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Abstract 

Cell surface glycans play an important role in glycobiology since they are essential in cell 

recognition and cell adhesion. Furthermore, they decide about the health status of 

mammalians. For instance, bacterial adhesion is mediated by carbohydrate-specific 

binding of bacteria to glycosylated cell surfaces (‘glycocalyx’) of mammals. 

Consequently, essential questions in glycobiology are dedicated to the constitution and 

conformational properties of the glycocalyx in the context of their biological function in 

general and in particular, in bacterial adhesion processes. Scientists are driven by the need 

of new inventive tools and methods to gain a deeper and comprehensive insight into the 

biological role of glycans. This is also the motivation for the projects presented in this 

thesis. 

 One of the most common species of bacteria is the pathogenic Escherichia coli (E. coli) 

bacterium. They account for several serious diseases such as urinary tract infections, 

neonatal meningitis and gastroenteritis. Such infections usually start with an initial 

contact between bacterial fimbriae (adhesive organelles) and the glycosylated cell surface 

of the target cell. This interaction is mediated by carbohydrate-specific proteins (lectins) 

which are located at the fimbrial tips. In case of uropathogenic E. coli (UPEC) the lectins 

FimH and PapG are of utmost importance for the adhesion process. Whereas the lectin 

PapG is highly galabioside (Galα(1→4)Gal)-specific, the lectin FimH binds highly 

specific α-D-mannosides and is the focus of this work. For a deeper understanding of the 

binding mechanisms one has to focus on the adhesive surfaces on the one hand and the 

adhesive organelles on the other hand. Accordingly, the first part of this thesis deals with 

glycosylated surfaces and the second part deals with the lectin FimH. 

In the first project photoswitchable glycolipid mimetics were synthesised and investigated 

regarding their photochemical properties and their structural changes resulting from light-

induced E/Z isomerisation. These experiments were complemented by X-ray scattering 

methods and Langmuir isotherm measurements.  

In the second project of this thesis the concept of glycoarrays and glyco-SAMs was 

deepened by establishing new assay set-ups. The first assay has the advantage that any 

glycan type can be easily immobilised via a light-induced insertion reaction, whereas the 

second investigated bacterial adhesion assay utilises a polysaccharide surface, 
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resembling, to some extent, a disordered sweet surface, which might be closer to the 

natural glycocalyx than a well-ordered and rather artificial glyco-SAM. 

The third project aims at enabling photoswitching of mannose-specific adhesion by 

chemical modification of the adhesive protein FimH. Therefore, azobenzene precursors 

were synthesised which shall work as photosensitive ‘gate keeper’ molecules which can 

block the binding site of the lectin in one photochemical state and leave it open in its 

isomeric form. To realize such a site-directed approach the azobenzene precursors were 

synthesised with a thioester moiety and can thus be transferred onto an appropriate 

nucleophile in the proximity of the binding site in a DMAP-catalysed acyl transfer 

reaction. All azobenzene precursors were tested with respect to their suitability as ‘gate 

keeper’ moieties by investigation of the photochemical properties and molecular 

modelling. 

The fourth project presents a versatile method for the preparation of red-shifted 

azobenzene derivatives by tetra-ortho-chlorination which feature E/Z isomerisation with 

visible light. Thus, damage due to UV light can be prevented in photoswitching 

experiments in biological systems. This approach widens the application potential of 

simple azobenzene glycoconjugates. A great advantage of the chosen approach is, that 

the chlorination can be performed at a ‘late stage’ of the synthesis and thus can be easily 

adapted to other applications. 
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Kurzzusammenfassung 

Extrazelluläre Glykanstrukturen spielen eine wichtige Rolle in der Glykobiologie, da sie 

für die Zellerkennung und Zelladhäsion unerlässlich sind. Somit wird auch der 

Gesundheitszustand von Säugetieren von Glykanstrukturen bestimmt. Beispielsweise 

wird bakterielle Adhäsion kohlenhydratspezifisch vermittelt: Bakterien adhärieren mit 

hoher Spezifität an glykosidische Strukturen auf Zelloberflächen. Diese äußere 

Kohlenhydrathülle von eukaryontischen Zellen wird auch als Glykokalyx bezeichnet. 

Aus diesem Grund befassen sich die viel untersuchten Fagestellungen der Glykobiologie 

mit der Konstitution und der Konformation der Glykokalyx und vor allem auch mit dem 

Aspekt, welcher Zusammenhang daraus für die biologische Funktion im Allgemeinen 

und im Kontext der bakteriellen Adhäsionsprozesse im Speziellen resultiert. Dabei 

werden Naturwissenschaftler vor allem von der Notwendigkeit neuer Methoden und 

Instrumente zur Untersuchung kohlenhydratbasierter Prozesse angetrieben, um 

langfristig ein genaues und allumfassendes Verständnis der biologischen Rolle von 

Glykanstrukturen zu erlangen. Dies ist auch die Motivation derer Projekte, die im 

Folgenden in dieser Dissertation präsentiert werden. 

Eine der am häufigsten vorkommenden Bakterienarten ist die des pathogenen Escherichia 

coli (E. coli) Bakteriums. Diese ist für eine Vielzahl von ernsthaften Krankheiten 

verantwortlich zu denen Harnwegsinfekte, Hirnhautentzündung bei Neugeborenen und 

Gastroenteritis zählen. Solche Infektionen beginnen gewöhnlich mit einem initialen 

Kontakt der bakteriellen Fimbrien (Adhäsionsorganelle) mit der glykosylierten 

Zelloberfläche der anvisierten Zelle. Diese Wechselwirkung wird von kohlenhydrat-

spezifischen Proteinen (Lektinen), die sich an der Spitze eines Fimbriums befinden, 

vermittelt. Im Falle von uropathogenen E. coli Bakterien sind hauptsächlich die Lektine 

FimH und PapG von besonderer Bedeutung für den Adhäsionsprozess. Während das 

Lektin PapG spezifisch Galabioside (Galα(1→4)Gal) bindet, zeichnet sich das Lektin 

FimH durch eine hohe α-D-Mannosespezifität aus. Diese Arbeit konzentriert sich auf das 

Lektin FimH. Um den bakteriellen Bindungsmechanismus genauer aufzuklären, ist es 

nötig, sowohl die adhäsiven Oberflächen als auch die adhäsiven Organellen zu 

untersuchen. Daher befasst sich der erste Teil dieser Dissertation mit glykosylierten 

Oberflächen und der zweite Teil mit dem Lektin FimH. 

Im ersten Projekt wurden photoschaltbare Glycolipidmimetika synthetisiert. Diese 

wurden im Hinblick auf ihre photochemischen Eigenschaften und die daraus 
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resultierenden strukturellen Änderungen während der E/Z-Isomerisierung untersucht. 

Diese Experimente wurden durch Röntgenstreuungsexperimente und Messungen der 

Langmuirisothermen ergänzt.  

Das zweite Projekt dieser Arbeit erweiterte das Konzept der Glycoarrays um zwei neue 

Assaykonzepte. Der erste Assay hat den Vorteil, dass beliebige Glykanstrukturen ohne 

spezielle Funktionalisierung einfach durch eine lichtinduzierte Insertionsreaktion 

immobilisiert werden können. Der zweite untersuchte bakterielle Adhäsionsassay nutzt 

eine Polysaccharidoberfläche, die in gewisser Hinsicht einer ungeordneten, 

glykosylierten Oberfläche ähnelt, die folglich die natürliche Glycokalyx besser 

mimikrieren könnte, als es den streng geordneten glykosidischen SAMs möglich ist.  

Das Ziel des dritten Projekts war es, ein lichtinduziertes Schalten der 

mannosespezifischen Adhäsion des Proteins FimH durch eine chemische Modifikation 

zu etablieren. Für diese Modifikation wurden Azobenzolderivate synthetisiert, die als 

photosensitive ‚Torhüter‘-Moleküle fungieren sollen: In einem der beiden 

photochemischen Zustände wird die Bindetasche des Lektins durch den 

Azobenzolliganden verschlossen und in der isomeren Form wird die Bindetasche wieder 

geöffnet. Für die Durchführung dieser ortsspezifischen Ligationsstrategie wurden die 

Azobenzolderivate als Thioester synthetisiert, die in einer DMAP-katalysierten Reaktion 

mit einer geeigneten Aminosäure in der Nähe der Bindetasche des Proteins ligiert werden 

können. Alle synthetisierten Azobenzolderivate wurden im Hinblick auf ihre Eignung als 

‚Torhüter‘-Moleküle untersucht, indem ihre photochemischen Eigenschaften ermittelt 

wurden und computergestützte molekulare Modellierungen durchgeführt wurden. 

Das vierte Projekt bietet eine vielseitig anwendbare Methode, die es ermöglicht, 

Azobenzolderivate zu synthetisieren, die in allen vier ortho Positionen chloriert sind. 

Diese Chlorierung hat zur Folge, dass die E/Z Isomerisierung durch langwelliges Licht 

induziert werden kann, sodass Schäden durch die Verwendung von UV Licht, wie es bei 

herkömmlichen Azobenzolderivaten üblich ist, vermieden werden können. Dies ist vor 

allem bei der Anwendung bei Photoschaltungsexperimenten in biologischen Systemen 

ausgesprochen vorteilhaft. Dieser Ansatz stellt eine beträchtliche Erweiterung der zuvor 

synthetisierten Azobenzolderivate dar. Ein großer Vorteil ist zudem, dass die Chlorierung 

kompletter Azobenzol- und Azobenzolglykosidderivate am Ende der Synthesesequenz 

durchgeführt werden kann, sodass die Methode ohne großen Aufwand für andere 

Anwendungen übernommen werden kann. 
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A guide to this thesis 

This thesis comprises nine chapters as follows: 

The first chapter provides a general introduction with basic information about the field of 

glycobiology and bacterial adhesion. This chapter is especially recommended to all 

readers who are not familiar with this subject to be able to fully appreciate the described 

research. 

Chapter 2 explains the objectives of this thesis. 

Chapters 3-6 present the individual projects. Each chapter starts with a specific 

introduction followed by a section ‘Results and Discussion’ and a conclusion. 

Chapter 7 provides a comprehensive conclusion. 

The experimental procedures and the UV/Vis as well as the NMR spectra related to all 

sub-projects are complied in chapter 8. 

Abbreviations are given on page XXI and references in chapter 9. 

For the sake of clarity, molecule numbering for each individual project starts with 1. 
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1 General introduction 

In the attempt to reach a fundamental understanding of life and its regulatory processes, 

a great number of key achievements became famous, such as the findings of WATSON and 

CRICK in 1953 who revealed the helical structure of the DNA (deoxyribonucleic acid).[1] 

Their work paved the way for many more new discoveries within the field of protein 

biochemistry in the second half of the 20th century. Several Nobel Prizes were awarded 

for research on decoding of the genetic code[2] and protein biosynthesis.[3] One reason for 

the great success in this field of research may well lie in the clear structural basis of the 

investigated molecules. A limited number of nucleotides can be linked in a defined 

manner. A sequence of three nucleotids forms a so-called codon. Each codon then again 

represents one amino acid. The number of naturally occurring amino acids is limited and 

the subsequent connection of amino acids for the formation of peptides can just occur via 

an amide bond. Eventually, the protein biosynthesis is a well-organised system with an 

assembly plan which doesn’t leave space for much structural diversity – at least not as 

much structural diversity as we can find for oligosaccharide structures, called glycans. 

The structural variability of glycans is determined by the connection of monosaccharides 

to oligo- and polysaccharides and the possible modifications with varying functional 

groups on the monosaccharide building blocks. Thus regio- and stereochemistry 

contribute to the huge variety of glycans.[4] Although carbohydrates represent a majority 

of the organic mass on earth the structural diversity and the resulting functions are not yet 

fully explained.[5-6] The potential of carbohydrates as energy storage and energy source 

had already been discovered by the pharmacist CONSTANTIN KIRCHHOFF in 1811.[7] At 

the same time EMIL FISCHER also investigated carbohydrates such as glucose and 

published the corresponding structure elucidation.[8-12] Also the photosynthesis research 

made progress at this time.[13] The knowledge about carbohydrates was limited to the field 

of energy and nutrition for a long time. Step by step also the connection between health 

and glycans was perceived. CLAUDE BERNARD mentioned diabetes in 1845 for the first 

time and opened the field of research about metabolism.[14] Many findings about the 

intermediary metabolism were published in the beginning of the 20th century.[15-17] Also 

the realisation that the specific blood groups of the human AB0 system are defined 

according to their individual saccharide decoration illustrated once more that 

carbohydrates play an essential role in every area and stage of life.[18-19] Saccharides even 

play a decisive role in the first second of life since glycans are said to be involved in many 

stages of the reproductive process – for instance they influence the sperm migration to 
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the site of fertilisation.[20] Nowadays it is known that carbohydrates also play fundamental 

roles in biological recognition processes as it is the case in cell recognition,[21,22] 

communication[23] and invasion[24] – either by commensal or pathogenic species.[5, 25] 

Although the field of carbohydrate research - also referred to as glycobiology[26] - is 

growing since the late 1980s there are still a lot of question marks concerning the impact 

of glycans for life.[5] Thus, there is a great interest to achieve a deeper insight into the 

function and biology of natural occurring glycans. However, as HANS-JOACHIM GABIUS 

stated in his book entitled ‘The Sugar Code’, the diversity of glycan structures is both a 

blessing and a curse. More ingenious tools for the analysis and synthesis of glycans are 

still required for the investigation of the diversity of glycoconjugates and their role in 

nature.[27-28]  

 

1.1.1 Bacterial adhesion as one form of carbohydrate-protein interaction 

Cell surface glycans play an important role in glycobiology since they are essential in cell 

recognition and cell adhesion.[5] More precisely, cell recognition can occur if one 

counterpart e.g. bacteria can recognize the glycan decoration of a targeted cell via special 

carbohydrate-binding proteins, so-called lectins.[29] The glycan layer on eukaryotic cells 

is referred to as ‘glycocalyx’.[5, 30] The glycocalyx is an approximately 100 nm thick layer 

of inhomogenously arranged glycoconjugates.[31] Those oligosaccharides can be 

embedded into the cell membrane either through proteins (glycoproteins and 

proteoglycans) or in the form of glycolipids (cf. chapter3.1.1).[32] Glycoproteins can occur 

either as N-linked or O-linked oligosaccharides. N-linked means that the respective 

saccharide is β-glycosidically linked to the side chain of asparagine.[33] Whereas O-linked 

means that the particular glycan – which has a N-acetylgalactosamine (GalNAc) moiety 

within its structure - is α-glycosidically linked to the side chain hydroxyl group of serine 

or threonine, respectively (Figure 1). O-Glycans are often referred to as mucins.[34] 

Interestingly, the composition of the glycocalyx is highly individual and differs for every 

cell type. It also changes due to aging processes and in disease.[35] The function of the 

glycocalyx and the connected biological processes are not yet fully understood and thus 

are the subject of current research. 
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Figure 1: Schematic presentation of a eukaryotic cell membrane with embedded glycans (‘glycocalyx’). 

Glycan structures are commonly linked to the membrane either as proteins (glycoproteins and 

proteoglycans), GPI anchors or glycolipids. The carbohydrate moieties are depicted according to the 

conventions introduced by the Consortium for Functional Glycomics (CFG).[36] 

 

The glycocalyx enables the adhesion of bacteria to eukaryotic cells. This process is 

essential for mammals. The human mucous membranes are colonised by a multitude of 

commensal bacteria. Those are part of the immune system since they inhibit the 

colonisation of pathogens. But as soon as those commensal bacteria colonize body 

regions in which they don’t occur under healthy conditions those bacteria become 

pathogens as well.[37] A well researched example are E. coli (Escherichia coli) bacteria. 

Those gram-negative bacteria belong to the family of Enterobacteriaceae and colonize the 

gastrointestinal tract as commensal bacteria.[38] Nevertheless, some E. coli strains are 

pathogens and cause diseases like urinary tract infections (uropathogenic E. coli, 

UPEC)[39], meningitis (neonatal meningitis causing E. coli, NMEC)[40] or diarrhoe 



4 General introduction 

 

(enterohemorrhagic E. coli, EHEC).[41] The adhesion of bacteria on cell surfaces- both 

commensal and pathogenic- is mediated by adhesive organelles the so-called fimbriae. 

The surface of bacteria is decorated with different kinds of fimbriae. For example UPEC 

show a large quantity of type 1 fimbriae which are encoded by the fim gene cluster and 

P fimbriae which are encoded by the pap gene cluster. The process of bacterial adhesion 

is mediated by special proteins, the so-called lectins. They are either located directly at 

the surface of the bacterium or at the tip of fimbriae. Lectins are classified with regard to 

their structure and function in groups of C-, I- and P-type lectins and galectins for animal 

lectins for instance.[42] Bacterial type 1 fimbriae considerably contribute to adhesion and 

virulence. Those fimbriae are 1-2 μm long and around 7 nm in diameter. Type 1 fimbriae 

can be divided into two units: the fimbrial shaft and the tip. The shaft is built by up to 

3000 FimA subunits which are arranged helically. The pilus rod carries one FimF and one 

FimG unit on top and the last unit of this chain is the lectin FimH (Figure 2). FimH 

consisting of two domains – the lectin domain and the pilin domain – acts as the 

carbohydrate recognition domain (CRD) which binds α-D-mannose-specific.[43-45] The 

entrance of the CRD is flanked by two tyrosine residues (Tyr48 and Tyr137) which form 

the so-called tyrosine gate.[46] Therefore ligands with an aromatic aglycone show an 

increased affinity for the lectin FimH due to ππ interactions with the tyrosine gate. This 

correlation can be considered for the synthesis of α-D-mannose-based FimH antagonists 

as anti-adhesives in anti-adhesive therapies to prevent bacterial infections.[47-49]  

The synthesis of type 1 fimbriae is controlled by the chaperone/usher pathway. The 

protein FimC as so-called chaperone ensures the correct protein folding of the pilin 

subunits within the periplasm. As soon as a suitable conformation is obtained the subunits 

can pass the outer membrane via the protein FimD which therefore is called the usher. 

Subsequently the passed subunits are integrated in the growing fimbrial rod.[50] 
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Figure 2: (a) AFM (atomic force microscopy) picture of E. coli[51]; (b) Schematic representation of a type 

1 fimbria of E. coli. The fimbria consists of different subunits and carries the lectin FimH with the α-D-

mannose-specific CRD at the tip. Fimbriae are formed via the chaperone/usher pathway in the periplasm.[52] 

 

Although the process of cell adhesion was elucidated as outlined above, many of its 

details are not yet fully investigated. Glycoarrays have been proven to serve as valuable 

tools for the investigation of carbohydrate-protein interactions, but there is room for 

further improvement. Indeed, the glycoscience is still in need of new methods and 

techniques to provoke significant progress in the field of glycomics as the field of 

proteomics already experienced.[5, 53] 
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2 Objectives 

The focus of this thesis lies on carbohydrates as mediators of bacterial adhesion. The 

process of bacterial adhesion was addressed from two perspectives regarding the bacteria 

and their adhesive organelles on the one hand and considering the adhesive glycosylated 

surfaces on the other hand (Figure 3). Hence, the first part of this thesis deals with various 

glycosylated surfaces in the context of FimH-mediated bacterial adhesion. The 

glycosylated surfaces were investigated both on the molecular level and in a broader 

context as glycosylated lipid layers. For the investigation of glycosylated surfaces as 

adhesive films, polystyrene surfaces were modified with different glycoside derivatives 

(cf. chapter 4). This project was focussed on the different parameters which influence the 

binding process. The density of the glycosidic layer, the arrangement as well as the 

orientation were considered as well as how close the respective glycoarray resemble their 

natural counterparts. The focus of the project dealing with lipid layers (cf. chapter 3) was 

motivated by the dynamic processes occurring in lipid bilayers. In this context, the 

influence of carbohydrate moieties of special tailor-made glycolipid mimetics was 

investigated regarding structure and dynamics. As functional handle the glycolipid 

mimetics were equipped with an azobenzene moiety to make the structure of those 

amphiphiles sensitive to irradiation with UV light. The incorporation of the glycolipid 

mimetics created a dynamic membrane system which is an interesting model system for 

the mimicry and investigation of processes occurring within cell membranes. This work 

was performed in collaboration with Dr. BRIDGET MURPHY at the Institute of 

Experimental and Applied Physics at Kiel University. 

The project dealing with FimH as adhesive organelle (cf. chapter 5) took an approach 

which comprises organic synthesis and biochemistry. The goal of this project was to 

enable photoswitching of mannose-specific adhesion by chemical modification of the 

adhesive protein FimH. The project aimed at attaching an azobenzene at the entrance of 

the FimH carbohydrate binding site by a site-specific bioorthogonal reaction. The 

azobenzene moiety is meant to function as a photosensitive ‘gate keeper’ molecule that 

can block the binding site in one photochemical state and leaves it open in its isomeric 

form. Thus, labelling and the control of adhesivity can be achieved in one step and will 

enable new methods for the investigation of the binding mechanism of the lectin FimH. 

In the course of this project, a library of potential ‘gate keeper’ moieties as thioester 

precursors were synthesised. The synthesis was accompanied by molecular modelling 
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studies and molecular dynamics studies for the investigation of the opening and closing 

process of the binding site by photoswitching. In addition, photochemical properties of 

all synthetic molecules were investigated to validate their intended use. Eventually, the 

biochemical ligation will be performed by CARINA SPORMANN under the supervision of 

Prof. Dr. THISBE K. LINDHORST at the Otto Diels Institute of Organic chemistry at Kiel 

University. 

 

Figure 3: Overview of the interdisciplinary projects of this thesis. 

 

Finally, work aiming at the synthesis of red-shifted azobenzene glycoconjugates was also 

performed (cf. chapter 6). [54-55] 
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3 Photoswitchable glycolipids for the investigation in lipid 

layers 

3.1 Introduction 

Glycolipids are amphiphilic molecules and important constituents of cell membranes. 

Membranes as special representatives of liquid-liquid interfaces are of great importance 

for biological systems. They do not only operate as barrier between cells but also play a 

key role in regulatory processes.[32] Whereas solid interfaces were thoroughly 

investigated, liquid interfaces offer a wide sphere of aspects for research. Hence, it is 

known, for example, that there is a direct link between the lipid environment of ion 

channels in membranes and their structure and function.[56] Photoisomerizable molecules 

are valuable tools in investigating the details for such important biological processes. 

There are studies about rather artificial amphiphilic molecules which can indeed mimic 

dynamic changes within membranes by isomerisation of a photoswitchable unit but lack 

the comparability to naturally occuring lipids though.[57-65] On these grounds we designed 

photoswitchable glycolipid mimetics for spectroscopic studies and for the investigation 

of Langmuir Blodgett films composed thereof (Figure 4). The integration of tailor-made 

photoswitchable glycolipids into phospholipid membranes will enable the analysis of 

biologically relevant characteristics of the membrane-host system regarding structure and 

kinetics.  

 

Figure 4: Light-induced switching of azobenzene glycolipids embedded into a DPPC (1,2-dipalmitoyl-sn-

glycero-3-phosphocholine) monolayer can mimic dynamic changes within lipid monolayers. 

Conformational changes can be triggered due to the E/Z isomerisation of the azobenzene moiety and can 

be investigated regarding structure and kinetics. 

  



Photoswitchable glycolipids for the investigation in lipid layers 9 

 

3.1.1 Amphiphiles and lipid layers in biological systems  

Lipids are one of the main groups of functional biomolecules in addition to carbohydrates, 

nucleotides and amino acids. Whereas the three last-mentioned classes build up polymers 

by covalent bonds, lipids form macromolecular entities by supramolecular interactions. 

Lipids can be categorised into fatty acids, triglycerides, wax, isoprenoids, phospholipids 

and glycolipids. Many lipids resemble amphiphiles, namely phospholipids and 

glycolipids.[66-67] Amphiphiles are characterised by a hydrophilic headgroup on the one 

hand, and on the other hand by a lipophilic tailgroup. Hence, amphiphilic lipids aggregate 

in water to form micelles or lipid bilayers, respectively. Lipid bilayers form compartments 

both between cells theirselves and between the cell’s organelles: this spatial separation is 

essential for many processes of live e.g. signalling, regulation, transport and cell 

communication.[32] Since every system seeks for a state of equilibrium which is 

characterised by a minimum of lowest GIBBs free energy, membranes are essential for 

living systems as they function as fundamental barriers. Membranes provide distinct 

cellular regions which come along with a differential of various concentrations for 

instance ATP, the currency of energy in cells. Those concentration-dependent potentials 

are the impetus for life. In absence of barriers both cellular ingredients like proteins, 

nucleic acids, nucleotides and carbohydrates and ATP would diffuse away from the cell 

totally uncontrolled. The scattered diffusion would happen so fast that live would not be 

possible.[68] 

As already mentioned above cell membranes are constituted by phospholipids, 

glycolipids and cholesterol, which is an important structure factor. Due to its rigid 

structure, cholesterol makes the membrane less fluid, indeed, but at the same time it 

prevents a too large density of the hydrocarbon residues which belong to the other 

membrane constituents and therefore precludes crystallisation of the bilayer.[69] The class 

of phospholipids includes glycerophospholipids and sphingophospholipids. 

Glycerophospholipids feature a glycerol core structure. In contrast to triglycerides just 

two of the three hydroxyl groups are esterified with fatty acids, whereas the third hydroxyl 

group of the glycerol unit is connected via a phosphordiester bond with either 

aminoalcohols, more precisely choline, serine or ethanolamine or polyols, for instance 

inositol. Sphingophospholipids in contrast to glycerol lipids are composed of a sphingosin 

(1-amino-4-trans-octadecene-1,3-diol) backbone which is just monoacylated at the amino 

functionality (ceramide structure). One of the hydroxyl groups remains unmodified, 

whereas the second OH group is either esterified as a phosphordiester resulting in 
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sphingomyelins or it is glycoslated, resulting in glycosphingolipids. The simplest 

representatives of glycosphingolipids are cerebrosides, which are functionalised with just 

one carbohydrate moiety which is in most cases glucose or galactose. More complex 

derivatives are called gangliosides which are equipped with complex oligosaccharides 

containing sialic acid derivatives. In particular, those negatively charged sialic acid 

residues give distinction to the cell surface (Figure 5).[32]  

 

Figure 5: Representatives for the three classes of membrane lipids: Glycerophospholipids, 

e.g phosphatidylserine (1), the class of sphingolipids, which can be divided into sphingophospholipids, e.g. 

sphingomyelin (2a) and glycosphingolipids, e.g. cerebroside (2b) and steroids, e.g. cholesterol (3).[32] 

 

Membrane features are influenced by different parameters such as pressure, temperature 

and the composition of the hydrophilic as well as the lipophilic parts. Depending on these 

parameters, membranes adopt various phases and phase transitions. Phase transitions are 

connected to function and in order to elucidate such structure-function relationships, 

suitable model systems are required. Monolayers are outstanding model systems for 

membranes since lipid bilayers consist of two interacting monolayers.[70-71] If amphiphilic 

lipids are deposited on a water surface, they arrange due to their bipolarity. The 

hydrophilic headgroup orients towards the water surface and the lipophilic tailgroup 

angles off towards the air. The resulting monomolecular insoluble films are called 

Langmuir monolayers. Langmuir monolayers can be studied with respect to various 

(thermodynamical) variables. Langmuir-Blodgett troughs for example are used to 
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investigate the surface pressure of an amphiphilic monolayer on a specific subphase 

(commonly water) by varying the surface dimension by a movable barrier. The results 

can be depicted in the form of a Langmuir isotherm.[72] A schematic Langmuir isotherm 

is shown in Figure 6. Monolayers with a spacious allocation of molecules on the 

subphase, where the area per molecule is large, can be described as two-dimensional 

gases. By increasing the surface pressure and hence decreasing the area per molecule on 

the subphase the monolayer can be converted into a so-called liquid expanded phase. 

Continuing compression leads in the first instance to a plateau of surface pressure despite 

compression. This fact indicates a first-order transition. After transcending this plateau, 

the monolayer converts into a condensed phase. Further compression leads to a kink of 

the isotherm and ends in an untilted condensed phase. The kink originates from a 

decreased compressibility. The untilted condensed phase is often referred to as solid 

phase. But in both cases of condensed phases the hydrocarbon chains of the lipophilic 

part are straightened in parallel merely differing in their orientation in relation to the 

subphase.[71]  

 

Figure 6: A schematic Langmuir isotherm for some monolayer of amphiphiles on a water subphase. A 

horizontal trend of the isotherm shows an area in which two phases can coexist due to a first-order transition. 

The kink in contrast suggests a continuous transition[71] 

 

Lipid bilayers can also be classified with respect to their occurence. A distinction is drawn 

between lamellar and non-lamellar phases. Whereas there are different lamellar phases 

there is just one non-lamellar phase, the liquid crystalline Lα phase. Many biologically 
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relevant processes happen in the liquid crystalline Lα phase and therefore many 

investigations focus on this state of bilayers. Nevertheless, it is worth mentioning that 

those processes occur in dependence of temperature or surface pressure as already 

discussed before for monolayers. In the context of non-lamellar bilayers the terms subgel 

Lc gel phase Lβ and Lβ’ as well as rippled phase Pβ‘ are commonly used. The subgels Lc 

are characterised by a high organisation of the hydrocarbon chains, therefore also referred 

to as liquid ordered phase (Lo), and a tilt angle with respect to the bilayer. By increasing 

the temperature, for instance, the system can be converted to a lamellar gel phase (Lβ or 

Lβ‘). In analogy to the tilted condensed phase in case of monolayers, the lipids lipophilic 

parts are arranged with a tilted angle relating to the bilayer normal in case of Lβ‘ phases. 

In the Lβ phase the lipophilic parts are disposed parallel to the bilayer normal. When the 

temperature is further increased, a transition to a liquid crystalline phase occurs which is 

characterised by a disordered arrangement of the lipid tails. The transition from the gel 

phase to the liquid crystalline phase can arise either directly or via a rippled phase Pβ‘. 

For that purpose, the gel phase first converts to the rippled phase which is not just rippled 

but also tremendously swollen; nevertheless, the lipophilic tails are still ordered. During 

further increase of the temperature the rippled phase can melt to a Lα phase (Figure 7).[73] 

 

Figure 7: Schematic representation of known membrane patterns. The state of highest organisation is the 

Lc phase (A) followed by the lamellar gel phases Lβ (B) and Lβ‘ (C). The lamellar gel phases can convert 

into a liquid crystalline Lα phase (E) either directly or via a rippled phase Pβ‘ (D).[74] 

 

All descriptions outlined above are models which apply best for homogenous lipid layers. 

However, biological relevant membranes always consist of different constituents such as 

glycolipids and cholesterol. This mixed composition leads to variable interactions of the 

various components and therefore, the naturally occurring membranes are not always 

homogenous as described above in a simplified way. Often, membrane lipids build 

domains due to their heterogeneity. Lipid domains differ from the surrounding parts of 

the bilayer. Domains of high glycosphingolipid and cholesterol concentration are called 

lipid rafts. Whereas sphingolipids interact via weak attractive forces between the 
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glycoside headgroups, occurring voids are filled by cholesterol molecules. Lipid rafts are 

more ordered and more tightly packed than the surrounding and moreover, they float 

freely within the bilayer.[32, 75-76] Until to date, lipid rafts are not conclusively understood 

and especially photoswitchable lipid derivatives might be valuable tools for their further 

investigations and thus the key for remaining questions.[77-78] 

 

3.1.2 Azobenzenes as molecular switching lever of biological function 

Molecules which can function as switchable hinges or molecular joint, respectively, 

triggered by distinct stimuli are of great importance and interest in research fields ranging 

from material science to biological chemistry. Molecular switches can be toggled between 

at least two distinct thermodynamically stable states by exposure to an external stimulus. 

As stimuli light, heat, mechanical stress[79] and pH can be considered.[80] Molecular 

switches open a wide field of fascinating applications. They can be used for optical 

devices and for imaging,[81] as molecular machines[82-85] and for tailor-made functional 

materials like polymers.[86-89] Furthermore, a lot of promising applications can be 

considered in the field of life sciences where especially photoswitches find applications 

owing to non or little invasive stimulation. In addition, they are beneficial due to their 

high temporal and spatial resolution. Photoswitches can be used in photopharmacology 

e.g. for drug delivery[90-91] or as modulators of protein activity.[92-95] Current 

photoswitches are spiropyranes, diarylethenes, fulgides and probably the most famous 

and longest investigated representative of molecular photoswitches are azobenzenes.[96] 

They show favourable photochromic properties, as azobenzenes are characterised by an 

effective E/Z isomerisation: The planar E-isomer is the thermodynamically more stable 

form which can be converted to its bent Z-isomer by irradiation with UV light.[97-98] The 

back isomerisation Z → E can be triggered either by heat leading to thermal relaxation, 

by irradiation with visible light[99] or electrochemically.[100] Not only the angle of the 

molecules does change upon irradiation but also the dipole moment, thus, the polarity and 

the volume expansion change upon isomerisation. Whereas the end-to-end distance of the 

E-isomer adds up to 9 Å, for the Z-isomer this value is reduced to 5.5 Å.[101-104] Ideally, 

the properties of azobenzene derivatives can be tuned with regard to the requirements of 

the targeted application.[105-108] For instance, azobenzenes can be grouped into slow and 

fast switches depending on their half-life. The velocity of the switching process in turn is 

dependant on the mechanism of isomerisation. A distinction is drawn between four 
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proposed mechanisms, namely rotation, inversion, concerted inversion and inversion 

assisted rotation (Scheme 1).[109-113] ‘Fast switches’ can be addressed by short pulses of 

light and are characterised by a short half-life due to immediate thermal relaxation. 

Consequently after withdrawal of the stimulus the E-state can be retrieved in the range of 

microseconds time scale.[114] Those properties are ideal for the use as optical 

oscillators[115] and for applications like data exchange and real time information 

transmitting.[116] Nevertheless, the focus on science is on the development of even shorter 

time scales of nano-, respectively, picoseconds which were realised for spiropyrane[117-

119] and diarylethene[120] derivatives up to now but not for azobenzenes.[116] ‘Fast 

switches’ are in many ways of great importance since they might be used for future 

applications in cell communication processes,[121-122] for the imitation of cilia 

movement[123-124] and as molecular muscles.[125-127] In contrast, ‘slow switches’ like 

photoswitchable derivatives for data storage need a long durability and prevention of 

photobleaching to enable countless switching cycles.[116, 128-132] To adapt the language of 

data storage the ‘written state’ should be stable but erasable. The same holds true for 

many biological, medical and pharmaceutical applications such as the manipulation of 

ion channels for the regulation of nociception.[133-135] ‘Fast switches’ can be realised by 

push-pull azobenzene derivatives which are equipped with a strong electron donor on the 

para-position of one phenyl ring and a strong electron acceptor on the far side para’-

position of the second phenyl ring. This substitution pattern lowers the energy of the ππ* 

state and thus promotes thermal Z→E relaxation.[113] In addition to the substitution pattern 

which can increase the dipole character[136] of those molecules, the thermal relaxation is 

also favoured by polar solvents[137] and increased pressure.[138-140] Due to the asymmetric 

electron distribution and the resulting high dipole moment, push-pull azobenzene 

derivatives undergo isomerisation, albeit much discussed,[141-142] in many cases pursuant 

to a rotational isomerisation mechanism (Scheme 1).[143-146] Push-pull azobenzene 

derivatives with an especially fast thermal Z→E relaxation were introduced by VELASCO 

and coworkers. Those molecules are in shape of bithionylpyrrole-based azo dyes,[147] 

azopyridines and azopyrimidines,[114] cationic azo dyes[146] and cationic bis-azo 

derivatives.[148]  
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Scheme 1: Proposed mechanisms for the E → Z isomerisation of azobenzenes. All steps are supposed to 

be reversible in case of thermal or light-induced back isomerisation Z → E.[113] 

 

Biological applications for instance require photoswitches which can be excitated by 

longer wavelength (‘red-shift’) to prevent damage on the targeted system or the 

surrounding tissue in case of in vivo applications.[149-151] Furthermore, azobenzene 

derivatives for use in biological systems also have to fulfil further requirements besides 

the wavelength for isomerisation, namely water solubility, biocompatibility and stability 

towards hydrolysis and reduction.[152] Besides this, not just the life-time of an azobenzene 

compound in general is of scientific interest but also the half-life is in focus of potential 

applications. As every material, molecular switches must also pass a quality check and 

have to be characterised and evaluated in view of the requirements mentioned above. For 

that purpose a variety of analytical methods can be executed. Some methods which are 

relevant for this project are presented in the next chapter. 

 

3.1.3 Tools for the investigation of lipid layers 

Many publications are known reporting about the effects and processes which azobenzene 

derivatives can evoke when embedded to a lipid layer like membranes or liposomes.[90, 

153-163] MORGAN et al. for instance investigated the release of a fluorescent marker from a 

liposome due to photoinduced isomerisation of azobenzene derivatives which are 

embedded in the respective liposome.[159] Although the effect of the photoswitches in 
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those experiments are known, it still has to be encoded which events run down during 

isomerisation on the nanoscale of the lipid systems.[164] For those investigation methods 

like X-ray reflectivity in combination with Langmuir Blodgett troughs, atomic force 

microscopy (AFM)[165-166] and differential scanning calorimetry (DSC)[167] lend 

themselves. X-ray reflectivity is an interferometric method to analyse surfaces, thin films 

and multilayers.[168-169] The basic concept of this method is that an incoming X-ray beam 

with a wave vector kin and entrance angle αin is reflected on the interface between two 

layers n and n0. For flat angles of incidence total reflectance occurs (entrance angle αin = 

exit angle αout) and the intensity of the emergent beam can be detected (Figure 8). This 

setting which assumes a perfectly flat surface and excludes absorption was theoretical 

described by FRESNEL.[170] Since many surfaces are rough by nature, and besides, it is not 

trivial to prepare perfectly flat surfaces, the FRESNEL equitation has to be considered as a 

model which needs modifications to describe real systems. One reliable roughness model 

has been proposed by NÉVOT and CROCE.[171] Two aspects have to be considered in case 

of larger angles. First of all, one has to consider that not the complete incoming beam is 

reflected but a minor lot can pass the interface and transmission of the other phase can 

occur. Secondly, in case of surfaces which are not perfectly flat e.g. rough surfaces or 

lipid layers the beam is not perfectly reflexed with αin = αout but scattered. Besides some 

percentage of the beam is also subjected to transmission. This part is characterised by a 

wave vector kt and enters the second phase n0 with an entrance angle αt. Refraction in 

dependence of the material befalls the transmitting beam. For X-rays the refractive 

index n is defined as: 

n = 1 – δ – iβ 

The real number δ terms the dispersion which is dependant on the electron density, the 

classical electron radius and the wavelength. The imaginary number β terms the 

absorption which is dependant on the wavelength and the linear absorption coefficient μ. 

The electron density is the crucial parameter for the reflectivity of an interface.[172] First 

and foremost X-ray reflectivity is a good method to investigate the thickness of films and 

also to provide a profile of layer thickness. From the measured data it is also possible to 

determine the electron density with the aid of computer-based models and the surface 

roughness. The surface roughness is defined as a statistical deviation of the local surface 

from the mean surface. Thus the roughness can be mathematically considered as the root 

mean square deviation from the mean surface.[173] 
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Figure 8: Schematic representation of the interaction of an incoming beam kin with an interface between 

one phase with a refractive index n and a second phase with a refractive index no. The entrance beam kin is 

partly reflected (kout) and partly scattered (kt). 

