good in average for a
large set of instances, may not be good for a number of them. For this reason,
some researchers focus in calculating sets of rules that collaboratively solve the
problem. This may be done in different ways. For example, in [4] the authors
propose GP to obtain a set of rules that are applied in turn to schedule a single
operation. In this paper, we take an alternative approach. Given the low time
required to compute a solution to the instances of the (1, Cap(t)||

∑
Ti) problem

generated when solving the EVSC in [5], we propose to use a set of priority rules
in parallel to obtain a number of solutions. Our working hypotheses is that if
these rules are trained to solve instances with different characteristics, any of
the rules will produce a good solution for each particular instance.

So, it is our goal to devise ensembles of rules from a large pool of rules
obtained by other method; in our study, we will consider rules evolved by the
GP proposed in [3]. To this end, we propose to use a Genetic Algorithm (GA).
The results produced by the evolved ensembles are compared with those from the
best on-line and off-line methods in the literature to solve the (1, Cap(t)||

∑
Ti)

problem. As far as we known, these methods are the GP proposed in [3] and the
genetic algorithm proposed in [9]. The results of the experimental study show
that the solutions obtained from the evolved ensembles are better that those
produced by the sets of best rules obtained in [3] and that these solutions are
actually close to those obtained off-line in [9].

The remainder of the paper is organized as follows. In the next section we give
a formal definition of the (1, Cap(t)||

∑
Ti) problem. Section 2 introduces the

solving method used for the (1, Cap(t)||
∑
Ti) problem on-line, which consists

of two main components: schedule builder and priority rules. In Section 3 we
present the GA devised to evolve ensembles of rules. In Section 4 we report the
results of the experimental study. Finally, in Section 5 we summarize the main
conclusions and outline some ideas for future work.

1.1 Problem Definition

The (1, Cap(t)||
∑
Ti) problem may be defined as follows. We are given a number

of n jobs {1, . . . , n}, available at time t = 0, which have to be scheduled on a
machine whose capacity varies over time, such that Cap(t) ≥ 0, t ≥ 0, is the
capacity of the machine in the interval [t, t+ 1). Job i has duration pi and due
date di. The goal is to allocate starting times sti, 1 ≤ i ≤ n to the jobs on the
machine such that the following constraints are satisfied:

i. At any time t ≥ 0 the number of jobs that are processed in parallel on the
machine, X(t), cannot exceed the capacity of the machine; i.e.,

X(t) ≤ Cap(t). (1)
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Fig. 1. One schedule for an instance of the (1, Cap(t)||
∑
Ti) problem with 7 tasks and

a machine with capacity varying between 2 and 5.

ii. The processing of jobs on the machine cannot be preempted; i.e.,

Ci = sti + pi, (2)

where Ci is the completion time of job i.

The objective function is the total tardiness, defined as:∑
i=1,...,n

max(0, Ci − di) (3)

which should be minimized.
Figure 1 shows a schedule for a problem with 7 jobs; the capacity of the

machine varies between 2 and 5 over time. Due dates are not represented for the
sake of clarity. As we can observe, X(t) ≤ Cap(t) for all t ≥ 0.

One particular case of this problem is the parallel identical machines problem
[8], denoted (P ||

∑
Ti), which is NP-hard. Thus, the (1, Cap(t)||

∑
Ti) problem

is NP-hard as well.

2 Solving Method

Given the real time requirements of the EVCSP, to solve the (1, Cap(t)||
∑
Ti)

problem, we consider a schedule builder guided by priority rules.

2.1 Schedule builder

We use here the schedule builder proposed in [9], which produces left-shifted
schedules, a subspace of feasible schedules that includes at least one optimal
solution. This schedule builder is depicted in Algorithm 1; it maintains a set
US with the unscheduled jobs, as well as the consumed capacity X(t) due to
the jobs scheduled so far. In each iteration, the algorithm builds the subset US∗

containing the jobs in US that can be scheduled at the earliest possible starting
time, denoted γ(α), and selects one of of these jobs non-deterministically to be
scheduled. For example, the sequence of choices (1, 3, 4, 5, 6, 7, 2) would lead to
building the schedule in Figure1(b). The schedule builder may be instantiated
by using any priority rule or heuristic, as we will see in the next section. Besides,
it could be embedded as a decoder in a genetic algorithm, as done in [9].



Algorithm 1: Schedule Builder

Data: A (1, Cap(t)||
∑
Ti) problem instance P.

