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Abstract

We investigate the role of the stress arising between core and shell materials in

colloidal CdSe/X hetero-nanoplatelets (X=ZnS,CdS,CdTe). The resulting strain dis-

tribution is calculated within the linear elastic regime, and its influence on the elec-

tronic structure with k·p theory. We show that strain shifts the energy of electrons

and that of holes by several tens of meV. In structures with type-I band alignment

the two shifts have opposite signs and the net effect on the exciton emission energy

is small, but in type-II systems they add up. The strain response in colloidal NPLs

is found to exhibit some differences as compared to that of epitaxial quantum wells,

including sizable influence of lateral dimensions below 10 nm and potentially relevant

effect of coupled strain-momentum terms of the Hamiltonian. We further show that

asymmetric shell covering leads to bending of the nanoplatelet and tilted potential pro-

files along the strong confinement direction, analogous to a built-in electric field. We

propose overcoating CdSe/CdS NPLs with an outer ZnS shell as a method to mitigate

tunneling-induced redshift of emission via strain engineering.
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Introduction

In the last decade, quasi-two-dimensional colloidal metal chalcogenide semiconductors –often

referred to as nanoplatelets (NPLs)– have emerged as an alternative to quantum dots for

a variety of optoelectronic applications.1 Many properties of interest have been reported,

often related to their 2D dimensionality. Thus, precisely controllable quantum confinement

in one direction enables narrow emission linewidths and reduced Auger recombination rates.

At the same time, the large in-plane area grants large absorption cross-sections and giant

oscillator strength through exciton correlation.1–4

The large surface-to-volume ratio of NPLs makes them highly sensitive to the environ-

ment.5,6 Attempts have been made to passivate the surface of CdSe NPLs by growing either

core/crown heterostructures7,8 or core/shell ones,9–12,15 which have succeeded in improving

the emission quantum yield and stability. However, the addition of shell materials has a

profound impact on the electronic structure too. As compared to core-only CdSe NPLs,

CdSe/ZnS hetero-NPLs display redshifts of up to 300-400 meV and CdSe/CdS ones up to

500 meV.12–14,16,17 The origin of such a large redshift has been discussed in the literature.

Some studies suggest it simply arises from carrier tunneling into the shell, which relaxes

quantum confinement.13,14,17 Others claim instead that tunneling in CdSe/ZnS is hindered

by the large band-offset (around 1 eV) and suggest the decrease in dielectric confinement

upon shell growth provides an additional, non-negligible contribution to the redshift.12 On

the other hand, CdSe has significant lattice mismatch with both CdS (4%) and ZnS (12%).

Therefore, strain is also expected to play a role. Achtstein et al. calculated the effect of linear

elastic strain on the exciton energy of CdSe/CdS NPLs, and concluded it gives a moderate

blueshift of the exciton energy.17 By contrast, Luo et al. grew CdSe/ZnS NPLs for solar cell

devices and inferred from photoluminescence and open current voltage measurements that

strain was producing a redshift, and possibly type-II band alignment.18 In this context, a

thorough study of the influence of elastic strain in lattice mismatched hetero-NPLs is on

demand.
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In free-standing colloidal hetero-nanocrystals, strain engineering has proved to be a pow-

erful tool to modulate exciton energy and wave function, with direct implications on the

optoelectronic response.19–21 Likewise, in epitaxial quantum wells, strain engineering of the

band structure has been key to reducing lasing threshold and optimizing laser performance.22

Since core/shell NPLs are the colloidal analogous of epitaxial quantum wells, the question

arises of whether strain can also give rise to significant changes of the electronic structure,

and whether they take place in the same way as in epitaxial quantum wells. In this work,

we address such questions for lattice mismatched hetero-NPLs.