 

To gain dependable results from X-ray reflectivity measurements of liquid interfaces a 

high-grade surface must be prepared. Such research can be performed within Langmuir 

Blodgett troughs. These are temperature-controlled troughs which are filled with a carrier 

material, usually water, to create a liquid-air interface. After addition of molecules to be 

investigated, e.g. lipids, those ingredients can align themselves with the interface, in case 

of lipids the polar headgroups dip into the water surface and the lipophilic tail portions 

straighten up towards the air forming monolayers. Furthermore, Langmuir Blodgett 

troughs are equipped with a barrier which can be piloted within the trough for 

compression of the layer. The resulting surface pressure can be detected with a Wilhelmy 

plate. The resulting Langmuir isotherms were already discussed in chapter 3.1.1. 
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3.2 Results and discussion 

3.2.1 Synthesis of azobenzene glycolipid mimetics 

The targeted photoswitchable glycolipids are composed of two parts, a hydrophilic 

oligoethylene glycol glycoside headgroup and a lipophilic 1-O-azobenzene 

diacylglycerol ether tailgroup. Both components were functionalised to allow ligation by 

copper(I)-catalysed 1,3-dipolar cycloaddition (‘click chemistry’). Whereas the aglycon of 

the glycoside was equipped with an azido substituent, the azobenzene moiety of the 

tailgroup was alkyne-functionalised. In addition, control compounds were designed 

lacking the azobenzene or the carbohydrate moiety, respectively. This molecular design 

is the basis for a library of three different hydrophilic building blocks on the one hand 

and four different lipophilic components on the other hand (Figure 9). Their combination 

by click chemistry resulted in a library of twelve different (glyco)lipid mimetics which 

were compared regarding their physico-chemical properties. As hydrophilic headgroup, 

D-glucose- and D-lactose-functionalised oligoethylene portions were chosen. The 

hydrophilic component was based on a glycerol ether, esterified either with lauric acid 

(C12) or palmitic acid (C16).[174] 

 

Figure 9: Schematic representation of the building blocks for amphiphile synthesis via click chemistry: 

Hydrophilic parts are shown on the left and lipophilic parts are shown on the right. 

 

For the synthesis of the hydrophilic part mono-tosylated triethylene glycol 2 was 

synthesised according to the literature (Scheme 2).[175] Tosylate 2 was then easily 

converted into the respective azide 3[175-178] by nucleophilic substitution with sodium 

azide. However, glycosylation to form glycosides 6 and 7, respectively, was best 

performed with the tosylate 2 rather than with 3. The glycosylation step is the limiting 

factor of the entire synthetic sequence. As glycosyl donors, glucose pentaacetate 4 and 

lactose octaacetate 5 were used as anomeric mixtures. The boron trifluoride diethyl 
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etherate-catalysed reaction yielded the glycosides 6 and 7, respectively, as pure 

β-anomers in yields of 58 % and 50 %, respectively. The following nucleophilic 

substitution with sodium azide gave the azido-functionalised glycosides 8 and 9, 

respectively, in high yields.[176] Subsequent deacetylation under ZEMPLÉN conditions[179] 

quantitatively led to the desired compounds 10 and 11. (Scheme 2).[176] 

 

Scheme 2: Synthesis of azido-functionalised hydrophilic building blocks 3, 10 and 11 for amphiphile 

synthesis. 

 

Next, the lipophilic tailgroups which were based on a 1-O-[(propargyloxy)azobenzene] 

diacylglycerol ether core were synthesised (Scheme 3). For that purpose, first the 

propargylated azobenzene 12 was prepared according to the literature[180] and employed 

in a WILLIAMSON ether synthesis with the tosylated isopropylidene-protected glycerol 

derivative 13 in the next step to obtain 14 in a high yield of 86 %. The glycerol derivative 

13 was synthesised as enantiomeric mixture of (R)- and (S)-configured stereoisomers 

according to PFAENDLER.[181]
 For the removal of the isopropylidene protecting group, 14 

was treated with hydrochloric acid in THF to furnish the the desired diol 15 in a yield of 

56 % together with the starting material 12, which was recovered in a yield of 30 %. For 

the synthesis of the required lipophilic building block, diol 15 was subjected to a 

STEGLICH esterification using dicyclohexylcarbodiimide (DCC) and 

dimethylaminopyridine (DMAP).[182] Lauric acid (C12 derivative) and palmitic acid (C16 
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derivative) were employed for esterification to obtain the diacylglycerol derivatives 16 

and 17 in a yield of 48 % and 80 %, respectively (Scheme 3). 

 

Scheme 3: Preparation of the lipophilic building block: Synthesis of the 1-O-[(propargyloxy)azobenzene] 

diacylglycerol ethers 16 and 17 was performed according to STEGLICH’s procedure.[182] 

 

Finally, the targeted photoswitchable amphiphiles were obtained by ligation of the 

hydrophilic azido-functionalised derivatives 3, 10 and 11, respectively, with the 

lipophilic 1-O-[(propargyloxy)azobenzene] diacylglycerol ethers 16 and 17 by copper(I)-

catalysed 1,3-dipolar cycloaddition (Scheme 4). Addition of pentamethyldiethylene-

triamine (PMDTA) as an copper (I)-ion stabilising reagent[183] was essential to improve 

poor yields (~10 %) to 83 % and 73 %, respectively, for the photoswitchable C12-diacyl 

β-D-glucoside 20 and the respective C16-diacyl β-D-glucoside 21. Hence, PMDTA was 

used for all click reactions in connection with this project. The photoswitchable C12-

diacyl β-D-lactoside amphiphile 22 was obtained in a yield of 71 % and the respective 

C16-diacyl β-D-lactoside amphiphile 23 in a yield of 70 %. To facilitate the investigation 

of the influence of the carbohydrate headgroups in lipid layers in context of dynamics and 

structural changes, two derivatives 18 and 19 with just an oligoethylene glycol headgroup, 

lacking the carbohydrate portion, were synthesised as well and obtained in yields of 87 % 

for the C12 derivative 18 and 85 % for the respective C16 derivative 19. 
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Scheme 4: Synthesis of photoswitchable target amphiphiles by click chemistry: Hydrophilic building 

blocks 3, 10 and 11 were ligated via copper(I)-catalysed 1,3-dipolar cycloaddition with lipophilic building 

blocks 16 and 17 to achieve amphiphiles 18-23.  

 

For a reliable evaluation of the photoswitchable properties of amphiphiles 18-23, control 

compounds, lacking the azobenzene moiety, 29-34 were required. Therefore, the 

synthetic pathway outlined above was modified according to Scheme 5. Starting from the 

isopropylidene-protected glycerol derivative 24, the known propargyl glycerol ether 25 

was synthesised as (R,S) mixture according to a procedure of LATXAGUE et al.[184] 

Removal of the isopropylidene protecting group with hydrochloric acid in THF amounts 

to diol 26 in a yield of 75 %. Then, the diol 26 was subjected to esterification with lauric 

and palmitic acid in analogy to the preparation of the respective photoswitchable diacyl 

glycerol derivatives 16 and 17. The resulting propargyl diacyl derivatives 27 and 28 were 

utilised in a 1,3-dipolar cycloaddition using the hydrophilic counterparts 3, 10, 11 to 

obtain the C12 diacyl glycerol mimetics 29, 31, 33 and the respective C16 diacyl glycerol 

mimetics 30, 32 and 34. 
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Scheme 5: Synthesis of non-photoswitchable control compounds 29-34. 

 

3.2.2 Results of molecular modelling 

For the validation of measured data in X-ray and Langmuir Blodgett film experiments it 

is important to have an idea about the three-dimensional structure of the amphiphilic 

molecules. Therefore, molecular dynamics simulations for amphiphiles 18 to 23 as well 

as the non-photoswitchable control compounds 29 to 34 were performed. For this, the 

program MacroModel[185] as implemented in the Schrödinger Maestro software package 

was used.[186] The calculations provided the atomic distances of different conformers and 

their occurence. For all twelve synthesised molecules, 18 to 23 and 29 to 34, 3D structures 

were first set-up with Maestro[186] and then their energy was minimised within an OPLS 

2005 force field with MacroModel.[185] In addition, the MacroModel software has the 

feature to perform molecular dynamics simulations which are based on classical 

mechanics (Newton`s equitation of motion). The results of the molecular dynamics 

simulations delivered the occurence of single conformers as characterised by their 

intramolecular distances and are depicted below in Figure 10 to Figure 27. The 

photoswitchable C12-diacyl β-D-glucoside 20 is depicted in Figure 10. 

The molecular dynamics simulations are focused on four parts of the molecule which are 

shown in Figure 10. The intramolecular distances were screened for the hydrophilic part 

(highlighted in blue), the azobenzene moiety (highlighted in grey) and two lipophilic 
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parts, starting from the central part (N=N double bond) of the azobenzene moiety towards 

one or the other alkyl chain (highlighted in yellow and red, respectively) (Figure 10). The 

numbering of the atoms indicated in Figure 10 to Figure 27was adapted from the Maestro 

software.[186] 

 

Figure 10: Molecular dynamics simulation with the photoswitchable C12-diacyl β-D-glucoside 20. The 

molecul was divided into four parts: the hydrophilic headgroup (blue), the azobenzene moiety (grey), and 

two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

 

The distribution of occurring intramolecular distances for the azobenzene portion 

(measured from atom 26 to 37) is depicted in Figure 11. The E-state showed possible 

distances from 11.2 Å up to 12.1 Å with a highest probability around 11.8 Å. As expected, 

a contraction of the intramolecular distance was observed for the Z-isomer of the molecule 

with distances from 8.6 Å up to 9.2 Å and approximately 9.0 Å as the most probable one.  

 

Figure 11: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 20. The distances were screened for the azobenzene moiety from atom 26 to 37 as E-isomer 

(left, (a)) and the related Z-isomer (right, (b)). 
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The distribution of occurring intramolecular distances for the hydrophilic part (measured 

from atom 31 to 79) of the inspected molecule 20 as E-isomer and the lipophilic tails 

(measured from atom 32 to 153 and 32 to 128, respectively) are depicted in Figure 12. 

 

Figure 12: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 20 (E-isomer). The distances were screened for three parts of the molecule: the hydrophilic 

headgroup (blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

In Figure 13, the distribution of occurring intramolecular distances for the three molecular 

parts (as detailed above) of Z-20 is depicted. The distribution of possible distances for the 

alkyl chains is suggested to be rather broad for both the E-isomer and the Z-isomer 

resembling a multitude of sterically unhindered conformers. A slight contraction for the 

C12 chain length can be observed for the Z-isomer in comparison to the E-isomer. The 

curve of the hydrophilic part (blue) shows a clear maximum at approximately 22 Å in the 

E-state whereas the distance range is broadened to 19 Å to 24 Å for the Z-isomer.  
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Figure 13: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 20 (Z-isomer). The distances were screened for three parts of the molecule: the hydrophilic 

headgroup (blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

As before, also molecule 21 was divided into four parts for distance analysis.  

 

Figure 14: Molecular dynamics simulations with the photoswitchable C16-diacyl β-D-glucoside 21. The 

molecule was divided into four parts: the hydrophilic headgroup (blue), the azobenzene moiety (grey), and 

two lipophilic parts, one for each alkyl chain (yellow and red, respectively).  

 

The distribution of occurring intramolecular distances for the azobenzene part of 

compound 21 (determined from atom 26 to 37) is depicted in Figure 15. In this case, the 

simulation led to nearly the same data as with compound 20.  
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Figure 15: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 21. The distances were screened for the azobenzene moiety from atom 26 to 37 as E-isomer 

(left, (a)) and the related Z-isomer (right, (b)). 

 

The distribution of occurring intramolecular distances for the hydrophilic part (measured 

from atom 31 to 87) and the lipophilic tails (measured from atom 32 to 146 and 32 to 175, 

respectively) for the E-isomer of 21 are depicted in Figure 16. 

 

Figure 16: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 21 (E-isomer). The distances were screened for three parts of the molecule: the hydrophilic 

headgroup (blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

The distribution of occurring intramolecular distances for the three parts of Z-21 as 

exemplified above are depicted in Figure 17. For the one lipophilic part (highlighted in 

yellow) the distribution of occurring distances shows both for E-21 and Z-21 a rather clear 

maximum. The second lipophilic tail (highlighted in red) shows a rather broad 

distribution of conformers for the E-isomer and an even broader distribution for the 
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Z-isomer, with a maximum emerging at 9 Å. In comparison with the shorter C12 

derivative 20, the alkyl chains of compound 21 in the three-dimensional representation 

are obviously shortened due to clumping. The hydrophilic part shows a distance 

maximum at approximately 22 Å for the E-isomer and a slightly reduced distance for the 

Z-isomer (20 Å). 

 

Figure 17: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 21 (Z-isomer). The distances were screened for three parts of the molecule: the hydrophilic 

headgroup (blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

The results of the molecular dynamics simulations with the non-photoswitchable C12-

diacyl β-D-glucoside 31 are depicted in Figure 19. The molecular dynamics simulation 

was focused on three parts of the molecule which are shown in Figure 18. The 

intramolecular distances were screened for the hydrophilic part (highlighted in blue), and 

two lipophilic parts, starting from the central glycerol ether moiety towards one or the 

other alkyl chain (highlighted in yellow and red, respectively). 

 

Figure 18: Molecular dynamics simulation with the non-photoswitchable C12-diacyl β-D-glucoside 31 

regarding three parts of the molecule: the hydrophilic headgroup (blue) and the two lipophilic parts (yellow 

and red), starting from the glycerol ether moiety. 
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The distribution of occurring intramolecular distances for the three parts of C12 control 

compound 31 is depicted in Figure 19. 

 

Figure 19: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 31. The distances were screened for three parts of the molecule: the hydrophilic headgroup 

(blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

Non-photoswitchable C16-diacyl β-D-glucoside 32 is depicted in Figure 20. 

 

Figure 20: Molecular dynamics simulation with the non-photoswitchable C16-diacyl β-D-glucoside 32 

regarding three parts of the molecule: the hydrophilic headgroup (blue) and the two lipophilic parts (yellow 

and red), starting from the glycerol ether moiety. 

 

The distribution of occurring intramolecular distances for the three parts of C16 control 

compound 32 are depicted in Figure 21. 
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Figure 21: Intramolecular distances and their occurence as determined for the possible conformers of 

amphiphile 32. The distances were screened for three parts of the molecule: the hydrophilic headgroup 

(blue) and two lipophilic parts, one for each alkyl chain (yellow and red, respectively). 

 

In coincidence with the increasing chain length, both the distribution for the one chain 

(yellow) and the other chain (red) are shifted to longer distances in case of the C16 

derivative 32. It is conspicuous that the one alkyl chain (yellow) shows a broad 

distribution of conceivable distances whereas the other one shows a narrow range of 

possible distances, highlighted by a maximum at about 16 Å for the C12 compound 31 

and 20 Å for the C16 compound 32. The hydrophilic part of the molecule 31 shows a 

rather broad distribution of occurring distances from 12 Å to 18.5 Å whereas the long-

chained analogue shows a compacted range from 19 Å to 22 Å with a maximum at about 

20 Å. 

Furthermore, the distances of the lactose derivatives 22, 23, 33 and 34 as well as for the 

solely ethylene glycol-equipped derivatives 18, 19, 29 and 30 were calculated similarly. 

The results for the lactose derivatives are given in Figure 22 to Figure 24. The distances 

for the azobenzene moiety for all three kinds of amphiphiles are the same as shown 

exemplarily for compound 20 (Figure 11) and 21 (Figure 15), respectively. 



30 Photoswitchable glycolipids for the investigation in lipid layers 

 

 

Figure 22: Molecular dynamics simulations with the photoswitchable lactoside 22. Top: The molecule was 

divided into four parts: the hydrophilic headgroup (blue), the azobenzene moiety (grey), and two lipophilic 

parts, one for each alkyl chain (yellow and red, respectively). Bottom: Intramolecular distances and their 

occurence as determined for the possible conformers of amphiphile 22. The distances were screened for 

three parts (as detailed above) of the molecule E-22 ((A), left) and Z-22 ((B), right), respectively.  

 

The distribution of the occurring distances for the E-isomer of compound 22 resembles 

that one of the respective glucose derivative 20. The curve of the distances of the 

hydrophilic part (blue) is shifted to longer distances between 17 and 29 Å due to the 

increased size of the carbohydrate moiety. The same shift could be observed for the C16 

derivatives with a lactose moiety (Figure 23). It is noteworthy that also the curves for the 

lipophilic alkyl chains are shifted to increased distances. This might result from the 

increased hydrophilicity of the lactose moiety which might result in a more unbent 

structure of the chains. 
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Figure 23: Molecular dynamics simulations with the photoswitchable lactoside 23. Top: The molecule was 

divided into four parts: the hydrophilic headgroup (blue), the azobenzene moiety (grey), and two lipophilic 

parts, one for each alkyl chain (yellow and red, respectively). Bottom: Intramolecular distances and their 

occurence as determined for the possible conformers of amphiphile 23. The distances were screened for 

three parts (as detailed above) of the molecule E-23 ((A), left) and Z-23 ((B), right), respectively. 

 

The results for the non-photoswitchable derivatives 33 and 34 are given in Figure 24. 

 

Figure 24: Intramolecular distances were determined by molecular dynamics simulations for 

compounds 33 (left) and 34 (right). The different possible conformers and the respective distances were 

observed by occurence. The distances were screened for three parts of the molecule (atoms are marked in 

blue, red and yellow). 
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The results for the solely ethylene glycol-equipped derivatives are depicted in Figure 25 

to Figure 27. Both for the C12 and the C16 derivatives 18 and 19, respectively, the 

occurring distances for the hydrophilic moiety are lower due to the reduced size.  

 

Figure 25: Bottom: Intramolecular distances were determined by molecular dynamics simulations for 

compound 18 in its E-state (A) as well as for the Z-isomer (B). The different possible conformers and the 

respective distances were observed by occurrence. Top: The distances were screened for three parts of the 

molecule (atoms are marked in blue, red and yellow). 

 

Also, the lipophilic alkyl chains of compound 18 and 19 show lower distances. It seems 

that the alkyl chains can form more bundled structures due to the reduced size of the 

hydrophilic counterpart within the amphiphilic structures. 
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Figure 26: Bottom: Intramolecular distances were determined by molecular dynamics simulations for 

compound 19 in its E-state (A) as well as for the Z-isomer (B). The different possible conformers and the 

respective distances were observed by occurrence. Top: The distances were screened for three parts of the 

molecule (atoms are marked in blue, red and yellow). 

 

The results for the non-photoswitchable derivatives 29 and 30 are given in Figure 27. 

 

Figure 27: Bottom: Intramolecular distances were determined by molecular dynamics simulations for 

compounds 29 (left) and 30 (right). The different possible conformers and the respective distances were 

observed by occurence. Top: The distances were screened for three parts of the molecule (atoms are marked 

in blue, red and yellow). 
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3.2.3 Photochemical properties 

For the evaluation of every potential photochemical application the photochromic 

properties of the azobenzene derivatives 18-23 are essential. Therefore, photochromic 

data were obtained by UV/Vis spectroscopy. The photoirradiation was performed using 

a UV LED (2.7 mW, λ = 365 nm for E→Z isomerisation) and a blue LED (2.6 mW, 

λ = 455 nm for Z→E), respectively. For UV measurements the E-configured azobenzene 

derivatives 18-23 were dissolved in CHCl3 at 1 mM and irradiated at 365 nm (E→Z 

isomerisation), respectively 455 nm (Z→E isomerisation) for 1 min. Detailed setup 

information according the procedure of the UV/Vis measurements can be found in the 

literature.[187] UV/Vis spectra were recorded immediately afterwards. The photochromic 

properties of the synthetic azobenzene derivatives 18-23 were investigated with a Cary 

4000 double-beam spectrometer (Varian Inc.). 

The UV/Vis spectra (Figure 28 to Figure 33) were collected with 1 nm resolution from 

260 nm to 600 nm. After irradiation with 365 nm the absorption spectra showed an 

increase of the absorbance in the n-π* transition and simultaneous decrease in the π-π* 

transition, indicating the formation of the respective Z-isomer. The E-isomer absorbance 

maxima of all compounds (18-21) were measured around 355 nm and the Z-isomer 

absorbance maximum was determined at 312 nm for each compound. A slight shift 

towards higher wavelength was detected for lactoside derivatives 22 and 23. (Figure 32 

and Figure 33) 

  

Figure 28: UV/Vis spectra for the steady state of compound 18: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 
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Figure 29: UV/Vis spectra for the steady state of compound 19: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 

 

Figure 30: UV/Vis spectra for the steady state of compound 20: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 

 

Figure 31: UV/Vis spectra for the steady state of compound 21: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 
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Figure 32: UV/Vis spectra for the steady state of compound 22: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 

 

Figure 33: UV/Vis spectra for the steady state of compound 23: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 

 

The kinetic behaviour of the thermal Z→E relaxation process was also investigated by 

UV/Vis spectroscopy by monitoring the intensity of the E-isomer at maximum 

wavelength. The mean lifetime 𝜏 was determined as 𝑎𝑏𝑠 = 𝐴 ∗ (1 − 𝑒−𝑡 𝜏⁄ ) with time 𝑡, 

absorbence 𝑎𝑏𝑠, and amplitude 𝐴. The half-life 𝑇1 2⁄  was calculated using 𝑇1 2⁄ = ln2 ∗ 𝜏. 

Regarding the half-life, an influence of the chain length of the azobenzene derivatives 

could be observed. A longer chain length triggers a longer half-life. Likewise, an 

influence of the carbohydrate moiety was observed. The glucoside residues of 20 and 21 

increased the half-life whereas the lactose moieties in 22 and 23 decreased the half-life 

compared to the non-glycosylated reference lipids 18 and 19. Besides, all six azobenzene-

equipped glycolipid mimetics 18 to 23 showed a half-life greater than 5 h and hence both 
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isomeric states can be investigated independently from one another (Table 1). Thus, 

photochromic properties of the azobenzene derivatives enable the performance of planned 

X-ray experiments as well as Langmuir film isotherm experiments. 

 

Table 1: Photochemical characterisation of the E- and Z-isomers of the azobenzene lipids 18 and 19 and 

the corresponding azobenzene glycolipids 20 to 23. 

Compound λmax (nm) 

(E-isomer) 

λmax (nm) 

(Z-isomer) 

E/Z (PSS) Half-life T1/2 (min) 

     

18 356 312 0/ 100 411 

19 355 312 0/ 100 516 

20 356 312 0/ 100 686 

21 355 312 0/ 100 1119 

22 355 314 0/ 100 343 

23 355 315 5 / 95 443 

 

To examine the feasibility of the glycolipid mimetics for Langmuir film isotherm 

experiments preliminary tests were performed. For this, a Langmuir film was produced 

from 95 % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 5 % of the 

synthetic glycolipid mimetic 20 and compared with pure DPPC Langmuir films on the 

one hand and a pure water surface on the other hand. Those produced Langmuir films 

were subjected to Brewster angle microscopy as shown in Figure 34. The pure water 

surface is depicted on the left (Figure 34A) showing a clear difference to the other two 

micrographs. The azobenzene derivative 20 employed in a 5:95 mixture with DPPC 

(Figure 34C) shows no difference from the pure DPPC (Figure 34B) matrix and therefore 

it can be concluded that a stable Langmuir film is formed which is suitable for eventual 

X-ray experiments. 
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Figure 34: Pictures recorded on a Brewster angle microscope of pure water (A), a DPPC monolayer (B) 

and a monlayer containing 95 % DPPC and 5 % of compound 20. 

 

The results of the Brewster angle microscopy as well as the photochemical data obtained 

from the UV/Vis spectroscopy are very promising. On the one hand, the half-lifes of all 

Z-isomers of the synthetic glycolipid mimetics were long enough to be investigated 

independently from the E-isomer. On the other hand, also the formation of monolayers 

with embedded mimetics worked nicely as shown in Figure 34. This in turn will allow 

future experiments which both follow structural changes in a membrane on the nanoscale 

during photoswitching and study the dynamics via X-ray investigations. Those 

experiments partly were, and party will be performed by JONAS WARIAS under the 

supervision of Dr. BRIDGET MURPHY at the Institute of Experimental and Applied Physics 

at Kiel University. 
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3.2.4 Next generation of photoswitchable glycolipid mimetics 

To further extend the work with photoswitchable glycomimetics, an azobenzene 

derivative was targeted in which a push-pull azobenzene is ligated to form one bis-azo 

derivative (Figure 35). This work is based on research published by VELASCO et al. (cf. 

chapter 3.1.2).[148] 

 

Figure 35: (a) Structure of the bis-azo derivative synthesised by VELASCO et al.; (b) Two reference 

molecules were synthesised which are comparable to the constituent parts.[148] 

 

Photoswitchable materials which are based on azobenzene photoswitches are typically 

fabricated by incorporation of one kind of azobenzene derivatives. Depending on the 

employed stimulus the entire molecular entity is triggered to result in a specific effect to 

which all incorporated azobenzene moieties add synergistically. Such materials can just 

perform one function at a time. In order to establish multifunctionality in the field of 

photoswitchable materials, VELASCO et al. synthesised a bis-azo derivative as shown in 

Figure 35. They combined an azobenzene unit with a slow thermal relaxation rate with a 

push-pull derivative, which shows a fast thermal relaxation. This combination furnished 

a new photoswitch featuring a high temporal resolution of 2 x 108 times between the rates 

for thermal Z →E isomerisation of both building blocks. Such bis-azo photoswitches can 

be orthogonally addressed by two different wavelengths since E→Z isomerisation of the 

‘slow’ part is triggered by UV light whereas the ‘fast’ part can also be addressed by green 

light.[148] To tie in with the idea of VELASCO et al. to perform isochronous switching on 

two different timescales, we designed bis-azo glycolipids to enhance the 

multifunctionality of photoswitching in the field of lipid bilayers (Figure 36). 
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Figure 36: Chemical structure of the targeted bis-azo glycolipid. 

 

The lipophilic building block for the second generation of photoswitchable glycolipids 

was synthesised in analogy to the pathway for the synthesis of compounds 16 and 17 

(Scheme 3). Starting from literature-known compound 35,[146, 188] the glycerol-equipped 

azobenzene 36 was obtained as a (R,S) mixture in a yield of 80 % via etherification with 

the tosylate 13. Successive acidic deprotection of the isopropylidene protection group led 

to diol 37 which was subsequently submitted to esterification with lauric, respectively 

palmitic acid. The esterification product 38 was obtained with a yield of 61 % and the 

corresponding long-chain fatty acid ester 39 in 79 % (Scheme 6). 

 

Scheme 6: Preparation of the lipophilic building blocks for glycolipids of the second generation: Lipophilic 

components 38 and 39 were deduced from p-phenylazopyridine 35 via ether synthesis with the glycerol 

core structure 13 and subsequent esterification. 
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Since amphiphiles 20 and 21 showed good results during initial investigations, the 

hydrophilic β-D-glucoside 10 was employed for the preparation of the second generation 

of glycolipids. Therefore, the glucoside 10 was conjugated to the azobenzene 40 in a 

PMDTA (pentamethyldiethylenetriamine) supported 1,3-dipolar cycloaddition. The 

resulting glycoconjugate 41 is equipped with a bromine substituent and can thus undergo 

substitution with the pyridine moiety of the lipophilic building block 38 and 39, 

respectively. The nucleophilic substitution was performed in dry acetonitrile at 80 °C. 

After cooling the reaction mixture to room temperature, glycolipid 42 precipitated in a 

yield of 75 %. Surprisingly, the long-chained analogue 43 did not precipitate from the 

reaction mixture and could thus not be obtained (Scheme 7). 

 

Scheme 7: The hydrophilic building block 41 for glycolipid formation was synthesised via click chemistry. 

Both building blocks are individually photoswitchable and can be combined via nucleophilic substitution 

to one photoswitchable glycolipid. 
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To confirm that the synthesised bis-azobenzene glycolipid mimetic 42 has similar 

photochemical properties as the model system of VELASCO et al.,[148] photochemical 

investigations were performed both for the target molecule 42 and the building blocks 38 

and 41. The UV/Vis spectrum of the bis-azo derivative 42 is shown in Figure 37. After 

irradiation with 365 nm the absorption spectra showed an increase of the absorbance in 

the n-π* transition and simultaneous decrease in the π-π* transition, indicating the 

formation of the respective Z-isomer. 

 

Figure 37: UV/Vis spectra for the steady state of compound 42: The E-isomer is shown in blue and the 

Z-isomer in red. Irradiation was performed with 365 nm (E→Z) and 465 nm (Z→E) in chloroform. 

 

Half-lifes were determined by NMR spectroscopy according to the procedure described 

in chapter 5.3.4. The half-life for the target molecule 42 was determined as 16.2 h. For 

the glycoside 41 the half-life was 25.4 h. For the second building block, the 

phenylazopyridine derivative 38, no half-life could be determined, neither via NMR 

spectroscopy nor via UV/Vis spectroscopy. UV/Vis spectroscopy features the advantage 

that the measurement can be performed with solutions of low concentrations. Thus, the 

suppression of photoswitching due to high concentrations can be excluded. Presumably 

the thermal relaxation of compound 38 proceeds in a very short time which is too fast to 

be detectable by NMR or UV/Vis measurements. Indeed, for phenylazopyridinum 

derivatives half-lifes of less than one second were reported.[116] Nevertheless, the obtained 

results already indicate that the bis-azobenzene derivative 42 has two constituent parts 

with different half-lifes. The NMR spectra of compound 42 for the E- and the Z-isomer 

are shown in Figure 38. Although the preliminary NMR spectrum of the building block 38 

suggested a thermal relaxation which cannot be detected, the spectrum of compound 42 
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shows that all aromatic signals are shifted. The chemical shift in the aromatic region of 

the Z-isomer can be traced to the switching of the azobenzene derivative located on the 

triazole moiety, the slowly switching moiety. 

 

Figure 38: NMR spectra of the Z- and the E-isomer of compound 42 in DMSO-d6: The spectrum of the 

E-isomer was recorded after keeping the probe at 40 °C for 16 h (bottom) and the spectrum of the Z-isomer 

was recorded after irradiating the probe with a 365 nm LED for 15 min (top). 
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3.3 Conclusion 

In the course of this sub-project, a series of novel photoswitchable glycolipids and 

corresponding non-photoswitchable derivatives was prepared. Photochemical 

investigations showed that both the nature of the hydrophilic headgroup and the chain 

length of the lipophilic tail influence the half-life of the thermal relaxation. Especially the 

influence of the carbohydrate moiety shows a clear impact on photoswitching: The 

glucoside residues of compounds 20 and 21 almost double the relaxation time for both 

chain lengths whereas the -D-lactoside moiety of compounds 22 and 23 diminished the 

half-lifes. For derivatives with longer chain length, thermal Z→E relaxation is slowed 

down. The glycolipid mimetics 18-23 and 42 can now be embedded into lipid monolayers 

for the investigation of the effects of photoswitching. Since all derivatives form stable 

Z-isomers, Langmuir isotherm and X-ray investigations can be performed for each isomer 

independently from one another. The examination of the conformational changes 

triggered by photoswitching will create a useful model system on the nanoscale for the 

investigation of dynamic transformations of and within membranes. The bifunctional 

glycolipid 42 will be a special tool for triggering dynamic changes within a membrane. 

Since the molecule has two azobenzene moieties with different photochromic properties, 

both photoswitches can be addressed orthogonally and this may result in the induction of 

special dynamic processes within the lipid layer. A special focus will eventually lie on 

the influence carbohydrates play within membranes regarding stabilisation of the lipid 

layer for instance. In addition, the application of glycolipid derivatives will not only allow 

new insights into the field of membrane dynamics but can also open the field of potential 

applications, for example in drug delivery. 
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4 Assay systems for bacterial adhesion studies 

Carbohydrates play an essential role in cell-cell recognition, microbial adhesion and 

microbe invasion as well as for pathogenity. All three processes are based on the specific 

interactions of lectins and cell surface carbohydrates.[5] To elucidate such processes and 

to get a deeper insight into biological function of glycoconjugates and lectins much effort 

has been spent to date. Nevertheless, the mechanisms of carbohydrate-mediated 

interactions are not yet conclusively understood. Also, it has to be stated that in 

comparison to the field of nucleic acids and proteins the field of the glycosciences is still 

lacking versatile methods for structural and functional investigations.[28] Whereas the 

fields of proteomics and genomics hold valuable tools like polymerase chain reaction 

(PCR), automated sequencing or automated synthesis ready, much more effort has to be 

spent for investigations in the field of glycomics.[27] First of all, glycoconjugates have to 

be either isolated from naturally occurring sources or synthesised. Secondly, gained 

carbohydrate derivatives must be analysed and characterised and finally the interactions 

with proteins, e.g. lectins, bacteria, cells or viruses must be investigated. For the 

exploration of carbohydrate-cell interactions different methods are provided for selection 

depending on the individual objective. Particularly with regard to structure determination 

either of the glycoconjugate or the carbohydrate-lectin complex, mass spectrometry[189-

191] and nuclear magnetic resonance spectroscopy (NMR)[46, 192-193] are appropriate. 

Besides, isothermal titration calorimetry (ITC),[194-195] surface plasmon resonance 

spectroscopy (SPR)[196-197] and atomic force microscopy (AFM)[198] are expedient tools. 

Last but not least, glycoarrays have to be mentioned necessarily in this context. 

Glycoarrays are an advancement of microarrays which have been applied for the 

investigation of DNA, proteins, tissues and antibodies since the early 1980s.[199] The 

benefit of glycoarrays lies in their feasible handling which can be combined with different 

analytical procedures ranging from surface investigations e.g. via SPR spectroscopy, 

reflection absorption infrared spectroscopy or by mass spectrometry via MALDI ToF[200-

201] to biochemical procedures like adhesion studies.[202-203] In addition, they are not very 

much time-consuming and can be performed with just little quantities of precious 

glycans.[204] Albeit it is extremely challenging to imitate the complex structures of 

naturally occuring glycan structures, glycoarrays represent versatile model systems for 

the mimicry of such glycosylated surfaces, their molecular interactions and 

supramolecular relations on cell surfaces.[205] It permits the reverse conclusion that 

glycoarrays at least constitute well-defined systems which can be investigated with a view 
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to particular glycosides as well as defined parameters as density, orientation, pH, 

temperature and ionic concentration. Glycoarrays are composed of immobilised glycans. 

Immmobilisation can be realised either non-covalently by adsorption or covalently by 

chemical ligation.[206] In most cases, gold, glass or polystyrene surfaces are employed. 

The non-covalent fixation is based on ionic and hydrophobic interactions.[207] In case of 

non-amphiphilic compounds this method is limited by the molecular weight which has to 

amount to 3.3-2000 kDa, consequently small mono- or oligosaccharides can only be 

immobilised in the form of glycoconjugates like glycoproteins or glycolipids.[208] A range 

of well-established methods for the covalent immoblisation of glycosides is shown in 

Scheme 8. Most common glycans are immobilised on prefunctionalised surfaces either 

by amide formation on amino-functionalised surfaces[209] or by depositing amines to 

active esters e.g. immobilised pyrrolidine derivatives.[210-214] Further methods are based 

on thiol-maleimide ligation[215-217] or on cycloaddition ranging from click chemistry[213, 

218-221] to Diels-Alder reactions.[222] An interesting method is shown under entry (f) 

(Scheme 8) which shows the covalent immoblisation on a non-prefunctionalised surface 

by light-induced insertion to the surface material.[223] 

 

Scheme 8: Methods for the immobilisation of glycans (R) on surfaces: (a) amide formation via active ester; 

(b) thiol maeimide ligation; (c) (3+2) cycloaddition; (d) Diels-Alder reaction; (e) amide formation; (f) 

photochemical fixation.[206] 

 

To gain reliable results from glycoarrays such as in adhesion studies, some requirements 

must be fulfilled. As a start, unspecific interactions of the adhering species, e.g. bacteria, 
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with the pristine surface must be supressed by using blocking agents or intrinsically little 

adhesive materials. Secondly, during glycoarray fabrication the occurrence of clustering 

effects which would lead to an irregular density of glycans on the surface should be 

avoided. For comparability of results it is important that glycosides are arranged regularly 

and homogenously so that every immobilised glycoside ligand has the same accessibility 

for adhering species. Finally, one has to keep in mind to choose a surface which is 

applicable for common investigation methods.[205] To fulfill all these aspects, the concept 

of self-assembled monolayers (SAMs) was introduced to the field of glycoarray 

fabrication some time ago.[222] SAMs can be constructed on metal or metal oxide surfaces 

either by covalent bond formation with the respective molecules or by their adsorption or 

by hydrophobic interactions. Established systems for SAM fabrication are silanes on 

silicium, carboxylic acids on metal oxides and especially organosulfur compounds on 

gold.[200] For glycoarray fabrication, glycans thus have to be equipped with a hydrophobic 

residue for adsorption. Alternatively, the glycoarray can be prepared starting with SAM 

formation of linker molecules, which are equipped with a functional group for subsequent 

ligation with glycoside derivatives.[224] Unspecific binding can be prevented by using 

oligoethylene glycol linkers.[204, 218, 222, 225-231] The experience from glycoarray studies was 

also transferred to investigations of molecular interactions of organisms with glycan-

decorated particles of different shape and material to enlarge the variety of methods and 

applications. The scope varies from nanodiamonds,[232-233] quantum dots[234-235] and gold 

beads[236] to polymer beads which can feature fluorescence[237] or magnetism.[234, 238] 

Although the beads concept gives more experimental flexibility, all methods described 

prior to this lack the ability to mimic convincingly the adhesive recognition processes 

which take place in every eukaryotic cell in every second of life. Therefore, one general 

aim in science is to establish glycoarrays with higher flexibility and a surface decoration 

which can describe and imitate nature more satisfactorily. For this purpose, two 

approaches were taken. In the first approach, glycoarray fabrication is facilitated to 

produce glycoarrays with formidable glycan decoration. In the second approach, 

glycosylated surfaces were prepared which are on a par with naturally occurring 

glycosylated surfaces. In connection with earlier works performed in the LINDHORST 

group,[239-241] we performed adhesion assays with type 1 fimbriated E. coli, mediated by 

the lectin FimH. Lectin FimH mediates the adhesion of UPEC (uropathogenic E. coli) to 

α-D-mannosides which are displayed on urothelial epithelial cells.[242] 
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4.1 Simple fabrication of glycosylated surfaces for bacterial adhesion 

studies by using pentafluorophenylazides as linkers 

4.1.1 Introduction 

Pentafluorophenylazides (PFPA) are known for their reliable atom-economic 

photochemistry. Hence, PFPA linkers can be used for glycan immobilisation without the 

need of prior functionalisation of the glycan. Therefore, it was the objective of this sub-

project to utilise PFPA-functionalised surfaces for glycoarray fabrication. The azido 

functional group of PFPAs is photoactivatable and in addition, PFPAs can be further 

functionalised in para-position with great ease.[223] Hence, PFPA building blocks were 

used for many applications in material sciences including surface functionalisation and 

their implementation in polymer synthesis.[243-253] With regard to glycobiology, PFPA 

chemistry found applications for the fabrication of glycosylated surfaces[250, 254-263] and 

glyconanoparticles[264-265] in order to investigate biomolecular recognition processes and 

also antiviral antibodies were produced by PFPA ligation.[266] PFPA chemistry provides 

the opportunity for simple glycoarray fabrication with unmodified glycoconjugates since 

light triggers the chemoselective ligation. This also embraces the possibility for spatial 

resolution. Advantageously, PFPA chemistry works under mild reaction conditions in 

aqueous media and does not require any additional reagents and in addition does not 

release any side products.[223] Besides, the probability of effective insertion of PFPA-

functionalised molecules to substrates increases with the number of CH bonds within a 

molecule (Figure 39). Therefore, PFPA chemistry for glycoarray formation was also 

employed to glycoclusters (Figure 40) since multivalent ligands have increased numbers 

of CH bonds for photochemical insertion reactions.[267-270] 
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Figure 39: Schematic representation of the glycoarray fabrication by PFPA chemistry. Carbohydrates can 

be immobilised to a pentafluorophenylazide-prefunctionalised surface by UV light. Under irradiation with 

UV light of 250 nm, PFPAs release elementary nitrogen resulting in a highly reactive nitrene intermediate 

which can undergo an insertion reaction to CH bonds. 