Result: A feasible schedule S for P.
US ← {1, 2, ..., n};
X(t)← 0;∀t ≥ 0;
while US 6= ∅ do

γ(α) = min{t′|∃u ∈ US;X(t) < Cap(t), t′ ≤ t < t′ + pu};
US∗ = {u ∈ US|X(t) < Cap(t), γ(α) ≤ t < γ(α) + pu};
Non-deterministically pick job u ∈ US∗;
Assign stu = γ(α);
Update X(t)← X(t) + 1;∀t with stu ≤ t < stu + pu;
US ← US − {u};

end
return The schedule S = (st1, st2, ..., stn);

2.2 Priority rules for the (1, Cap(t)||
∑

Ti)

The non-deterministic choice in each iteration of Algorithm 1 may be done with
a priodrity so that the job having the highest priority in US∗ is chosen to be
scheduled. In the literature there are a number of rules that could be adapted
to the (1, Cap(t)||

∑
Ti) problem. Among them, we may consider the Apparent

Tardiness Cost (ATC) rule, which was used with success to solve some scheduling
problems with tardiness objectives (e.g. [10, 7]); with this rule, the priority of
each job j ∈ US∗ is given by

πj =
1

pj
exp

[
−max(0, dj − γ(α)− pj)

gp̄

]
(4)

In Equation (4), p̄ is the average processing time of the jobs in US and
g is a look-ahead parameter to be introduced by the user. We may consider
other priority rules simpler than ATC, for example Earliest Due Date (EDD) or
Shortest Processing Time (SPT) rules, which calculate priorities for an eligible
job j as πj = 1/dj and πj = 1/pj respectively.

As pointed, an alternative to the priority rules defined by experts are rules
created automatically for systems as GP [4, 6, 2, 1, 3]. These systems are used to
evolve priority rules that are trained to solve a set of given instances for different
scheduling problem, and then evaluated over a set of unseen instances. In this
way, they are able to evolve rules that are good in average on the training set,
but the best of these rules may be not so good for each single instance.

2.3 Considering ensembles of rules and some previous results

From the above observations, it seems clear that it is not easy to evolve a rule
that may generalize well over a large set of unseen instances so that it can
compete with off-line algorithms such as GA introduced in [9]. Therefore, we
propose considering ensembles or rules in the following way: each instance is



Table 1. Summary of results obtained from ensembles of rules evolved by GP, an
ensemble of ATC rules, the best rule evolved by GP and the best ATC rule. For each
method, average tardiness values on the training and testing sets of instances considered
in [3] are reported.

Set of rules Size Training Testing

ATC(0.5) 1 1000.52 1011.33
ATC(0.1,. . . ,1.0) 10 984.18 989.57
GP best rule 1 986.32 992.14
GP best rules 10 974.24 975.97

solved by a set of rules (10 rules or so) and then the best of the 10 solutions
is taken. This method would be feasible due to the execution time being still
suitable for the real time requirements of the EVCSP. To estimate the viability
of this method, we may analyse the results in Table 1, which shows solutions
from two single rules, ATC(0.5) and the best rule evolved by GP in [3]; and two
ensembles with 10 instances of the ATC rule, g varying in 0.1 . . . 1.0, and the
ensemble formed by the 10 best of the 30 rules obtained by GP. We can observe
that putting 10 learned rules to work together reduces significantly the average
tardiness. These results strongly suggest that learning ensembles of rules is an
interesting line of research.

3 Evolving ensembles of rules with genetic algorithms

We are given a large set N of N priority rules and the results of these rules over
a set of M instances; i.e., the tardiness values obtained by Algorithm 1 guided
by each one of these N rules. The goal is to obtain a small ensemble of P rules
such that they cover the M instances; namely, such that the average value of
the best solutions to the M instances obtained by the rules in P is minimized.

To solve this problem we propose a genetic algorithm (GA). The main ele-
ments of this algorithm are chosen as follows:

Coding scheme. Individuals are given by variations with repetition of the N
rules taken P by P ; so, there are MN different chromosomes in all. This en-
coding allows for efficient genetic operators and, having duplicated rules in the
chromosome, the GA may keep good rules (those covering many instances) more
easily after mating and mutation. Furthermore, it gives GA the chance to reach
ensembles with less than P different rules.

Initial population. Initial chromosomes are random variations of the N rules.
In principle, every rule has the same probability to be chosen. However, other
strategies could be better, for example giving each rule a probability proportional
to the average value of the solutions obtained by that rule on the M instances;
i.e., the fitness value of this rule in the GP.



Crossover. In this problem, the order of rules in the chromosome is not relevant,
so it is enough to make that each offspring inherits some rules from each one
of the parents. So, a simple scheme as the following may be appropriate. Given
two parents, two offspring are obtained. Firstly, a binary string of length P is
generated, each bit chosen uniformly in {0, 1}. Then, the first offspring includes
in each position the rules from the first parent with 0 in the same position in
the bit string and those with 1 in the second parent. Analogously for the second
offspring swapping 0 and 1.