We study core/shell NPLs with binary CdSe/X composition (X=CdS, ZnS, CdTe). The

strain is calculated within linear elastic theory, and the effect of the resulting deformation

potential on excitons is computed with effective mass Hamiltonians fully including electronic

correlation effects, which are critical in these structures owing to the weak lateral spatial

confinement and strong dielectric mismatch.26,27 We find that the strain response of colloidal

NPLs is reminiscent of that epitaxial quantum wells, albeit with some qualitative differences.

The finite lateral size of the NPL influences the strain value in the core for dimensions

below ∼ 10 nm. Also, coupled strain-momentum terms of the Hamiltonian, which are

negligible in epitaxial systems, have a moderate impact on the exciton energy (up to tens of

meV) due to the stronger quantum confinement of colloidal structures. In CdSe/CdS and

CdSe/ZnS NPLs, the compressive strain inside the core blueshifts and redshifts electron and

hole energies, respectively. For neutral excitons, the two effects tend to compensate and the

energetic imprint of strain is weak. The effect is stronger for excitons in type-II CdSe/CdTe

NPLs, as the electron stays in the tensiled core but the hole migrates into the compressed

shell, so that the two carriers redshift. In all cases, however, the strain effect on the emission

energy is found to be secondary as compared to tunneling into the shell. We propose the

use of ternary structures, such CdSe/CdS/ZnS NPLs, as a means of decoupling tunneling

and strain effects. Interestingly, we show that a slightly asymmetric shell covering –different

number of shell monolayers (MLs) on top and bottom sides of the core– can explain the
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bending of NPLs observed in recent experiments with CdSe/ZnS NPLs.12

Methods

Strain maps are calculated by minimizing the elastic energy in the anisotropic continuous

mechanical model.28 The boundary conditions are zero normal stress for the free surface.29

The strain tensor elements ǫij(r) is obtained using the multiphysics mode of Comsol 4.2

software. Exciton states are calculated following Ref.,26 but adding strain-induced potential

terms. Thus, excitons are described by the Hamiltonian:

HX = He +Hh + V e−h + Egap
Γ , (1)

where Egap
Γ is the bulk band gap of CdSe at the Γ point, V e−h is the electron-hole Coulomb

attraction including dielectric mismatch enhancement, and Hj are the single-particle Hamil-

tonians for electron (j = e) and hole (j = h). These are 3D single-band k·p Hamiltonians of

the form Hj = Hj
kin + V j, where Hj

kin is the kinetic energy term and V j the single-particle

potential. The latter can be split into several terms:

V j = V j
bo + V j

self + V j
strain. (2)

where V j
bo is the spatial confining potential defined by the (bulk) band offsets between CdSe

and the shell material, V j
self the self-interaction potential due to the inhomogeneous dielectric

environment, and V j
strain the strain-induced potential. Within deformation potential theory,

up to first order in ǫ and second in k, the general form of the strain terms in a k·p Hamiltonian

is :22

Hstrain = Dε

· ε−

kεk

m0

− 2
kεp

m0

. (3)

Here, ε andDε the strain and deformation potential tensors, m0 the free electron mass, k the

momentum operator acting on the envelope function and p that acting on the (microscopic)
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Bloch function. The second term in Eq. (3) describes the change in the kinetic energy

due to the strain, and it is generally neglected in the study of epitaxial quantum wells

because it is expected to be smaller than terms containing ε alone.22 However, we keep the

kz component because the strong confinement of colloidal NPLs along [001] suggests it can

become relevant, as we confirm in the next section. When projected on the conduction band

(CB) Bloch function, Eq. (3) gives rise to V e
strain = V dp,e

strain + V pz,e
strain, with:

V dp,e
strain = ac (εxx + εyy + εzz) , (4)

and

V pz,e
strain = −

kzǫzzkz
m∗

e,z

, (5)

Here ac is a material dependent deformation potential coefficient, kz = −i~ d/dz andm∗

e,z the

electron effective mass along z. Notice the last term of Eq. (3) vanishes in V e
strain because

p has odd parity. Likewise, when projected on the valence band (VB) heavy hole Bloch

function, Eq. (3) gives V h
strain = V dp,h

strain + V pz,h
strain, with:

V dp,h
strain = (av +

b

2
) (εxx + εyy) + (av − b)εzz, (6)

and

V pz,h
strain = −

kzǫzzkz
m∗

h,z

, (7)

where av and b are deformation potential coefficients, and m∗

h,z the hole effective mass along

z. As we shall see below, strain is roughly constant around the center of the NPL plane,

where most of the charge density is located. For this reason, it is a good approximation to

describe V e
strain and V h

strain simply as functions of z, taken along the axis orthogonal to the

NPL plane. Piezoelectric terms are neglected in this study because they are negligible in

CdSe-based hetero-NPLs with cubic crystal structure.17

Hamiltonian (1) is solved variationally by optimizing the effective exciton Bohr radius.26
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Material parameters used in the calculation are given in the Supporting Information.

Results and discussion

Our goal is to study the strain distribution in core/shell NPLs and its influence on the

electronic structure. We first analyze in detail the prototypical case of CdSe core surrounded

by a shell of CdS, ZnS or CdTe. The shell is symmetric on top and bottom. Next, we analyze

the effect of having asymmetric shell coating, and show that this deviation from ideality

can explain a few features observed in recent experiments. Last, building on the behavior

observed in previous sections, we briefly address the case of ternary NPLs, to illustrate the

potential of strain engineering in such systems.

Symmetric core/shell NPLs

Finite and controllable lateral confinement is a distinct feature of colloidal NPLs as compared

to epitaxial quantum wells. We then start by studing if it has a significant effect on the strain

experienced inside the platelet. We consider CdSe/CdS NPLs with 4.5 ML CdSe core and 5

ML shell thickness, and calculate the hydrostatic strain, εhyd = εxx + εyy + εzz, for the three

different lateral dimensions shown in Figure 1(a-c).

In general, εhyd is compressive in the CdSe core and tensile in the CdS shell (Fig. S1).

Because the ground state charge density is mostly localized inside the core, it is worth

inspecting this region in detail. The corresponding values of εhyd on the mid-height xy plane

of the core are plotted in Figure 1(d-f), and a cross-section comparing the strain in all three

structures along the x semi-axis is shown in Figure 1(g). The general behavior is as follows.

A flat area of compressive strain (εhyd < 0) is formed around the center of the NPL, which

extends towards the sides. About 5 nm before reaching the border, the strain becomes

slightly more compressive and in the close vicinity of the border (< 1 nm), it switches to

tensile (εhyd > 0). The compressive character is because of the larger lattice constant of the
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Figure 1: Effect of the lateral sides on strain. (a-c) Schematic of core-shell NPLs with
different lateral dimensions. The CdSe core has 4.5 ML and the CdS shell 5 ML thickness.
(d-f) Corresponding values of hydrostatic strain over the xy plane at mid-height of the core.
(g) Hydrostatic strain cross-section along the x semi-axis for different lateral dimensions. A
flat area of compressive strain is formed around the center, with deviations in the vicinity
(∼ 5 nm) of the borders. NPLs with smaller lateral dimensions are more compressed.

CdSe core, which needs to shrink to reduce lattice mismatch with the CdS shell. The tensile

character near the borders, instead, is a compensation for the central contraction, which is

facilitated by the absence of forces acting on the lateral sides.

Since the strain potential felt by electrons is V e
strain = ac εhyd, with ac = −2 eV for CdSe,

the increase in compressive character near the borders gives rise to a small potential barrier,

while the sudden switch to tensile strain yields a narrow potential well near the borders.

These effects modify the effective size of the NPL because quantum confinement in the plane

is very weak, but the ground state wave function is only slightly perturbed and stays around

the center of the core (Fig. S2). In the center of the core, strain is also affected by lateral

confinement, as εhyd grows stronger with decreasing dimensions –20% increase from 40× 40

nm2 to 8 × 8 nm2, see Fig. 1(g)–. This will blueshift the electron energy through V e
strain

by a several meV. It is worth noting that this magnitude is comparable to that of lateral

quantum confinement itself,26,30 and provides a source of linewidth broadening in ensembles

of core/shell NPLs.