 

4.1.2 Results and discussion 

Glycoarray synthesis was focussed on mono-, di and trivalent mannosides to look at 

possible multivalency and density effects. Finally, those arrays were subjected to bacterial 

adhesion studies with type 1 fimbriated E. coli (PKL1162 strain) (Figure 39). First, the 

synthetic part of the project is described below. A photoreactive linker molecule 7 

composed of a biorepulsive ethylene glycol unit and a terminal azido functionality for 

light-driven insertion was synthesised according to literature procedures.[271-273] Methyl 

pentafluorobenzoate 1 was equipped with an azido group in para-position by substitution. 

After deprotection of the methyl ester 2 under basic conditions, the resulting acid 3 was 

converted to a NHS (N-hydroxysuccinimide) active ester 4. Since the PFPA compound 4 

shall be used as a functional coating of surfaces, a functional group for the immobilisation 

of the respective surface is required. Therefore triethylene glycol derivative 5 was 

synthesised[274] which is biorepulsive and accessorily suppresses unspecific binding of 

bacteria to the polystyrene surface.[275] Active ester 4 and amine 5 were reacted to yield 

compound 6 which was subsequently deprotected to produce amine 7 with an overall 

yield of 85 % after five steps (Scheme 9).  
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Scheme 9: Synthesis of PFPA linker 7: (a) NaN3, acetone/H2O, Δ, 8 h, 95 %; (b) NaOH, MeOH/ H2O, rt, 

20 h, 95 %; (c) NHS, DCC, DCM, rt, 19 h, 99 %; (d) DCM, rt, 16 h, 95 %; (e) TFA, DCM, rt, 4 h, quant. 

 

To test pentafluorophenylazide-mediated glycoarray fabrication, four different 

glycosides were prepared, the two monovalent glycosides 12 and 13 and and two 

mannoside clusters, the divalent derivative 30 and the trivalent cluster 31. All glycosides 

are equipped with an alkyl chain for the photochemical ligation. Both monomeric 

compounds were synthesised according to the literature.[276-278] Starting from the glycosyl 

donors 8 and 9, respectively, 1-octanol (10) was glycosylated under Lewis acid catalysis 

to obtain the mannoside 11 and the glucoside 12 in 81 % and 77 % respective yields. 

Following deprotection under ZEMPLÉN conditions[179] gave the unprotected 

glycosides 13 and 14 in quantitative yields (Scheme 10). 

 

Scheme 10: Synthesis of monovalent glycosides 13 and 14 via BF3·Et2O promoted glycosylation.[276] 

 

Di- and trivalent cluster mannosides were designed according to work published by ROY 

et al.[279-280] as shown in Figure 40. Two different synthetic pathways were considered, 

one starting with the construction of the cluster and subsequent functionalisation of the 
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molecular core (Figure 40, (A)), in the other approach, the core was functionalised first 

and then the cluster was built up (Figure 40, (B)). 

 

Figure 40: Schematic representation of the approaches for glycocluster formation. The first synthetic 

pathway started with the construction of the cluster and subsequent core functionalisation (A). The second 

approach provided the functionalisation of the core first and then the build-up of the cluster (B). 

 

The first considered reaction pathway (A) is advantageous as it allows to equip the 

synthesised glycoclusters with any required focal moiety afterwards. Here, alkyl chains 

were desired, to facilitate glycoarray functionalisation by photochemical nitrene 

insertion. Starting from serinol 15 and tris(hydroxymethyl)aminomethane (TRIS) 16, 

Boc protection was performed initially with high yields.[281] The resulting alcohols 17 and 

18, respectively, were equipped with alkyne functionalities by WILLIAMSON etherification 

with propargyl bromide to obtain versatile core molecules 20 and 21 in 83 % and 41 % 

respective yields.[279, 282] Next, 20 and 21 were employed in a click reaction with the 

azidoethylmannoside 22[283] under copper (I) catalysis by using sodium ascorbate and 

copper sulphate (CuSO4·5H2O) which led to the desired clusters 23 and 24 in yields of 

72 % and 86 %, respectively.[280] Then, the focal amino functionality was liberated with 

trifluoroacetic acid to yield free amines 25 and 26 in quantitative yields (Scheme 11).[284] 

The introduction of the desired alkyl chains was then attempted with hexanoic acid 27 

and DCC but 25 gave only minor amounts of the expected derivative 28 and the trivalent 

analogue was achieved in unsatisfactory 10 %. Nevertheless, 28 and 29 were deprotected 

to furnish 30 and 31, respectively.  
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Scheme 11: First synthetic strategy: Di- and trivalent cluster molecules 25 and 26 were synthesised starting 

from serinol 15 and TRIS 16, respectively. The amino functionality allowed adjacent functionalisation of 

the molecules with a favoured core. Reacction conditions: (a) Boc2O, MeOH, rt, 42 %; (b) KOH, dry DMF, 

0 °C → 35 °C, 4h. 

 

The subsequent attempts to improve the alkyl functionalisation at the focal point of 

glycocluster 26 are summarised in Scheme 12. First, amide bond formation was further 

investigated. Hence, the amine 26 was reacted with the known NHS active ester of 

hexanoic acid 32 (Scheme 12(A)[285-286] under three different conditions. The first 

reaction was performed with K2CO3 in dry acetonitrile. The reaction stirred under reflux 

for 15 h.[287] The second reaction required 1,8-diazabicyclo[5.4.0]undec-7-en (DBU). The 

reaction mixture in dry acetonitrile was stirred for 16 h at room temperature.[288] Both 

reactions showed no conversion according to thin layer chromatography (TLC). The third 

entry used triethylamine (NEt3) at 0 °C. After warming up to room temperature, the 

mixture was stirred for another 40 h at room temperature.[289] This approach also only 

gave a small amount of the crude product which does not justify the longer synthetic 

pathway via the NHS active ester. Then, another coupling reagent, namely HATU ((1-

[Bis(dimethyl-amino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate) and DIPEA (N,N-Diisopropylethylamine) were employed for 

amide formation. The reaction was performed in dry DMF and stirred at room 

temperature for 16 h to yield 17 % of the crude product (Scheme 12(B)). When 26 was 

dissolved with hexanoyl chloride 33 and NEt3 in dry DCM and reacted at room 

https://en.wikipedia.org/wiki/N,N-Diisopropylethylamine
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temperature,[290] no product was obtained (Scheme 12(C)). Since functionalisation at the 

focal point of 26 via amide bond formation was not successful, thiourea bridging as 

alternative ligation chemistry was tried out next (Scheme 12(D)).[291] However, also this 

reaction did not yield the expected product neither with 26 nor with 25 as starting 

material. Finally, the focal amino function was converted into an azido functionality by 

the azide transfer reagent imidazol-1-sulfonylazide hydrochloride 35 (Scheme 12(E)), 

however, TLC control indicated no conversion even after 16 h. 

 

Scheme 12: Overview of the approaches which were investigated to find an effective route towards the 

fabrication of core-functionalised glycoclusters. Several reagents and conditions were tested commencing 

from amine 26.  

 

As all attempts made here to functionalise the focal point of glycoclusters 25 and 26 were 

unsuccessful, the synthetic strategy was changed, and the core molecule functionalised 

prior to sugar conjugation (Figure 40 (B)). It can be anticipated that also during this 

strategy all performed syntheses worked successfully in case of divalent molecules, but 

some effort was made to finally obtain a trivalent cluster (Scheme 16). 
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Hence, the core molecules 20 and 21 were deprotected with trifluoroacetic acid[292] to 

obtain amines 38 and 39 which were utilised for amide bond formation with hexanoic 

acid 27 with DCC as coupling agent. Core molecules 40 and 41 were obtained in 51 % 

yield (40) and 68 % (41). The successive synthesis of the cluster with mannoside 22[283] 

was performed under copper (I) catalysis by using sodium ascorbate and CuSO4·5H2O. 

The divalent cluster 28 was obtained with an auspicious yield of 74 % with slight 

impurities after column chromatography (Scheme 13). However, the same click reaction 

with the trivalent core molecule 41 gave no product at all, neither when the catalytic 

system for the cycloaddition was changed to CuBr and PMDTA (cf. chapter 3.2.1). 

Although the results for the divalent cluster 28 were promising, further efforts were 

needed for the synthesis of the trivalent analogue. 

 

Scheme 13: Second strategy for cluster synthesis: Starting from compounds 20 and 21, respectively, the 

alkyl chain was first introduced and the cluster constructed secondly. 

 

To try thiourea bridging next, the alkyl chain-equipped core molecules 48 and 49, 

respectively, were prepared according to two synthetic pathways. The first synthesis 

started with serinol 15, respectively 16 and hexyl isothiocyanate 41 to obtain 

molecules 43 and 44. Then, the di- and trivalent alcohols 43 and 44 were employed in a 

WILLIAMSON ether synthesis with propargyl bromide 19. Etherification yielded the 

divalent core molecule 48 in 74 % yield, but no product was obtained in case of the 
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trivalent alcohol 44. The same outcome resulted from the second reaction pathway which 

started from amino-functionalised compound 38 and 39, respectively. First, both amines 

were converted to the corresponding isothiocyanates using thiophosgene. The reactions 

provided the desired products in 26 % yield for compound 45 and 73 % for compound 46. 

To avoid thiophosgene as reagent, amine 37 was first converted into the azide 50 with 

imidazol-1-sulfonylazide hydrochloride 35 and afterwards reacted with carbon disulfide 

and triphenylphosphine to yield isothiocyanate 46 in an excellent yield of 89 %. With 

both isothiocyanates 45 and 46 in hand, thiourea bridging was performed with 

hexylamine 47. The divalent core molecule 48 was obtained in 74 % yield whereas the 

synthesis of the trivalent analogue remained unsuccessful. Continuing from the divalent 

core molecule 48, glycocluster 51 was obtained by click reaction with azido-

functionalised mannoside 22[283] in 62 % yield (Scheme 14).  

 

Scheme 14: Synthesis of glycocluster 51 starting with the functionalisation of the core via thiourea bridging 

and subsequent build-up of the cluster through click chemistry with azide 22. Conditions: (a) imidazol-1-

sulfonylazide hydrochloride 35, CuSO4·5H2O, MeOH, rt, 16 h; (b) CS2, PPh3, CHCl3, rt, 16 h; (c) 

thiophosgene, NEt3, dry DCM, rt, 16 h. 
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In conclusion, the synthesis of divalent glycoclusters could be easily achieved whereas 

synthesis of the trivalent analogue remained problematic. The next attempts which were 

made are depicted in Scheme 15. Therefore amines 15 and 16 were employed in a reaction 

with butyl chloroformate 52 to form carbamates 53 and 54, respectively.[293] Both 

molecules were submitted to WILLIAMSON ether synthesis with propargyl bromide 19. 

Again, just the divalent molecule delivered 55 in a yield of 36 %. The following click 

reaction proceeded without difficulty to yield cluster 57 in 76 %. 

 

Scheme 15: Synthesis towards glycocluster 57 employing butyl chloroformate 52 for ligation with 

amines 15 and 16, respectively. 

 

In a next attempt, carbamate formation was tried with glycoclusters 25 and 26, which 

were deacetylated beforehand due to solubility issues. In this approach, ultimately the 

trivalent core molecule could also be functionalised at the focal point allowing to finally 

proceed with the project in bacterial adhesion studies as outlined above. The focal points 

of 25 and 26, respectively, were functionalised with an alkyne chain by carbamate 

formation with butyl chloroformate 52 making carbamates 57 and 60 available with a 

yield of 72 % and 59 %, respectively. Acetylation was performed for facile purification. 

The last step of the synthesis route was the removal of the O-acetylated protecting groups 

under ZEMPLÉN conditions[179] resulting in compound 61 and 62 in quantitative yields 

which were then applicable for bacterial adhesion studies (Scheme 16). 
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Scheme 16: Successful synthesis of glycoclusters 61 and 62 via carbamate formation between amines 58 

and 59, respectively, with butyl chloroformate 52. 

 

In summary, for the fabrication of glycosylated surfaces for bacterial adhesion studies by 

light-induced pentafluorophenylazide-mediated insertion reaction four different 

glycosides were prepared, the two monosaccharides 13 and 14 and the di- and trivalent 

glycoclusters 61 and 62, respectively.  

For glycoarray formation, commercially available preactivated Nunc polystyrene 96 well 

microtiter plates were used. After incubation with the amine 7, the PFPA-modified 

surface 63 was formed which was then applicable for subsequent immobilisation of the 

prepared carbohydrates, 13, 14, 61 and 62 which were employed in serial dilutions in PBS 

buffer. (Scheme 17).  
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Scheme 17: Synthesis of the PFPA-functionalised surface 63 and schematic picture of the glycoarray 

surface after irradiation. All four immobilised carbohydrate derivatives 13, 14, 61 and 62 are shown in the 

box above. 

 

The microtiter plate was irradiated with a mercury vapour discharge lamp with a 

wavelength of 254 nm for 30 minutes. Photofixation was followed by washing steps with 

PBST (phosphate buffered saline with tween) to remove unreacted glycoconjugates and 

incubation with ethanolamine to block unreacted surface groups. Finally, the glycoarrays 

were used in bacterial adhesion studies. Microtiterplates were incubated with type 1 

fimbriated E. coli (PKL1162 strain). Since the PKL 1162 strain contains the GFP (green 

fluorescent protein) gene, bacterial adhesion was quantified by fluorescence read out in 

the end.[239, 270] The results of adhesion studies are depicted in Figure 41. 
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Figure 41: Bacterial adhesion (quantified by fluorescence intensity) to glycosylated surfaces fabricated by 

PFPA linkers as measured with the described assay. Three mannoside derivatives 13, 61 and 62 were tested 

in comparison to a glucoside derivative 14. Given concentrations are based on solutions which were used 

for the irradiation reaction. Error bars are standard deviations generated from triplicate values on one plate. 

 

An almost four times higher adhesion for mannoside 13 in comparison to glucoside 14 

for the starting concentration of 25 mM was detected and can be taken as a proof of 

successful array formation. As expected, glucoside 14 showed just little fluorescence 

independent of the applied the concentration. This confirmed that there was no adhesion 

for glucoside 14. Surprisingly, divalent mannoside cluster 61 showed way less adhesion 

for the same concentrations than the monovalent mannoside 13 at least in the range of 

25 mM to 1.5 mM concentrations. Above all, the trivalent mannoside cluster 62 shows 

the same behaviour and consequently the least adhesion of all three mannoside ligands. 

For lower concentrations (1 mM and lower) the observation is reversed: di- and trivalent 

clusters 61 and 62, respectively, show rather similar adhesion which is then higher than 

the adhesion of monovalent mannoside 13. Similar multivalency effects were 

investigated on glycoarrays conventionally fabricated from amino-equipped mannose 

derivatives on prefunctionalised polystyrene surfaces.[270] 
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4.1.3 Conclusion 

Different glycoarray surfaces with mono- to trivalent mannoside derivatives were 

successfully synthesised by PFPA-mediated photo-immobilisation The immobilisation 

was proven by bacterial adhesion studies which showed concentration-dependent high 

adhesion for the mannose derivatives immobilised on the PFPA-functionalised surface. 

The glucose-configured control showed no adhesion as expected. Even though effects of 

multivalency could not be investigated completely since the orientation of immobilised 

molecules is unknown, we observed that the affinity for di- and trivalent clusters is 

proportionally higher at lower surface concentrations. This effect could be rationalised by 

better exposure and therefore better accessibility of the single cluster molecules on the 

surface at lower concentrations. Those results regarding the multivalency effect of di-and 

trivalent glycoside clusters are in accordance with studies which were performed earlier 

on by WEHNER et al. on glycoarrays formed of amino-equipped cluster molecules on 

prefunctionalized polystyrene surfaces.[270] 
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4.2 Bioorthogonal click chemistry on glycosylated surfaces for the 

investigation of bacterial adhesion 

4.2.1 Introduction 

Using bioorthogonal click chemistry, a second approach towards tailor-made glycoarrays 

was taken aiming at mimicking more of nature’s complexity. Bioorthogonal reactions are 

reactions that according to BERTOZZI “neither interact with nor interfere with a biological 

system”.[294-295] For a successful bioorthogonal reaction a high rate and inertness against 

other functionalities which can occur in biological systems such as hydroxyl groups, 

thiols or amines is required.[296-297] Two prominent bioorthogonal ligation methods are 

widely-used in biological chemistry. First, the reaction of an azide with a 

triarylphosphane which was investigated by STAUDINGER in 1919[298] and refined by 

BERTOZZI such as a stable amide bond can be formed after reduction of the azide to an 

amine.[295] The second well-known reaction is the click reaction which occurs between an 

azide and an alkyne in presence of a copper (I) catalyst to yield triazoles. This copper-

catalysed strategy was developed by SHARPLESS
[299] and MELDAL

[300] after HUISGEN
[301-

302] had already explored the formation of triazoles from azides and alkynes by thermal 

activation. As described above (chapter 4), glyco-SAMs do not mimick the chaotic 

structure of the glycocalyx and therefore the tools for the investigation of carbohydrate-

lectin interactions were further extended towards glyconanoparticles[234, 236-238, 303-307], 

glycosylated polymers[308-310] and glycosylated polysaccharides.[311-317] The 

characteristics of polysaccharides are dependent on their monomers, the connection 

pattern of monomers, functional groups which might be attached on the polysaccharide 

and the occurrence of branching.[318] This can be exemplified by cellulose, amylose and 

dextran. Whereas all three constitute D-glucose, the specific features of cellulose arise 

from β(1,4) glycosidic linkages, from α(1,4) glycosidic linkages for amylose and dextran 

is characterised by α(1,4), α(1,2) and α(1,3) glycosidic linkages.[319-320] Water solubility 

increases from cellulose over amylose to dextran.[321-322] Especially dextran derivatives 

can resemble a large glyco-flexibility and a variety of structures. Thus, MELNYK and 

coworkers equipped a dextran derivative with azido functionalities, performed click 

chemistry with alkyne-equipped glycosides and finally immobilised the whole dextran-

glycoside conjugate on microtiter plates.[323] BÖCHER and coworkers pursued a likewise 

approach. They used dextran as a carrier molecule for the fabrication of monofunctional 

peptide-dextran conjugates by amide bond formation. The immobilised peptides were 
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then immunodetected and compared to the results for peptides which were directly 

immobilised on ELISA plates. This method led to an improvement of the required amount 

of peptides by 2 to 3 order of magnitudes.[324]  

In this sub-project, click chemistry was applied for conjugation of alkyne-equipped 

ligands on the azido-equipped dextran surface. Thus, a less ordered but in return more 

natural orientation of the surface glycosides was provided. A microtiter plate was first 

decorated with an azido dextran derivative to form a glycoarray which was decorated with 

irregularily presented azido functionalities on its surface. This set-up should mimic the 

naturally occurring situation of adhesion to the glycocalyx appropriately (Figure 42, (C)). 

To evaluate the outcome of the polysaccharide-based glycoarray, two reference arrays 

were designed. One, fabricated from an azido oligoethylene glycol derivative, 

representing highly ordered SAM surfaces (Figure 42, (A)) and another surface was 

created by immobilising β-D-glucosides which carry an azido functionality at the 

6-position. Immobilisation was performed via a terminal amine on the aglycone 

(Figure 42, (B)). Eventually, click chemistry was performed on the three microtiter plates 

to introduce the mannoside residues before bacterial adhesion studies were performed. 

 

Figure 42: Schematic representation of the three microtiter plate surfaces which were prepared for this 

project: (A) an azido functionalisation was realised by immobilising azido-equipped triethylene glycol 

derivatives representing a well-ordered system; (B) immobilisation of an amino ethyl glucoside which 

carries an azido functionality at the 6-position to enable further ligation of mannosides; (C) immobilisation 

of an azido dextran derivative as a natural source coating for glycoarray formation via click chemistry. 
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4.2.2 Results and discussion 

Azido-functionalised glucoside 69 was synthesised according to the literature[325] starting 

from peracetylated azidoethyl glucoside 64 leading to compound 68 in four steps. By 

deprotection of compound 68 with trifluoroacetic acid, the free amine 69 was obtained 

quantitatively (Scheme 18). 

 

Scheme 18: Synthesis of amino-equipped glucoside 69 for the immobilisation on prefunctionalised 

microtiter plates. 

 

The synthesis of azido derivatives of cellulose and starch malfunctioned since the starting 

material did not solve properly in appropriate solvents.[326] Thus, dextran, which features 

a higher solubility, was chosen since solubility is essential for the synthesis and adjacent 

glycoarray fabrication. Azido dextran 72 was prepared in two steps according to a 

procedure described by HEINZE et al.[327] using N,N‘-dimethylacetamide (DMAA) and 

lithium chloride as a solvation system. Starting from dextran 70, first, tosylation with 

tosyl chloride and triethylamine was performed and then a nucleophilic substitution with 

sodium azide gave azido dextran 72 with a yield of 80 %. (Scheme 19).  

 

Scheme 19: Synthesis of azido dextran derivative 72: (a) TsCl, NEt3, dry DMAA, 0 °C, 3 h → rt, 16 h, 

81 %; (b) NaN3, dry DMSO, 100 °C, 20 h, 80 %. 
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Both, the tosylated dextran 71 and the azido dextran 72 could be characterised by IR 

spectroscopy and also NMR spectra were recorded. One NMR spectrum of compound 71 

is shown in Figure 43. 

 

Figure 43: 1H NMR spectrum of tosylated dextran 71. Protons which are located at a C atom which also 

carries a tosyl group are marked ‘(tos.)’. 

 

With the help of NMR spectroscopy the degree of substitution (Ds) was determined 

according to the formula of LEMECHKO (Formula 1)[328]. The Ds value describes the 

number of substituents located on one monomeric unit of a polysaccharide. For a linear 

polysaccharide such as cellulose the Ds can be at the most Ds = 3. 

 

Formula 1: Quotient for the calculation of the degree of substitution by tosyl groups based on 
1H NMR integrals. 

 

According to Formula 1 the degree of substitution with tosyl groups relates to the quotient 

of the integrals of the four aromatic protons of the tosyl substituents (I8.0-7.0 ppm) and the 

sum of integrals of the remaining hydroxyl groups, the anomeric proton and the protons 

on the tosyl-substituted positions (I5.9-3.9 ppm). Thus, the prepared tosyl dextran 71 has a 
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degree of substitution of Ds(tos.) = 1.25 which is reduced to Ds(tos.) = 0.72 in 72 after 

substitution with sodium azide. Consequently, the Ds for azidation amounts to 

Ds(N3) = 0.53, that means that every second glucoside monomer of dextran carries one 

azido functionality. The degrees of substitution as determined with Formula 1 were 

confirmed by elemental analysis. 

For the following modification of the dextran surface by click chemistry, the five alkyne-

functionalised mannosides 75, 79, 83 and 86 as well as the glucoside control compound 

84 were synthesised (Scheme 20 to Scheme 22). The mannoside 75 was synthesised 

according to a procedure published by POLÁKOVÁ et al.[329] in an overall yield of 77 %. 

To take advantage of the possible ππ interactions which can occur between the tyrosine 

gate of the FimH binding site and an aromatic aglycon of a potential ligand, a glycoside 

with aromatic aglycon moiety, 79, was also prepared.[47, 330] For this, aminophenyl α-D-

mannopyranoside 77 was coupled with propiolic acid using N,N’-dicyclo-

hexylcarbodiimide (DCC) to yield compound 78 in 73 % which was then subsequently 

deprotected under ZEMPLÉN conditions[179] to obtain compound 79 (Scheme 20). 

 

Scheme 20: Synthesis of mannose derivatives 75 and 79: (a) propargyl alcohol, BF3·Et2O, dry DCM, 0 °C 

→ rt, 20 h, 84 %; (b) NaOMe, dry MeOH, rt, 16 h, 92 %; (c) p-nitrophenol, BF3·Et2O, dry DCM, 0 °C → 

rt, 42 h, 44 %; (d) H2, Pd/C, methanol, rt, 70 h, 96 %; (e) propiolic acid, DCC, dry DCM, rt, 16 h, 73 %; (f) 

NaOMe, dry MeOH, rt, 16 h, 99 %. 

 

Since preliminary binding tests showed unspecific results, glycosides 83 and 84 were also 

synthesised which should suppress unspecific binding due to their biorepulsive ethylene 

glycol units and the glucoside 84 should also work as negative control in FimH-mediated 

binding. Both compounds were synthesised starting from trichloroacetimidate glycosyl 

donors 8 and 9, respectively, to glycosylate 2-[2-[2-(2-propynyloxy)ethoxy]ethoxy] 

ethanol 20[257] under the catalysis of boron trifluoride. This gave glycosides 81 and 82[331] 
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in moderate yields (32 % and 46 %, respectively) and after ZEMPLÉN deprotection[179] the 

OH-free products 83 and 84 (Scheme 21). 

 

Scheme 21: Synthesis of glycosides 83 and 84: (a) 2-[2-[2-(2-propynyloxy)ethoxy]ethoxy]ethanol 80, 

BF3·Et2O, dry DCM, 0 °C → rt, 20 h, 32 % (81), 46 % (82); (b) NaOMe, dry MeOH, rt, 16 h, quant. 

 

The trivalent glycocluster 86 was also synthesised to investigate possible multivalency 

effects within this assay system. The previously reported trivalent glycocluster 26 (cf. 

chapter 4.1.2) which carries an amino functionality at its focal point for further 

functionalisation, was subjected to amidation with propargyl chloroformate making 

carbamate 85 available in a yield of 42 %. After ZEMPLÉN deprotection,[179] the trivalent 

cluster mannoside 86 was obtained in quantitative yield. 

 

Scheme 22: Synthesis of trivalent derivative 86: (a) 1. NaOMe, dry MeOH, rt, 16 h, quant.; 2. Na2CO3, 

propargyl chloroformate, H2O/1,4 dioxane, rt, 60 h, 3. Ac2O, pyridine, rt, 4 h, 42 %; (b) NaOMe, dry 

MeOH, rt, 16 h, quant. 
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For glycoarray formation commercially available preactivated Nunc polystyrene 96 well 

microtiter plates were used. After incubation with amines 69 and 87 and 

polysaccharide 72, respectively, and incubation with ethanolamine to block the unreacted 

surface (polyvinylalcohol in case of surface C) surfaces were prepared with azido groups 

for further functionalisation by copper (I)-catalysed click chemistry. Therefore, solutions 

of the glycosides 75, 79, 83, 84 and 86 in PBS buffer with serial dilution were added to 

the microtiter plates followed by solutions of copper(I)sulphate and sodium ascorbate in 

PBS buffer which were also added in serial dilution. Click reaction on surface was 

performed at 37 °C at 100 rpm for 3 hours. Afterwards washing steps with PBST and 

PBS removed unreacted glycoconjugates followed (Scheme 23).  

 

Scheme 23: Overview of the three different prepared azido-functionalised surfaces A, B and C. After 

decoration of all three surfaces with α-D-mannosides, bacterial adhesion studies were performed. 

 

Finally, the fabricated glycoarrays were subjected to bacterial adhesion studies. Microtiter 

plates were incubated with type 1 fimbriated E. coli (PKL1162 strain) and non-adhered 

bacteria were washed away afterwards. Since the PKL 1162 strain contains the GFP 

(green fluorescent protein) gene, bacterial adhesion was quantified by fluorescence read 

out in the end.[239, 270] The results of adhesion studies are depicted in Figure 44, Figure 45 

and Figure 46. 
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Figure 44: Bacterial adhesion (quantified by fluorescence intensity) to glycosylated surface A fabricated 

by click chemistry as measured with the described assay. Three mannoside derivatives 75, 79 and 86 were 

tested in comparison to a glucose derivative 84. Given concentrations are based on solutions of the alkyne-

functionalised glycosides which were used for the 1,3-dipolar cycloaddition. Error bars are standard 

deviations generated from triplicate values on one plate. 

 

As a proof of successful array formation, an almost six times higher adhesion was 

measured for mannoside 75 in comparison to glucoside 84 employed at a concentration 

of 10 mM in case of surface A. The adhesivity of mannoside 75 decreases with 

concentration. As expected glucoside 84 shows just little fluorescence which is 

independent of the concentration and in the range of the unmodified plate surface (‘PS’) 

and the only with linker 87 functionalised surface (‘linker’). Also compound 79 shows 

the expected decrease of adhesivity with lower concentrations used for sugar decoration 

of the surface. Nevertheless, due to its aromatic aglycon the adhesive potential of 

compound 79 is 15 times higher than in case of compound 75. With the trivalent 

cluster 86, the adhesion is just slightly higher than for the monovalent analogue 75 and 

hence 86 does not show the expected multivalency effect in this system.  
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Figure 45: Bacterial adhesion (quantified by fluorescence intensity) to glycosylated surface B fabricated 

by click chemistry as measured with the described assay. Three mannoside derivatives 75, 79 and 86 were 

tested in comparison to a glucose derivative 84. Given concentrations are based on solutions of the alkyne-

functionalised glycosides which were used for the 1,3-dipolar cycloaddition. Error bars are standard 

deviations generated from triplicate values on one plate. 

 

Also in the case of surface B which is functionalised with azido glucoside 69 to allow 

subsequent click chemistry with alkyne-functionalised glycosides for glycoarray 

formation, a 15 times higher adhesivity for aromatic mannoside 79 than for mannoside 83 

was observed - even though compound 79 was compared with a reduced concentration of 

2.5 mM to compounds 83, 84 and 86 in concentrations of 10 mM. Again, a concentration 

dependency as for the adhesion experiment on surface A was observed and also the 

trivalent cluster 86 shows a similar behaviour in this assay set-up. 
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Figure 46: Bacterial adhesion (quantified by fluorescence intensity) to glycosylated surface C fabricated 

by click chemistry as measured with the described assay. Two mannoside derivatives 83 and 79 were tested 

in comparison to a glucose derivative 84. Given concentrations are based on solutions of the alkyne-

functionalised glycosides which were used for the 1,3-dipolar cycloaddition. Error bars are standard 

deviations generated from triplicate values on one plate. 

 

In case of surface C, an unexpected and likewise undesired high adhesivity of the surface 

which is just covered with azido-functionalised dextran 72 was observed. To suppress 

such unspecific binding, ethylene glycol derivatives 83 and 84 were used. It was verified 

that the cycloaddition occurred on surface because glucoside 84 led to reduced adhesion 

so that consequently unspecific binding can be neglected. Ethylene glycol-equipped 

mannoside 83 shows on the contrary higher adhesion than compound 84. Aromatic 

mannoside 79 shows adhesivity in similar range to surfaces A and B, merely reduced by 

10 % which is remarkable since surface C has a considerably reduced density of azido 

groups on its surface. Whereas surfaces A and B resulted from modification with 20 mM 

solutions, just 1.2 mg/mL of compound 72 was used for this array surface. That conforms 

to a concentration of 5 mM. Additionally, one has to keep in mind the degree of 

substitution of Ds(N3) = 0.53 which means that just every second monomer unit of dextran 

carries an azido group.  
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4.2.3 Conclusion 

Different glycoarray surfaces were successfully fabricated by 1,3-dipolar cycloaddition 

of alkyne-functionalised sugar ligands on various azido-functionalised microtiter plate 

surfaces leading to glycoside-decorated surfaces for bacterial adhesion studies. Whereas 

surfaces fabricated with azido-equipped triethylene glycol derivatives 87 (Scheme 23, 

(A)) and amino ethyl glucoside 69 (Scheme 23, (B)), respectively -which were chosen as 

model systems for the more complex dextran surface- showed rather similar behaviour, 

the more complex dextran surface (Scheme 23, (C)) showed a stronger adhesivity. This 

observation confirms that a potent surface for adhesivity studies was developed. Thus, 

this finding suggests that the objective of this sub-project, that is using a complex 

unordered carbohydrate environment for cell adhesion studies, indeed results in potent 

adhesive surfaces which might reflect the properties for the unordered natural glycocalyx 

better than glyco-SAMs, for example.  

 

 

 

 

 

 

 

 

 



72 Labelling FimH: Towards the photochemical control of carbohydrate recognition 

 

5 Labelling FimH: Towards the photochemical control of 

carbohydrate recognition 

5.1 Introduction 

5.1.1 Switching biological function 

Already back in 1979, the Nobel laureate FRANCIS CRICK dreamt of a tool to manipulate 

the brain by writing about “a method by which all neurons of just one type could be 

inactivated, leaving the others more or less unaltered”[332-333] and in 1999 he suggested 

light for the control of cellular activation accurately as to space and time.[334-335] Those 

ideas are nowadays realised in the field of optogenetics.[333, 336] In the meantime a whole 

research field deals with the use of light to control cells (optogenetics) and molecular 

function (molecular machines).[337-338] Photosensitive molecules which allow to 

reversibly manipulate a particular system are called photoswitches (cf. chapter 3.1.2) and 

found applications in whole organisms and cells but also in biological chemistry for the 

manipulation of, for example, DNA and RNA [339-340], enzymes[341-343], receptors, channel 

proteins and also smaller peptides.[344-346] To obtain photoresponsive proteins, they are 

modified with a photoswitchable unit by chemical ligation. In many cases azobenzene 

derivatives are used as photoswitches due to their excellent (photo)chemical 

properties.[101] In the protein field, especially protein folding and protein-ligand 

interactions were photoswitched.[344, 347-349] For example, TRAUNER and coworkers 

introduced azobenzene derivatives for light-triggered opening and closing of ion 

channels[95, 350-353] in vitro as well as in vivo (Figure 47).[347] 

 

Figure 47: Different approaches to control protein function: (A) Naturally occurring ion channels which 

can be opened by neurotransmitter (blue ligand) activation; (B) mimicry of neurotransmitter-activated ion 

channels which can be triggered by inserted light-activatable channelrhodopsins; (C) mimicry of 

neurotransmitter-activated ion channels which can be triggered by attached light-responsive azobenzene 

moieties.[335, 354] 
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5.1.2 Chemical protein modification 

Proteins can be modified in their native form and in addition, unnatural amino acids 

(UAA) can be introduced into proteins to facilitate their modification. In any case, the 

modification should be protein-specific and site-selective. Additionally, control over the 

number of occurring modifications is desirable. For site-selective modifications, the 

introduction of UAA can be advantageous. Commonly employed UAA have their side 

chain modified with a bioorthogonal functionality such as azides (azidohomoalanine, 

Aha), alkynes (homopropargylglycine, Hpg) or halogens (p-iodophenylalanine, p-IF).[355-

357] Such modifications, for example, allow for STAUDINGER ligation[295, 298], click 

chemistry (CuAAC)[299] or SUZUKI-MIYAURA cross coupling reactions (Figure 48).[358] 

 

Figure 48: Bioorthogonal ligation methods enabled by the incorporation of unnatural amino acids. (a) click 

chemistry on an alkyne-equipped protein, (b) SUZUKI-MIYAURA coupling, (c) click chemistry on an azido-

equipped protein, (d) STAUDINGER ligation, (e) traceless STAUDINGER ligation.[359] 

 

As the synthesis of UAA-modified proteins requires some know-how and effort,[359-360] 

the modification of natural proteins is also desirable. In addition, in unmodifed proteins, 

their natural form and function remains unimpaired. Hence, their posttranslational 

modification is attractive for many applications from biochemistry to medicine.[361] 

Ligation chemistry which is suited for the modification of natural proteins targets amino 
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acids such as lysine, cysteine and tyrosine. Lysine is widely spread in proteins and 

therefore can be easily addressed for applications which do not require a single or a site-

specific modification.[296-297] Cysteine on the contrary is suited for single modifications 

due to its minor abundance in proteins.[362] Numerous successful ligation methods 

targeting at cysteine can be found in the literature.[363-366] Moreover, cysteine can be 

introduced at a favoured position of a protein by site-directed mutagenesis. However, 

ligation via cysteine is limited to in vitro experiments due to disulfide formation which 

could occur with free thiols within cell systems. 

An additional methodology for the posttranslational modifications of endogenous 

proteins uses affinity-driven methods. First attempts were reported in the 1960s when 

matching ligands were equipped with a reactive group, e.g. a diazonium or an 

iodoacetamide group. The target protein was incubated with the applicable ligand for 

covalent bond formation after complex formation at the close proximity of the ligand 

binding site or the active site of an enzyme, for example.[367-369] In 2012, HAMACHI and 

coworkers started to develop new methods for the traceless modification of proteins, 

which preserve their function after labelling.[370] HAMACHI’s work and other methods for 

site-specific modification of proteins can be classified into two types, which are here 

referred to as type I reactions and type II reactions. Type I reactions (exchange/cleavage 

reaction type) are based on ligands which are equipped with a predetermined breaking 

point. Type II reactions (catalyst tethering type) embrace strategies for traceless protein 

modification using a ligand-tethered catalyst (Figure 49).[370] 

 

Figure 49: Schematic representation of traceless affinity-based protein labelling. (A) Type I 

(exchange/cleavage type): The probe is attached to a high affinity ligand via a predetermined breaking 

point. (B) Type II (catalyst tethering type): A ligand-tethered catalyst fosters the reaction with the probe.[370] 
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The first generation of the exchange/cleavage type reactions (type I) is called post-

photoaffinity labelling modification (P-PALM). Firstly, a prepared high-affinity ligand 

binds to the active site, secondly the reaction of, for example, a photoreactive diazirine 

moiety which is attached on the ligand via, for example, a disulfide bond can occur in the 

proximity of the ligand binding site. Finally, the disulfide bond is cleaved and the ligand 

is released from the active site. The resulting thiol moiety can react with an electrophile 

which is equipped with the desired moiety (hereinafter referred to as ‘probe’). It should 

be noted however, that the use of disulfides is limited to applications in vitro and 

additionally laborious purification is required to yield the targeted protein (Figure 50).[371] 

 

Figure 50: Schematic representation of the P-PALM (post-photoaffinity labelling modification) method 

for protein labelling.[370] 

 

The second-generation protein modification is called post-affinity labelling modification 

(P-ALM). Here, the same principle is applied as in P-PALM, but the photoreactive site is 

replaced by a chemically reactive moiety such as an epoxide. After formation of the 

protein-ligand complex, the epoxide can react with a nucleophile in the proximity of the 

ligand binding site. For P-ALM, the disulfide linkage of the ligand is exchanged by a 

hydrazone unit which can be substituted by aminooxy or hydrazine derivatives to release 

the ligand after successful labelling of the protein.[372-374] However, also this modified 

protein modification is not fully bioorthogonal and hence not suited for in vivo 

applications (Figure 51). 
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Figure 51: Schematic representation of the P-ALM (post-affinity labelling modification) method for 

protein labelling.[370] 

 

The question of bioorthogonality was also addressed by HAMACHI and coworkers. They 

established a new way of traceless chemical labelling which they called ligand-directed 

“tosyl” (LDT) chemistry. In this case, the ligand has two functions, it operates as linker 

between the probe and the ligand and as the reactive group. The phenylsulfonate (‘tosyl’) 

can react with a nucleophilic amino acid in a SN2-type reaction and hence, after successful 

modification of the target protein the ligand can be removed (Figure 52).[375-377] 

 

Figure 52: Schematic representation of the LDT (ligand-directed tosyl) chemistry for protein labelling.[370] 
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Type II reactions are strategies for traceless protein modification in which a ligand-

tethered catalyst is used. HAMACHI and coworkers used 4-dimethylaminopyridine 

(DMAP) as acyl transfer catalyst, ligated to the protein ligand.[375] The probe can then be 

introduced as a thioester, which reacts with the DMAP moiety of the ligand and the 

resulting conjugate can be attacked in the next step by an endogenous nucleophilic protein 

residue to result in the labelled protein; whereas the ligand is released from the binding 

site (Figure 53).[378]  

 

Figure 53: Schematic representation of HAMACHI’s affinity-guided DMAP-catalysed protein labelling.[370] 

 

This strategy for affinity-driven protein labelling was already earlier used by F. 