Mutation. Mutation plays a very important role in this GA as it is in charge of
including in the population new rules from the set N . It changes the rules in a
number of positions, between 1 and P/2, of the chromosome by random rules
chosen uniformly from N .

Evolutionary scheme. The main structure of the algorithm is given in Algorithm
2. It is a generational GA with random selection and replacement by tournament
among every two mated parents and their two offspring, which confers the GA
an implicit form of elitism.

Evaluation. For each of the M instances, the solution given by the best of the
P rules in the ensemble is considered. Then the fitness value of the chromosome
is the average value of the M solutions.

4 Experimental study

We have conducted an experimental study aimed at analysing the behaviour of
the proposed GA. To this end, we implemented a prototype in Java, the target
machine was Windows on top of Intel i5 @4.2 GHz. 15.5 GB RAM.

Algorithm 2: Genetic Algorithm.

Data: A set of M instances of the (1, Cap(t)||
∑
Ti) problem. A set N of N

priority rules and the average tardiness of the solutions to the N
instances obtained by the N rules. Parameters: crossover probability pc,
mutation probability pm, number of generations #gen, population size
#popsize, chromosome length P (the size of the ensemble).

Result: A ensemble of P priority rules
Generate and evaluate the initial population P(0);
for t=1 to #gen-1 do

Selection: organize the chromosomes in P(t− 1) into pairs at random;
Recombination: mate each pair of chromosomes and mutate the two
offsprings in accordance with pc and pm;

Evaluation: evaluate the resulting chromosomes;
Replacement: make a tournament selection among every two parents and
their offsprings to complete P(t);

end
return the best ensemble of P priority rules reached ;



4.1 Test bed and previous results

The test bed considered in this study is set N of N=10000 different priority
rules obtained by the GP proposed in [3]. The GP exploited a set of M=50
instances of the (1, Cap(t)||

∑
Ti) problem as training set to evolve the rules.

The same M instances are considered here. It is important to remark that the
N rules correspond to different generations of the GP, therefore their qualities
are quite different. The set of M=50 instances is a subset of the set of 1000
instances proposed in [9]. The remaining 950 instances in this set are considered
here to evaluate the best evolved ensembles.

Before going to the experiments and results from GA, it is worth analysing
some previous results. Table 2 shows the average results obtained by three classic
priority rules, SPT, EDD and ATC, taking the parameter g=0.5 that is usually
the best one, and the best of the N=10000 rules evolved by GP, on all the
instances. As we can see, SPT is really bad as it seems natural due to the fact that
it only considers processing times but not due dates. EDD is better, but it is ATC
the classic rule that produces the best results of the classical rules as it considers
both processing times and due dates to calculate jobs’ priorities. Besides, the best
rule evolved by GP is even better than ATC. As can be expected, these values
are far from the results obtained by the GA proposed in [9], which of course
takes much more time, about 40s per run, versus a few ms taken by the schedule
builder combined with a single priority rule. If we look at the last column of the
table, we can see that the quotient of values on the training and testing sets are
quite similar and closed to 1.0, showing that all rules perform similarly on both
sets, what in particular means that the rules evolved by GP generalize quite
well.

Table 2. Summary of results obtained by the classical rules and the best rule obtained
by GP on the instances of the (1, Cap(t)||

∑
Ti) problem considered in this study.

Avg. Tardiness
Rule Training (50 inst.) Testing (950 inst.) Test./Train.

SPT 5473.18 5319.81 1.03
EDD 1256.84 1291.66 0.97
ATC(0.5) 1000.52 1011.33 0.99
Best rule(GP) 988.02 997.65 0.99

GA (30 runs) Best/Avg. 950.18/950.63 959.06/959.51 0.99/0.99

It is also worth to consider the tardiness values obtained by some subsets of
the N rules on the M instances. This provides some reference on the results one
may expect from the ensembles evolved by GA. Table 3 shows results from all
rules in N and from some subsets. BetterR denotes the subset of N such that
each rule in the subset produces better or at least equal result to R. The second
column in the table shows the number of rules of the set (#rules) and the third



one shows the average tardiness from all rules on all 50 instances (so each value
is the average of #rules×50 single tardiness values). These results show that
the rules in N produce quite different tardiness values and that restricting to
subsets of rules that individually perform better than a given threshold, these
subsets perform better and better. This is natural and suggests that varying N
over these subsets the GA could obtain better and better ensembles as well.

4.2 Results from GA

The GA was run 30 times on each instance with the following parameters:
#popsize=100, #gen=1000, pc=0.8, pm=0.2. Besides, four values of the en-
semble size P (or chromosome size) were considered: 3, 5, 10 and 50. With these
values, the time taken in each single run of GA varies between 2s and 360s.