In what follows, we focus on NPLs with 40 × 8 nm2 sides, which is close to the experi-
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Figure 2: Effect of shell thickness and composition on the hydrostatic strain. (a) CdSe/CdS
NPL. (b) CdSe/ZnS NPL. (c) CdSe/CdTe NPL. The strain is taken along the z axis, passing
through the NPL center, normal to the its surface.

mental dimensions of recent works.12,13 In Figure 2 we study the effect of shell thickness and

composition on εhyd along the z axis. For CdSe/CdS and CdSe/ZnS, the strain is compres-

sive in the core and tensile in the shell, while the opposite occurs for CdSe/CdTe because

the lattice constant of the CdTe shell is larger than that of the CdSe core. In all cases, the

core (shell) becomes more (less) strained with increasing shell thickness. This is because the

thicker material forces the thinner one to endure most of the deformation. The net compres-

sive (CdS, ZnS shells) or tensile (CdTe shell) character of εhyd in the core is given by εxx+εyy.

Since the interface between core and shell lies on the xy plane, the magnitude of this term

is larger than that of εzz, which has opposite sign as expected from the Poisson ratio (see

Figure S3). This is precisely the opposite behavior to that of core/shell nanorods.29 In the

center of the NPL, we find the ratio between lateral contraction and vertical expansion –or

vice-versa– closely follows the biaxial strain expression for cubic crystals, εzz = −2c12/c11 εxx,

as in epitaxial quantum wells.22

From the diagonal elements of the strain tensor one can infer the strain-induced defor-

mation potential, V dp,e
strain and V dp,h

strain, which we plot in Figure 3. The figure shows that, inside

compressed cores, a shift of the CB bottom to higher energies takes place, which saturates
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Figure 3: Effect of shell thickness and composition on the deformation potential for CB
(top panels) and VB (bottom panels). (a,d) CdSe/CdS NPL. (b,e) CdSe/ZnS NPL. (c,f)
CdSe/CdTe NPL.

at about 50 meV (CdSe/CdS, Fig. 3(a)) and 120 meV (CdSe/ZnS, Fig. 3(b)). Conversely,

when the core is under tensile strain (CdSe/CdTe), the CB shifts to lower energies (down

to -60 meV, Fig. 3(c)). This modifies the band offsets seen by electrons, providing energetic

corrections which have been overlooked in previous simulations of hetero-NPLs disregarding

strain.12–14,26 The good agreement between theory and experiments in such works is because

for holes the behavior is similar to that of electrons. As shown in Fig. 3(d-f), strain also shifts

the VB top towards higher (lower) energies when the core is compressed (expanded).31 Even

the magnitude of the shift is comparable, despite the anisotropic nature of V dp,h
strain. Then,

the shift of electrons and holes partially compensate, and the exciton emission energy is not
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expected to change drastically.
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Figure 4: Exciton energy as a function of the shell thickness in (a) CdSe/CdS and (b)
CdSe/CdTe NPLs. Red circles show results considering tunneling only. Grey dots include
dielectric effects too. Blue circles further add strain effects. All energies are referred to that
of the exciton in core-only CdSe NPL.

To better visualize and understand the role of strain on the exciton ground state, we

calculate its energy from HX , with full inclusion of in-plane Coulomb interaction, for dif-

ferent shell natures. First, we focus on the case of CdSe/CdS NPLs. Fig. 4(a) shows the

exciton energy shift in CdSe NPLs with n MLs of CdS shell on each side, as compared

to the core-only CdSe NPL. Red circles show the case where dielectric confinement (V j
self ,

polarization of V e−h) and strain terms (V j
strain) are neglected. The exciton is then found to

redshift by 454 meV upon shell growth, due to electron leaking into CdS. The inclusion of

dielectric confinement terms gives rise to an additional redshift of up to 23 meV (grey dots).