Beiroth[379]and was also employed here for labelling of FimH. Based on work by 

HAMACHI and coworkers on the graded reactivity of different thioesters (cf. Figure 

54),[380] phenylthioesters were employed in the current project.  

 

Figure 54: Graded reactiviy of thioesters 1-4 as studied by HAMACHI and coworkers (for specific residues 

R see literature).[380] 

 

5.2 Project idea        

It was the objective of this sub-project to utilise HAMACHI’s DMAP-mediated affinity-

guided method for protein labelling for the photochemical control of the function of 

FimH. An azobenzene moiety attached at the proximity of the carbohydrate binding site 

of FimH would act as a photosensitive ‘gate keeper’ molecule, allowing to block and open 
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the sugar binding site of the bacterial lectin on demand. This would involve the 

perspective to control bacterial cell adhesion (Figure 55). 

 

Figure 55: Site-directed labelling of the lectin FimH to enable photocontrol of cell adhesion: The 

azobenzene ‘gate keeper’ moiety is meant to leave the binding site open in its E-state and close it in its 

Z-state. 

 

HAMACHI’s method is based on 4-dimethylaminopyridine (DMAP) as an acyl transfer 

catalyst.[378] Since the DMAP-catalyst is linked to a high-affinity ligand for FimH, the 

addition of an azobenzene thioester will lead to an activated pyridinium intermediate 

which is oriented close to the carbohydrate binding site. Thus, the activated azobenzene 

derivative can be transferred onto an appropriate nucleophilic amino acid in the proximity 

of the FimH carbohydrate binding site. After successful transfer of the azobenzene moiety 

to the lectin, the DMAP ligand can be removed from the binding site to release the binding 

site. Thereafter, the opening and closing of the binding site can be realised by a 

photoinduced isomerisation between the E- and the Z-state (Scheme 24).  
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Scheme 24: FimH carbohydrate binding function could become photoswitchable by the site-specific 

attachment of a photosensitive ‘gate keeper’ molecule at the entrance of the binding site.[379] 

 

F. BEIROTH
[379]

 and I. STAMER
[381]

 started this project in the LINDHORST group by the 

synthesis and partial evaluation of a couple of DMAP affinity ligands and thioesters. 

First, high affinity α-D-mannoside ligands equipped with a DMAP moiety as acyl transfer 

catalytic part were required. The higher the affinity of the directing DMAP ligand the 

greater the possibility to suppress undesired side reactions which could for example occur 

on serine residues which are present on the protein surface of FimH away from the 

binding site. Two such derivatives, 5 and 6 (Figure 56) were introduced by F. BEIROTH in 

her PhD thesis.[379] Docking studies with Glide as implemented in the Schrödinger 

software[382] confirmed the suitability of the ligands for the purpose of the site-directed 

labelling.[379] Both ligands are soluble in water, so that the reaction can be performed 

under physiological conditions. 

 

Figure 56: DMAP-functionalised mannosides 1 and 2 which were synthesised by F. BEIROTH.[379] 
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Mannoside 5 carries an aromatic moiety within the aglycon which could induce accessory 

hydrophobic ππ interactions with the tyrosine gate of the FimH binding site and thus also 

may support an optimal orientation of the reactive site at the FimH binding site. 

In this thesis, the objective was to expand the collection of thioesters for site-specific 

FimH labeling and to investigate their properties. Different thioester derivatives were 

discussed as leaving groups for the DMAP-catalysed acylation by HAMACHI and 

coworkers.[380] 

To allow protein modification under physiological conditions, some requirements must 

be met, such as water solubility. In addition, it would be desirable to modify FimH in a 

way to allow switching of function by visible light (cf. chapter 6). Furthermore, there are 

some requirements for structure and size of the ‘gate keeper’ moiety to allow an optimal 

closing of the binding site. First and foremost, the ‘gate keeper’ precursor should boast a 

perfect shape which enables the reversible opening and closing of the binding site due to 

its sterical hindrance in the Z-state. Also, it could be advantageous if the ‘gate keeper’ 

moiety shows some affinity for the protein. Thus, affinity must be ideally fine-tuned to 

trigger site-specific binding on the one hand, and to allow for release of this moiety from 

the binding site upon Z→E isomerisation on the other hand. With respect to these 

considerations, three glycoside ‘gate keeper’ molecules were designed. All designed 

thioester derivatives were evaluated by molecular docking studies and the switching 

process was simulated. The calculations were performed in parallel with the synthesis 

since they are rather time-consuming.[185, 383] Additionally the photochemical properties 

of the azobenzene derivatives were determined in order to estimate the switching 

performance. The ultimate goal is the testing of the switchable adhesion which could be 

detected by an assay system and observed by NMR studies. When all parts of this 

demanding project can be accomplished (synthesis, efficient switching, protein labelling) 

FimH-mediated bacterial adhesion could be controllable. In the future, this approach 

could be employed for other lectins, which could then be used as photoswitchable 

diagnostic tools or targeted drug release could be realised. 
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5.3 Results and discussion 

5.3.1 Determination of ligation site 

Three amino acids in FimH are eligible for this site-directed approach, namely tyrosine 

48, tyrosine 137 and threonine 51 (Figure 57). Arginine 98 can also react as a nucleophile 

in dependence of the pH. Since the DMAP-tethered labelling strategy requires a pH in 

the range of 8.0, arginine will not be targeted as at pH 8 it exists in its protonated 

(guanidinium) form due to a pKa value of 12.48. 

 

Figure 57: Surface representation of the lectin FimH in the open gate conformation (A, PDB code: 1KLF) 

and closed gate conformation (B, PDB code: 1UWF). Nucleophilic residues in proximity of the binding 

site are marked in red. The denotation open gate and closed gate conformation, respectively, is based on 

the two known crystal structures, 1KLF and 1UWF. In the 1KLF conformation the two tyrosine moieties 

at the binding site have a major distance (10.3 Å), leaving the binding site open and in the 1UWF 

conformation the two tyrosine residues have a minor distance (5.6 Å) resulting in a shielding of the binding 

site. 

 

In addition to DMAP-activated mannosides, appropriate azobenzene-based ‘gate keeper’ 

molecules are required. Whereas the para-position of the azobenzene derivatives is 
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allocated to the thioester moiety for ligation, the para’-position can be modified for 

optimal closing and opening of the FimH binding site. The suitability of ‘gate keeper’ 

molecules can be evaluated by molecular modelling. The results of the molecular 

modelling are discussed in chapter 5.3.5. 

 

5.3.2 Synthesis of thioester-equipped ‘gate keeper’ precursors: non-glycoside 

derivatives 

Thioester derivatives were synthesised using thiophenol, following HAMACHI’s work.[378] 

In the first place a library of thioesters was designed which showed different sterical 

dimensions (Figure 58).[379] 

 

Figure 58: Four thioester derivatives 7-10 had been designed by F. BEIROTH which varied in the bulkiness 

of the substitution of the terminal phenyl ring as well as in polarity since compound 10 is positively 

charged.[379] 

 

Compounds 7 to 9 were synthesised and isolated as pure material whereas the cationic 

derivative 10 had just been detected by MALDI MS spectroscopy.[379] To expand the 

library of sterically different thioesters, SUZUKI-MIYAURA coupling was employed to 

devise new ‘gate keeper’ precursors with a backbone similar to compound 8. The 

advantage of ‘gate keeper’ molecules with a biphenyl residue is that the aromatic ring of 

the biphenyl unit can interact with the tyrosine residues Tyr48 and Tyr137 at the entrance 

of the binding site via ππ interactions. ππ Interactions might favourably direct a ‘gate 

keeper’ molecule in its Z-state to block the binding site. Thus, four thiophenol derivatives 

11 12, 13 and 14 shown in Figure 59 were designed with a biphenyl moiety. In addition, 

all four thioesters shown in Figure 59 comprise hydrogen bond acceptors and 

compounds 11 and 13 also contain hydrogen bond donors. Phenylpyridine derivatives 12 
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and 14 vary in the orientation of the potential hydrogen bond acceptors. The different 

affinities of the ‘gate keeper’ moieties 11-14 towards the lectin binding site resulting from 

the different patterns of hydrogen bond acceptors and donors was evaluated by molecular 

modelling. 

 

Figure 59: Four new thioester derivatives 12 to 14 which have a biphenyl unit in common but vary in their 

steric demand as well as in the orientation of potential hydrogen bond acceptors (12 and 14). 

 

All four compounds 11 to 14 were synthesised employing azobenzene precursor 25 which 

is equipped with an iodine substituent which allows SUZUKI-MIYAURA coupling with 

organoboronic derivatives.[384] SUZUKI-MIYAURA coupling leads to carbon-carbon bond 

formation between aryl or alkylhalogenides, respectively, with organoboron 

compounds.[385-386] The iodine-substituted compound 25 was chosen since iodo-equipped 

compounds are the most reactive electrophilic reagents for SUZUKI cross coupling 

reactions.[386] Azobenzene 25 was synthesised starting from amines 17 and 20, 

respectively, which were synthesised according to literature-known procedures 

(Scheme 25).[387] The synthesis started from nitrophenyl acetic acid 15 which was 

protected with two different protecting groups. On the one hand tert-butanol and on the 

other hand methanol was employed for esterification of acid 15.[387-388] Subsequently the 

nitro group of 16 and 19, respectively, was converted into amines 17 and 20, respectively, 

by hydrogenolysis with gaseous hydrogen and palladium catalyst on activated charcoal 

in quantitative yields. Both synthetic pathways were performed to compare yields and to 

optimize the reaction conditions. With amines 17 and 20 in hand, azobenzene derivatives 

23 and 24 were synthesised via MILLs coupling. For this, amines 17 and 20 were subjected 

to oxidation with oxone® to obtain nitroso compounds 18 and 21. Nitroso derivatives 18 

and 21 were reacted with p-iodoaniline 22 to form azobenzene derivative 23 and 24. 

Following deprotection under acidic conditions in case of tert butyl ester 23 and under 

basic conditions in case of methyl ester 24 originated acid 25. Compound 25 provides a 
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versatile precursor which can be employed for cross coupling reactions with numerous 

reaction partners (Scheme 25).  

 

Scheme 25: Synthesis of the iodo-equipped azobenzene precursor 25 which can be employed for SUZUKI 

coupling reactions for further functionalisation: (a) tBuOH, POCl3, pyridine, 0 °C → rt, 16 h, 85 %; (b) 

SOCl2, methanol, 0 °C → rt, 4 h, 98 %; (c) H2, Pd/C, methanol, rt, 4 h, 99 %; (d) oxone®, DCM/H2O, rt, 

4 h, 72 % (18), 55 % (21); (e) CH3COOH, rt, 16 h, 59 % (23), 65 % (24); (f) TFA, DCM, rt, 4 h, 90 %; (g) 

LiOH, THF/H2O (2:1), rt, 16 h, 98 %. 

 

Precursor 25 was then submitted to SUZUKI-MIYAURA coupling reactions with four 

different phenylboronic acid pinacol esters 26 to 29. Reactions were carried out under 

basic conditions employing potassium carbonate to yield acids 30-33. Compounds 30 and 

32 were obtained in rather poor yields of 35 % and 41 %, respectively, whereas 

compounds 31 and 33 were obtained in good yields of 94 % and 72 %, respectively. 

Finally, the acids 30-33 were converted to the corresponding thioesters employing 

thiophenol and diethylcyano phosphonate (DECP) as activating agent for the carboxylic 

acid. The formation of thioesters turned out to be the yield limiting step for synthetic 

pathways towards a thioester precursor for the labelling of FimH.[379] It can be anticipated 

at this point, that diethylcyano phosphonate (DECP) proved to not just being be the most 

practicable reagent but also led to the highest yields. Thioester derivatives 11-14 were 

obtained in yields ranging from 45 % in case of compound 12 to 65 % for compound 13 

(Scheme 26). 
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Scheme 26: Synthetic route for SUZUKI-MIYAURA coupling reactions between compound 25 and 

phenylboronic acid pinacolesters 26 to 29. Adjacent thioester formation led to ‘gate keeper’ precursors 11 

to 14. 

 

The polarity of ‘gate keeper’ molecules is a significant requirement which must be 

considered for the synthesis of ‘gate keeper’ moieties. Molecules with increased polarity 

have two main advantages. On the one hand, polar compounds can interact individually 

with the binding site and on the other hand, they show a higher water solubility. For this 

purpose F. BEIROTH designed the cationic trimethylamine derivative 10,[379] which could 

not be isolated as pure material, and I. STAMER synthesised α-D-mannoside-decorated 

thioester 34 (Figure 60).[381]  
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Figure 60: Thioester derivatives with increased polarity synthesised by F. BEIROTH[379] and I. STAMER[381]. 

 

The substitution pattern of the azobenzene might also have a great influence on the ‘gate 

keeper’ moiety. Depending on the introduction of the thioester residue in the ortho-, meta- 

or para-position of the azobenzene ‘gate keeper’ moiety, the angle of the photoswitchable 

‘gate keeper’ varies significantly. Therefore, structures 10 and 35-39 were designed with 

either a trimethylamine residue or a triethylamine residue as ionic ‘gate keepers’ on the 

one hand and with varying substitution patterns on the other hand (Figure 61). 

 

Figure 61: Six potential ‘gate keeper’ precursor which vary in their substitution pattern. 

 

To establish an efficient synthesis strategy for cationic derivatives as shown in Figure 61 

the work in this thesis is focussed on the para and para’ substituted derivatives. In 

addition, precursors for compounds 36 to 39 were prepared. Amines 17, 20, 44 and 45 

were synthesised according to literature starting from the respective nitro phenylacids 15, 

40 and 41.[389-392] First, the reaction pathway of F. BEIROTH was repeated to obtain acyl 

precursor 66 which can be employed for the investigation of thioester formation which 

was the crux of matter in the thesis of F. BEIROTH. Therefore amine 17 was converted to 

the respective nitroso compound 18 by oxidation with oxone®. Nitroso compound 18 was 

then subjected to MILLs coupling with the 4-amino benzylamine derivative 51 which is 

selectively Fmoc-protected at the benzylic position.[393-394] The resulting azobenzene 

derivative 56 was obtained in a yield of 44 %. For removal of the Fmoc protecting group 
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compound 56 was treated with piperidine leading to free amine 57 in a yield of 61 %.[395] 

Since the deprotection does not work quantitatively as expected, remaining amines 20 

and 44 were employed for MILLs coupling with literature-known nitroso compound 

48[396-397] to obtain Boc-protected azobenzenes 52 and 53.[398] Amines 20 and 44 were 

converted according to this synthetic strategy. The yields for the MILLs coupling amount 

to 50 % for the para-substituted derivative 53 and 23 % for the ortho-substituted 

derivative 52. Boc-protected derivatives 52 and 53 were easily converted to the respective 

amines 54 and 55 using trifluoroacetic acid (Scheme 27). 

 

Scheme 27: Synthesis of amino-equipped azobenzene precursors 54, 55, 57: (a) SOCl2, methanol, 0 °C → 

rt, 4 h, 89 % (42), quant. (43); (b) Boc2O, THF, rt, 16 h, 88 %; (c) oxone®, DCM/H2O, rt, 4 h, 62 % (d) 

Fmoc chloride, DIPEA, DCM, rt, 16 h, 84 %; (e) CH3COOH, rt, 24 h, 44 %; (f) piperidine, dry DMF, rt, 

16 h, 61 %.  

 

For the synthesis of cationic derivative 65 the acyl chloride of betaine 64 was prepared 

and reacted with amine 55 to yield compound 65-I in 68 % yield. Compound 65 was 
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quantitatively deprotected with lithium hydroxide and acid 66 was then activated with 

diethyl cyanophosphonate (DEPC, 77) for thioester formation which occurred with a 

yield of 44 %. Nevertheless, traces of betaine 64 could not be removed neither by repeated 

column chromatography on silica gel nor on Sephadex. Thus, an alternative synthesis was 

established. Starting from amines 54, 55 and 57 amidation was performed with bromo 

acetylchloride 58 to obtain azobenzene derivatives 59-61 in moderate yields. The best 

result was obtained for the tert butyloxycarbonyl-protected compound 61 which was 

synthesised in a yield of 76 %. The bromine substituent offers the opportunity of a 

nucleophilic substitution to introduce the trimethyl- respectively the triethylamine 

moiety. Methyl ester 60 was subjected to a solution of trimethylamine in methanol (30 wt. 

%) to obtain compound 65-II in a yield of 50 %. Due to an excess of trimethylamine, the 

methyl ester of compound 65-II was partly deprotected after the substitution reaction. 

Compound 65-II was fully deprotected with lithium hydroxide and esterification with 

thiophenol was subsequently performed as already stated above for compound 65-I. 

Bromine-equipped derivative 61 was subjected to a solution of triethylamine (25 wt. % 

in methanol) and substitution originated triethylamine-equipped azobenzenes 62 with a 

yield of 43 %. Deprotection with trifluoroacetic acid led to acid 63 which was then 

subjected to esterification with thiophenol under DEPC (77) catalysis to obtain 

azobenzene derivative 35 with 54 % yield. For the synthesis of cationic compounds 10 

and 35 the problem emerged, that traces of DEPC (77) remained after purification 

(Scheme 28). 
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Scheme 28: Synthesis of cationic compounds as ‘gate keeper’ precursors: (a) 1. betaine 64, oxalylchloride, 

DMF, dry acetonitrile, rt, 20 min, 2. amine 55, DIPEA, dry DMF, rt, 16 h; (b) trimethylamine, methanol, 

rt, 2 h, quant.; (c) LiOH, THF/H2O, rt, 5 h, quant.; (d) trifluoroacetic acid, DCM, rt, 6 h, quant.; (e) 

thiophenol, DEPC (77), Et3N, 0 °C→rt, 16 h. 

 

5.3.3 Synthesis of thioester-equipped ‘gate keeper’ precursors: glycoside 

derivatives 

Regarding the water solubility of the ‘gate keeper’ precursors thioester-equipped 

glycoside derivatives were designed. In addition, glycoside headgroups for the ‘gate 

keeper’ molecules also offer the opportunity to synergistically support the closing of the 

binding site by the ‘gate keeper’ group due to attractive interactions. Nonetheless the 

opposite situation might disrupt the opening and closing process because in case of too 

high affinity a strong binding ligand might suppress the reversible opening of the binding 

site. Thus, three derivatives 78-80 -one mannoside (α-D-mannoside as 

1,2-trans-glycoside) and two glucosides (β-D-glucoside as 1,2-trans-glycoside and 

α-D-glucoside as 1,2-cis-glycoside)- were outlined which vary in their anomeric 

configuration and the configuration of the 2-position of the carbohydrate ring. Amino 

phenyl glycosides were synthesised according to the literature[239, 399] and adjacently 
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subjected to MILLs coupling with nitroso compound 21 to obtain glycoside azobenzene 

derivatives 70-72 with yields ranging from 40 % to 50 %. Methyl esters 70-72 were 

treated with lithium hydroxide to obtain the acids 73-75 in practically quantitative yields. 

Acids 73-75 were then applicable for thioester formation. The α-mannoside 78 and 

β-glucoside 80 were used for investigating different methods for thioester synthesis. The 

most successful method was to use diphenylphosphoryl azide (DPPA, 76) and DEPC (77) 

which form a highly reactive acyl azide or acyl cyanide intermediate, respectively, which 

can then undergo a nucleophilic attack of thiophenol for instance. In case of glucoside 80 

DEPC (77) proved to be the more powerful activating reagent (51 % yield with 

DEPC (77), 45 % yield with DPPA (76) (Scheme 29). Therefore, DEPC (77) was utilised 

as reagent for most of the thioester syntheses within the course of this thesis as it could 

already be recognised in the previously described synthesis in Scheme 26 

and Scheme 28. The α-mannoside 78 was obtained in 58 % and the α-glucoside in 63 % 

respective yield. Secondary, the usage of DEPC (77) respectively DPPA (76) enabled the 

purification of glycosides 78-80. In case of HATU-mediated thioester formation the yield 

was lower and additionally the purification was rather demanding since traces of 

tetramethylurea and the pyridine derivative released during the synthesis were remaining 

after several steps of purification. 

 

Scheme 29: Synthesis of thioester glycosides 78-80: Carboxylic acids 73-75 were activated by DEPC (77) 

or DPPA (76) for thioester formation. 
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To evaluate the general potency of DPPA (76) and DEPC (77) as reagents for thioester 

synthesis, the compounds 81-83 which are already known from F. BEIROTH were 

synthesised according to the literature.[379] Those three carboxylic acids were then 

subjected to thioester synthesis with DPPA (76) for the comparison of yields. Previously 

those thioesters 7-9 had been synthesised by common methods like the use of HATU as 

coupling reagent or by activation of the acid by acyl chloride. Nevertheless, the yields 

were rather poor, especially for compound 9 the yield just amounted to 11 %.[379] With 

DPPA (76) all three synthesis results were improved at least about 12 percentage point 

and in case of compound 9 the yield could even be enlarged from 11 % to 42 %. In this 

way the general applicability of DPPA (76) as capable esterification reagent was proved 

(Scheme 30). 

 

Scheme 30: Improving the synthesis of the known thioesters 7-9[379]: Method A, employing DPPA (76), 

led to increased yields in comparison to the published procedures. 
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Further hydrophilic thioesters were targeted based on findings published by 

CHANDRASEKARAN et al. that certain ortho-substitution improves water solubility of 

glycoazobenzene derivatives. In particular, it was shown that the ortho’-substituted 

glycoazobenzene methyl esters 84 and 86 (Scheme 31) possess an increased water 

solubility compared to the respective carboxylic acids 85 and 87.[400]  

 

Scheme 31: Glycoazobenzene derivatives 84-87 which were synthesised by CHANDRASEKARAN et al. 

for the investigation of the photochromic properties which are influenced by the ortho’-substitution 

pattern.[400] 

 

Consequently, the literature-known methyl ester 91 was synthesised[401] and glycosylated 

under BF3·Et2O catalysis with a glycosyl donor, 88 or 89 (Scheme 32). The nitrophenyl 

glucoside 92 was obtained in 61 % and the respective mannoside 93 in 84 % yield. 

Subsequent reduction of the nitro group led to the amines 94 and 95, respectively, which 

were employed in a MILLs coupling reacting with the nitroso compound 18. Azobenzene 

glycoside 96 and azobenzene mannoside 97 were obtained in rather mediocre yields of 

31 % and 25 %, respectively. Both azobenzene derivatives 96 and 97, respectively, were 

successively treated with sodium methoxide and trifluoroacetic acid to obtain the fully 

deprotected acids 98 and 99, which were finally employed for thioester synthesis by 

DEPC (77) activation resulting in thioesters 102 and 103 in yields of 50 % and 47 %, 

respectively. Although both compounds were purified by column chromatography and 

crystallisation several times, the NMR spectra of 102 and 103 showed slight 

impurities. The reason might be that either the ester bond at the aromatic ring or the 

thioester are labile and decompose during isolation. 
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Scheme 32: Synthesis of thioesters 102 and 103: (a) SOCl2, MeOH, 0 °C→Δ, 8 h, 67 % (b) BF3·Et2O, dry 

DCM, 0 °C → rt, 2 d, 61 % (92), 84 % (93), (c) H2, Pd/C, ethyl acetate, rt, 16 h, quant., (d) CH3COOH, rt, 

24 h, 31 % (96) 25 % (97), (e) 1M NaOMe, dry MeOH, rt, 16 h, 89 % (98), 95 % (99), (f) TFA, DCM, rt, 

5 h, quant., (g) DEPC 77, Et3N, dry DMF, 0 °C→rt, 16 h, 50 % (102), 47 % (103 %). 

 

Furthermore, three especially hydrophilic thioesters 104, 105 and 106 (Figure 62) were 

designed and the respective methyl ester precursors were synthesised, but the thioester 

products could not be obtained in pure form. Hence, these three target molecules were 

not further investigated in spite of the fact that according to molecular modelling they are 

suited as ‘gate keeper’ moieties to reversibly block and open the binding site of the lectin 

FimH. 

 

Figure 62: Hydrophilic thioesters 104 to 106. Under physiological conditions, the acids 104 and 105 can 

also occur as the respective conjugated bases.  
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5.3.4 Investigation of photochemical properties 

The photochemical properties of the thioesters 7-14, 35, 78, 79, 102 and 103 were 

determined to evaluate the suitability of these molecules as photoswitchable ‘gate 

keepers’ for the lectin FimH. Since it is known that the switching behaviour of 

azobenzene derivatives is affected by their substituents, one has to consider that the 

results obtained for the thioester precursors might not perfectly represent the situation 

after FimH ligation Hence, N-(Acetyl)-L-tyrosine ethyl ester 107 was used as model 

system, resembling a FimH side chain, and ligated with acid 81 to form 108 which can 

be compared to the thioester 7 itself (Scheme 33). 

 

Scheme 33: Ligation of acid 81 with N-(Acetyl)-L-tyrosine ethyl ester 107 for the investigation of 

photochemical properties. 

 

The photochromic properties were investigated by UV and NMR spectroscopy. All 

obtained data are collected in Table 2, recorded NMR spectra are shown in chapter 8.5.3 

and UV spectra in chapter 8.5.4. The wavelength of the maximal absorption was 

determined for the Z- and the E-isomer via UV/Vis spectroscopy and the photostationary 

state (PSS) and most half-lifes were determined by NMR spectroscopy. Some half-lifes 

were determined by UV/Vis spectroscopy. Either, because they did not show an isolated 

signal in the 1H NMR which could be used for integration or since photoswitching could 

just be realised at low concentrations. E-isomers were obtained by storing the respective 

probe at 40 °C overnight and Z-isomers were obtained by irradiation with a light emitting 

diode with an irradiation wavelength of 365 nm. The photostationary state (PSS) 

describes the ratio of the E- and the Z-isomer after irradiation with 365 nm for at least 

15 min respectively a maximum time of 30 min. 
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Table 2: Characterisation of the E- and Z-isomers of compound 121 and thioesters 7 to 14, 35, 78, 79, 80, 

102 and 103. 

Compound λmax (nm) 

(E-isomer) 

λmax (nm) 

(Z-isomer) 

E/Z (PSS) Half-life T1/2 (h) 

7 324 296 25 / 75 27.3 

108[a] 322 306 21 / 79 129.9 

8 356 443 13 / 87 1.27 

9 327 433 16 / 84 15.8 

10 344 438 17 / 83 16.9 

11 367 441 55 / 45[b] 0.11[d] 

12 340 438 79/20[e] 0.72[d] 

13 339 438 8 / 92 19.7 

14 336 439 7 / 93 55.8 

35 328 434 12 / 88 48.1 

78 345 302 11 / 89 2.5 

79 345 304 9 / 91 0.9 

80 344 302 2 / 98 4 

102 343 423 [c] 59.7[d] 

103 345 424 30 / 70 88.3[d] 

[a] 108 was used as a model system, resembling a FimH side chain equipped with the azobenzene 

moiety of compound 7 

[b] No photoswitching observed until a dilution of 0.5 mg substance / 500 μL was reached; 

[c] Photoswitching was observed, but no separate proton signal was existing for integration; 

[d] Half-life was determined via UV/Vis spectroscopy with 80 μM solutions (5 μM in case of 

compound 11); 

[e] Low E/Z ratio due to the poor half-life. 

 

For photoswitching of FimH function, high E/Z ratios in the photostationary state and 

rather long half-lifes are required. In comparison to the thioester 7, the ligation 

product 108 showed more advantageous photochromical properties. This confirms that 

the photochemical properties can be investigated for the precursor molecules to decide if 

the molecules are suitable in general since the switching behaviour does not get worse 

after ligation – at least in the case of compound 7. Both compounds 7 and 108 show 

similar switching behaviour which was also confirmed by UV/Vis spectroscopy. The 

UV/Vis spectra of compound 7 and 121 are shown in Figure 63 and Figure 64. The 

E-isomer is shown in blue. It is characterised by a strong absorbance in the π -π* transition 

(around 330 nm). After irradiation with 365 nm the absorption spectra of the Z-isomer 
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(red) showed an increase of the absorbance in the n-π* transition and simultaneously a 

decrease in the π-π* transition. 

 

Figure 63: UV spectra of compound 7. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

15 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

 

Figure 64: UV spectra of compound 108. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

15 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

UV/Vis spectra for compounds 8-14, 35, 78, 79, 102 and 103 are shown in chapter 8.5.4. 
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5.3.5 Molecular modelling and docking 

For the determination of the suitability of ‘gate keeper’ molecules for effective switching 

between the carbohydrate binding (adhesion) and the non-carbohydrate binding (no 

adhesion) function of the azobenzene-labelled lectin the system was investigated in silico. 

First, the binding event between the reactive conjugate and the lectin FimH was observed. 

For the labelling experiment lectin FimH will be incubated with the DMAP ligand 6 

before thioesters (exemplified by compound 11 in Scheme 34) will be added. A 

nucleophilic attack of compound 6 on thioester 11 leads to a reactive conjugate (6+11) 

(highlighted in red, Scheme 34). This conjugate was employed for docking studies to 

predict the affinity of the ligand towards FimH on the one hand and to get a deeper 

knowledge about the orientation of the reactive conjugate in and at the binding site, 

respectively. Finally, one nucleophilic amino acid side chain will attack the conjugate 

(6+11) to form the labelled protein. Since FimH can occur in two conformations, namely 

the open gate conformation (PDB code 1KLF[402]) and the closed gate conformation (PDB 

code 1UWF[403]) docking studies were performed for both states of the azobenzene, the 

E- and the Z form. (Figure 57) 

 

Scheme 34: Mechanism of the DMAP-catalysed ligation reaction shown exemplified by DMAP ligand 6 

and thioester 11. The resulting conjugate (6+11) (highlighted in red) was applied for docking studies with 

Glide.[382] 
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Docking studies were performed with the software Glide[382] which is implemented in the 

Schrödinger software package.[404] Ligands were prepared by transforming a 2D structure 

into a 3D structure by energy minimisation and conformer generation. The 2D and the 

resulting 3D structure of compound 11 (after ligand preparation with LigPrep from the 

Schrödinger software package[405]) is shown as an example in Figure 65. 

 

Figure 65: 2D (left, (A) and (B)) and 3D (right, (C)) structures for the conjugate (6+11) which was applied 

for the docking study. 

 

The conjugate (6+11) was disposed to docking studies with Glide. For this, both protein 

conformers (1KLF and 1UWF) were prepared for docking with the implemented ‘Protein 

Preparation Wizard’ tool.[406-407] Docking was performed in a high precision mode which 

fixed the lectin in a rigid conformation whereas the ligand is flexible during the docking 

process. The results with the best docking scores for conjugate (6+11) are shown in 

Figure 66. The more negative the docking score, the higher is the predicted ligand affinity 

for the lectin. Unexpectedly, in case of conjugate (6+11) the mannoside residue did not 

enter the binding site of the lectin during the docking process. Instead, it was orientated 

next to the binding site at a hypothetic second carbohydrate binding site (hereafter 

referred to as ‘putative binding site’) where the mannoside residue formed stabilising 

hydrogen bonds. Nevertheless, the resulting complex showed the ‘gate keeper’ moiety 

orientated ideally in front of the binding site and additionally the reactive centre of the 

conjugate is in proximity to the potential nucleophilic residue of Tyr137. Thus, the result 

of this docking emboldened to use compound 11 as a precursor for the attachment of the 

‘gate keeper’ moiety.  
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Figure 66: Results of the docking of conjugate (6+11) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Location of the mannoside moiety at the putative binding site of the 1KLF 

structure (C) and of the 1UWF structure (D). Stabilising hydrogen bonds are marked in yellow, stabilising 

ππ interactions are marked in green and salt bridges are shown in pink. 

 

Hydrogen bonds at the putative binding site were formed with aspartic acid Asp140, 

Asp140 and glutamine Gln143 (Figure 66, (C)). Significant interactions between the 

ligand and the lectin are shown in 2D in Figure 67. The same situation, the mannoside 

residue being orientated at the putative binding site, was observed also for other 

conjugates after docking. 
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Figure 67: Interaction diagrams for the conjugate (6+11) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in red. Additionally the proximity of 

nucleophilic amino acid residues to the reactive centre of the conjugate can be estimated. 

 

The results of the docking of the conjugate (6+14) are depicted in Figure 68. In case of 

the closed gate conformation the conjugate (6+14) was positioned within the binding site 

with a resulting docking score of -7.94. However, for the 1KLF conformation the binding 

site remains unoccupied and the ligand is positioned beneath the binding site. 

 

Figure 68: Results of the docking of conjugate (6+14) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising ππ interactions are marked in green. 
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Nevertheless, compound (6+14) extended to the entrance of the binding site and is also 

pre-oriented for ligation with the lectin FimH (Figure 69). 

 

Figure 69: Interaction diagrams for the conjugate (6+14) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. Additionally, the proximity of 

nucleophilic amino acid residues to the reactive centre of the conjugate can be estimated. 

 

For the pyridinium derivative 12 and the conjugate (6+12), respectively, both the 1KLF 

conformation and the 1UWF conformation stayed unoccupied by the ligand. In both cases 

the mannoside residue was located alongside the binding site at the putative binding site 

which was already sighted before (cf. Figure 66). Hydrogen bonding with Asp141 is 

stabilising the constellation. Figure 70 shows the location of the conjugate at the putative 

binding site of the open gate conformation (A and B) and the closed gate conformation 

(C). In both cases the conjugate was located above the binding site and the active ester of 

the compound (6+12) is in proximity of potential nucleophiles at the entrance of the 

binding site.  
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Figure 70: Results of the docking of conjugate (6+12) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF). (B) shows the location of the mannoside residue 

at the putative binding site. (C) shows the result of the docking with the closed gate conformation of lectin 

FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ interactions 

are marked in green. 

 

Interaction diagrams for conjugate (6+12) with the lectin conformations 1KLF and 1UWF 

are shown in Figure 71. Hydrogen bonds which stabilise the compound at the putative 

binding site are highlighted in violet. 
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Figure 71: Interaction diagrams for the conjugate (6+12) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). It is evident that Tyr137 is in ideal 

proximity of the reactive active ester in case of the 1KLF conformation. Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green.  

 

In case of conjugate (6+13) the ligand was also located beside the binding site. In both 

cases (1KLF and 1UWF) the mannoside residue was located at the putative binding site. 

The docking result for the 1UWF conformation showed that the azobenzene moiety was 

lying above the entrance of the binding site. Thus, an optimal pre-orientation of the 

conjugate for ligation with nucleophile Tyr137 was provided. (Figure 72) 

 

Figure 72: Results of the docking of conjugate (6+13) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 
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Interaction diagrams for the conjugate (6+13) are shown in Figure 73. The orientation of 

the conjugate at the surface of the 1UWF lectin was stabilised by ππ stacking of the 

azobenzene phenyl ring and Tyr137 and hydrogen bonding of Tyr137 with the amide 

functional groups of the conjugate (6+13). 

 

Figure 73: Interaction diagrams for the conjugate (6+13) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green.  

 

The cationic ‘gate keeper’ precursors 35 and 38 were also investigated via docking 

studies. The respective compound 10 had already been investigated by F. BEIROTH who 

observed unspecific binding for conjugate (6+10).[379] The respective triethylamine 

derivative 35 was investigated in the course of this thesis and the docking results are 

shown in Figure 74. With respect to the mannoside residue also compound (6+35) showed 

unspecific binding. Nevertheless, in case of the 1KLF conformation a good pre-

orientation was observed since the ‘gate keeper’ moiety of the conjugate is located within 

the binding site and the active ester is in proximity of the nucleophilic residues. In case 

of the 1UWF conformation the ‘gate keeper’ moiety was at least cutting across the 

entrance of the binding site. Again, in both constellations the mannoside residue was 

located at the putative binding site. 
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Figure 74: Results of the docking of conjugate (6+35) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 

 

Interaction diagrams for the conjugate (6+35) are shown in Figure 75. 

 

Figure 75: Interaction diagrams for the conjugate (6+35) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. 
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The substitution pattern of the azobenzene might also have a great influence on the 

applicability as ‘gate keeper’ molecules. Depending on attachment of the thioester residue 

in the ortho-, meta- or para-position of the azobenzene ‘gate keeper’ moiety, the angle of 

the photoswitchable ‘gate keeper’ vary significantly. Thus, compound 38 was designed 

and subjected to docking studies. The results of the docking are depicted in Figure 76. 

Conjugate (6+38) showed unspecific binding related to the 1KLF conformation but the 

orientation above the binding site was still promising for ligation experiments. In case of 

the 1UWF conformation a weak binding characterised by a very mean docking score 

of -3.93 was observed. 

 

Figure 76: Results of the docking of conjugate (6+38) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 

 

Interaction diagrams for the conjugate (6+38) are shown in Figure 77. 
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Figure 77: Interaction diagrams for the conjugate (6+38) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. 

 

The next group of potential ‘gate keeper’ precursors which were estimated by docking 

studies are the carbohydrate-based derivatives 79, 80, 102 and 103. The mannoside 78 

had already been investigated by I. STAMER, who observed docking scores which were at 

least in the range of methyl α-D mannoside.[381] Derivatives 79 and 80 were investigated 

here. First, α-D-glucoside 79 was subjected to docking studies as conjugate (6+79) 

(Figure 78). The conjugate (6+79) showed affinity both for the 1KLF conformation of 

FimH (docking score -5.73) and the 1UWF conformation (docking score -10.76). It must 

be taken in account that the α-D-glucoside moiety was located within the binding site and 

not as expected the α-D-mannoside residue. Thus, the conjugate was perfectly oriented 

for ligation with the lectin and subsequent use as ‘gate keeper’ molecule. 
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Figure 78: Results of the docking of conjugate (6+79) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow. 

 

Interaction diagrams for the conjugate (6+79) are shown in Figure 79. 

 

Figure 79: Interaction diagrams for the conjugate (6+79) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. 

 

 However, the formation of conjugate (6+79) was intended to be a site-directing aid. Since 

the result of the docking showed that this does not work as expected via the mannoside 
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moiety, a conjugate of compound 79 and DMAP (Figure 81) was submitted to docking 

studies to evaluate the influence of the affinity driven DMAP ligand 6. The docking 

results for the conjugate (DMAP+79) are shown in Figure 80. The glucoside moiety was 

located beneath the entrance of the binding site. This result supported the idea that the 

labelling of the binding site might work affinity-driven, albeit the mannoside DMAP 

catalyst 6 is located at the putatitive binding site which led in case of conjugate (6+79) to 

a suitable preorientation of the ‘gate keeper’ moiety within the binding site. The 

(DMAP+79) conjugate was not able to provide this preorientation. 

 

Figure 80: Results of the docking of conjugate (DMAP+79) with Glide: (A) Docking was performed with 

the open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation 

of lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 

 

Interaction diagrams for the conjugate (DMAP+79) are shown in Figure 81. 

 

Figure 81: Interaction diagrams for the conjugate (DMAP+79) with lectin FimH in the open gate 

conformation (left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen 

bonds are highlighted in violet and stabilising ππ interactions are highlighted in green. 
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The β-D-glucoside 80 was subjected to docking studies as conjugate (6+80). The results 

are shown in Figure 82. The docked structure of conjugate (6+80) with the 1KLF 

conformation of the CRD ensued a docking score of -6.64. 