Table 4 reports the results from GA starting from different sets of rules N .
For each value of P and set N , the best ensemble of each of the 30 runs is
recorded. Then we show the average fitness and the fitness of the best ensemble
reached. Remember that to obtain the fitness of an ensemble we consider for
each of the M instances the best solution from the P rules and then take the
average value over the M instances. We can observe that these values clearly
depend on the value of P , as expected, being better and better as long as P
increases. At the same time, the results depend on the set N of initial solutions,
even though to a lesser extent. So, the results are rather similar for the sets All,
BetterSPT and BetterEDD, showing that GA is robust. However, for values of
P larger than 3, the results get worse if the candidate rules are restricted to the
set BetterATC(0.5), which includes only about the best 10% of the 10000 rules
considered. This fact shows that to obtain good ensembles it is not enough to
count only on the best rules.

To assess the performance of the ensembles evolved by the GA, we consider
the best ensembles obtained for each value of P and other ensembles obtained
from classical rules or those obtained from the best rules of the initial set. Specif-
ically, we consider the ATC rule with 10 values of the parameter g (0.1,...,1.0),
which in practice perform quite well, and the ensembles given by the 3, 5, 10 and
50 best rules of the initial set. Table 5 summarizes the results of these ensembles
on the training set and also on the testing set that includes 950 unseen instances.

As we can see, the ATC(0.1,...,1.0) ensemble is better or at least similar to
the ensembles of the 10 or less best rules. Only from the 50 best rules is obtained

Table 3. Summary of results obtained from different subsets of N . BetterR is the
subset of rules of N that produces a result better or at least equal to the rule R.

Set of rules #rules Avg. Tard. (50 inst.)

All 10000 1769.50
BetterSPT 9302 1306.53
BetterEDD 7654 1108.88
BetterATC(0.5) 784 993.63



Table 4. Summary of results from GA starting from different sets of rules N (All,
BetterSPT , BetterEDD, BetterATC(0.5)) and for different ensemble sizes P (3, 5, 10,
50). Values in bold are the best ones

P
All BetterSPT BetterEDD BetterATC(0.5)

Avg. Best Avg. Best Avg. Best Avg. Best

3 978.52 978.14 978.46 978.14 978.31 978.14 978.14 978.14
5 975.64 974.70 975.66 974.64 975.49 974.64 975.32 975.20
10 972.74 971.90 972.55 971.48 972.55 971.32 972.89 972.66
50 968.14 967.56 968.03 967.62 967.91 967.42 971.86 971.86

a better ensemble than ATC(0.1,...,1.0). However, the ensembles evolved by GA
are clearly better than those composed by the best rules. In particular, if we
take the ensembles with 10 rules, which are reasonable considering the real time
requirements of the EVCSP, the evolved ensemble improves in more than 10
units the values produced by the others. This value is actually relevant if we
consider that the average value of the best solutions reached to the 50 instances
of the test set by all the 10000 rules is 967.28. In terms of relative error we
can tell that the evolved ensemble of 10 rules reduces this value in about 75%.
Furthermore, for P=50, GA almost reaches the optimal solution; i.e., the best
ensemble that can be built from the initial rules.

From these results, we may conclude that the proposed GA combined with
the GP proposed in [3] is a good approach to obtain ensembles of rules to solve
the (1, Cap(t)||

∑
Ti) problem.

5 Conclusions

We have demonstrated that an ensemble of priority rules is a good option to
solve scheduling problems on-line. From a large set of priority rules with dif-
ferent characteristics, it is possible to evolve small ensembles such that for any

Table 5. Summary of results from different ensembles.

Ensemble Size Training Testing

ATC(0.1,. . . ,1.0) 10 984.18 989.57
Best rules 3 985.64 994.97

5 985.64 994.90
10 983.96 992.40
50 975.58 978.56

Evolved 3 978.14 985.94
5 974.64 981.69
10 971.32 978.26
50 967.42 974.68



unseen instance of the scheduling problem any of the rules in the ensemble has a
high chance of getting a good solution. We have experimented with the one ma-
chine scheduling problem with variable capacity, denoted (1, Cap(t)||

∑
Ti), and

the pool of priority rules evolved by the genetic progam proposed in [3], which
evolves rules that minimize the total tardiness on a set of instances. Clearly,
the same method could be applied to other scheduling problems. Besides, pools
of rules evolved by other methods could also be considered. Indeed, one of the
lines of research we propose is aimed to evolve rules covering instances of the
(1, Cap(t)||

∑
Ti) problem having quite different structure.
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