This effect was noticed in Ref.12 and is a consequence of the suppression of self-interaction

potential energy. Further including strain terms provides yet an extra 17 meV redshift (blue

circles). As anticipated above, the energetic effect of strain is relatively small, owing to the

compensation of electron and hole shifts. We note that a previous theoretical study indicated

that strain in CdSe/CdS NPLs gives rise to a blueshift instead.17 This is due to the different

parameters used for deformation potential and elastic constants, as there is enough disper-

sion in the literature to change the net sign of strain energy perturbation (see discussion in

SI). In any case, for all set of parameters we find that in CdSe/CdS NPLs strain is secondary

term (few tens of meV) as compared to tunneling (hundreds of meV).
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Next we consider the case of CdSe/CdTe NPLs. As can be seen in Fig. 4(b) –cf. blue

circles and grey dots–, here strain produces an exciton energy redshift up to 63 meV, almost

4 times larger than in CdSe/CdS. This is because of the type-II band alignment, which places

the electron inside the tensiled CdSe core and the hole inside the compressed CdTe shell.

Then, both carriers redshift and there is no cancellation. However, the strain effect is still

but a perturbation to the confinement energy set by the staggered band-offset (red dots in

the figure).

In CdSe/ZnS NPLs, photoluminescence experiments have shown shell growth leads to a

large redshift (300-400 meV, for 4.5 ML cores).12,14 Because the band-offset between CdSe

and ZnS is around 1 eV, tunneling is expected to be less important than with CdS or CdTe

shells. By contrast, the lattice mismatch is large (over 10%). For this reason, some studies

have suggested strain may play a chief role in determining the redshift, and may even lead

to a type-II band alignment.18 To clarify the influence of strain in these structures, in Figure

5 we plot the exciton energy as a function of the ZnS shell thickness. The result is similar

to that of CdSe/CdS, with a large redshift whose main contribution (320 meV) comes from

tunneling. Strain provides a redshift of about 34 meV, which is 1.5 times larger than the

dielectric confinement suppression proposed in Ref.12 All in all, the redshift is mostly due to

tunneling plus strain, with no need to invoke indirect excitons, as the band alignment stays

type-I –see Fig. 3–. Further, we note that strain builds up gradually with increasing shell

thickness. Consequently, in Fig. 5 the energy splitting between strained (blue circles) and

unstrained (red circles) exciton shifts increases from 1 to 5 ML. Therefore, the large redshift

(up to 200 meV) reported by photoluminescence and atomistic studies upon growth of the

first ML of shell16,17,32,33 must be associated primarily with the reduced spatial confinement,

with a minor contribution from strain.

The blue circles in Figure 5 indicate that the fully strained exciton should have minimum

energy between 4-5 MLs of ZnS. The origin of this inflection point is as follows. With

increasing strain, the electron energy blueshifts and that of the hole redshifts, due to changes
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in the deformation potential reported in Fig. 3(b) and (e). For 1-5 ML, the hole redshift

dominates over the electron blueshift. With increasing shell thickness, however, vertical

expansion of the core becomes more difficult. Then, εzz saturates around 4-5 ML. Since the

hole redshift is mostly given by (av− b) εzz, from this distance on the electron blueshift takes

over. We have tested that the minimum is robust to different sets of material parameters

and interface alloying effects. However, it has not been observed in available experiments so

far, where exciton emission energy decreases monotonically.12,14 A possible interpretation of

the experimental results is given in the next section.