 

Figure 82: Results of the docking of conjugate (6+80) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 

 

Interaction diagrams for the conjugate (6+80) are shown in Figure 83. Especially Tyr137 

was in proximity of the reactive active ester of the conjugate. 

 

Figure 83: Interaction diagrams for the conjugate (6+80) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. 
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The results for the methoxy-substituted azobenzene derivative 102 are shown in Figure 

84. Both, for the 1KLF and the 1UWF conformation of the CRD the mannoside residue 

was located at the putative binding site instead of the CRD. However, the methoxy 

substituent was located in the binding site like a ‘gate keeper’ and the active ester was 

located at the rim of the binding site. 

 

Figure 84: Results of the docking of conjugate (6+102) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow. 

 

Interaction diagrams for the conjugate (6+102) are shown in Figure 85. 

 

Figure 85: Interaction diagrams for the conjugate (6+102) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet. 
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In case of the analogous mannoside 103 the same situation with the azobenzene moiety 

across the binding site was observed for the closed gate conformation. In case of the 1KLF 

conformation of the CRD the mannoside residue of the ‘gate keeper’ unit was docked 

within the binding site. The docking score accounts for -7.17 (Figure 86). 

 

Figure 86: Results of the docking of conjugate (6+103) with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow, and stabilising ππ 

interactions are marked in green. 

 

Interaction diagrams for the conjugate (6+103) are shown in Figure 87. Especially Tyr137 

was in proximity of the conjugate’s reactive centre. 

 

Figure 87: Interaction diagrams for the conjugate (6+103) with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet and stabilising ππ interactions are highlighted in green. 
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Since the docking scores which result from the docking experiments depend on many 

parameters which can be individually set-up, they are slightly difficult to compare and 

assess specially if the experiments are performed by different users or with varying 

releases of the Schrödinger software package. Thus, it is always favourable to have a 

well-known and reliable reference. Therefore, docking studies were performed with 

methyl α-D-mannoside (MeMan) and para-nitrophenyl α-D-mannoside (pNP). The 

results for MeMan are given in Figure 88. The docking score of methyl mannoside with 

the 1KLF conformation is –8.18 and with the 1UWF conformation is -7.28. 

 

Figure 88: Results of the docking of MeMan with Glide: (A) Docking was performed with the open gate 

conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of lectin FimH 

(PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow. 

 

Interaction diagrams for the methyl mannoside are shown in Figure 89. 

 

Figure 89: Interaction diagrams for MeMan with lectin FimH in the open gate conformation (left, (A), 

1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are highlighted in 

violet. 
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The results for pNP mannoside are given in Figure 90. The docking score of pNP 

mannoside with the 1KLF conformation is -8.53 and with the 1UWF conformation 

is -8.23. 

 

Figure 90: Results of the docking of pNP mannoside with Glide: (A) Docking was performed with the 

open gate conformation of lectin FimH (PDB code: 1KLF) and (B) with the closed gate conformation of 

lectin FimH (PDB code: 1UWF). Stabilising hydrogen bonds are marked in yellow. 

 

Interaction diagrams for the pNP mannoside are shown in Figure 91. 

 

Figure 91: Interaction diagrams for the pNP mannoside with lectin FimH in the open gate conformation 

(left, (A), 1KLF) and the closed gate conformation (right, (B), 1UWF). Stabilising hydrogen bonds are 

highlighted in violet. 
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The results of all performed docking studies are summarised in Table 3. 

Table 3: Summary of all performed docking studies (1KLF: open gate conformation; 1UWF closed gate 

conformation of FimH). 

 

Docked 

conjugate 

Ligand binding in CRD: 

Glide docking scores 

Ligand bound to putative 

binding site* 

6+11 -- 1KLF and 1UWF 

6+12 -- 1KLF and 1UWF 

6+13 -- 1KLF and 1UWF 

6+14 -7.94 (1UWF) 1KLF 

6+35 -- 1KLF and 1UWF 

6+38 -3.93 (1UWF) 1KLF: unspecific 

6+79 -10.76 (1UWF) 

-5.73 (1KLF) 

-- 

DMAP + 79 -- 1KLF and 1UWF 

6+80 -6.64 (1KLF) 1UWF 

6+102 -- 1KLF and 1UWF 

6+103 -7.17[b] (1KLF) 1UWF: unspecific 
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Docked 

conjugate 

Ligand binding in CRD: 

Glide docking scores 

Ligand bound to putative 

binding site* 

MeMan[c] -7.28 (1UWF) 

-8.18 (1KLF) 

 

pNPMan[c]  -8.23 (1UWF) 

-8.53 (1KLF) 

 

* No docking scores are obtained when the conjugate is not located in the CRD 

[a] the glucoside residue of the ‘gate keeper’ moiety instead of the site directing DMAP 

mannoside moiety is located within the binding site. 

[b] the mannoside residue of the ‘gate keeper’ moiety instead of the site directing DMAP 

mannoside moiety is located within the binding site. 

[c] MeMan and pNPMan were docked as references and thus used without previous conjugation. 

 

In summary, all structures designed to function as ‘gate keeper’ molecules after ligation 

form a strong complex with FimH, although the affinity moiety of the reactive conjugates 

is not in all cases located within the carbohydrate binding site. Nevertheless, the 

conjugates are at least located at the putative binding site in such a way that a pre-

orientation for the ligation with one of the amino acids Tyr48, Tyr137 or Thr51 is 

provided. At the putative binding site hydrogen bonds with the glycoside moiety of the 

conjugates are formed and the reactive active ester part of the conjugates is adjusted 

towards the edge of the binding site. 

Furthermore, also the eligibility of the molecules as ‘gate keeper’ molecules after ligation 

with Tyr48, Tyr137 and Thr51 was investigated by molecular modelling. Ligation was 

performed manually based on the docking results which were obtained for each conjugate 

of the DMAP mannoside 6 with the respective thioester. Thus, six structures resulted for 

each ‘gate keeper’ precursor since ligation was performed with all three relevant amino 

acids and both for the 1KLF and the 1UWF conformation. The resulting structures were 

energetically minimised by MacroModel.[408] An efficient ‘gate keeper’ should leave the 

binding site open in its one isomeric state and close the binding site in its second isomeric 

state. Consequently, both states should be attainable in the form of an energetically 

advantageous state. Thus, a multitude of alignments of the azobenzene moiety were 

studied. The alignments were obtained by a rotational scan with MacroModel.[408] The 

azobenzene moiety was rotated about two dihedral angles which are shown in Figure 92. 

Each dihedral angle, respectively dihedral angle 1 and dihedral angle 2, were changed in 

steps of 10° and the potential energy of each resulting conformation was recorded. Thus, 
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1369 structures and the corresponding potential energies were obtained for each ligated 

amino acid and for each CRD conformation. Additionally, all rotational scans were 

performed for the Z- and the E-configuration of the ‘gate keeper’ molecules. For the 

Z-configuration the angle and the dihedral angle of the azo moiety were defined.[103]  

 

Figure 92: For the evaluation of the ‘gate keeper’ molecules the ligated azobenzene moieties were rotated 

about the dihedral angle 1 and dihedral angle 2 while the resulting potential energies were recorded. The 

potential energies are plotted as a contour plot depending on the two dihedral angles afterwards. 

 

The evaluation of all structures must be performed manually and consequently is very 

time consuming. A contour plot proved helpful to visualise the potential energies 

resulting for each conformation. The dihedral angle 2 was plotted on the x-axis and the 

dihedral angle 1 was plotted on the y-axis. The plot was coloured as a contour diagram 

by the potential energies which occurred for each single combination of dihedral angle 1 

and 2. In the contour diagram red indicates a high potential energy and blue indicates a 

low potential energy. These diagrams allow to identify regions of energetically 

advantageous conformers. Nevertheless, all structures were also sighted manually to find 

good conformations which show the binding site either opened or closed. Finally, the 

energetically advantageous structures were matched to find those promising ‘gate keeper’ 

moieties which have a suitable state of low energy for the E- and for the Z-state. The 

results of the rotational scans for all compounds in Table 3 are discussed in the following 

paragraphs. The results for the biphenyl derivative 11 are shown in 

Figure 93 to Figure 98. For the 1KLF open gate conformation positive matches were 

observed for the ligation of compound 11 to Tyr48 and Tyr137. In both cases the 

E-configuration left the binding site open in many of the calculated conformations during 

the rotational scan. In case of the Z-configured ‘gate keeper’ molecule, conformations of 



118 Labelling FimH: Towards the photochemical control of carbohydrate recognition 

 

low potential energy were observed which close the binding site and are thus able to avoid 

binding of ligands at the binding site. 

 

Figure 93: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 94: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 95: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

For the closed gate conformations only one positive match was observed. In case of the 

protein which was ligated at the Tyr48 the binding site stayed open when the azobenzene 

moiety was in its E-state and was at least covered by the biphenyl residue in its Z-state in 

some energetically favoured conformations. 

 

Figure 96: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 97: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 98: Results of the rotational scan with MacroModel for the azobenzene derivative 11 ligated to the 

amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the pyridine derivative 14 are shown in Figure 99: to Figure 104:. A 

positive match was observed for the protein-ligated with the ‘gate keeper’ moiety at the 

amino acid Tyr48 both for the open and the closed gate structure. Additionally, also the 

Tyr137-ligated protein structure in the open gate conformation was a positive match. For 
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the closed gate conformation of the Tyr137-ligated protein structure only one closed 

structure (picture 1 on the right side of Figure 103) was observed. 

 

Figure 99: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to the 

amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 100: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 101: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 102: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 



Labelling FimH: Towards the photochemical control of carbohydrate recognition 123 

 

 

Figure 103: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E (left) and Z conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 104: Results of the rotational scan with MacroModel for the azobenzene derivative 14 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the pyridine derivative 12 are shown in Figure 105 to Figure 110. A 

positive match was observed for the protein ligated with the ‘gate keeper’ moiety at the 

amino acid Tyr48 both for the open and the closed gate structure. Additionally, also the 
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Tyr137-ligated protein structure in the closed gate conformation was a positive match. 

For the open gate conformation of the Tyr137-ligated protein structure only one closed 

structure (picture 1 on the right side of Figure 106) was observed. 

 

Figure 105: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 106: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 107: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 108: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E (left) and Z conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 109: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 110: Results of the rotational scan with MacroModel for the azobenzene derivative 12 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the sulfonamide derivative 13 are shown in Figure 111 to Figure 116. 

Derivative 13 showed positive matches for the Tyr48-ligated KLF derivative and the 

Thr51-ligated UWF derivative. In case of the Tyr137-ligated UWF derivative an inversed 

photoswitching might be possible since the binding site was closed in the E-configuration 

of the azobenzene moiety and thus was opened in the Z-configuration. Nevertheless, for 

most of the twelve ligated protein structures the ‘gate keeper’ shows a high affinity to the 
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binding site and its proximity might impede the opening of the binding site significantly. 

The responsible interactions are shown as an example for the Tyr137-ligated UWF 

structure in Figure 115 (left, third picture). 

 

Figure 111: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 112: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 113: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 114: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 115: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 116: Results of the rotational scan with MacroModel for the azobenzene derivative 13 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the triethylammonium derivative 35 are shown in Figure 117 to Figure 

122. Positive matches were observed for the proteins ligated with the ‘gate keeper’ at 

Tyr48 and Tyr137 in the open gate conformation and for the proteins ligated at Tyr137 

for the closed gate conformation. In case of the Thr51-ligated protein the ‘gate keeper’ 

moiety closes the binding site both in the E- and its Z-configuration. In case of the Thr51-
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ligated protein (closed gate conformation) reversed switching might be successful since 

only in the E-configuration of the ‘gate keeper’ conformations of the protein with a closed 

binding site were observed (Figure 122). 

 

Figure 117: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 118: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 119: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 120: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 121: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 122: Results of the rotational scan with MacroModel for the azobenzene derivative 35 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the trimethylammonium derivative 38 are shown in Figure 123 to 

Figure 128. Positive matches were observed for the ligation of the ‘gate keeper’ molecule 

with Tyr48 both in the open and in the closed gate conformation. Additionally, the 
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Tyr137-ligated KLF structure and the Thr51-ligated UWF structure can be evaluated as 

suitable ‘gate keeper’ molecules.  

 

Figure 123: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 124: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 125: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 126: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 127: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 128: Results of the rotational scan with MacroModel for the azobenzene derivative 38 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the alpha glucoside 79 are shown in Figure 129 to Figure 134. For 

compound 79 as ‘gate keeper’ molecule only one positive match was observed namely 

the Tyr48-ligated UWF protein structure. The remaining UWF structures with Tyr137 

and Thr51, respectively, attached just showed unspecific results with a partly closed 
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binding site for the E- as well as the Z-configuration of the ‘gate keeper’ moiety. The 

binding sites of the modified KLF protein structures all stay opened both in the E- and in 

the Z-configuration. 

 

Figure 129: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 130: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 131: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 132: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 133: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 134: Results of the rotational scan with MacroModel for the azobenzene derivative 79 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the beta glucoside 80 are shown in Figure 135 to Figure 140. The most 

promising matches were found for the Tyr48-ligated protein derivatives both for the open 

and the closed gate conformation. In both cases the binding site stayed opened in several 
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energetically favourable conformations in its E-configuration and closed in several 

conformations of low energy in its Z-state. 

 

Figure 135: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 136: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E (left) and Z conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 137: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 138: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 139: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 140: Results of the rotational scan with MacroModel for the azobenzene derivative 80 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the β-glucoside 102 are shown in Figure 141 to Figure 146. The Tyr48- 

and the Tyr37-modified closed gate conformations of the protein show a positive match. 

In case of the open gate conformation of the Thr51-labelled protein an inversed switching 

of the binding affinity would be possible since the binding site is closed in the 

E-configuration of the azobenzene ‘gate keeper’ moiety. At first glance also the Tyr137-

ligated open gate conformation and the Thr51-ligated closed gate conformation of the 
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protein seem to show a positive match. But the conformations of the proteins which 

exhibit the binding site closed by a Z configured ‘gate keeper’ moiety are characterised 

by significantly high potential energies and thus their occurrence is rather unlikely. 

 

Figure 141: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 142: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 



Labelling FimH: Towards the photochemical control of carbohydrate recognition 143 

 

 

Figure 143: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 144: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 145: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 146: Results of the rotational scan with MacroModel for the azobenzene derivative 102 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

The results for the α-mannoside 103 are shown in Figure 147 to Figure 152. For the 

ligated structures of the KLF FimH positive matches were observed for the ‘gate keeper’ 

moieties ligated on the amino acids Tyr48 and Thr51. In case of the Tyr137-ligated UWF 

structure only one closed binding site with the ‘gate keeper’ in Z-configuration was 
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observed and moreover, this structure showed a rather high potential energy. The same 

can be stated for the Thr51-ligated UWF protein. Furthermore, a positive match was 

observed for the Tyr137-ligated UWF protein derivative. 

 

Figure 147: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 148: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 



146 Labelling FimH: Towards the photochemical control of carbohydrate recognition 

 

 

Figure 149: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 150: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 151: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 152: Results of the rotational scan with MacroModel for the azobenzene derivative 103 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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5.4 Conclusion 

In conclusion, all structures (11-14, 35, 79, 80, 102, 103) were successfully synthesized 

by a versatile strategy using DPPA (76), respectively DEPC (77) and submitted to a scan 

of the dihedral angles with MacroModel.[185] The rotational scans showed at least two 

positive matches for each compound with exception of compound 79 which showed just 

one positive match. That means that one protein structure (KLF or UWF) is existing with 

a ligated ‘gate keeper’ moiety on one of the considered amino acids (Tyr48, Tyr137, 

Thr51) which leaves the binding site open in several energetically favoured structures 

during the dihedral angle scan for the E-configuration of the azobenzene moiety and 

accordingly shows also several energetically favoured structures during the scan for the 

Z-configuration of the azobenzene moiety which close the binding site or at least cover 

or distort it in such a way that binding of a ligand would be impeded. Thus, all those in 

silico results in chapter 5.3.5 recommend to perform the respective ligation and 

photoswitching experiments with lectin FimH in vitro as next step of the project. 

It is advisable to establish both the labeling of FimH in vitro and the adjacent NMR 

studies with the bipyridinyl derivative 14, which showed the required ‘gate keeper’ 

properties in silico both for the docking and the rotational scan. Afterwards, it would be 

particularly interesting to investigate the carbohydrate series 78-80. Those derivatives 

feature a biocompatible glycoside ‘gate keeper’ moiety and in addition the influence of 

the graded affinity to the CRD on the reversible opening and closing of the binding site 

is of great interest. 
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6 Red-shifted azobenzene glycoconjugates for in vivo 

photoswitching expriments 

6.1 Introduction 

The wavelengths which are required for the E/Z isomerisation of basic azobenzene 

derivatives are too low not to harm living systems. Therefore, they are not suited for in 

vivo experiments. Consequently, so-called red-shifted azobenzene derivatives were 

introduced in which the wavelength required for photoswitching is shifted from UV light 

to visible ligtht (bathochromic shift). A number of reports appeared in the literature. For 

example, WOOLLEY et al. discovered that azobenzene derivatives which are substituted at 

all four ortho-positions of the azobenzene can be isomerised at increased wavelength 

while the thermal stability of the molecules is still ensured.[149-151, 350] Particularly 

advantageous are chloro-substituents and thus both WARREN and WOOLLEY pursued this 

research. WARREN et al. synthesised tetra-ortho-chloro-substituted azobenzenes by 

oxidative aniline dimerisation[409-410] and WOOLLEY et al. used azocoupling.[411] In the 

following, further work on the synthesis of tetra-ortho-chloro-substituted azobenzenes 

was published by TRAUNER and coworkers[54] who used a ‘late stage chlorination 

approach’. FERINGA and coworkers established the synthesis of tetra-ortho-substituted 

azobenzenes by a lithiation of an aromatic substrate first and subsequent coupling with a 

diazonium salt.[412-413] Our objective was to build on this work for the synthesis of red-

shifted azobenzene glycoconjugates to eventually facilitate in vivo investigations. This 

work was performed in collaboration with Dr. VIVEK POONTHIYIL in the LINDHORST 

group.[55] 

 

6.2 Results and discussion 

WOOLLEY’s procedure[411] was followed in order to achieve tetra-ortho-chloro-substituted 

azobenzene derivatives for the synthesis of photoswitchable glycoconjugates. Thus 

amine 1 was employed in a diazotation reaction according to a procedure of RULLO et 

al.[350] using sodium nitrite for the formation of the diazonum salt which should then be 

reacted with the phenol derivative 2 to form the azobenzene derivative 3. Unfortunately, 

this reaction did not generate any product (Scheme 35). 
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Scheme 35: Synthetic pathway for the formation of azobenzene derivative 3 via diazotation. 

 

Since varying the reaction conditions did not lead to success, MILLS coupling was used 

as alternative. Therefore the nitro compound 5 was synthesised starting from the phenol 

derivative 4 via nitration with sodium nitrite under acidic conditions.[414] The nitro 

compound 5 was subsequently reduced via hydrogenation to obtain amine 6, which was 

employed for MILLS coupling with the nitroso compound 8 prepared from amine 7 with 

oxone®. However, also this approach remained unsuccessful and the desired azobenzene 

derivative 3 was not obtained (Scheme 36). 

 

Scheme 36: Synthetic pathway for the synthesis of desired azobenzene derivative 3: (a) NaNO2, H2SO4, 

H2O, 0 °C → reflux, 6 h → rt, 16 h, 37 %; (b) H2, Pd/C, MeOH, rt, 16 h, quant.; (c) oxone®, H2O, DCM, 

acetone, rt, 16 h, raw product; (d) CH3COOH, rt, 16 h. 

 

Since MILLS coupling had worked out quite nicely for many reactions with aminophenyl 

glycosides as described in chapter 5.3.2, the starting materials were varied. Hence, the 

aminophenyl mannoside 11 was applied in a MILLS coupling. Compound 11 was prepared 

by glycosylation of 5 with the trichloroacetimidate 9 followed by hydrogenation 

(Scheme 37). Then, MILLS coupling with the nitroso compound 8 delivered the 

azobenzene mannoside 12 as a raw product which however could not be fully purified 

(Scheme 37). 
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Scheme 37: Synthetic pathway for the synthesis of azobenzene-equipped mannoside 12: (a) BF3·Et2O, dry 

DCM, 0 °C → rt, 16 h, 71 %; (b) H2, Pd/C, MeOH, 4 h, quant.; (c) CH3COOH/DMSO (1:1), rt, 16 h, raw 

product. 

 

In conclusion the common methods for the synthesis of glycoazobenzene derivatives 

failed for the synthesis of tetra-ortho-chlorinated azobenzene derivatives. When 

TRAUNER and coworkers[54] published the late stage chlorination approach in 2016, this 

chemistry was adapted to the synthesis of azobenzene glycoconjugates. By using a 

palladium (II) catalyst, the azobenzene ortho-positions can be activated and subsequently 

chlorinated with N-chlorosuccinimide. This method was applied to standard azobenzene 

derivative 13 and the propargylated derivative 14 which proved to be versatile building 

blocks for the synthesis of glycoazobenzenes before. In case of the dihydroxy 

derivative 13 the late stage chlorination produced a raw product, which was not obtained 

in pure form even after repeated column chromatography. In case of the propargylated 

derivative 14 no product was obtained which suggests that the late stage chlorination 

method is not compatible with alkyne groups within the substrate. (Scheme 38) 
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Scheme 38: Late stage chlorination of the azobenzene derivatives 13 and 14 with N-chlorosuccinimide and 

Pd(OAc)2 catalyst. 

 

Nevertheless, since the target molecule was a red-shifted glycoazobenzene derivative, 

raw product 16 was submitted to a glycosylation reaction with the trichloroacetimidate 9 

under Lewis acid catalysis with boron trifluoride diethyl etherate (Scheme 39). The result 

of this reaction was a colourless solid so that the formation of the targeted compound 12 

was excluded. Instead of the targeted compound the formation of the hydrazine 

derivative 18 was indicated by NMR spectroscopy and confirmed by mass spectrometry. 

This outcome confirmed the formation of a chloro-substituted azobenzene derivative in 

the reaction step shown in Scheme 38 was successful but the targeted glycoazobenzene 

derivative 12 was not originated. 

 

Scheme 39: Synthesis plan for the glycosylation of azobenzene 13 with trichloroacetimidate 9 to obtain the 

targeted compound 12. (a) BF3·Et2O, dry DCM, 0 °C → rt, 16 h. 
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Finally, although the reaction conditions of the late stage chlorination seem rather harsh 

with respect to the stability of carbohydrates, the method was yet applied to a 

glycoazobenzene derivative. Thus, the reaction was performed with the azobenzene 

derivative 19 (cf. 5.3.2). It was necessary to first fully acetylate 19 to result in 20 which 

was then subjected to the chlorination reaction with NCS and Pd(OAc)2 (Scheme 40). 

Heating was performed in a microwave reactor. The desired product 21 was obtained with 

a yield of 33 %. Taken together, late stage chlorination after a proceeding glycosylation 

step is the clearly more advantageous route to synthesize red-shifted azobenzene 

glycoconjugates.  

 

Scheme 40: Synthesis of the tetra-ortho-chloro-substituted glycoazobenzene derivative 21 via late stage 

chlorination which can be converted into a thioester 22 for subsequent ligation with lectin FimH: (a) NCS, 

Pd(OAc)2, CH3COOH, 140 °C (microwave), 2 h, 33 %. 

 

The azobenzene derivative 21 can be employed in the preparation of the thioester 22 in 

order to achieve red-shifted ‘gate keeper’ molecules for the switching of FimH function 

(cf. chapter 5). Docking studies and also a rotational scan with the Schrödinger software 

was used to evaluate the suitability of 22 as FimH gate keeper. The results of the 

coordinate scan are shown in Figure 153 to Figure 158. Positive matches were observed 

for the protein derivative which is ligated with the ‘gate keeper’ moiety at the Tyr137 

residue both in the open and the closed gate conformation. Additionally, also the 

Tyr48-ligated protein in the open gate conformation showed a closed binding site when 

the azobenzene ‘gate keeper’ was in its Z-state. 
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Figure 153: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Tyr48 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 154: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Tyr137 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 155: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Thr51 (open gate conformation 1KLF) in E- (left) and Z-conformation (right). The potential 

energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 156: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Tyr48 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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Figure 157: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Tyr137 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 

 

 

Figure 158: Results of the rotational scan with MacroModel for the azobenzene derivative 22 ligated to 

the amino acid Thr51 (closed gate conformation 1UWF) in E- (left) and Z-conformation (right). The 

potential energy is plotted as a contour diagram in relation to the dihedral angles 2 (x-axis) and 1 (y-axis). 
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6.3 Conclusion 

Late stage chlorination was established as a versatile method to synthesize red-shifted 

glycoconjugates. In addition, molecular modelling regarding the ‘gate keeper’ project 

(chapter 5) was performed. The results confirm that also the tetra-ortho-chloro-

substituted derivative 22 showed positive matches for the E/Z isomerisation along with 

the opening respectively closing of the binding site. Thus, this derivative might be a good 

‘gate keeper’ moiety. Besides that, the red shift of azobenzene isomerisation would allow 

to switch the function of FimH under physiological conditions (and eventually in vivo).
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7 Conclusion: Insights gained and following challenges 

Four projects were investigated in this thesis aiming at providing tools for the 

investigation of carbohydrate binding and carbohydrate function within a supramolecular 

biological context. 

The first project dealt with photoswitchable glycolipid mimetics, which could be 

embedded into DPPC monolayers for the eventual investigation of membrane dynamics 

in collaboration with Dr. B. MURPHY. A library of 13 glycolipid mimetics was 

successfully synthesised. The synthetic azobenzene glycoconjugates were 

photochemically characterised and an influence of the carbohydrate moiety on the 

switching behaviour could be registered. In addition, the ability of those glycolipids to 

form a monolayer with DPPC was confirmed and Langmuir isotherm and X-ray 

investigations were performed by the physics departement of Kiel University. 

During the second project two new glycoarrays which enrich the previous experience in 

the field of glyco-SAMs and glycosylated surfaces in the LINDHORST group. were 

developed. One, which is photoactivatable and another, which is based on a 

polysaccharide platform. The photoactivatable glycoarray is based on a light-induced 

PFPA ligation strategy which was performed for mono-, di- and trivalent mannoside 

derivatives. The second assay aimed for the design of a ‘chaotic’ glycosylated surface 

which can mimic naturally occurring surfaces better than the established glyco-SAMs. 

Therefore, a polysaccharide (dextran) was equipped with azido functionalities and 

immobilised by adsorption on a polystyrene surface. Then, the azido moieties were used 

for the attachment of glycosides via copper-catalysed azide alkyne click chemistry 

resulting in a surface which has no defined orientation of its glycoside constituents. 

The aim of the third project was the bioorthogonal and site-specific modification of the 

lectin FimH with suitable azobenzene precursors to create a labelled protein which can 

be photochemically switched between an adhesive and a non-adhesive state. Therefore, a 

library of thioester-equipped azobenzene derivatives was synthesised. The thioester 

moiety enables a DMAP-catalysed ligation with nucleophilic residues like those from 

tyrosine or threonine in the proximity of the binding site. For the design of the ‘gate 

keeper’ precursors different requirements like size, polarity and affinity were considered. 

Moreover, a versatile method using DPPA (76) respectively DEPC (77) for the synthesis 

of thioesters could be established and increased the yields of formerly synthesised 
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thioesters. All synthesised ‘gate keeper’ precursors were also investigated 

photochemically and by molecular modelling to evaluate their eligibility as ‘gate keeper’ 

moieties. All synthesised ‘gate keeper’ molecules are depicted in (Figure 159). 

 

Figure 159: Summary of all thioesters, prepared as photosensitive “gate keeper” molecules for FimH 

labelling. 

 

The next challenge in the context of this project will be the proof of principle for the 

labelling and subsequent switching of the bacterial lectin FimH. Hopefully this method 

will become a versatile and potent tool in glycobiology which combines labelling and 

controlling in one modification which can be attached on the native protein without 

preceding protein engineering. 

The last part of this thesis dealed with the synthesis of tetra-ortho-chloro-substituted 

azobenzene derivatives which can be addressed for E to Z isomerisation with long waved 

light. Thus, those red-shifted azobenzene derivatives are especially useful in biological 

applications since they provoke less damage on tissues than their unsubstituted 

counterparts. A general procedure based on a method by TRAUNER was modified and 

established for glycoazobenzene derivatives. From now on, the microwave-assisted 

method allows the simple preparation of tetra-ortho-chloro-substituted azobenzene 

glycosides. This strategy is a very promising approach which can be introduced to all 

projects which deal with the photochemical control of biological function. Especially for 

the project which aims for the labelling and control of FimH (cf. chapter 5) this represents 

a useful expansion. By using red-shifted azobenzene moieties as ‘gate keeper’ molecules, 

damages on the protein can be prevented. Concerning this matter, for the long term there 

are no impediments for the expansion of the ‘gate keeper’ project towards labelled and 

controlled bacteria. 
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8 Experimental section 

8.1 General methods 

Reactions, chemicals and solvents 

All reactions were carried out under atmospheric conditions (unless stated otherwise). 

Moisture sensitive reactions were carried out in dry glass ware under nitrogen 

atmosphere. All chemicals were purchased from abcr, Acros, Alfa Aesar, Gruessing, 

Merck, Sigma-Aldrich and TCI and used without further purification. Only ion exchange 

resins were washed with methanol before use. Solvents were purchased as technical grade 

solvents and purified by distillation before use. Methanol was dried over magnesium and 

acetonitrile over calciumhydride under a nitrogen atmosphere. Dry N,N‘-dimethyl-

formamide over molecular sieves was purchased from Acros Organics and used without 

further purification. Dry dichloromethane, diethylether and tetrahydrofurane were 

obtained by the PureSolv MD5 Solvent Purification System from Inert Technology.  

 

Thin layer chromatography (TLC) 

Analytical thin layer chromatography (TLC) was performed on silica-gel plates (GF 254, 

Merck). Visualisation was achieved by UV light and/or with a solution of vanillin in 10% 

sulfuric acid in ethanol followed by heat treatment at ~180 °C.  

 

Flash chromatography 

Flash chromatography was performed on silica gel 60 (Merck, 230-400 mesh, particle 

size 0.040-0.063 mm) by using distilled solvents.  

 

NMR spectroscopy 

Proton (1H) nuclear magnetic resonance spectra and carbon (13C) nuclear magnetic 

resonance spectra were recorded on a Bruker Avance 200, Bruker ARX300, Bruker 

AvanceNeo 500 and Bruker Avance 600 spectrometer. Chemical shifts are referenced to 

internal tetramethylsilane or to the residual proton of the NMR solvent. Data are presented 

as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, 
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m=multiplet, and br=broad signal), coupling constant in Hertz (Hz) and, integration. Full 

assignment of the peaks was achieved with the aid of 2D NMR techniques (1H/1H COSY 

and 1H/13C HSQC). All NMR spectra of the E-isomers of the azobenzene derivatives were 

recorded after they were kept for 16 h in the dark at 40 °C. Z-isomers of the azobenzene 

derivatives were recorded after irradiation with a UV LED (365 nm) for 15 min. 

 

Infrared (IR) spectroscopy 

Infrared (IR) spectra were measured with a Perkin Elmer FT-IR Paragon 1000 (ATR) 

spectrometer and were reported in cm-1. 

 

UV/Vis spectroscopy 

UV-Vis absorption spectra were recorded on a Agilent Cary 4000 spectrometer (for 

chapter 3) or on a Lambda-41 spectrometer from PerkinElmer equipped with a Büchi 

thermostat. Samples were measured in quartz cuvettes with a diameter of 1 cm at a 

temperature of 20 °+/- 1 °C. 

 

Mass spectrometry 

EI mass spectra were recorded on a Jeol AccuTOF 4GCV and Finnigan MAT 8230 or 

MAT 8200 devices. ESI mass spectra were recorded on an Applied Biosystems (Applera) 

Mariner ESI-TOF and HR (high resolution) MS ESI spectra on a ThermoFisher Orbitrap 

(Q Exactive Plus from Thermo Scientific). MALDI MS were measured on a Bruker 

Bioflex III instrument and a Bruker MALDI-TOF Autoflex. 

 

Melting points 

Melting points were determined on a Büchi M-560 apparatus.  

 

Photoirradiation 

Photoirradiation was performed using either a UV LED (emitting 365 nm light, 2.7 mW) 

or a blue LED (emitting 455 nm light, 2.6 mW). E → Z isomerisation was induced by 
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irradiation using a LED (emitting 365 nm light) from the Nichia Corporation 

(NC4U133A) with a FWHM (full width at half maximum) of 10 nm and an intensity of 

25 mW/cm2. Z → E isomerisation was performed by irradiation of the probe with a LED 

(emitting 365 nm light) from the Nichia Corporation with a FWHM of 45 nm and an 

intensity of 1 mW/cm2. 

 

ELISA reader 

Fluorescence and absorbance were measured on a Tecan infinite F200 and a Tecan infinite 

M200 Pro multifunction microplate reader. A bandpass filter was used with 485 nm for 

excitation and 535 nm for emission in case of Tecan reader F200.  

 

Optical rotations 

Optical rotations were measured on a PerkinElmer 241 polarimeter (sodium D-line: 

589 nm, cell length: 1 dm) in the solvents indicated. 

 

Microwave 

Microwave reactions were performed with a Discover SP Microwave Synthesizer from 

CEM Corporation (model: Explorer 12 Hybrid) The temperature, pressure, and power 

settings used for all reactions were 140 °C, 10 bar and 200 W. 

 

Purity of compounds 

The purity of synthesised compounds was ensured by validation of the corresponding 1H 

and 13C NMR spectra in combination with the HR-MS spectra. 
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8.2 Supporting information for chapter 3: Photoswitchable glycolipids 

for the investigation in lipid layers 

8.2.1 Synthesis of amphiphiles 

(E)-[p-((2,2-Dimethyl-1,3-dioxan-4-yl)methoxy)-p’-(propargyloxy)] azobenzene (14) 

To a suspension of azobenzene 12 (8.00 g, 31.7 mmol) and potassium carbonate (10.1 g, 

73.1 mmol) in dry DMF (100 mL) compound 13 (9.08 g, 31.7 mmol) was added and 

stirred for 10 h at 100 °C. Then the solvent was removed, the residue resolved in ethyl 

acetate (250 mL) and washed with water (2 x 200 mL). It was dried over MgSO4, filtered 

and the filtrate was concentrated under reduced pressure. Purification of the crude product 

by column chromatography (cyclohexane/ethyl acetate 6:1 → 4:1) gave 14 as an orange 

solid. 

Yield:    10.0 g (27.3 mmol, 86 %); 

TLC:     Rf = 0.30 (cyclohexane/ethyl acetate 4:1); 

1H NMR (600 MHz, CDCl3, 300 K): δ = 7.90-7.86 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.08 

(m, 2H, Ar-Hmeta), 7.02 (m, 2H, Ar-Hmeta‘), 4.77 (d, 4JOCH2,C≡CH = 2.3 Hz, 2H, OCH2), 4.51 

(m, 1H, Ar-COCH2CH), 4.19 (dd, 2JCHH’ = 8.6 Hz, 3JCHCHH’ = 6.5 Hz, 1H, 

Ar-COCH2CHCHH’), 4.13 (dd, 3JCHH’CH = 5.4 Hz, 2JCHH’ = 9.5 Hz, 1H, 

Ar-COCHH’CH), 4.03 (dd, 3JCHH’CH = 5.9 Hz, 2JCHH’ = 9.5 Hz, 1H, Ar-COCHH’CH), 

3.93 (dd, 2JCHH’ = 8.6 Hz, 3JCHCHH’ = 5.9 Hz, 1H, Ar-COCH2CHCHH’), 2.56 (t, 

4JCH2C≡CH = 2.4 Hz, 1H, C≡CH), 1.48 (s, 3H, CH3), 1.42 (s, 3H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 160.8 (Ar-Cpara‘), 159.6 (Ar-Cpara), 147.7 

(Ar-Cipso), 147.4 (Ar-Cipso‘), 124.6, 124.5 (Ar-Cortho, Ar-Cortho‘), 115.3 (Ar-Cmeta), 114.9 

(Ar-Cmeta‘), 110.0 (OCCH3), 78.3 (C≡CH), 76.1 (C≡CH), 74.1 (OCH2CH), 69.2 

(Ar-COCH2CH), 66.9 (Ar-COCH2CHCH2), 56.2 (CH2C≡CH), 29.9, 27.0 (CH3) ppm; 

Ir (ATR): ṽ = 3400, 3276, 1594, 1497, 1234, 1014, 844 cm-1; 

EI-MS: m/z = 366.15796, [M]+; (calc. 366.15796 for C21H22N2O4). 

 

(E)-[p-((1,2-Dihydroxypropyloxy)-p’-(propargyloxy)] azobenzene (15) 

1 M HCl (200 mL) was added to a solution of azobenzene 14 (10.5 g, 28.7 mmol) in THF 

(300 mL). The reaction mixture was stirred for 2 h at room temperature. Afterwards the 
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reaction was neutralised by adding 1 M NaOH solution and the mixture was extracted with 

ethyl acetate (3 x 150 mL). It was dried over MgSO4, filtered and the filtrate was 

concentrated under reduced pressure. Purification of the crude product by column 

chromatography (cyclohexane/ethyl acetate 6:1 → ethyl acetate → ethyl acetate/methanol 

3:1) gave 15 as an orange solid. 

Yield:     5.26 g (16.1 mmol, 56 %); 

TLC:      Rf = 0.37 (ethyl acetate); 

1H NMR (500 MHz, DMSO-d6, 300 K): δ = 7.86-7.82 (m, 4H, Ar-Hortho, Ar-Hortho‘), 

7.18-7.15 (m, 2H, Ar-Hmeta‘), 7.13-7.10 (m, 2H, Ar-Hmeta), 5.00 (d, 3JCHOH = 5.1 Hz, 1H, 

CHOH), 4.91 (d, 4JCH2C≡CH = 2.3 Hz, 2H, CH2C≡CH), 4.70 (t, 3JCH2OH = 5.7 Hz, 1H, 

CH2OH), 4.12-4.10 (dd, 3JOCHH’CH = 4.0 Hz, 2JOCHH’ = 9.9 Hz, 1H, OCHH’CH), 

3.99-3.96 (dd, 3JOCHH’CH = 6.2 Hz, 2JOCHH’ = 9.9 Hz, 1H, OCHH’CH), 3.86-3.80 (m, 1H, 

CHOH), 3.63 (t, 4JCH2C≡CH = 2.4 Hz, 1H, C≡CH), 3.47 (t, 2H, 3JCH2OH = 5.7 Hz, 

CH2OH) ppm; 

13C NMR (126 MHz, DMSO-d6, 300 K): δ = 161.1 (Ar-Cpara), 159.3 (Ar-Cpara‘), 146.6, 

146.1 (Ar-Cipso, Ar-Cipso‘), 124.2, 124.0 (Ar-Cortho, Ar-Cortho‘), 115.4(Ar-Cmeta‘), 115.0 

(Ar-Cmeta), 78.9 (C≡CH), 78.6 (C≡CH), 70.0 (OCH2CH), 69.9 (OCH2CH), 62.6 

(CH2OH), 55.8 (CH2C≡CH) ppm; 

IR (ATR): ṽ = 3400, 3276, 2934, 1594, 1497, 1234, 1014, 844 cm-1; 

EI-MS: m/z = 326.12666, [M]+; (calc. 326.12666 for C18H18N2O4). 

 

General Procedure A for the Esterification of glycerol derivatives (16, 17, 27, 28, 38, 

39): Dicyclohexylcarbodiimide (2 eq) was added to an ice-cold solution of the glycerol 

derivative (1 eq), fatty acid (4 eq) and dimethylaminopyridine (2 eq) in dry DMF. The 

reaction mixture was then stirred for 16 h at room temperature. Afterwards the mixture 

was diluted with DCM (200 mL) and washed with 0.5 N HCl (150 mL) and aq. NaHCO3 

solution (150 mL). It was dried over MgSO4, filtered and the filtrate was concentrated 

under reduced pressure. Unless otherwise noted in the individual procedures, the raw 

product was purified by column chromatography (cyclohexane → cyclohexane/ethyl 

acetate 6:1) and subsequent crystallisation from acetone. 
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(E)-[p-((1,2-Didodecanoyloxycarbonyl)propyloxy)-p’-propargyloxy)] 

azobenzene (16) 

According to the General Procedure A compound 15 (1.43 g, 4.38 mmol) and dodecanoic 

acid (3.51 g, 17.5 mmol) were reacted to yield 16 as an orange solid. 

Yield:     1.45 g (2.10 mmol, 48 %); 

TLC:    Rf = 0.32 (cyclohexane/ethyl acetate 8:1); 

1H NMR (600 MHz, CDCl3, 300 K): δ = 7.91-7.87 (m, 4H, Ar-Hortho, Ar-Hortho‘), 

7.10-7.07 (m, 2H, H(Ar-Hmeta‘), 7.02-6.99 (m, 2H, (Ar-Hmeta), 5.44-5.40 (m, 1H, CH2CH), 

4.77 (d, 4JCH2C≡CH = 2.4 Hz, 2H, CH2C≡CH), 4.46 (dd, 3JCHCHH’ = 4.1 Hz, 

2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 4.32 (dd, 3JCHCHH’ = 6.0 Hz, 3JCHCHH’ = 12.0 Hz 1H, 

CHCHH’), 4.19 (d, 3JOCH2CH = 5.3 Hz, 2H, Ar-COCH2CH), 2.56 (t, 4JCH2C≡CH = 2.4 Hz, 

1H, C≡CH), 2.36-2.31 (m, 4H, (C=O)CH2), 1.66-1.59 (m, 4H, (C=O)CH2CH2), 1.33-1.23 

(m, 32H, (C=O)CH2CH2(CH2)12CH3), 0.87 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.4, 173.1 (C=O), 160.4 (Ar-Cpara), 159.6 

(Ar-Cpara‘), 147.5 (Ar-Cipso‘), 147.3 (Ar-Cipso), 124.5, 124.4 (Ar-Cortho, Ar-Cortho‘), 115.2, 

114.8 (Ar-Cmeta, Ar-Cmeta‘), 78.1 (C≡CH), 75.9 (C≡CH), 69.4 (Ar-COCH2CH), 66.4 

(Ar-COCH2CH), 62.2 (Ar-COCH2CHCH2), 56.0 (CH2C≡CH), 34.3, 34.1 ((C=O)CH2), 

31.9 ((C=O)CH2CH2), 29.6, 29.5, 29.4, 29.3, 29.1, 29.0 25.0, 22.7 

((C=O)CH2CH2(CH2)12CH3), 14.1 (CH3) ppm; 

IR (ATR): ṽ = 3306, 2918, 2849, 2317, 1734, 1597, 1503, 1246, 1171, 1149, 1017, 841, 

722 cm-1; 

EI-MS: m/z = 690.46079, [M]+; (calc. 690.46079 for C42H62N2O6). 

 

(E)-[p-((1,2-Dihexadecanoyloxycarbonyl)propyloxy)-p’-(propargyloxy)] 

azobenzene (17) 

According to the General Procedure A compound 15 (4.86 g, 14.9 mmol) and 

hexadecanoic acid (15.6 g, 60.8 mmol) were reacted to yield 17 as an orange solid. 

Yield:    9.61 g (12.0 mmol, 80 %); 

TLC:    Rf = 0.50 (cyclohexane/ethyl acetate 6:1);  
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1H NMR (600 MHz, CDCl3, 300 K): δ = 7.90-7.86 (m, 4H, Ar-Hortho, Ar-Hortho‘), 

7.09-7.07 (m, 2H, H(Ar-Hmeta‘), 7.02-6.99 (m, 2H, (Ar-Hmeta), 5.43-5.40 (m, 1H, CH2CH), 

4.77 (d, 4JCH2C≡CH = 2.4 Hz, 2H, CH2C≡CH), 4.46 (dd, 3JCHCHH’ = 4.2 Hz, 

2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 4.32 (dd, 3JCHCHH’ = 6.0 Hz, 3JCHCHH’ = 12.0 Hz 1H, 

CHCHH’), 4.19 (d, 3JOCH2CH = 5.1 Hz, 2H, Ar-COCH2CH), 2.56 (t, 4JCH2C≡CH = 2.4 Hz, 

1H, C≡CH), 2.36-2.31 (m, 4H, (C=O)CH2), 1.66-1.59 (m, 4H, (C=O)CH2CH2), 1.34-1.21 

(m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.88 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.5, 173.24 (C=O), 160.5 (Ar-Cpara), 159.6 

(Ar-Cpara‘), 147.7 (Ar-Cipso‘), 147.6 (Ar-Cipso), 124.6, 124.5 (Ar-Cortho, Ar-Cortho‘), 

115.3 (Ar-Cmeta‘), 114.9 (Ar-Cmeta), 77.4 (C≡CH), 77.0 (C≡CH), 69.5 (Ar-COCH2CH), 

66.5 (Ar-COCH2CH), 62.4 (Ar-COCH2CHCH2), 56.2 (CH2C≡CH), 34.4 ((C=O)CH2), 

34.3 ((C=O)CH2CH2), 32.1, 29.8, 29.6, 29.5, 29.4, 29.2, 25.1, 22.8 

((C=O)CH2CH2(CH2)12CH3), 14.3 (CH3) ppm; 

IR (ATR): ṽ = 3311, 2918, 2850, 1736, 1596, 1470, 1201, 1244, 1222, 1172, 1149, 1030, 

840 cm-1. 

 

General Procedure B for the Synthesis of Glycolipids (18-23, 29-34): To a solution of 

the glucoside (1 eq), alkyne derivative (1 eq) and copper(I)bromide (0.21 eq) in a 1:1 

mixture of dry DCM and dry DMF (50 mL) pentamethyldiethylenetriamine 

(PMDTA) (0.20 eq) was added. The reaction mixture was then stirred for 16 h at room 

temperature. Then the solvent was removed, the residue resolved in a 1:1 mixture of DCM 

and ethyl acetate (250 mL) and washed with water (200 mL). Afterwards the aqueous 

phase was extracted with a 1:1 mixture of DCM and ethyl acetate (2 x 200 mL) and again 

with ethyl acetate (100 mL). It was dried over MgSO4, filtered and the filtrate was 

concentrated under reduced pressure. The raw product was purified by column 

chromatography (ethyl acetate → ethyl acetate/ methanol 6:1). 

 

(E)-[p-[(1,2-Didodecanoyloxycarbonyl)propyloxy]-p’-(2-{2-[2-(1-ethoxy-4-methoxy-

1,2,3-triazolyl)]ethoxythyl)]azobenzene (18) 

According to the General Procedure B compound 16 (60.9 mg, 347 μmol) and 

compound 3 (240 mg, 347 μmol) were reacted to yield 18 as a colourless solid. 

Yield:    209 mg (241 μmol, 87 %); 
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TLC:    Rf = 0.23 (ethyl acetate); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 7.90-7.85 (m, 5H, Ar-Hortho, Ar-Hortho‘, Htriazole), 

7.12-7.08 (m, 2H, Ar-H), 7.01-6.98 (m, 2H, Ar-H) 5.44-5.40 (m, 1H, CH2CH), 5.33-5.27 

(s, 2H, CtriazoleCH2), 4.59-4.54 (t, 2H, 3JCH2CH2 = 5.0 Hz, CH2N), 4.47-4.43 (dd, 1H, 

2JCHCHH‘ = 12.0 Hz, 3JCHCHH‘ = 4.1 Hz, CHCHH’), 4.33-4.29 (dd, 1H, 2JCHCHH‘ = 12.0 Hz, 

3JCHCHH‘ = 6.0 Hz, CHCHH’), 4.19 (d, 2H, 3JCH2CH = 5.2 Hz, Ar-COCH2CH), 3.90 (t, 2H, 

3JCH2CH2 = 5.0 Hz, CH2CH2N), 3.71-3.69 (m, 2H, CH2), 3.60-3.57 (m, 4H, CH2), 

3.56-3.53 (m, 2H, CH2), 2.37-2.30 (m, 4H, (C=O)CH2), 1.66-1.58 (m, 4H, 

(C=O)CH2CH2), 1.33-1.20 (m, 32H, (C=O)CH2CH2(CH2)12CH3), 0.87 (t, 6H, 

3JCH2CH3 = 6.9 Hz, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.5, 173.2 (C=O), 160.4 (Ar-Cpara, 

Ar-Cpara‘), 147.6, 147.5 (Ar-Cipso‘, Ar-Cipso, Ctriazole), 124.6 (Ar-Cortho, Ar-Cortho‘, 

CtriazoleH), 115.2, 114.9 (Ar-Cmeta‘, Ar-Cmeta), 72.6 (CH2), 70.7, 70.4 (CH2), 69.5 (CH2, 

propargyloxy-COCH2CH), 66.5 (propargyloxy-COCH2CH), 62.4 (propargyloxy-

COCH2CHCH2, CtriazoleCH2), 61.9, 50.6 (CH2), 34.4, ((C=O)CH2), 34.3, 32.1, 29.8, 29.6, 

29.5, 29.4, 29.3, 29.2 (((C=O)CH2CH2(CH2)12CH3), 25.1 (((C=O)CH2CH2)), 22.8 

(CH2CH3), 14.3 (CH3) ppm; 

IR (ATR): ṽ = 2919, 2850, 2357, 1736, 1598, 1499, 1238, 1149, 842, 750 cm-1; 

EI-MS: m/z = 865.56, [M]+; (calc. 865.556 for C48H75N5O9). 

 

(E)-[p-[(1,2-Dihexadecanoyloxycarbonyl)propyloxy]-p’-[(2-{2-[2-(1-ethoxy-4-

methoxy-1,2,3-triazolyl)]ethoxy}ethyl)]azobenzene (19) 

According to the General Procedure B compound 17 (917 mg, 1.14 mmol) and 

compound 3 (200 mg, 1.14 mmol) were reacted to yield 19 as a colourless solid. 

Yield:     945 mg (966 μmol, 85 %); 

TLC:     Rf = 0.36 (ethyl acetate); 

1H NMR (600 MHz, CDCl3, 300 K): δ = 7.88-7.85 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.85 (s, 

1H, Htriazole), 7.11-7.08 (m, 2H, Ar-H), 7.01-6.98 (m, 2H, Ar-H) 5.43-5.40 (m, 1H, 

CH2CH), 5.30 (s, 2H, CtriazoleCH2), 4.57-4.55 (m, 2H, 3JCH2CH2 = 5.1 Hz, CH2N), 4.45 (dd, 

1H, 2JCHCHH‘ = 11.9 Hz, 3JCHCHH‘ = 4.1 Hz, CHCHH’), 4.31 (dd, 1H, 2JCHCHH‘ = 12.0 Hz, 
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3JCHCHH‘ = 6.0 Hz, CHCHH’), 4.19 (d, 2H, 3JCH2CH = 5.2 Hz, Ar-COCH2CH), 3.90 (t, 2H, 

3JCH2CH2 = 5.0 Hz, CH2CH2N), 3.71-3.69 (m, 2H, CH2), 3.59 (s, 4H, CH2), 3.55-3.52 (m, 

2H, CH2), 2.36-2.31 (m, 4H, (C=O)CH2), 1.66-1.58 (m, 4H, (C=O)CH2CH2), 1.33-1.22 

(m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.87 (t, 6H, 3JCH2CH3 = 7.0 Hz, CH3) ppm; 

13C NMR (151 MHz, CDCl3, 300 K): δ = 173.5, 173.2 (C=O), 160.4 (Ar-Cpara, 

Ar-Cpara‘), 147.6, 147.5 (Ar-Cipso‘, Ar-Cipso), 143.8 (Ctriazole), 124.5 (Ar-Cortho, Ar-Cortho‘), 

124.3 (CtriazoleH), 115.2, 114.9 (Ar-Cmeta‘, Ar-Cmeta), 72.5 (CH2), 70.7, 70.4 (CH2), 69.5 

(CH2, propargyloxy-COCH2CH), 66.5 (propargyloxy-COCH2CH), 62.4 (propargyl-

COCH2CHCH2, CtriazoleCH2), 61.8, 50.5 (CH2), 34.4, ((C=O)CH2), 34.3, 32.1, 29.8, 29.6, 

29.5, 29.4, 29.3, 29.2 ((C=O)CH2CH2(CH2)12CH3), 25.1 ((C=O)CH2CH2), 22.8 

(CH2CH3), 14.3 (CH3) ppm; 

IR (ATR): ṽ = 2917, 2849, 2365, 1735, 1598, 1498, 1469, 1243, 1148, 1041, 841, 721 

cm-1; 

EI-MS: m/z = 977.68, [M]+; (calc. 977.682 for C59H91N5O9). 

 

(E)-[p-[(1,2-Didodecanoyloxycarbonyl)propyloxy]-p’-[(2-{2-[2-(1-ethoxy-4-

methoxy-1,2,3-triazolyl)]ethoxy}ethyl) β-D-glucopyranosyloxy]]azobenzene (20) 

According to the General Procedure B compound 16 (819 mg, 1.19 mmol) and 

glucoside 10 (400 mg, 1.19 mmol) were reacted to yield 20 as an orange solid. 

Yield:    1.02 g (989 μmol, 83 %); 

TLC:    Rf = 0.18 (ethyl acetate/methanol 6:1); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 8.10-7.78 (m, 5H, Ar-Hortho, Ar-Hortho‘, Htriazole), 

7.15-6.90 (m, 4H, (Ar-Hmeta‘ ,Ar-Hmeta), 5.44-5.37 (m, 1H, CH2CH), 5.35-5.17 (s, 2H, 

CtriazoleCH2), 4.65-4.54 (t, 3JCH2CH2 = 4.6 Hz, 2H, CH2N), 4.47-4.43 (dd, 

2JCHCHH’ = 12.0 Hz, 3JCHCHH’ = 4.0 Hz, 1H, CHCHH’), 4.35-4.32 (d, 3J1,2 = 8.4 Hz, 1H, 

H-1), 4.32-4.27 (dd, 2JCHCHH’ = 12.0 Hz, 3JCHCHH’ = 6.1 Hz, 1H, CHCHH’), 4.20-4.18 (d, 

3JOCH2CH = 5.1 Hz, 2H, Ar-COCH2CH), 4.00-3.96 (dt, 2JCHH’ = 11.3 Hz, 

3JCHH’CH2 = 4.1 Hz, 1H, CglcOCHH’), 3.93-3.88 (m, 3H, CH2CH2N, H-6), 3.82-3.78 (dd, 

3J5,6’ = 5.1 Hz, 3J6,6’ = 11.6 Hz, 1H, H-6’), 3.71-3.67 (m, 1H, CglcOCHH’), 3.61-3.52 (m, 

8H, H-3, H-4, 3 x CH2), 3.39-3.35 (m, 2H, H-2, H-5), 2.36-2.29 (m, 4H, (C=O)CH2), 
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1.65-1.58 (m, 4H, (C=O)CH2CH2), 1.34-1.19 (m, 32H, (C=O)CH2CH2(CH2)12CH3), 

0.89-0.84 (m, 6H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.5, 173.2 (C=O), 160.5, 160.4 (Ar-Cpara, 

Ar-Cpara‘), 147.6, 147.5 (Ar-Cipso‘, Ar-Cipso), 124.6 (Ar-Cortho, Ar-Cortho‘), 115.3, 

115.2 (Ar-Cmeta‘, Ar-Cmeta), 103.2 (C-1), 75.9 (C-4), 73.7 (C-5), 72.5 (C-2), 70.7 (CH2), 

70.5 (C-3), 70.4 (Ar-COCH2CH), 69.5, 68.9 (CH2), 66.5 (Ar-COCH2CH), 62.4 

(Ar-COCH2CHCH2), 62.4 (CtriazoleCH2), 61.9, 50.6 (CH2), 34.4, ((C=O)CH2), 34.3, 32.0, 

29.8, 29.6, 29.5, 29.3, 29.2 (((C=O)CH2CH2(CH2)12CH3), 25.1 (((C=O)CH2CH2)), 22.8 

(CH2CH3), 14.3 (CH3) ppm; 

IR (ATR): ṽ = 3365, 2919, 2851, 1737, 1598, 1581, 1466, 1238, 1149, 1100, 1075, 1036, 

841 cm-1; 

ESI-MS: m/z = 1028.61658, [M+H]+; (calc. 1028.61713 for C54H85N5O14+H). 

 

(E)-[p-[(1,2-Dihexadecanoyloxycarbonyl)propyloxy]-p’-[(2-{2-[2-(1-ethoxy-4-

methoxy-1,2,3-triazolyl)]ethoxy}ethyl) β-D-glucopyranosyloxy]]azobenzene (21) 

According to the General Procedure B compound 17 (2.50 g, 3.11 mmol) and 

glucoside 10 (1.05 g, 3.11 mmol) were reacted to yield 21 as an orange solid. 

Yield:    2.60 g (2.28 mmol, 73 %); 

TLC:    Rf = 0.18 (ethyl acetate/methanol 6:1); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 7.91-7.82 (m, 5H, Ar-Hortho, Ar-Hortho‘, Htriazole), 

7.11-7.05 (m, 2H, Ar-Hmeta‘), 6.99-6.96 (m, 2H, Ar-Hmeta), 5.43-5.39 (m, 1H, CH2CH), 

5.28-5.20 (s, 2H, CtriazoleCH2), 4.59-4.56 (t, 3JCH2CH2 = 5.0 Hz, 2H, CH2N), 4.47-4.44 (dd, 

3JCHCHH’ = 3.9 Hz, 2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 4.36-4.33 (d, 3J1,2 = 7.8 Hz, 1H, 

H-1), 4.33-4.29 (dd, 3JCHCHH’ = 6.1 Hz, 3JCHCHH’ = 12.0 Hz 1H, CHCHH’), 4.17 (d, 

3JOCH2CH = 5.1 Hz, 2H, Ar-COCH2CH), 4.06-3.95 (dt, 2JCHH’ = 11.5 Hz, 3JCHH’CH2 = 4.1 

Hz, 1H, CglcOCHH’), 3.92-3.90 (t, 3JCH2CH2 = 4.9 Hz, 2H, CH2CH2N), 3.90-3.88 (dd, 

3J5,6 = 3.2 Hz, 3J6,6’ = 11.6 Hz, 1H, H-6), 3.81-3.77 (dd, 3J5,6’ = 5.1 Hz, 3J6,6’ = 11.6 Hz, 

1H, H-6’), 3.72-3.67 (m, 1H, CglcOCHH’), 3.62-3.52 (m, 8H, H-3, H-4, 3 x CH2), 

3.39-3.34 (m, 2H, H-2, H-5), 2.36-2.30 (m, 4H, (C=O)CH2), 1.65-1.57 (m, 4H, 

(C=O)CH2CH2), 1.32-1.21 (m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.87 (t, 

3JCH2CH3 = 6.9 Hz, 6H, CH3) ppm; 
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13C NMR (126 MHz, CDCl3, 300 K): δ = 173.5, 173.2 (C=O), 160.5 (Ar-Cpara, 

Ar-Cpara‘), 147.5, 147.4 (Ar-Cipso‘, Ar-Cipso), 124.6 (Ar-Cortho, Ar-Cortho‘), 

115.2 (Ar-Cmeta‘), 114.9 (Ar-Cmeta), 103.2 (C-1), 76.1 (C-4), 75.2 (C-5), 73.3 (C-2), 70.4 

(C-3), 70.3 (CH2), 69.2 (CH2CH2N), 69.1 (Ar-COCH2CH), 68.9 (CglcOCHH’CH2), 66.5 

(Ar-COCH2CH), 62.4 (Ar-COCH2CHCH2), 62.2 (CtriazoleCH2), 62.1 (C-6), 50.6 (CH2N), 

34.4 ((C=O)CH2), 34.2, 32.1, 29.8, 29.6, 29.5, 29.4, 29.3 29.2, 25.1, 25.0 

((C=O)CH2CH2), 22.8 (CH2CH3), 14.3 (CH3) ppm; 

IR (ATR): ṽ = 3383, 2917, 2849, 1736, 1243, 1104, 1077, 1036, 841, 721 cm-1; 

ESI-MS: m/z = 1140.73931, [M+H]+; (calc. 1140.74233 for C62H101N5O14+H). 

 

(E)-[p-[(1,2-Didodecanoyloxycarbonyl)propyloxy]-p’-[(2-{2-[2-(1-ethoxy-4-

methoxy-1,2,3-triazolyl)]ethoxy}ethyl) β-D-galactopyranosyl-(1→4)β-D-glucopyra-

nosyloxy]]azobenzene (22) 

According to the General Procedure B compound 16 (300 mg, 601 μmol) and 

lactoside 11 (300 mg, 601 μmol) were reacted to yield 22 as an orange solid. 

Yield:     630 mg (529 μmol, 71 %); 

TLC:     Rf = 0.18 (ethyl acetate/methanol 6:1); 

1H NMR (500 MHz, DMSO-d6, 600 K): δ = 8.25 (s, 1H, Htriazole), 7.85-7.82 (m, 4H, 

Ar-Hortho, Ar-Hortho‘), 7.24-7.21 (m, 2H, Ar-H), 7.13-7.10 (m, 2H, Ar-H), 5.39-5.35 (m, 

1H, CH2CH), 5.25 (s, 2H, CtriazoleCH2), 5.12 (d, 3JHCOH = 5.1 Hz, 1H, C2-OH), 5.07 (d, 

3JHCOH = 4.4 Hz, 1H, C2’-OH), 4.79 (d, 3JHCOH = 5.2 Hz, 1H, OHLactoside), 4.68-4.65 (m, 

2H, OHLactoside) 4.58-4.50 (m, 4H, C6-OH, CH2N), 4.39 (dd, 2JCHCHH‘ = 12.0 Hz, 

3JCHCHH‘ = 3.5 Hz, 1H, CHCHH’), 4.31-4.24 (m, 3H, Ar-COCH2CH, CHCHH’), 

4.22-4.20 (d, 3J1,2 = 7.8 Hz, 1H, H-1), 4.20-4.18 (d, 3J1,2 = 7.4 Hz, 1H, H-1’), 3.86-3.82 

(m, 3H, H-6Lactoside, CH2CH2N), 3.74 (dd, 3JCHCH = 5.8 Hz, 2JCHCH = 11.2 Hz, 1H, 

CGlcOCHH’), 3.63-3.43 (m, 14H, 3 x CH2, 3 x H-6Lactoside, CGlcOCHH’, 4 x HLactoside), 

3.37-3.26 (m, 5H, H-2’, H-3, 3 x HLactoside), 3.04-3.00 (m, 1H, H-2), 2.32-2.27 (m, 4H, 

(C=O)CH2), 1.53-1.47 (m, 4H, (C=O)CH2CH2), 1.26-1.17 (m, 32H, 

(C=O)CH2CH2(CH2)12CH3), 0.85-0.81 (m, 6H, CH3) ppm; 

13C NMR (151 MHz, DMSO-d6, 300 K): δ = 172.6, 172.3 (C=O), 160.3, 160.2 (Ar-C), 

146.5, 146.3 (Ar-C), 142.1 (Ctriazole), 125.2 (Ar-C), 124.1 (CtriazoleH), 115.3, 115.1 (Ar-C), 
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103.9 (C-1’), 102.7 (C-1), 80.8, 75.5, 75.0, 74.9, 73.3, 73.1 (CLactoside), 70.6 

(Ar-COCH2CH), 69.5 (CH2), 69.3 (CH2CH2N), 68.7 (Ar-COCH2CH), 68.1 

(CGlcOCHH’), 68.0 (CH2), 61.9 (Ar-COCH2CHCH2), 61.5 (CtriazoleCH2), 60.5, 60.4 (C-6, 

C-6’), 49.5 (CH2N), 33.6, 33.4, 31.3, 29.0, 28.9, 28.7, 28.4, 28.3, 24.5, 22.1 (CH2), 13.9 

(CH3) ppm; 

IR (ATR): ṽ = 3347, 2920, 2850, 2364, 1735, 1599, 1583, 1469, 1244, 1168, 1150, 1107, 

1071, 1037, 842, 722 cm-1; 

ESI-MS: m/z = 1190.66940, [M+H]+; (calc. 1190.66995 for C60H95N5O19+H). 

 

(E)-[p-[(1,2-Dihexadecanoyloxycarbonyl)propyloxy]-p’-[(2-{2-[2-(1-ethoxy-4-

methoxy-1,2,3-triazolyl)]ethoxy}ethyl) β-D-galactopyranosyl-(1→4)β-D-glucopy-

ranosyloxy]]azobenzene (23) 

According to the General Procedure B compound 17 (402 mg, 501 μmol) and 

lactoside 11 (250 mg, 501 μmol) were reacted to yield 23 as an orange solid. 

Yield:     458 mg (352 μmol, 70 %); 

TLC:     Rf = 0.18 (ethyl acetate/methanol 6:1); 

1H NMR (600 MHz, DMSO-d6, 600 K): δ = 8.25 (s, 1H, Htriazole), 7.86-7.80 (m, 4H, 

Ar-Hortho, Ar-Hortho‘), 7.25-7.20 (m, 2H, Ar-H), 7.14-7.09 (m, 2H, Ar-H), 5.39-5.35 (m, 

1H, CH2CH), 5.25 (s, 2H, CtriazoleCH2), ), 5.13-5.09 (d, 3JHCOH = 4.9 Hz, 1H, C2-OH), 

5.09-5.06 (d, 3JHCOH = 4.1 Hz, 1H, C2’-OH) 4.79 (d, 3JCHCH = 4.6 Hz, 1H, OHLactoside), 

4.68-4.65 (m, 2H, OHLactoside), 4.59-4.50 ((m, 4H, C6-OH, CH2N), 4.42-4.38 (m, 1H, 

CHCHH’), 4.31-4.23 (m, 3H, Ar-COCH2CH, CHCHH’), 4.22-4.20 (m, 1H H-1), 

4.20-4.17 (m, 1H, H-1’), 3.86-3.82 (m, 3H, H-6Lactoside, CH2CH2N), 3.77-3.70 (dd, 

3JCHCH = 5.4 Hz, 3JCHCH = 10.9 Hz, 1H, CGlcOCHH’), 3.69-3.41 (m, 14H, 3 x CH2, 3 x 

H-6Lactoside, CGlcOCHH’, 4 x HLactoside), 3.41-3.25 (m, 5H, H-2’, H-3, 3 x HLactoside), 

3.04-2.99 (m, 1H, H-2), 2.32-2.25 (m, 4H, (C=O)CH2), 1.53-1.47 (m, 4H, 

(C=O)CH2CH2), 1.27-1.16 (m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.84 (t, 

3JCH2CH3 = 6.6 Hz, 6H, CH3) ppm; 

13C NMR (151 MHz, DMSO-d6, 300 K): δ = 172.6, 172.3 (C=O), 160.3, 160.2 (Ar-C), 

146.5, 146.3 (Ar-C), 142.1 (Ctriazole), 125.1 (Ar-C), 124.1 (CtriazoleH), 115.3, 115.1 (Ar-C), 

103.9 (C-1’), 102.7 (C-1), 80.8, 75.5, 75.0, 74.9, 73.3, 73.1 (CLactoside), 70.6 
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(Ar-COCH2CH) 69.7 (CH2), 69.3 (CH2CH2N), 68.7 (Ar-COCH2CH), 68.1 (CGlcOCHH’), 

68.0 (CH2), 61.9 (Ar-COCH2CHCH2), 61.5 (CtriazoleCH2), 60.4, 60.3 (C-6, C-6’), 49.4 

(CH2N), 33.6, 33.4, 31.3, 29.0, 28.9, 28.7, 28.4, 28.3, 24.5, 24.4, 22.1 (CH2), 13.9 (CH3) 

ppm; 

IR (ATR): ṽ = 3341, 2918, 2849, 2364, 1736, 1599, 1585, 1470, 1245, 1224, 1040, 841, 

720 cm-1; 

ESI-MS: m/z = 1302.79548, [M+H]+; (calc. 1302.79515 for C68H111N5O19+H). 

 

2,2-Dimethyl-4-[(2-propargyloxy)methyl]-1,3-dioxolane (25)[184] 

Propargyl bromide (80 % wt. % solution in toluene, 13.9 mL, 129 mmol) was added to 

an ice-cold solution of D, L-isopropylideneglycerol (24) (6.00 mL, 43.0 mmol) in dry 

DMF (45 mL). Potassium hydroxide (9.65 g, 172 mmol) was added in portions. The 

reaction mixture was stirred for 16 h at 50 °C. Afterwards the solvent was removed under 

reduced pressure and the residue was resolved in ethyl acetate (300 mL). The organic 

phase was washed with water (2 × 200 mL). It was dried over MgSO4, filtered and the 

filtrate was concentrated under reduced pressure. Purification of the crude product by 

column chromatography (cyclohexane / ethyl acetate) gave 25 as a brown oil. 

Yield:     8.46 g (49.7 mmol, 69%); 

TLC:     Rf = 0.35 (cyclohexane / ethyl acetate, 6:1); 

1H-NMR (200 MHz, CDCl3, 300 K): δ = 4.31-4.26 (m, 1H, CH), 4.20 (m, 2H, 

CH2C≡CH), 4.08-4.04 (m, 1H, CH2CHCHH‘), 3.76-3.72 (m, 1H, CH2CHCHH’), 

3.61-3.55 (m, 2H, CH2CHCHH‘), 2.44 (t, 2JCH2C≡CH = 2.4 Hz, 1H, C≡CH), 1.42 (s, 3H, 

CH3), 1.35 (s, 3H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 109.5 (C(CH3)2), 79.3 (CH2C≡CH), 74.7 

(CH2C≡CH), 74.5 (CH), 70.7 (CH2CHCH2), 66.7 (CH2CHCH2), 58.7 (CH2C≡CH), 26.7 

(CH3), 25.3 (CH3) ppm. 

 

3-Propargyloxy-1,2-propanediol (26) 

Compound 25 (5.00 g, 29.4 mmol) was dissolved in THF (50 mL) and 1 M HCl (50 mL) 

was added and the reaction mixture was stirred for 2 h. After neutralisation with 1 M 
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sodium hydroxide solution, the mixture was extracted with ethyl acetate (3 x 100 mL). 

The organic phase was dried over MgSO4, filtered and the filtrate was concentrated under 

reduced pressure. Purification of the crude product by column chromatography 

(cyclohexane / ethyl acetate 1:1 → 4:1) gave 26 as a colourless oil. 

Yield:     2.88 g (22.1 mmol, 75 %); 

TLC:     Rf = 0.11 (cyclohexane / ethyl acetate, 1:1); 

1H-NMR (200 MHz, CDCl3, 300 K): δ = 4.19 (d, 2JCH2C≡CH = 2.4 Hz, 2H, CH2C≡CH), 

3.96-3.86 (m, 1H, CH), 3.76-3.54 (m, 4H, CH2CHCH2), 2.46 (t, 2JCH2C≡CH = 2.4 Hz, 1H, 

C≡CH) ppm; 

13C NMR (126 MHz, MeOD, 300 K): δ = 80.6 (CH2C≡CH), 75.97 (CH2C≡CH), 72.3 

(CH2CHCH2), 72.1 (CH), 66.4 (CH2CHCH2), 59.3 (CH2C≡CH) ppm. 

 

(2,3-Didodecanoyl)-(1-Propargyloxy)propionate (27) 

According to the General Procedure A compound 26 (835 mg, 6.42 mmol) and 

dodecanoic acid (5.14 g, 25.7 mmol) were reacted to yield 27 as a colourless solid. 

Yield:     (1.52 g, 3.08 mmol, 48 %); 

TLC:     Rf = 0.67 (cyclohexane/ethyl acetate 6:1); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 5.24-5.20 (m, 1H, CH2CH), 4.33 (dd, 

3JCHCHH’ = 3.9 Hz, 2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 4.19-4.15 (m, 3H, CH2C≡CH, 

CHCHH’), 3.68-3.66 (m, 2H, OCH2CH), 2.43 (t, 4JCH2C≡CH = 2.4 Hz, 1H, C≡CH), 

2.43-2.40 (m, 4H, (C=O)CH2), 1.65-1.57 (m, 4H, (C=O)CH2CH2), 1.32-1.23 (m, 32H, 

(C=O)CH2CH2(CH2)12CH3), 0.88 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.5, 173.2 (C=O), 79.2 (C≡CH), 75.1 

(C≡CH), 70.0 (Ar-COCH2CH), 68.1 (Ar-COCH2CH), 62.7 (Ar-COCH2CHCH2), 

58.7 (CH2C≡CH), 34.5, 34.3 ((C=O)CH2), 32.1, 29.8, 29.6, 29.5, 29.4, 29.3, 29.2 

((C=O)CH2CH2(CH2)12CH3), 25.0 ((C=O)CH2CH2), 22.8 (CH2) 14.1 (CH3) ppm; 

IR (ATR): ṽ = 3269, 2919, 2851, 2326, 1737, 1470, 1353, 1171, 1111, 1091, 1043, 718 

cm-1; 

EI-MS: m/z = 494.39712, [M]+; (calc. 494.3971 for C30H54O5). 



174 Experimental section 

 

(2,3-Dihexadecanoyl)-(1-Propargyloxy)propionate (28) 

According to the General Procedure A compound 26 (835 mg, 6.42 mmol) and 

hexadecanoic acid (6.49 g, 25.3 mmol) were reacted to yield 27 as a colourless solid. 

Yield:    2.00 g (3.30 mmol, 51 %); 

TLC:    Rf = 0.73 (cyclohexane/ethyl acetate 6:1); 

Melting point:    63 °C; 

1H NMR (500 MHz, CDCl3, 300 K): δ = 5.24-5.20 (m, 1H, CH2CH), 4.33 (dd, 

3JCHCHH’ = 3.9 Hz, 2JCHCHH’ = 11.9 Hz, 1H, CHCHH’), 4.19-4.15 (m, 3H, CH2C≡CH, 

CHCHH’), 3.68-3.66 (m, 2H, OCH2CH), 2.43 (t, 4JCH2C≡CH = 2.4 Hz, 1H, C≡CH), 

2.34-2.29 (m, 4H, (C=O)CH2), 1.65-1.58 (m, 4H, (C=O)CH2CH2), 1.32-1.23 (m, 48H, 

(C=O)CH2CH2(CH2)12CH3), 0.88 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3) ppm; 

13C NMR (126 MHz, CDCl3, 300 K): δ = 179.5, 179.2 (C=O), 79.2 (C≡CH), 75.1 

(C≡CH), 70.0 (Ar-COCH2CH), 68.1 (Ar-COCH2CH), 62.7 (Ar-COCH2CHCH2), 

56.9 (CH2C≡CH), 34.5, 34.3 ((C=O)CH2), 32.1, 29.9, 29.8, 29.6, 29.5, 29.4, 29.3, 29.2 

((C=O)CH2CH2(CH2)12CH3), 25.1 ((C=O)CH2CH2), 22.8 (CH2) 14.3 (CH3) ppm; 

IR (ATR): ṽ = 3269, 2916, 2850, 2365, 1731, 1472, 1354, 1172, 1112, 1045, 719 cm-1; 

EI-MS: m/z = 606.52232, [M]+; (calc. 606.5223 for C38H70O6). 

 

1-{2-[2-(2-Hydroxyethoxy)ethoxy]ethyl]}-4-{[(1,2-Didodecanoyloxy-carbonyl) 

propyloxy]methoxy}-1,2,3-triazole (29) 

According to the General Procedure B compound 27 (1.13 g, 2.28 mmol) and 

compound 3 (400 mg, 2.28 mmol) were reacted to yield 29 as a colourless solid. 

Yield:    1.09 g (1.63 μmol, 72 %); 

TLC:     Rf = 0.26 (ethyl acetate/methanol 6:1); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 7.95 (s, 1H, Htriazole), 5.22 (s, 1H, CH2CH), 

4.72-4.60 (s, 2H, CtriazoleCH2), 4.60-4.52 (s, 2H, CH2N), 4.34-4.29 (m, 1H, CHCHH’), 

4.17-4.11 (dd, 3JCHCHH’ = 5.7 Hz, 2JCHCHH’ = 11.7 Hz, 1H, CHCHH’), 3.92-3.88 (t, 

3JCH2CH2 = 4.5 Hz, 2H, CH2CH2N), 3.75-3.71 (m, 2H, CH2), 3.70-3.65 (CH2OCH2CH), 

3.64-3.60 (m, 2H, CH2), 3.58-3.55 (m, 10H, CH2), 2.33-2.26 (m, 4H, (C=O)CH2), 
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1.63-1.55 (m, 4H, (C=O)CH2CH2), 1.32-1.20 (m, 32H, (C=O)CH2CH2(CH2)12CH3), 0.87 

(t, 3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.6, 173.3 (C=O), 72.6, 70.7, 70.4 (CH2), 

70.1 (OCH2CH), 69.5, (CH2CH2N), 68.8 (CH2), 65.0 (CtriazoleCH2O), 62.8 

(OCH2CHCH2), 61.7 (OCH2CH), 50.5 (CH2N), 34.4, 34.3 ((C=O)CH2), 32.0, 29.7, 29.6, 

29.5, 29.4, 29.3 29.2 ((C=O)CH2CH2(CH2)12CH3), 25.1, 25.0 ((C=O)CH2CH2), 22.8 

(CH2CH3), 14.2 (CH3) ppm; 

IR (ATR): ṽ = 3446, 2918, 2850, 2367, 1729, 1464, 1225, 1178, 1114, 1097, 860, 720 

cm-1; 

EI-MS: m/z = 668.43, [M-H]+; (calc. 669.493 for C36H67N3O8). 

 

1-{2-[2-(2-Hydroxyethoxy)ethoxy]ethyl]}-4-{[(1,2-Dihexadecanoyloxy-carbonyl) 

propyloxy]methoxy}-1,2,3-triazole ( 30) 

According to the General Procedure B compound 28 (693 mg, 1.14 mmol) and 

compound 3 (200 mg, 1.14 mmol) were reacted to yield 30 as a colourless solid. 