To close the study of symmetric core/shell NPLs, we note that a recent study about the

influence of surface ligands on CdSe NPL emission has suggested that the strain induced by

ligands is responsible for large exciton redshifts of up to 250 meV.23 The underlying idea

is that the compressive in-plane stress gives rise to transversal expansion, which in turn

reduces the extreme quantum confinement. While our continuum mechanical model is not

suitable for the study of molecular ligands, we investigate if a similar effect can be expected

in strained core/shell structures. The reduced quantum confinement due to transversal
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expansion should be captured by coupled momentum-strain operators, V pz,e
strain and V pz,h

strain in

Eqs. (5) and (7). Green triangles in Fig. 5 show the energy of strained excitons neglecting

V pz
strain terms, while blue circles show the fully strained system. The comparison reveals that

the strain-induced expansion of the core gives rise to a redshift of about 20 meV, comparable

to the contribution of deformation potential terms, V dp
strain. This is one order of magnitude

smaller than the redshift suggested for ligand-induced strain,23 but clearly larger than in

epitaxial quantum wells, where these terms are systematically neglected arguing they are

much weaker than (linear-in-ε) deformation potential terms. The different behavior arises

from quantum confinement in colloidal NPLs being much stronger than in epitaxial wells,

with higher potential barriers –set by the ligands– and often thinner dimensions.3,24

Asymmetric core/shell NPLs

Figure 6: CdSe/ZnS NPLs with asymmetric shell distribution. (a) Schematic of the struc-
ture. Different number of shell MLs n and m are considered. (b) Total displacement of the
NPL upon strain relaxation in a NPL with n = 5 and m = 6. Notice the bending on the
sides. (c) Exciton energy shift as a function of shell thickness. m = n + 1. The energy
decreases monotonically and stabilizes around 5 MLs, in agreement with experiments. (d)
Deformation potential for electrons and holes in a NPLs with n = 1 and m = 10. The
asymmetric shell gives rise to a small tilting of the potential.
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The growth of shells around a core NPL is susceptible of small accidental or intentional

asymmetries. We then consider a CdSe/ZnS NPL with n and m ZnS MLs on the top and

bottom sides of the core, respectively –see schematic in Fig. 6(a)–. Interestingly, in such

a structure a single ML difference between n and m suffices to give rise to bent hetero-

NPLs, owing to the unbalanced strain on top and bottom sides. An example is plotted in

Fig. 6(b). The presence of bending is in fact consistent with high-angle annular dark-field

scanning transmission electron microscope images of thick shell CdSe/ZnS NPLs.12 We have

tested that the bending does not modify the electron and hole wave function localization

significantly, as they stay near the center. Yet, it has a clear impact on the emission energy.

In Fig. 6(c) we plot the exciton shift with respect to the core-only NPL with increasing shell

thickness, keeping one extra ML for the bottom shell (m = n+ 1). Unlike in the symmetric

case, the shift now decreases monotonically, in agreement with the experiments in Refs.12,14

Both the bending and the smooth redshift support the hypothesis that CdSe/ZnS hetero-

NPLs may have slightly asymmetric shell. It is worth noting that the asymmetric strain also

induces band tilting through V dp
strain terms. This is illustrated in Fig. 6(d). In Ref.,18 CdSe

NPLs deposited on a porous TiO2 film were overcoated with ZnS. This synthetic procedure

may lead to severe shell asymmetry. In principle, the asymmetry and the resulting band

tilting –which acts as an built-in electric field, and increases with the difference between m

and n– may explain the type-II band alignment inferred from the experiments. However,

we find that even for large differences between m and n, the field is only of 35 meV/nm.

Considering the strong confinement in the z direction, it is not enough to separate electrons

from holes.

Core/shell/shell NPLs

As mentioned before, the use of CdS shells to passivate the CdSe NPL surface can improve

the emission quantum yields and stability. However, it necessarily implies a redshift of the

emission wavelength due to the reduced quantum confinement, dielectric and strain effects
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discussed in previous sections. This is sometimes an undesired side effect, as one may want

to preserve high emission energy. In this section we propose a means of partially mitigating

the redshift, by exploiting the different sensitivity of CB and VB deformation potential to

the shell thickness, which we noticed in the analysis of Fig. 5. The idea is to design a ternary