Yield:     548 mg (701 μmol, 61 %); 

TLC:     Rf = 0.24 (ethyl acetate/methanol 6:1); 

1H NMR (600 MHz, CDCl3, 300 K): δ = 7.78 (s, 1H, Htriazole), 5.23-5.19 (m, 1H, 

CH2CH), 4.69-4.63 (s, 2H, CtriazoleCH2), 4.55 (t, 3JCH2CH2 = 5.0 Hz, 2H, CH2N), 4.31 (dd, 

3JCHCHH’ = 3.6 Hz, 2JCHCHH’ = 11.9 Hz 1H, CHCHH’), 4.13 (dd, 3JCHCHH’ = 6.5 Hz, 

2JCHCHH’ = 11.9 Hz, 1H, CHCHH’), 3.88 (t, 3JCH2CH2 = 5.0 Hz, 2H, CH2CH2N), 3.73 (t, 

3JCH2CH2 = 9.2 Hz, 2H, CH2), 3.68-3.60 (CH2OCH2CH, CH2), 3.58-3.56 (m, 10H, CH2), 

2.32-2.26 (m, 4H, (C=O)CH2), 1.62-1.56 (m, 4H, (C=O)CH2CH2), 1.31-1.23 (m, 48H, 

(C=O)CH2CH2(CH2)12CH3), 0.87 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.6, 173.3 (C=O), 144.7 (Ctriazole), 124.1 

(CtriazoleH), 72.6, 70.7 (CH2), 70.4 (CH2CH2N), 70.1 (OCH2CH), 69.5, (CH2CH2N), 68.8 

(CH2), 65.0 (CtriazoleCH2O), 62.8 (OCH2CHCH2), 61.9 (OCH2CH), 50.4 (CH2N), 34.4, 

34.3 ((C=O)CH2), 32.1, 29.8, 29.6, 29.5, 29.4, 29.3 29.2 ((C=O)CH2CH2(CH2)12CH3), 

25.1, 25.0 ((C=O)CH2CH2), 22.8 (CH2CH3), 14.3 (CH3) ppm; 
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IR (ATR): ṽ = 3446, 2917, 2849, 2367, 1730, 1463, 1388, 1247, 1196, 1178, 1115, 1099, 

867, 719 cm-1; 

EI-MS: m/z = 780.52, [M-H]+; (calc. 781.618 for C44H83N3O8). 

 

1-{2-[2-(2-(β-D-Glucopyranosyloxy)ethoxy)ethoxy]ethyl]}-4-{[(1,2-di-dodecanoyl-

oxycarbonyl)propyloxy] methoxy}-1,2,3-triazole (31): 

According to the General Procedure B compound 27 (589 mg, 1.19 mmol) and 

glucoside 10 (400 mg, 1.19 mmol) were reacted to yield 31 as a colourless solid. 

Yield:     594 mg (713 μmol, 60 %); 

TLC:     Rf = 0.24 (ethyl acetate/methanol 6:1); 

1H NMR (500 MHz, CDCl3, 300 K): δ = 7.86 (s, 1H, Htriazole), 5.22 (s, 1H, CH2CH), 4.66 

(s, 2H, CtriazoleCH2), 4.57 (s, 2H, CH2N), 4.35 (d, 3J1,2 = 7.4 Hz, 1H, H-1), 4.31 (dd, 

3JCHCHH’ = 2.9 Hz, 2JCHCHH’ = 11.9 Hz, 1H, CHCHH’), 4.15-4.10 (m, 1H, CHCHH’), 

4.00-3.95 (m, 1H, H-6), 3.92-3.87 (m, 2H, CH2), 3.88-3.80 (m, 2H, CH2), 3.76-3.50 (m, 

15H, H-4, H-5, H-6’, 3 x CH2, CtriazoleCH2O, 4 x OH), 3.39-3.32 (m, 2H, H-2, H-3), 2.33-

2.25 (m, 4H, (C=O)CH2), 1.63-1.55 (m, 4H, (C=O)CH2CH2), 1.32-1.20 (m, 32H, 

(C=O)CH2CH2(CH2)12CH3), 0.87 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.7, 173.4 (C=O), 103.3 (C-1), 76.6, 70.2 

(C-4, C-5), 75.9, 73.6 (C-2, C-3), 70.5, 70.4 (CH2), 70.1 (OCH2CH), 69.5, (CH2), 68.9 

(C-6), 68.8 (OCH2CH), 64.8 (CtriazoleCH2O), 62.9 ((OCH2CHCH2), 62.1, 50.6 (CH2), 

34.5, 34.3 ((C=O)CH2), 32.0, 29.8, 29.6, 29.5, 29.4, 29.3 29.2 

((C=O)CH2CH2(CH2)12CH3), 25.1, 25.0 ((C=O)CH2CH2), 22.8 (CH2CH3), 14.2 (CH3) 

ppm; 

IR (ATR): ṽ = 3387, 2957, 2918, 2851, 2365, 1736, 1467, 1166, 1100, 1076, 1035, 721 

cm-1; 

ESI-MS: m/z = 832.55292, [M+H]+; (calc. 832.55346 for C42H77N3O13+H). 
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1-{2-[2-(2-(β-D-Glucopyranosyloxy)ethoxy)ethoxy]ethyl]}-4-{[(1,2-Di-hexadeca-

noyl-oxycarbonyl)propyloxy] methoxy}-1,2,3-triazole (32) 

According to the General Procedure B compound 28 (722 mg, 1.19 mmol) and 

glucoside 10 (400 mg, 1.19 mmol) were reacted to yield 32 as a colourless solid. 

Yield:    693 mg (734 μmol, 62 %); 

TLC:    Rf = 0.21 (ethyl acetate/methanol 6:1); 

Melting point:   171 °C; 

1H NMR (500 MHz, CDCl3, 300 K): δ = 7.86 (m, 1H, Htriazole), 5.24-5.20 (m, 1H, 

CH2CH), 4.71-4.66 (m, 2H, CtriazoleCH2), 4.59 (t, 2H, 3JCH2CH2 = 4.86 Hz, CH2N), 4.36 (d, 

3J1,2 = 7.7 Hz, 1H, H-1), 4.32 (dd, 3JCHCHH’ = 3.2 Hz, 2JCHCHH’ = 11.9 Hz, 1H, CHCHH’), 

4.13 (m, 1H, CHCHH’), 4.00-3.97 (m, 1H, H-6), 3.92-3.89 (m, 2H, CH2), 3.89-3.81 (m, 

2H, CH2), 3.75-3.59 (m, 13H, H-6’, 3 x CH2, CtriazoleCH2O, 4 x OH), 3.58-3.51 (m, 2H, 

H-4, H-5), 3.37-3.33 (m, 2H, H-2, H-3), 2.33-2.26 (m, 4H, (C=O)CH2), 1.62-1.55 (m, 

4H, (C=O)CH2CH2), 1.32-1.22 (m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.87 (t, 

3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (126 MHz, CDCl3, 300 K): δ = 173.8, 173.5 (C=O), 141.1 (NCHCtriazole), 

124.8 (NCtriazoleH), 103.4 (C-1), 76.6, 70.1 (C-4, C-5), 75.9, 73.7 (C-2, C-3), 70.51, 70.4 

(CH2), 70.2 (OCH2CH), 69.5, (CH2), 69.0 (C-6), 68.9 (OCH2CH), 64.6 (CtriazoleCH2O), 

62.9 ((OCH2CHCH2), 62.2, 50.7 (CH2), 34.5, 34.3 ((C=O)CH2), 32.1, 29.9, 29.7, 29.5, 

29.3, ((C=O)CH2CH2(CH2)12CH3), 25.1, 25.0 ((C=O)CH2CH2), 22.8 (CH2CH3), 14.3 

(CH3) ppm; 

IR (ATR): ṽ = 3370, 2956, 2917, 2850, 1736, 1467, 1079, 1039, 721 cm-1; 

ESI-MS: m/z = 944.67812, [M+H]+; (calc. 944.67867 for C50H93N3O13+H). 

 

1-{2-[2-(2-(β-D-Galactopyranosyl-(1→4)β-D-glucopyranosyloxy)ethoxy)ethoxy] 

ethyl]}-4-{[(1,2-didodecanoyloxycarbonyl)propyloxy] methoxy}-1,2,3-triazole (33) 

According to the General Procedure B compound 27 (297 mg, 601 μmol) and 

lactoside 11 (300 mg, 601 μmol) were reacted to yield 33 as a colourless solid. 

Yield:     250 mg (252 μmol, 42 %); 
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TLC:     Rf = 0.24 (ethyl acetate/methanol 6:1); 

1H NMR (600 MHz, DMSO-d6, 300 K): δ = 8.06 (s, 1H, Htriazole), 5.14-5.12 (m, 1H, 

CH2CH), 5.11-5.10 (d, 3JHCOH = 5.1 Hz, 1H, C2-OH), 5.10-5.08 (d, 3JHCOH = 4.2 Hz, 1H, 

C2’-OH), 4.80-4.77 (d, 3JHCOH = 4.4 Hz, 1H, OHLactoside), 4.67 (s, 1H, C3-OH), 4.66-4.64 

(t, 3JHCOH = 5.1 Hz, 1H, C5-OHLactoside), 4.56-4.49 (m, 6H, CtriazoleCH2, CH2N, 2 x 

OHLactoside), 4.26-4.23 (dd, 3JCHCHH’ = 3.1 Hz, 2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 4.21 (d, 

3J1,2 = 8.0 Hz, 1H, H-1), 4.20 (d, 3J1,2 = 7.5 Hz, 1H, H-1’), 4.08-4.05 (dd, 

3JCHCHH’ = 7.1 Hz, 2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 3.87-3.83 (m, 1H, CGlcOCHH’), 

3.82 (t, 3JCH2CH2 = 5.3 Hz, 2H, CH2CH2N), 3.77-3.74 (dd, 3JCHCH = 5.6 Hz, 

3JCHCH = 11.0 Hz, 1H, H-6Lactoside), 3.63-3.43 (m, 14H, 3 x CH2, 3 x H-6Lactoside, OCH2CH, 

CGlcOCHH’, 2 x HLactoside), 3.34-3.27 (m, 5H, H-2’, H-3, H-4, H-5, 1 x HLactoside), 

3.04-2.99 (m, 1H, H-2), 2.28-2.23 (m, 4H, (C=O)CH2), 1.53-1.46 (m, 4H, 

(C=O)CH2CH2), 1.29-1.19 (m, 48H, (C=O)CH2CH2(CH2)12CH3), 0.85 (t, 

3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (150 MHz, DMSO-d6, 300 K): δ = 173.5, 172.3 (C=O), 143.4 (Ctriazole), 124.4 

(CtriazoleH), 103.9 (C-1’), 102.7 (C-1), 80.7 (CLactoside), 75.5, 75.0, 74.8 (CLactoside), 73.3 

(CLactoside), 73.1 (C-2), 70.6 (OCH2CH), 69.8 (C-4), 69.5 (CH2), 68.9 (CH2CH2N), 68.7 

(OCH2CH), 68.1 (CglcOCHH’), 68.0, 67.9 (CH2), 63.8 (CtriazoleCH2O), 62.3 

(OCH2CHCH2), 60.6, 60.4 (C-6, C-6’), 49.3 (CH2N), 33.5, 33.4 ((C=O)CH2), 31.3, 29.0, 

28.9, 28.7, 28.4, 28.3 ((C=O)CH2CH2(CH2)12CH3), 24.5, 24.4 ((C=O)CH2CH2), 22.1 

(CH2CH3), 13.9 (CH3) ppm; 

IR (ATR): ṽ = 3353, 2921, 2852, 2365, 1736, 1467, 1260, 1032, 798, 704 cm-1; 

ESI-MS: m/z = 994.60574, [M+H]+; (calc. 994.60629 for C48H87N3O18+H). 

 

1-{2-[2-(2-(β-D-Galactopyranosyl-(1→4)β-D-glucopyranosyloxy)ethoxy)ethoxy] 

ethyl]}4-{[(1,2-dihexadecanoyloxycarbonyl)propyl-oxy]methoxy}-1,2,3-triazole (34) 

According to the General Procedure B compound 28 (243 mg, 400 μmol) and 

lactoside 11 (200 mg, 400 μmol) were reacted to yield 34 as a colourless solid. 

Yield:     262 mg (237 μmol, 59 %); 

TLC:     Rf = 0.25 (ethyl acetate/methanol 6:1); 



Experimental section 179 

 

1H NMR (600 MHz, DMSO-d6, 300 K): δ = 8.06 (s, 1H, Htriazole), 5.14-5.11 (m, 1H, 

CH2CH), 5.11-5.10 (d, 3JHCOH = 5.1 Hz, 1H, C2-OH), 5.10-5.08 (d, 3JHCOH = 4.2 Hz, 1H, 

C2’-OH), 4.77 (d, 3JHCOH = 4.8 Hz, 1H, OHLactoside), 4.67 (d, 3JHCOH = 1.0 Hz, 1H, 

C3-OH), 4.64 (t, 3JHCOH = 5.1 Hz, 1H, C5-OHLactoside), 4.56-4.49 (m, 6H, CtriazoleCH2, 

CH2N, 2 x OHLactoside), 4.26-4.24 (dd, 3JCHCHH’ = 3.0 Hz, 2JCHCHH’ = 12.0 Hz, 1H, 

CHCHH’), 4.22 (d, 3J1,2 = 7.9 Hz, 1H, H-1), 4.20 (d, 3J1,2 = 7.4 Hz, 1H, H-1’) 4.07 (dd, 

3JCHCHH’ = 7.2 Hz, 2JCHCHH’ = 12.0 Hz, 1H, CHCHH’), 3.87-3.83 (m, 1H, CGlcOCHH’), 

3.82 (t, 3JCH2CH2 = 5.3 Hz, 2H, CH2CH2N), 3.75 (dd, 3JCHCH = 5.6 Hz, 3JCHCH = 11.0 Hz, 

1H, H-6Lactoside), 3.63-3.43 (m, 14H, 3 x CH2, 3 x H-6Lactoside, OCH2CH, CGlcOCHH’, 2 x 

HLactoside), 3.35-3.26 (m, 5H, H-2’, H-3, H-4, H-5, 1 x HLactoside), 3.04-2.99 (m, 1H, H-2), 

2.29-2.22 (m, 4H, (C=O)CH2), 1.53-1.46 (m, 4H, (C=O)CH2CH2), 1.29-1.19 (m, 48H, 

(C=O)CH2CH2(CH2)12CH3), 0.85 (t, 3JCH2CH3 = 7.0 Hz, 6H, CH3); 

13C NMR (150 MHz, DMSO-d6, 300 K): δ = 173.5, 172.3 (C=O), 143.4 (Ctriazole), 124.4 

(CtriazoleH), 103.9 (C-1’), 102.7 (C-1), 80.7 (CLactoside), 75.5, 75.0, 74.8 (CLactoside), 73.3 

(CLactoside), 73.1 (C-2), 70.6 (OCH2CH), 69.8 (C-4), 69.5 (CH2), 68.9 (CH2CH2N), 68.7 

(OCH2CH), 68.1 (CglcOCHH’), 68.0, 67.9 (CH2), 63.8 (CtriazoleCH2O), 62.3 

(OCH2CHCH2), 60.6, 60.4 (C-6, C-6’), 49.3 (CH2N), 33.5, 33.4 ((C=O)CH2), 31.3, 29.0, 

28.9, 28.7, 28.4, 28.3 ((C=O)CH2CH2(CH2)12CH3), 24.5, 24.4 ((C=O)CH2CH2), 22.1 

(CH2CH3), 13.9 (CH3) ppm;  

IR (ATR): ṽ = 3416, 2917, 2850, 2367, 1735, 1467, 1062, 784, 720 cm-1; 

ESI-MS: m/z = 1106.73094, [M+H]+; (calc. 1106.73149 for C56H103N3O18+H). 

 

(E)-p-{p‘-[(2,2-Dimethyl-1,3-dioxan-4-yl)methoxy]phenylazo}pyridine (36) 

Azobenzene 35 (2.54 g, 12.8 mmol), compound 13 (3.66 g, 12.8 mmol) and freshly 

pestled potassium carbonate (5.31 g, 38.4 mmol) were dried in vacuo for 45 min before 

solvation in dry DMF (60 mL). The mixture was stirred at 100 °C for 7 h. The solvent 

was removed under reduced pressure and the residue was suspended in water (150 mL) 

and sat. NaCl solution (150 mL) and subsequently extracted with ethyl acetate 

(4 x 250 mL) and DCM (2 x 200 mL). The combined organic layers were dried over 

MgSO4, filtered and the solvent removed under reduced pressure. The crude product was 

purified by column chromatography (cyclohexane / ethyl acetate 4:1 → 1:1) to yield 

compound 36 as an orange solid. 
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Yield:     3.23 g (10.3 mmol, 80 %); 

TLC:     Rf = 0.24 (cyclohexane / ethyl acetate 2:1); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.79-8.77 (dd, 3JAr-H = 4.5 Hz, 4JAr-H = 1.6 Hz, 

2H, Ar-H,meta‘), 7.98-7.95 (m, 2H, Ar-H,ortho), 7.68-7.66 (dd, 3JAr-H = 4.5 Hz, 

4JAr-H = 1.6 Hz, 2H, Ar-H,ortho‘), 7.07-7.04 (m, 2H, Ar-H,meta), 4.55-4.50 (m, 1H, 

OCH2CH), 4.22-4.18 (dd, 2JCHH’ = 8.6 Hz, 3JCHCHH’ = 6.4 Hz, 1H, OCH2CHCHH‘), 4.17-

4.13 (dd, 2JCHH = 9.5 Hz, 3JCHCHH’ = 5.4 Hz, 1H, OCHH‘CH), 4.09-4.03 (dd, 

2JAr-H = 9.5 Hz, 3JAr-H = 5.7 Hz, 1H, OCHH‘CH), 3.96-3.92 (dd, 2J = 8.6 Hz, 3J = 5.7 Hz, 

1H, OCH2CHCHH‘), 1.49 (s, 3H, CH3), 1.42 (s, 3H, CH3) ppm; 

13C-NMR (DMSO-d6, 126 MHz, 300 K): δ = 162.7 (Ar-Cpara), 157.1 (Ar-Cipso‘), 151.9 

(Ar-Cmeta‘), 146.7 (Ar-Cipso), 125.9 (Ar-Cortho), 116.3 (Ar-Cortho‘), 115.8 (Ar-Cmeta), 109.5 

(C(CH3)2), 74.0 (OCH2CH), 69.7 (OCH2CH), 66.0 (OCH2CHCH2), 27.0 (CH3), 25.8 

(CH3) ppm; 

IR (ATR): ṽ = 2458, 1579, 1402, 1291, 1135, 1009, 826, 732, 553, 495 cm-1; 

EI-MS: m/z = 313.14, [M]+; (calc. 313,14 for C17H19N3O3). 

 

(E)-p-[p‘-(1,2-Dihydroxypropyloxy)phenylazo]pyridine (37) 

Azobenzene 36 (4.12 g, 13.1 mmol) was dissolved in a 1:1 mixture of THF and 1 N HCl 

(600 mL) and stirred at room temperature for 16 h. After neutralisation with 1 N NaOH, 

the mixture was extracted with ethyl acetate (5 x 300 mL). The combined organic layers 

were dried over MgSO4, filtered and the solvent removed under reduced pressure. 

Column chromatography (cyclohexane/ethyl acetate 1:1→ ethyl acetate → ethyl 

acetate/methanol 4:1) gave compound 37 as an orange solid. 

Yield:     2.29 g (8.37 mmol, 64 %); 

TLC:     Rf = 0.25 (ethyl acetate); 

1H-NMR (MeOD/DMSO-d6, 500 MHz, 300 K): δ = 8.74-8.72 (dd, 3JAr-H = 4.6 Hz, 

4JAr-H = 1.6 Hz, 2H, Ar-H,meta‘), 8.01-7.98 (m, 2H, Ar-H,ortho), 7.79-7.77 (dd, 

3JAr-H = 4.6 Hz, 4JAr-H = 1.6 Hz, 2H, Ar-H,ortho‘), 7.18-7.15 (m, 2H, Ar-H,meta), 4.22-4.18 

(dd, 2JCHH’ = 9.9 Hz, 3JCHCHH’ = 4.2 Hz, 1H, OCHH‘CH), 4.12-4.07 (dd, 2JCHH’ = 9.9 Hz, 
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3JCHCHH’ = 6.1 Hz, 1H, OCHH‘CH), 4.02-3.97 (m, 1H, OCH2CH), 3.70-3.63 (m, 2H, 

CHCH2OH) ppm; 

13C-NMR (MeOD/DMSO-d6, 126 MHz, 300 K): δ = 164.4 (Ar-Cpara), 159.1 (Ar-Cipso’), 

151.9 (Ar-Cmeta’), 148.1 (Ar-Cipso), 126.7 (Ar-Cortho), 117.6 (Ar-Cortho‘), 116.2 (Ar-Cmeta), 

71.5 (OCH2CH), 70.9 (OCH2CH), 63.9 (OCH2CHCH2) ppm; 

IR (ATR): ṽ = 3045, 2960, 2562, 1580, 1403, 1259, 116, 1009, 797, 554, 495 cm-1; 

EI-MS: m/z = 273.11086, [M]+; (calc. 273.1113 for C14H15N3O3). 

 

(E)-p-{[p‘-(1,2-Didodecanoyloxycarbonyl)propyloxy]phenylazo}pyridine (38) 

According to the General Procedure A azobenzene 37 (1.14 g, 4.17 mmol) and 

dodecanoic acid (3.34 g, 16.7 mmol) were reacted to yield 38 after column 

chromatography (cyclohexane/ethyl acetate 9:1 → 2:1) as an orange solid. 

Yield:     1.62 g (2.54 mmol, 61 %); 

TLC:     Rf = 0.35 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR (CDCl3, 200 MHz, 300 K): δ = 8.82-8.76 (dd, 3JAr-H = 4.7 Hz, 4JAr-H = 1.4 Hz, 

2H, Ar-H,meta‘), 8.00-7.93 (m, 2H, Ar-H,ortho), 7.72-7.66 (dd, 2JAr-H = 4.6 Hz, 

3JAr-H = 1.6 Hz, 2H, Ar-H,ortho‘), 7.07-7.01 (m, 2H, Ar-H,meta), 5.49-5.38 (m, 1H, 

OCH2CH), 4.51-4.41 (dd, 2JCHH’ = 12.0 Hz, 3JCHCHH’ = 4.2 Hz, 1H, CHCHH’O(C=O)), 

4.37-4.26 (dd, 2JCHH’ = 12.0 Hz, 3JCHCHH’ = 5.9 Hz, 1H, CHCHH’O(C=O)), 4.25-4.19 (d, 

3JCH2CH = 5.1 Hz, 2H, Ar-CCH2CH), 2.40-2.26 (m, 4H, ((C=O)CH2CH2), 1.68-1.57 (m, 

4H, (C=O)CH2), 1.35-1.19 (m, 32H, (CH2)xCH3), 0.92-0.82 (t, 3JCH2CH3 = 7.0 Hz, 6H, 

CH3) ppm; 

IR (ATR): ṽ = 2956, 2918, 2851, 1741, 1731, 1586, 1455, 1265, 1163, 1144, 836, 721, 

558 cm-1; 

EI-MS: m/z = 637.44409, [M]+; (calc. 637.44547 for C38H59N3O5). 
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(E)-p-{[p‘-(1,2-Dihexadecanoyloxycarbonyl)propyloxy]phenylazo}pyridine (39) 

According to the General Procedure A azobenzene 37 (1.14 g, 4.17 mmol) and palmitic 

acid (4.28 g, 16.7 mmol) were reacted to yield 39 after column chromatography 

(cyclohexane/ethyl acetate 9:1 → 2:1) as an orange solid. 

Yield:     2.46 g (3.28 mmol, 79 %); 

TLC:     Rf = 0.38 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.79-8.76 (dd, 3JAr-H = 4.6 Hz, 4JAr-H = 1.6 Hz, 

2H, Ar-Hmeta‘), 7.98-7.95 (m, 2H, Ar-Hortho), 7.69-7.67 (dd, 3JAr-H = 4.6 Hz, 

4JAr-H = 1.6 Hz, 2H, Ar-Hortho‘), 7.06-7.02 (m, 2H, Ar-Hmeta), 5.46-5.41 (m, 1H, 

OCH2CH), 4.48-4.44 (dd, 2JCHH’ = 12.0 Hz, 3JCHCHH’ = 4.1 Hz, 1H, CHCHH’O(C=O)), 

4.35-4.30 (dd, 2JCHH’ = 12.0 Hz, 3JCHCHH’ = 5.9 Hz, 1H, CHCHH’O(C=O)), 4.24-4.21 (d, 

3JCH2CH = 5.2 Hz, 2H, Ar-CCH2CH), 2.38-2.31 (m, 4H, ((C=O)CH2CH2), 1.67-1.59 (m, 

4H, (C=O)CH2), 1.29-1.22 (m, 48H, (CH2)xCH3), 0.88 (t, 3JCH2CH3 = 7.0 Hz, 6H, 

CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 173.4 (C=O), 173.1 (CH2O(C=O)), 161.8 

(Ar-Cpara), 157.4 (Ar-Cipso‘), 151.1 (Ar-Cmeta‘), 147.2 (Ar-Cipso), 125.6 (Ar-Cortho), 116.2 

(Ar-Cortho‘), 115.0 (Ar-Cmeta), 69.2 (OCH2CH), 66.4 (OCH2CH), 62.2 (OCH2CHCH2), 

34.3 ((C=O)CH2CH2), 34.1, 31.9, 29.7, 29.6, 29.4 (CH2), 24.9 ((C=O)CH2), 22.7 (CH2), 

14.1 (CH3) ppm; 

IR (ATR): ṽ = 2957, 2917, 2850, 1741, 1731, 1586, 1455, 1264, 1145, 836, 727, 

558 cm-1; 

EI-MS: m/z = 749.56984, [M]+; (calc. 749.57076 for C46H75N3O5). 

 

(E)-[p-(2-Bromoethoxy)-p‘-(propargyloxy)]azobenzene (40) 

Azobenzene 12 (200 mg, 793 μmol), 1,2 dibromoethane (273 μL, 3.17 mmol) and 

potassium carbonate (438 mg, 3.17 mmol) were dissolved in dry DMF (10 mL) and 

stirred for 8 h at 80 °C. The solvent was removed under reduced pressure and the residue 

dissolved in DCM (150 mL) and subsequently washed with water (50 mL) and sat. NaCl 

solution (50 mL). The organic layer was dried over Mg2SO4, filtered and the solvent 
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removed under reduced pressure. The crude product was purified by column 

chromatography (toluene) to yield compound 40 as an orange solid. 

Yield:     128 mg (356 μmol, 45 %); 

TLC:     Rf = 0.57 (toluene); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.83-7.79 (m, 4H, Ar-Hortho, Ar-Hortho‘), 

7.03-6.99 (m, 2H, Ar-Hmeta‘), 6.96-6.93 (m, 2H, Ar-Hmeta), 4.70 (d, 4J = 2.4 Hz, 2H, 

CH2C≡CH), 4.30 (t, 3J = 6.3 Hz, 2H, OCH2), 3.60 (t, 3J = 6.3 Hz, 2H, CH2Br), 2.49 (t, 

4J = 2.4 Hz, 1H, CH2C≡CH) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 160.1 (Ar-Cpara), 159.5 (Ar-Cpara’), 147.6 

(Ar-Cipso‘), 147.5 (Ar-Cipso), 124.5 (Ar-Cortho), 124.3 (Ar-Cortho‘), 115.1 (Ar-Cmeta‘), 114.9 

(Ar-Cmeta), 78.1 (CH2C≡CH), 75.9 (CH2C≡CH), 68.0 (CH2Br), 56.0 (CH2C≡CH), 28.8 

(CH2) ppm; 

IR (ATR): ṽ = 3274, 1593, 1496, 1455, 1376, 1240, 1144, 1013, 844, 670, 557 cm-1; 

EI-MS: m/z = 359.94, [M]+; (calc. 359.22 for C17H15N2BrO2). 

 

(E) [p-(2-Bromoethoxy)-p‘-[(2-{2-[2-(1-ethoxy-4-methoxy-1,2,3-triazolyl)]ethoxy} 

ethyl)β-D-glucopyranosyloxy]]azobenzene (41) 

Glucoside 10 (69.5 mg, 206 μmol), alkyne 40 (74.0 mg, 206 μmol) and copper (I) 

bromide (6.21 mg, 43.3 μmol) were dissolved in dry DMF (6 mL) and after addition of 

PMDTA (8.60 μL, 41.2 μmol) the mixture was stirred at room temperature for 16 h. The 

solvent was then removed under reduced pressure, the residue was dissolved in ethyl 

acetate (200 mL) and washed with water (70 mL). The aqueous phase was extracted with 

DCM (3 x 50 mL) and the combined organic layers were dried over MgSO4, filtered and 

the solvent removed under reduced pressure. The crude product was purified by column 

chromatography (ethyl acetate → ethyl acetate/ methanol 8:1) to yield compound 41 as 

an orange solid. 

Yield:     106 mg (158 μmol, 77 %); 

TLC:     Rf = 0.20 (ethyl acetate / methanol 8:1); 

1H-NMR (MeOD, 600 MHz, 300 K): δ = 8.16 (s, 1H, CHtriazole), 7.88-7.84 (m, 4H, 

Ar-Hortho, Ar-Hortho‘), 7.18-7.14 (m, 2H, Ar-Hmeta), 7.09-7.06 (m, 2H, Ar-Hmeta‘), 5.28 (s, 
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2H, CtriazoleCH2), 4.62-4.59 (t, 3J = 5.0 Hz, 2H, CH2CH2Ntriazole), 4.41-4.38 (t, 3J = 5.6 Hz, 

2H, OCH2CH2Br), 4.27-4.25 (d, 3J = 7.8 Hz, 1H, H-1), 3.98-3.94 (ddd, 2J = 10.9 Hz, 

3J = 5.1 Hz, 3J = 3.6 Hz, 1H, CglcOCHH‘), 3.91-3.88 (t, 3J = 5.0 Hz, 2H, CH2Ntriazol), 3.85-

3.82 (dd, 2J6,6‘ = 11.9 Hz, 3J5,6 = 2.1 Hz, 1H, H-6), 3.75-3.72 (t, 3J = 5.7 Hz, 2H, CH2Br), 

3.70-3.57 (m, 8H, H-6‘, CglcOCHH‘, OCH2), 3.36-3.32 (m, 1H, H-3), 3.29-3.22 (m, 2H, 

H-4, H-5), 3.20-3.17 (dd, 3J1,2 = 7.9 Hz, 3J2,3 = 9.1 Hz, 1H, H-2) ppm; 

13C-NMR (MeOD, 151 MHz, 300 K): δ = 162.0 (Ar-Cpara‘), 161.9 (Ar-Cpara), 148.6 

(Ar-Cipso, Ar-Cipso‘), 144.5 (CtriazoleCH2), 126.4 (CHtriazoleCtriazole), 125.4 (Ar-Cortho, 

Ar-Cortho‘), 116.3 (Ar-Cmeta), 116.1 (Ar-Cmeta‘), 104.5 (C-1), 78.1 (C-4), 78.0 (C-3), 75.1 

(C-2), 71.6, 71.4, 71.2 (OCH2), 70.4 (CH2Ntriazole), 69.7 (CglcOCHH‘), 69.6 

(OCH2CH2Br), 62.8 (C-6), 62.7 (CtriazoleCH2), 51.5 (CH2CH2Ntriazole), 30.3 (CH2Br) ppm; 

IR (ATR): ṽ = 3397, 2932, 1654, 1217, 1107, 1038, 814, 676, 552 cm-1; 

ESI-MS: m/z = 718.2, [M+Na]+; (calc. 718.17 for C28H38N5BrO10+Na). 

 

p-(2-{p‘-[(2-{2-[2-(1-Ethoxy-4-methoxy-1,2,3-triazolyl)]ethoxy}ethyl) β-D-

glucopyranosyloxy]phenyl}diazenyl)-N-{2-[p-(2-{p‘[(1,2-Didodecanoyloxycarbo-

nyl) propyl-oxy]phenyl}diazenyl)phenoxy]ethyl}pyridinum bromide (42) 

Glucoside 41 (313 mg, 470 μmol) and compound 38 (300 mg, 470 μmol) were dissolved 

in dry acetonitrile (40 mL) and stirred at 80 °C for 10 h and further 16 h at room 

temperature. The precipitate was subsequently filtered off and washed with cold 

acetonitrile to yield compound 42 as an orange solid. 

Yield:     436 mg (351 μmol, 75 %); 

1H-NMR (CDCl3/DMSO-d6, 600 MHz, 300 K): δ = 8.80-8.77 (m, 2H, Ar-Hpy, meta), 8.21-

8.16 (m, 2H, CHtriazole, Ar-Hmeta(1)), 7.97-7.93 (m, 2H, Ar-Hpy, ortho‘), 7.89-7.81 (m, 3H, 

Ar-Hmeta(2), Ar-Hortho‘), 7.72-7.68 (m, 2H, Ar-Hpy, ortho), 7.21-7.08 (m, 2H, Ar-Hmeta‘), 7.16-

7.13 (m, 2H, Ar-Hpy, meta’), 7.12-7.08 (Ar-Hortho), 5.41-5.37 (m, 1H, Ar-COCH2CH), 5.26 

(s, 2H, CtriazoleCH2), 4.58-4.55 (t, 3J = 5.0 Hz, 2H, CH2CH2Ntriazole), 4.45-4.38 (m, 3H, 

OCH2CH2N
+, CHCHH’(C=O)), 4.32-4.24 (m, 3H, Ar-COCH2CH, CHCHH’(C=O)), 

4.19-4.16 (s, 3J = 7.8 Hz, 1H, H-1), 3.92-3.84 (m, 3H, CglcOCHH‘, CH2CH2Ntriazole), 3.82-

3.78 (m, 2H, CglcOCH2CH2), 3.72-3.68 (m, 1H, H-6), 3.62-3.49 (m, 8H, H-6‘, 

CglcOCHH‘, OCH2CH2N
+, OCH2), 3.22-3.17 (m, 1H, H-3), 3.15-3.09 (m, 2H, H-4, H-5), 
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3.05-3.00 (dd~t, 3J = 8.3 Hz, 1H, H-2), 2.32-2.28 ((C=O)CH2), 1.58-1.52 

((C=O)CH2CH2), 1.29-1.19 ((CH2)nCH3), 0.87-0.82 (CH3) ppm; 

13C-NMR (CDCl3/DMSO-d6, 151 MHz, 300 K): δ = 172.2, 171.9 (C=O), 161.7 (Ar-Cpy, 

para‘), 160.1 (Ar-Cpara‘), 159.8 (Ar-Cipso), 151.0 (Ar-Cpy, ipso), 150.8 (Ar-Cpy, meta), 146.4 

(Ar-Cipso‘), 146.5 (Ar-Cpy, ipso‘), 146.4 (CtriazoleCH2), 125.3 (Ar-Cortho‘), 124.8 (Ar-Cipso‘) 

124.1 (Ar-Cmeta, CHtriazole), 115.7 (Ar-Cpy, ortho), 115.1 (Ar-Cpy, meta’, Ar-Cmeta‘, Ar-Cortho), 

115.0 (Ar-Cortho‘), 102.9 (C-1), 76.6 (C-3, C-4), 73.2 (C-2), 70.1 (C-5), 69.9, 69.8, 69.7 

(OCH2), 68.9 (Ar-COCH2CH), 68.6 (CglcOCHH‘CH2, CH2Ntriazole), 68.0 (OCH2CH2N
+), 

68.0 (CglcOCHH‘), 66.6 (Ar-COCH2CH), 61.8 (Ar-COCH2CHCH2), 61.5 (CtriazoleCH2), 

61.2 (H-6), 49.4 (CH2Ntriazole), 33.5 ((C=O)CH2CH2), 31.3 (CH2), 28.9 (CH2N
+), 28.8, 

28.6, 28.4, 28.3 (CH2), 24.3 ((C=O)CH2), 22.0 (CH2), 13.7 (CH3) ppm; 

IR (ATR): ṽ = 2957, 2919, 2850, 1732, 1599, 1585, 1501, 1456, 1248, 1144, 841, 722, 

559 cm-1; 

ESI-MS: m/z = 1253.7, [M]+; (calc. 1253.7 for C66H95N8O15). 
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8.2.2 1H and 13C NMR spectra of synthesised amphiphiles 

 

Figure 160: 1H NMR spectrum of 14 (600 MHz, CDCl3, 300 K). 

 

 

Figure 161: 13C NMR spectrum of 14 (126 MHz, CDCl3, 300 K). 
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Figure 162: 1H NMR spectrum of 15 (500 MHz, DMSO-d6, 300 K). 

 

 

Figure 163: 13C NMR spectrum of 15 (126 MHz, DMSO-d6, 300 K). 
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Figure 164: 1H NMR spectrum of 16 (600 MHz, CDCl3, 300 K). 

 

 

 
Figure 165: 13C NMR spectrum of 16 (126 MHz, CDCl3, 300 K). 
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Figure 166: 1H NMR spectrum of 17 (600 MHz, CDCl3, 300 K). 

 

 

 
Figure 167: 13C NMR spectrum of 17 (126 MHz, CDCl3, 300 K). 
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Figure 168: 1H NMR spectrum of 18 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 169: 1H NMR spectrum of 18 (Z-isomer after irradiation with 365 nm) (500 MHz, CDCl3, 300 K). 
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Figure 170: 13C NMR spectrum of 18 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 171: 1H NMR spectrum of 19 (600 MHz, CDCl3, 300 K). 
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Figure 172: 1H NMR spectrum of 19 (Z-isomer after irradiation with 365 nm) (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 173: 13C NMR spectrum of 19 (151 MHz, CDCl3, 300 K). 
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Figure 174: 1H NMR spectrum of 20 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 175: 1H NMR spectrum of 20 (Z-isomer after irradiation with 365 nm) (500 MHz, CDCl3, 300 K). 



194 Experimental section 

 

Figure 176: 13C NMR spectrum of 20 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 177: 1H NMR spectrum of 21 (500 MHz, CDCl3, 300 K). 
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Figure 178: 1H NMR spectrum of 21 (Z-isomer after irradiation with 365 nm) (500 MHz, CDCl3, 300 K). 

 

 

Figure 179: 13C NMR spectrum of 21 (126 MHz, CDCl3, 300 K). 
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Figure 180: 1H-NMR spectrum of 22 (600 MHz, DMSO-d6, 300 K) 

 

 

 

Figure 181: 1H NMR spectrum of 22 (Z-isomer after irradiation with 365 nm) (500 MHz, DMSO-d6, 

300 K). 
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Figure 182: 13C-NMR spectrum of 22 (150 MHz, DMSO-d6, 300 K) 

 

 

 
Figure 183: 1H-NMR spectrum of 23 (600 MHz, DMSO-d6, 300 K). 
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Figure 184: 1H NMR spectrum of 23 (Z-isomer after irradiation with 365 nm) (500 MHz DMSO-d6, 

300 K). 

 

 

Figure 185: 13C-NMR spectrum of 23 (150 MHz, DMSO-d6, 300 K) 
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Figure 186: 1H NMR spectrum of 27 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 187: 13C NMR spectrum of 27 (126 MHz, CDCl3, 300 K). 
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Figure 188: 1H NMR spectrum of 28 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 189: 13C NMR spectrum of 28 (126 MHz, CDCl3, 300 K). 
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Figure 190: 1H NMR spectrum of 29 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 191: 13C NMR spectrum of 29 (126 MHz, CDCl3, 300 K). 
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Figure 192: 1H NMR spectrum of 30 (600 MHz, CDCl3, 300 K). 

 

 

 
Figure 193: 13C NMR spectrum of 30 (126 MHz, CDCl3, 300 K). 
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Figure 194: 1H NMR spectrum of 31 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 195: 13C NMR spectrum of 31 (126 MHz, CDCl3, 300 K). 
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Figure 196: 1H NMR spectrum of 32 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 197: 13C NMR spectrum of 32 (126 MHz, CDCl3, 300 K). 
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Figure 198: 1H NMR spectrum of 33 (600 MHz, DMSO-d6, 300 K). 

 

 

 
Figure 199: 13C NMR spectrum of 33 (150 MHz, DMSO-d6, 300 K). 
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Figure 200: 1H NMR spectrum of 34 (600 MHz, DMSO-d6, 300 K). 