NPL, where the CdSe/CdS NPL is overcoated with ZnS, as plotted in Fig. 7(a). Fig. 7(b)

shows the exciton energy shift upon ZnS coating. If the thickness of the CdS shell is small (2

MLs, left panel), the effect of ZnS is producing a small additional redshift (∆EX < 0), since

it facilitates tunneling as compared to organic ligands. However, as CdS grows thicker (5

MLs, right panel), tunneling effects saturate and one observes strain effects only. Then, ZnS

starts blueshifting the exciton energy (∆EX > 0). For thick ZnS shells, the blueshift can

reach around 60 meV. This is in contrast with the behavior of binary (core/shell) CdSe/ZnS

NPLs reported in Fig. 5, where the main effect of ZnS is to redshift.
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Figure 7: (a) Schematic of the core/shell/shell NPL under study. (b) Exciton energy shift
as a function of the number of MLs of ZnS surrounding CdSe/CdS NPL. Left: CdS has 2
ML thickness. Right: CdS has 5 ML thickness. Energies are referred to that of CdSe/CdS
NPL. The strain induced by the outer ZnS shell can give rise to a blueshift of tens of meV.
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The origin of the strain induced blueshift when adding ZnS is reminiscent of that ob-

served in Fig. 5 beyond 5 MLs. Since ZnS has smaller lattice constant than CdSe and CdS, it

further compresses the core in the in-plane direction (εxx+εyy). However, its bonds are stiff,

so that vertical expansion εzz is inhibited with increasing ZnS thickness (see Fig. S4). The

compensation between electron blueshift and hole redshift is then quenched, as the latter

arises from (av−b) εzz, see Eq. (6). The blueshift induced by ZnS in Fig. 7(b) may be under-

estimated, because the value of ac we have chosen for CdSe is among the smallest proposed

in the literature. Photoluminescence experiments with these structures may provide direct

measures of the strain induced blueshift, and prove the operating principle, which can then

be transferred to other materials. We stress that observing a blueshift would additionally

confirm that core/shell/shell structures enable separate engineering of tunneling and strain

effects.

Conclusions

In summary, we have investigated theoretically the role of linear elastic strain in core/shell

NPLs based on CdSe. The main findings are: (i) the finite lateral side of NPLs influences

the strain value up to 5 nm away from the borders; (ii) coupled strain-momentum terms

of the strain Hamiltonian, which are generally neglected in epitaxial quantum wells, can

be comparable to deformation potential terms in strongly strained NPLs (e.g. CdSe/ZnS),

owing to the stronger quantum confinement of colloidal structures; (iii) the energetic influence

of strain is larger in type-II systems (e.g. CdSe/CdTe) than in type-I ones (CdSe/CdS,

CdSe/ZnS) because in the latter electrons and holes have opposite response to strain. In

any case, the energetic influence reaches several tens of meV at most. This is secondary

as compared to tunneling, which remains as the main responsible for exciton redshift even

in CdSe/ZnS NPLs. (iv) single-ML asymmetry in the shell growth can explain the NPL

bending and smooth exciton energy decay vs. shell thickness in Ref.12 (v) the use of ternary
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(core/shell/shell) NPLs enables separate engineering of tunneling and strain, opening a route

to partially compensate for the large redshift obtained when passivating CdSe cores with a

single shell.
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(33) A. Szemjonov, T. Pauporté, S. Ithurria, B. Dubertret, I. Ciofini and F. Labat. Combined

Computational and Experimental Study of CdSeS/ZnS Nanoplatelets: Structural, Vi-

brational, and Electronic Aspects of Core–Shell Interface Formation. Langmuir 2018,

34, 13828-13836

22



Graphical TOC Entry

number of ZnS MLs

t���e����
��e�e�t��� �o� ��e!e�t

 ��� ft�"��

-0.4

-0.36

-0.32

-0.28

-0.24

1 2 3 4 5 6 7 8 9 10

E
x
c
it
o
n
 R

e
d

s
h
if
t 
(e

V
)

CdSe
CdS

ZnS

23