 

 

 
Figure 201: 13C NMR spectrum of 34 (150 MHz, DMSO-d6, 300 K). 
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Figure 202: 1H NMR spectrum of 36 (500 MHz, CDCl3, 300 K, TMS). 

 

 

Figure 203: 13C NMR spectrum of 36 (126 MHz, DMSO-d6, 300 K). 
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Figure 204: 1H NMR spectrum of 37 (500 MHz, MeOD/ DMSO-d6, 300 K, TMS). 

 

 

 

Figure 205: 13C NMR spectrum of 37 (126 MHz, MeOD/ DMSO-d6, 300 K, TMS). 
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Figure 206: 1H NMR spectrum of 38 (200 MHz, CDCl3, 300 K, TMS). 

 

 

Figure 207: 1H NMR spectrum of 39 (500 MHz, CDCl3, 300 K, TMS). 
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Figure 208: 13C NMR spectrum of 39 (126 MHz, CDCl3, 300 K, TMS). 

 

 

Figure 209: 1H NMR spectrum of 40 (500 MHz, CDCl3, 300 K, TMS). 
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Figure 210: 13C NMR spectrum of 40 (126 MHz, CDCl3, 300 K, TMS). 

 

 

Figure 211: 1H NMR spectrum of 41 (600 MHz, MeOD, 300 K, TMS). 
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Figure 212: 13C NMR spectrum of 41 (151 MHz, MeOD, 300 K, TMS). 

 

 

Figure 213: 1H NMR spectrum of 42 (600 MHz, CDCl3/ DMSO-d6, 300 K, TMS). 
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Figure 214: 13C NMR spectrum of 42 (151 MHz, CDCl3/ DMSO-d6, 300 K, TMS). 
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8.3 Supporting information for chapter 4.1: Simple fabrication of 

glycosylated surfaces for bacterial adhesion studies by using 

pentafluorophenylazides as linkers…………………………………. 

8.3.1 Synthesis of PFPA linker and glycosides 

4-Azido-2,3,5,6-Tetrafluorobenzoic acid methyl ester 2[415] 

Sodium azide (1.38 g, 21.2 mmol) was added to a solution of methyl 

pentafluorobenzoate 1 (5.16 g, 22.8 mmol) in H2O (50 mL) and acetone (120 mL). The 

mixture was stirred 8 h under reflux and additional 16 h at room temperature. After the 

addition of water (100 mL) the mixture was extracted with ethyl acetate (3 x 100 mL). 

The combined organic layers were dried over MgSO4, filtered and the solvent removed 

under reduced pressure. Compound 2 was obtained as a coloress solid. 

Yield:    5.42 g (21.8 mmol, 95 %); lit.[415]: 87 %; 

Melting point   56 °C; lit.[415]: 54-55 °C; 

1H NMR (500 MHz, CDCl3, 300 K, TMS): δ = 3.97 (s, 3H, COCH3) ppm; 

19F-NMR: (470.6 MHz, CDCl3, 300 K): δ = -138.66 (m, 2F), -150.93 (m, 2F) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 160.0 (C=O), 145.4 (Ar-CF), 140.7 (Ar-CF), 

123.4 (C(C=O)), 107.8 (CN3), 53.3 (CH3); 

IR (ATR): ṽ = 2972, 2130, 1732, 1645, 1479, 1434, 1259, 991, 758 cm-1; 

EI-MS: m/z = 249.016, [M]+; 221.009, [M-N2]
+; 161.996 [M-N2-COOCH3]

+, (calc. 

249.016 for C8H3F4N3O2). 

 

4-Azido-2,3,5,6-Tetrafluorobenzoic acid 3[415] 

Methyl ester 2 (4.60 g, 18.5 mmol) was dissolved in methanol (60 mL) and water (6 mL). 

After addition of a sodium hydroxide solution (20 %, 5.4 mL) the mixture was stirred at 

room temperature for 16 h. The mixture was then acidified with 2N hydrochloric acid until 

pH 1 was reached. The mixture was extracted with chloroform (3 x 90 mL) and the 

combined organic layers were dried over MgSO4. The solvent was removed under 

reduced pressure to obtain compound 3 as a colourless solid. 
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Yield:     4.13 g (17.6 mmol, 95 %); lit.:[415] 95 %; 

Melting point   142 °C; lit.[415]: 140-141 °C; 

1H-NMR: (200 MHz, CDCl3, 300 K, TMS): δ = 8.57 (s (br), 1H, COOH) ppm; 

19F-NMR: (470.6 MHz, CDCl3, 300 K): δ = -137.10 (m, 2F), -150.74 (m, 2F) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 164.1 (C=O), 146.0 (Ar-CF), 140.6 (Ar-CF), 

124.8 (C(C=O)), 106.1 (CN3); 

IR (ATR): ṽ = 2835, 2128, 1699, 1642, 1481, 1420, 1259, 991, 720, 461 cm-1; 

EI-MS: m/z = 235.917, [M+H]+; (calc. 235.000 for C7HF4N3O2). 

 

4-Azido-2,3,5,6-Tetrafluorobenzoic acid N-hydroxysuccinimidyl ester 4[271] 

Benzoic acid 3 (4.00 g, 17.0 mmol) and N-hydroxysuccinimide (1.96 g, 17.0 mmol) were 

dissolved in DCM (60 mL). DCC (3.58 g, 17.3 mmol) was added dropwise before the 

mixture was stirred at room temperature for 19 h. Finally the mixture was filtered before 

the solvent was removed under reduced pressure to obtain compound 4 as a colourless 

solid. 

Yield:     5.61 g (16.9 mmol, 99 %); lit.:[416] 99 %; 

Melting point   101 °C; lit. [415]: 103-104 °C; 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 2.91 (s, 4H, COCH2CH2) ppm; 

19F-NMR: (470.6 MHz, CDCl3, 300 K): δ = -133.53 (m, 2F), -149.84 (m, 2F) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 168.3 (C=O), 146.3 (Ar-CF), 140.5 (Ar-CF), 

126.3 (C(C=O)), 102.0 (CN3), 25.7 (CH2); 

IR (ATR): ṽ = 2127, 1738, 1646, 1485, 1417, 1252, 1134, 1069, 993, 894, 640 cm-1; 

EI-MS: m/z = 332.016, [M]+; 218.002, [M-C4H4NO3]
+, (calc. 332.017 for C11H4F4N4O4). 
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(2,2-Dimethylpropionamide)-2-[2-[2-[4-Azido-2,3,4,5-tetrafluorobenzoyl)amino] 

ethoxy]ethoxy]ethyl ester 6 

Active ester 4 (770 mg, 2.32 mmol) and amine 5 (576 mg, 2.32 mmol) were dissolved in 

DCM (30 mL) and stirred at room temperature in the dark for 16 h. The solvent was 

removed under reduced pressure and the crude product was purified by column 

chromatography (ethyl acetate/ cyclohexane 2:1 → ethyl acetate) to yield compound 6 as 

a colourless liquid. 

Yield:     1.02 g (2.20 mmol, 95 %);  

DC:      Rf = 0.36 (ethyl acetate); 

1H-NMR: (500 MHz, CDCl3, 300 K): δ = 3.70-3.60 (m, 8H, OCH2), 3.59-3.52 (m, 2H, 

OCH2), 3.33-3.29 (OCH2) ppm; 

19F-NMR: (470.6 MHz, CDCl3, 300 K): δ = -141.0 (m, 2F), -150.8 (m, 2F) ppm; 

EI-MS: m/z = 465.12, [M]+; 218.002, [M-C4H4NO3]
+, (calc. 465.164 for C18H23F4N5O5). 

 

2-[2-(2-Aminoethoxy)ethoxy]ethyl-(4-Azido-2,3,5,6-tetrafluorobenzoic) amide7 

Trifluoroacetic acid (2.50 mL) was added to a solution of compound 6 (1.02 g, 

2.20 mmol) in DCM (50 mL) and the mixture was stirred at room temperature in the dark 

for 4 h. The solvent was removed under reduced pressure and the crude product was 

codestilled with DCM (3 x 50 mL) to obtain compound 7 as a colourless liquid.  

Yield:     799 mg (2.19 mmol, 99 %);  

DC:      Rf = 0.45 (ethyl acetate/methanol 4:1); 

1H-NMR: (200 MHz, CDCl3, 300 K, TMS): δ = 3.72-3.65 (m, 8H, OCH2), 3.60-3.56 (t, 

3JCH2CH2 = 5.5 Hz, 2H, OCH2), 3.14-3.09 (t, 3JCH2CH2 = 5.5 Hz, 2H, OCH2) ppm; 

19F-NMR: (470.6 MHz, CDCl3, 300 K): δ = -143.6 (m, 2F), -152.1 (m, 2F) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 71.4, 70.3, 67.8, 41.1, 40.7 (OCH2); 

IR (ATR): ṽ = 2885, 2126, 1651, 1485, 1132, 992, 798, 722, 706 cm-1; 

EI-MS: m/z = 465.12, [M]+; 218.002, [M-C4H4NO3]
+, (calc. 465.164 for C18H23F4N5O5). 
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Octyl 2,3,4,6 tetra-O-acetyl-α-D-mannopyranoside 11[276] 

Mannose trichloroacetimidate 8 (2.00 g, 4.06 mmol) and 1-octanol 10 (956 μL, 

6.09 mmol) were dissolved in dry DCM (12 mL). The mixture was cooled to 0 °C before 

BF3·Et2O (1.02 mL, 8.12 mmol) was added dropwise. The mixture was stirred at room 

temperature for 16 h. The reaction mixture was diluted with DCM (200 mL) and washed 

with sat. NaHCO3 solution (100 mL) and sat. NaCl solution (100 mL). The combined 

organic layers were dried over MgSO4, filtered and the solvent removed under reduced 

pressure. The crude product was purified by column chromatography (cyclohexane/ ethyl 

acetate 4:1 → 3:1) to yield mannoside 11 as a colourless syrup. 

Yield:    1.48 g (3.21 mmol, 79 %); lit.:[276] 46 %; 

DC:     Rf = 0.41 (cyclohexane/ ethyl acetate 2:1); 

Rotational value:  [α]20
D = -18.9 (c = 0.62 in ethyl acetate); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 5.39-5.31 (dd, 3J2,3 = 3.5 Hz, 

3J3,4 = 10.0 Hz, 1H, H-3), 5.27 (dd~t, 3J3,4 = 10.0 Hz, 1H, H-4), 5.23 (dd, 3J1,2 = 1.7 Hz, 

3J2,3 = 3.5 Hz, 1H, H-2), 4.80 (d, 3J1,2 = 1.7 Hz, 1H, H-1), 4.32-4.24 (dd, 3J5,6 = 5.3 Hz, 

2J6,6’ = 12.2 Hz, 1H, H-6), 4.15-4.07 (dd, 3J5,6’ = 2.4 Hz, 2J6,6’ = 12.2 Hz, 1H, H-6’), 4.01-

3.97 (ddd, 3J5,6’ = 2.4 Hz, 3J5,6 = 5.3 Hz, 3J4,5 = 10.0 Hz, 1H, H-5), 3-71-3.65 (dt, 

2JOCHH’ = 9.6 Hz, 3JOCH2CH2 = 6.6 Hz, 1H, OCHH’), 3.49-3.43 (dt, 2JOCHH’ = 9.6 Hz, 

3JOCH2CH2 = 6.6 Hz, 1H, OCHH’), 2.15, 2.10, 2.04, 1.99 (each s, each 3H, O(C=O)CH3), 

1.65-1.54 (m, 2H, OCH2CH2), 1.31-1.27 (m, 10H, CH2), 0.89 (t, 3JCH2CH3 = 7.0 Hz, 3H, 

CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K, TMS): δ = 170.7, 169.7 (COCH3), 97.7 (C-1), 69.9 

(C-2), 69.3 (C-3), 68.7 (OCH2CH2), 68.5 (C-5), 66.5 (C-4), 62.7 (C-6), 32.0, 29.5, 29.4, 

29.3, 26.2, 22.8 (CH2), 21.1, 20.9, 20.8 (OCOCH3), 14.2 (CH3) ppm; 

IR (ATR): ṽ = 2922, 2855, 1742, 1367, 1224, 1033 cm-1; 

ESI-MS: m/z = 483.223, [M+Na]+ (calc. 483.221 for C22H36O10 + Na). 

 

Octyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside 12[276] 

Glucose trichloroacetimidate 9 (1.20 g, 2.44 mmol) and 1-octanol 10 (573 μL, 

3.65 mmol) were dissolved in dry DCM (12 mL). The mixture was cooled to 0 °C before 
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BF3·Et2O (615 μL, 4.88 mmol) was added dropwise. The mixture was stirred at room 

temperature for 16 h. The reaction mixture was diluted with DCM (150 mL) and washed 

with sat. NaHCO3 solution (70 mL) and sat. NaCl solution (70 mL). The combined 

organic layers were dried over MgSO4, filtered and the solvent removed under reduced 

pressure. The crude product was purified by column chromatography (cyclohexane/ ethyl 

acetate 4:1 → 3:1) to yield glucoside 12 as a colourless solid. 

Yield:    869 mg (1.89 mmol, 77 %); lit.:[276] 47 %; 

DC:      Rf = 0.43 (cyclohexane/ ethyl acetate 2:1); 

Melting point:   67 °C; lit.[417]: 68-68.5 °C; 

Rotational value: [α]20
D = -20.8 (c = 0.29 in ethyl acetate); lit.[418]: 

[α]27
D = -20.2 (c = 0.59 in chloroform); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 5.24-5.14 (dd~t, 3J2,3 = 9.5 Hz, 1H, H-3), 

5.13-5.05 (dd~t, 3J3,4 = 9.9 Hz, 1H, H-4), 5.03-4.92 (dd, 3J1,2 = 8.0 Hz, 3J2,3 = 9.5 Hz, 1H, 

H-2), 4.50-4.46 (d, 3J1,2 = 8.0 Hz, 1H, H-1), 4.29-4.22 (dd, 3J5,6 = 4.7 Hz, 2J6,6’ = 12.3 Hz, 

1H, H-6), 4.15-4.11 (dd, 3J5,6’ = 2.5 Hz, 2J6,6’ = 12.3 Hz, 1H, H-6’), 3.89-3.83 (dt, 

2JOCHH’ = 9.6 Hz, 3JOCH2CH2 = 6.4 Hz, 1H, OCHH’), 3.72-3.66 (ddd, 3J5,6’ = 2.5 Hz, 

3J5,6 = 4.7 Hz, 3J4,5 = 10.0 Hz, 1H, H-5), 3.50-3.43 (dt, 2JOCHH’ = 9.6 Hz, 

3JOCH2CH2 = 6.8 Hz, 1H, OCHH’), 2.08, 2.03, 2.02, 2.00 (each s, each 3H, O(C=O)CH3), 

1.62-1.51 (m, 2H, OCH2CH2), 1.32-1.23 (m, 10H, CH2), 0.87 (t, 3JCH2CH3 = 7.0 Hz, 3H, 

CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K, TMS): δ = 170.9, 170.5, 169.6, 169.4 (COCH3), 

101.0 (C-1), 73.0 (C-3), 71.9 (C-5), 71.5 (C-2), 70.4 (OCH2CH2), 68.7 (C-4), 62.2 (C-6), 

31.9, 29.5, 29.4, 25.9, 22.8 (CH2), 20.9, 20.8, 20.7 (OCOCH3), 14.2 (CH3) ppm; 

IR (ATR): ṽ = 2922, 2855, 1742, 1367, 1225, 1034, 623 cm-1; 

ESI-MS: m/z = 483.21963, [M+Na]+ (calc. 483.22007 for C22H36O10 + Na). 

 

Octyl α-D-mannopyranoside 13[276] 

Freshly prepared sodium methoxide solution (1 M, 2.50 mL) was added to a solution of 

compound 11 (1.38 g, 3.00 mmol) in dry methanol (25 mL). After stirring at room 

temperature for 16 h the mixture was neutralised with Amberlite® IR 120 and filtered. 
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The solvent was removed under reduced pressure to yield compound 13 quantitatively as 

a colourless syrup. 

Yield:    quant.; lit.[276]: 95 %; 

TLC:    Rf = 0 (cyclohexane/ ethyl acetate 4:1); 

Optical rotation: [α]22
D = +55.0 (c = 1.04 in methanol); lit.[276]: 

[α]24
D = +56.0 (c = 0.85 in water); 

1H-NMR: (500 MHz, MeOD, 300 K): δ = 4.73 (d, 3J1,2 = 1.5 Hz, 1H, H-1), 3.84-3.80 (dd, 

3J5,6’ = 2.3 Hz, 2J6,6’ = 11.7 Hz, 1H, H-6’), 3.80-3.76 (dd, 3J1,2 = 1.5 Hz, 3J2,3 = 3.4 Hz, 1H, 

H-2), 3.75-3.67 (m, 3H, -OCHH’, H-6, H-3), 3.60 (t, 3J3,4 = 9.7 Hz, 1H, H-4), 3.56-3.50 

(ddd, 3J5,6’ = 2.3 Hz, 3J5,6 = 5.8 Hz, 3J4,5 = 9.7 Hz, 1H, H-5), 3.46-3.38 (dt, 

2JOCHH’ = 9.6 Hz, 3JOCH2CH2 = 6.4 Hz, 1H, OCHH’), 1.63-1.57 (m, 2H, OCH2CH2), 1.38-

1.28 (m, 10H, CH2), 0.90 (t, 3JCH2CH3 = 7.0 Hz, 3H, CH3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 101.6 (C-1), 74.6 (C-5), 72.7 (C-3), 72.3 

(C-2), 68.6 (OCH2), 68.6 (C-4), 62.9 (C-6), 33.0, 30.6, 30.5, 30.4, 27.4, 23.7 (CH2), 14.4 

(CH3) ppm; 

IR (ATR): ṽ = 3364, 2924, 2856, 1131, 1056, 1026, 677 cm-1; 

ESI-MS: m/z = 315.180, [M+Na]+ (calc. 315.178 for C14H28O6 + Na). 

 

Octyl β-D-glucopyranoside 14[419] 

Freshly prepared sodium methoxide solution (1 M, 1.00 mL) was added to a solution of 

compound 12 (547 mg, 1.19 mmol) in dry methanol (25 mL). After stirring at room 

temperature for 16 h the mixture was neutralised with Amberlite® IR 120 and filtered. 

The solvent was removed under reduced pressure to yield compound 14 quantitatively as 

a colourless syrup. 

Yield:    quant.; 

TLC:    Rf = 0 (cyclohexane/ ethyl acetate 4:1); 

Rotational value:  [α]20
D = -21.5(c = 0.30 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K): δ = 4.27-4.22 (d, 3J1,2 = 7.8 Hz, 1H, H-1), 3.92-

3.84 (m, 2H, H-6, OCHH’), 3.68-3.64 (dd, 3J5,6’ = 5.5 Hz, 2J6,6’ = 11.9 Hz, 1H, H-6’), 
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3.56-3.50 (dt, 2JOCHH’ = 9.5 Hz, 3JOCH2CH2 = 6.8 Hz, 1H, OCHH’), 3.36-3.31 (m, 1H, H-3), 

3.28-3.23 (m, 2H, H-4, H-5), 3.18-3.14 (dd, 3J1,2 = 7.8 Hz, 3J2,3 = 9.1 Hz, 1H, H-2), 1.65-

1.58 (m, 2H, OCH2CH2), 1.39-1.25 (m, 10H, CH2), 0.90 (t, 3JCH2CH3 = 7.0 Hz, 3H, 

CH3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 104.4 (C-1), 78.2 (C-3), 77.9 (C-5), 75.1 

(C-2), 71.7 (C-4), 70.9 (OCH2), 62.8 (C-6), 33.0, 30.8, 30.6, 30.4, 27.1, 23.7 (CH2), 14.4 

(CH3) ppm; 

IR (ATR): ṽ = 3355, 2924, 2855, 1377, 1075, 1018, 614 cm-1; 

ESI-MS: m/z = 293.19526, [M+H]+ (calc. 293.19587 for C14H28O6 + H). 

 

tert-Butyl-1,3-dihydroxypropane-2-yl-carbamate 17 

Di-tert-butyldicarbonate (13.2 g, 60.4 mmol) was added to a solution of serinol 15 

(5.00 g, 54.9 mmol) in methanol (250 mL). The mixture was reacted at room temperature 

for 18 h. The crude was then concentrated and product 17 was precipitated with cold ethyl 

acetate (100 mL). Compound 17 was obtained after filtration as a colourless solid.  

Yield:    9.22 g (48.2 mmol, 88 %); lit.: 92 %; 

Melting point:   86 °C, lit.: 84-85 °C; 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 5.28 (br s, 1H, NH), 3.83-3.79 (dd, 2H, 

2JCHCH2 = 11.1 Hz, 3JCHCH2 = 4.4 Hz, 2H, CHH‘OH), 3.76-3.73 (dd, 2H, 

2JCHCH2 = 11.1 Hz, 3JCHCH2 = 4.4 Hz, 2H, CHH‘OH), 3.68-3.65 (m, 1H, CH), 2.65 (br s, 

2H, OH), 1.44 (s, 9H, CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 156.5 (C=O), 80.1 (C(CH3)3), 63.6 (CH2), 

53.3 (CH), 28.5 (CH3) ppm; 

IR (ATR-IR): ṽ = 3301 (νOH), 2983, 2960, 2885 (νCH2), 1684 (νC=O), 1531 (νCONH) 

1392, 1364 (νC(CH3)3), 1309, 1246 (νCH2), 1162, 1040, 1021 (νCOC) cm-1; 

ESI-MS: m/z = 214.107, [M+Na]+ (calc. 214.106 for C8H17NO4 + Na). 
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N-(tert-Butyloxycarbonyl)tris(hydroxymethyl)aminomethane 18 

Di-tert-butyldicarbonate (11.8 g, 53.9 mmol) was added to a solution of serinol 16 

(5.00 g, 41.3 mmol) in methanol/ tert butyl alcohol (1:1, 90 mL). The mixture was reacted 

at room temperature for 40 h. The crude was then concentrated and product 18 was 

precipitated with cold ethyl acetate (100 mL). Compound 18 was obtained after filtration 

as a colourless solid.  

Yield:    8.13 g (36.7 mmol, 89 %); lit.: 90 %; 

Melting point:    86 °C, lit.: 84-85 °C; 

1H-NMR: (500 MHz, DMSO-d6, 300 K): δ = 5.75 (br s, 1H, NH), 4.49 (t, 

3JCH2OH = 5.6 Hz, 3H, OH), 3.52 (d, 3JCH2OH = 5.6 Hz, 6H, CH2), 1.37 (s, 9H, CH3) ppm; 

13C-NMR: (126 MHz, DMSO-d6, 300 K): δ = 155.0 (C=O), 77.8 (C(CH3)3), 60.5 (CH2), 

60.2 (C(CH2)3), 28.2 (CH3) ppm; 

IR (ATR-IR): ṽ = 3293 (νOH), 2986, 2964 (νCH2), 1677 (νC=O), 1544 (νCONH) 1393, 

1368 (νC(CH3)3), 1291, 1257 (νCH2), 1163, 1029, 1016 (νCOC) cm-1; 

ESI-MS: m/z = 222.16, [M+H]+ (calc. 221.126 for C9H19NO5). 

 

tert-Butyl(1,3-bis(prop-2-in-1-yloxy)propan-2-yl)-carbamate 20[420] 

Propargyl bromide 19 (80 % in toluene, 28.1 mL, 261 mmol) was added to an ice-cold 

solution of diol 17 in dry DMF (60 mL). Freshly pestled potassium hydroxide (18.4 g, 

328 mmol) was added in portions before the reaction was stirred at 40 °C for 4 h and 

subsequently at room temperature for additional 16 h. The crude mixture was then diluted 

with ethyl acetate (350 mL). After washing with water (3 x 200 mL) the organic layer 

was dried over MgSO4, filtered and the solvent removed under reduced pressure. 

Compound 20 was obtained after column chromatography (cyclohexane → cyclohexane/ 

ethyl acetate 8:1) as a yellow oil. 

Yield:    9.67 g (36.2 mmol, 83 %); lit.: 39 %;[420] 

TLC:    Rf = 0.33 (cyclohexane/ ethyl acetate 5:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 4.90 (br s, 1H, NH), 4.16 (d, 

4JCH2≡CH = 2.4 Hz, 4H, CH2C≡CH), 3.92 (s, 1H, NHCH), 3.63 (dd, 2JCHCH2 = 9.2 Hz, 
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3JCHCH2 = 4.5 Hz, 2H, CHCHH‘), 3.60-3.55 (m, 2H, CHCHH‘), 2.43 (4JCH2≡CH = 2.4 Hz, 

2H, CH2C≡CH), 1.44 (s, 9H, CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K, TMS): δ = 155.6 (C=O), 79.7 (C≡CH), 77.8 

(C(CH3)3), 74.7 (C≡CH), 68.7 (CHCH2), 58.6 (CH2C≡CH), 49.6 (CHCH2), 28.5 

(CH3) ppm; 

ESI-MS: m/z = 265.16779, [M]; (calc. 265.16779 for C15H23NO3); 

IR (ATR-IR): ṽ = 3292 (νC≡CH), 2977 (νCH2), 1697 (νC=O), 1504 (νCONH) 1392, 

1366 (νC(CH3)3), 1166, 1097, 1058 (νCOC) cm-1. 

 

N-(tert-Butyloxycarbonyl)tris[(propargyloxy)methyl]aminomethane 21[284] 

Propargyl bromide 19 (80 % in toluene, 25.9 mL, 240 mmol) was added to an ice-cold 

solution of triol 18 in dry DMF (60 mL). Freshly pestled potassium hydroxide (17.0 g, 

303 mmol) was added in portions before the reaction was stirred at 40 °C for 4 h and 

subsequently at room temperature for additional 16 h. The crude mixture was then diluted 

with ethyl acetate (350 mL). After washing with water (3 x 200 mL) the organic layer 

was dried over MgSO4, filtered and the solvent removed under reduced pressure. 

Compound 21 was obtained after column chromatography (cyclohexane → cyclohexane/ 

ethyl acetate 8:1) as a yellow oil. 

Yield:    5.61 g (16.7 mmol, 41 %); lit.: 67 %;[284] 

TLC:    Rf = 0.28 (cyclohexane/ ethyl acetate 9:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 4.92 (br s, 1H, NH), 4.15 (d, 

4JCH2≡CH = 2.4 Hz, 6H, CH2C≡CH), 3.79 (s, 6H, CCH2), 2.42 (4JCH2≡CH = 2.4 Hz, 3H, 

CH2C≡CH), 1.42 (s, 9H, CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K, TMS): δ = 154.9 (C=O), 79.8 (C≡CH), 79.4 

(C(CH3)3), 74.7 (C≡CH), 69.1 (CCH2), 58.8 (CH2C≡CH), 58.2 (CCH2), 28.5 (CH3) ppm; 

MALDI-MS: m/z = 373.974, [M+K]+; (calc. 374.137 for C18H25NO5+K); 

IR (ATR-IR): ṽ = 3292 (νC≡CH), 2977, 2850, 2790 (νCH2), 1702 (νC=O), 

1517 (νCONH) 1393, 1361 (νC(CH3)3), 1166, 1088, 1075 (νCOC) cm-1. 
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2-Cascade: N-(tert-butylcarbamate)aminomethane[2-1,1]:methoxymethyl: 1H 

[1,2,3]triazole-1-ethyl: 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 23 

To a solution of (2-Azidoethyl) 2,3,4,6-tetra-O-acetyl-α-D-manno-pyranoside 22 (2.50 g, 

5.99 mmol) and tert-Butyl(1,3-bis(prop-2-in-1-yloxy)propan-2-yl) carbamate 20 

(801 mg, 3.00 mmol) in DMF (100 mL) was added a solution of copper(II) sulphate 

pentahydrate (632 mg, 2.53 mmol) in water (20 mL) and sodium ascorbate (1.00 g, 

5.05 mmol) in water (20 mL). After stirring at room temperature for five hours, a 1:1 

mixture of saturated ammonium chloride and water (200 mL) was added and the mixture 

was extracted with ethyl acetate (3 x 200 mL). The combined organic layers were dried 

over MgSO4 and filtered. The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography (ethyl acetate/cyclohexane/methanol 

6:4:1) to yield compound 23 as a colourless solid. 

Yield:    2.94 g (2.67 mmol, 89 %); 

TLC:    Rf = 0.38 (ethyl acetate/cyclohexane/methanol, 6:4:1); 

Melting point:   86 °C; 

Rotational value:  [α]25
D = +29.7 (8.7 mM CH2Cl2); 

1H-NMR (500 MHz, MeOD, 300 K): δ = 8.03 (s, 2H, Htriazole), 5.21-5.12 (m, 6H, H-2, 

H-3, H-4), 4.84 (d, 3J1,2 = 1.6 Hz, 2H, H-1), 4.69 (m, 4H, NCH2CH2), 4.62 (s, 4H, 

OCH2Ctriazole), 4.17-4.10 (m, 4H, H-6, NCH2CH2), 4.02 (dd, 2J6,6’ = 12.4 Hz, 

3J5,6’ = 2.2 Hz, 2H, H-6’), 3.95 (m, 2H, NCH2CH’2), 3.86 (m, 1H, Hcore), 3.59-3.46 (m, 

6H, H-5, CcoreCH2O), 2.12, 2.05, 2.03, 1.95 (each s, 24H, 8 COCH3), 1.43 (s, 9H, CH3) 

ppm; 

13C-NMR (126 MHz, MeOD, 300 K): δ = 172.3, 171.6, 171.5, 171.4 (8 COCH3), 146.1 

(OCH2Ctriazole), 126.0 (Ctriazole), 98.3 (C-1), 70.3, 70.2 (C-2, C-3), 70.1 (CcoreCH2O), 69.8 

(C-5), 67.0 (NCH2CH2), 66.6 (C-4), 64.8 (OCH2Ctriazole), 63.0 (C-6), 51.1 (Ccore), 50.7 

(NCH2CH2), 28.5 (CH3), 20.4, 20.3 (8 COCH3) ppm;  

ESI-MS: m/z = 1102.43062, [M+H]; (calc. 1102.43157 for C46H67N7O24+H); 

IR (ATR-IR): ṽ = 2946, 1742, 1367, 1218, 1138, 1087, 1042 cm-1. 
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3-Cascade: N-(tert-butylcarbamate)aminomethane[3-1,1,1]:methoxymethyl:1H 

[1,2,3]triazole-1-ethyl: 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 24[284] 

To a solution of (2-Azidoethyl) 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 22 (3.45 g, 

8.27 mmol) and N-(tert-Butyloxycarbonyl)tris[propargyloxy) methyl]amino-methane 21 

(926 mg, 2.76 mmol) in DMF (50 mL) was added a solution of copper(II) sulphate 

pentahydrate (861 mg, 3.45 mmol) in water (20 mL) and sodium ascorbate (1.39 g, 

6.56 mmol) in water (20 mL). After stirring at room temperature for 14 hours, a 1:1 

mixture of saturated ammonium chloride and water (200 mL) was added and the mixture 

was extracted with ethyl acetate (3 x 200 mL). The combined organic layers were dried 

over MgSO4 and filtered. The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography (ethyl acetate/cyclohexane/methanol 

6:4:1→7:3:1) to yield compound 24 as a colourless solid. 

Yield:    3.27 g (2.06 mmol, 75 %), lit.: 87 %;[284] 

TLC:    Rf = 0.22 (ethyl acetate/cyclohexane/methanol, 7:3:1); 

Melting point:   90 °C; 

Optical rotation:  [α]22
D = +31.5 (c = 1.0 in dichloromethane); 

1H-NMR (500 MHz, MeOD, 300 K): δ = 8.03 (s, 3H, Htriazole), 5.21-5.13 (m, 9H, H-2, 

H-3, H-4), 4.85 (d, 3J1,2 = 1.3 Hz, 3H, H-1), 4.71-4.69 (m, 6H, NCH2CH2), 4.60 (s, 6H, 

OCH2Ctriazole), 4.17-4.11 (m, 6H, H-6, NCH2CH2), 4.03 (dd, 2J6,6’ = 12.3 Hz, 3J5,6’ = 2.3 

Hz, 3H, H-6’), 3.98-3.94 (m, 3H, H-7’), 3.74 (s, 6H, CcoreCH2O), 3.52 (ddd, 3J4,5 = 9.4 

Hz, 3J5,6 = 4.7 Hz, 3J5,6’ = 2.3 Hz, 3H, H-5), 2.11, 2.05, 2.02, 1.95 (each s, 36H, 12 

COCH3), 1.39 (s, 9H, CH3) ppm; 13C-NMR (126 MHz, MeOD, 300 K): δ = 172.3, 171.5, 

171.4 (12 COCH3), 145.0 (OCH2Ctriazole), 126.0 (CtriazoleN), 98.4 (C-1), 70.3, 70.2 (C-2, 

C-3), 69.8 (C-5), 69.6 (CcoreCH2O), 67.0 (NCH2CH2), 66.7 (C-4), 65.2 (OCH2Ctriazole), 

63.0 (C-6), 50.7 (CNCH2CH2), 28.5 (CH3), 20.4, 20.3 (12 COCH3) ppm;  

ESI-MS: m/z = 1587.59606, [M+H]; (calc. 1587.59613 for C66H94N10O35+H); 

IR (ATR-IR): ṽ = 2977 (νCH2), 1742 (νC=O), 1368 (νC(CH3)3), 1218 (δCH2), 1138, 

1086, 1043 (νCOC) cm-1. 
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2-Cascade: Aminomethane[2-1,1]:methoxymethyl:1H[1,2,3]triazole-1-ethyl: 

2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 25 

Trifluoroacetic acid (3.17 mL, 41.4 mmol) was added to a solution of compound 23 

(2.28 g, 2.07 mmol) in DCM (40 mL). After stirring for 16 h at room temperature the 

solvent was removed under reduced pressure and the crude product was codestilled with 

toluene (3 x 50 mL) and DCM (2 x 40 mL) to yield the free amine of compound 25 

quantitatively as colourless syrup. 

Yield:    quant.; 

Optical rotation:  [α]20
D = +22.7 (c = 0.42 in ethyl acetate); 

1H-NMR (500 MHz, CDCl3, 300 K): δ = 7.94-7.91 (m, 2H, Htriazole), 6.03-5.86 (s (br), 

NH2), 5.27-5.22 (dd~t, 3J3,4= 10.2 Hz, 2H, H-3), 5.18-5.12 (m, 4H, H-2, H-4), 4.79-4.74 

(m, 6H, H-1, OCH2Ctriazole), 4.71-4.66 (m, 2H, NCH2CH2), 4.63-4.57 (m, 2H, 

NCH‘2CH2), 4.22 (2 x ddd, 3J5,6‘ = 5.2 Hz, 2J6,6’ = 12.3 Hz, 1H, H-6), 4.17-4.12 (ddd, 

3JCH2H = 4.2 Hz, 3JCH2H = 6.6 Hz, 2JCHH’ = 10.6 Hz, 2H, NCH2CHH‘), 4.09 (dd 

3J5,6 = 2.4 Hz, 2J6,6’ = 12.3 Hz, 1H, H-6‘), 3.91-3.75 (m, 7H, NCH2CHH‘, CHCH2O), 

3.72-3.67 (m, 2H, H-5), 2.13, 2.10 (each s, 12H, CH3), 2.05, 1.98 (each m, 12H, CH3); 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 171.3, 171.0, 170.5, 169.9 (C=O), 143.5 

(CtriazoleCH), 124.9 (CtriazoleCH), 97.6 (C-1), 69.1, 67.3, 67.2 (C-2, C-4, C-5), 66.0 

(NtriazoleCH2CH2), 65.7 (C-3), 65.6 (OCH2Ctriazole), 62.5 (C-6), 51.1 (Ccore), 50.5 

(NtriazoleCH2), 20.9, 20.8 (CH3) ppm; 

IR (ATR): ṽ = 3453, 2932, 1738, 1678, 1372, 1225, 1225, 1133, 1088, 1043 cm-1; 

MALDI-MS: m/z = 1002.387, [M+H]+; (calc. 1002.379 for C41H59N7O22+H). 

 

3-Cascade: Aminomethane[3-1,1,1]:methoxymethyl:1H[1,2,3]triazole-1-ethyl: α-D-

mannopyranoside 26[284] 

Trifluoroacetic acid (2.60 mL, 34.0 mmol) was added to a solution of compound 24 

(1.26 g, 794 μmol) in DCM (50 mL). After stirring for 16 h at room temperature the 

solvent was removed under reduced pressure and the crude product was codestilled with 

toluene (3 x 50 mL) and DCM (2 x 40 mL) to yield the free amine of compound 26 

quantitatively as colourless solid. 
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Yield:    quant.; lit.[284]: quant.; 

Melting point:   69 °C; 

Optical rotation:  [α]20
D = +28.5 (c = 0.80 in ethyl acetate); 

1H-NMR (600 MHz, CDCl3, 300 K): δ = 7.76 (s, 3H, Htriazole), 5.27-5.22 (dd~t, 

3J3,4= 9.7 Hz, 3H, H-3), 5.21-5.17 (m, 6H, H-2, H-4), 4.81 (d, 3J1,2 = 1.1 Hz, 3H, H-1), 

4.66-4.56 (m, 12H, OCH2Ctriazole, NCH2CH2), 4.23-4.18 (dd, 3J5,6 = 5.1 Hz, 2J6,6’ = 12.3 

Hz, 3H, H-6), 4.15-4.11 (ddd, 3H, 3JCH2H = 4.2 Hz, 3JCH2H = 6.6 Hz, 2JCHH’ = 10.6 Hz, 

NCH2CHH‘), 4.07-4.03 (dd, 3J5,6‘ = 2.4 Hz, 2J6,6’ = 12.3 Hz, 3H, H-6‘), 3.93-3.88 (ddd, 

3JCH2H‘ = 4.2 Hz, 3JCH2H‘ = 6.3 Hz, 2JCHH’ = 10.6 Hz, NCH2CHH‘), 3.64-3.60 (ddd, 2.4 Hz, 

5.1 Hz, 9.6 Hz, 3H, H-5), 3.58-3.52 (m, 6H, CcoreCH2O), 2.13, 2.09, 2.04, 1.99 (each s, 

9H, CH3); 

13C-NMR: (151 MHz, CDCl3, 300 K): δ = 170.7, 170.3, 170.2, 169.8 (C=O), 145.2 

(CtriazoleCH), 124.0 (CtriazoleCH), 97.6 (C-1), 69.3, 69.1 (C-2, C-4, C-5), 66.4 

(NtriazoleCH2CH2), 65.82 (C-3), 65.0 (OCH2Ctriazole), 62.4 (C-6), 49.8 (NtriazoleCH2), 20.9, 

20.7 (CH3) ppm; 

IR (ATR): ṽ = 3300, 2928, 1737, 1370, 1222, 1135, 1087, 1041 cm-1; 

MALDI-MS: m/z = 1487.517, [M+H]+; (calc. 1487.544 for C61H86 N10O33+H). 

 

2-Cascade: N-(1-oxo-hexyl)aminomethane[2-1,1]: methoxymethyl: 1H[1,2,3] 

triazole-1-ethyl: 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosid 28 

2-Cascade: aminomethane[2-1,1]:methoxymethyl:1H[1,2,3]triazole-1-ethyl: 2,3,4,6-

tetra-O-acetyl-α-D-mannopyranoside 25 (1.00 g, 896 μmol) and HATU (511 mg, 

1.34 mmol) were predried for 30 min in vacuo. After addition of dry DMF (24 mL) and 

hexanoic acid 27 (112 μL, 986 mmol) the mixture was cooled to 0 °C before DIPEA 

(187 μL, 1.08 mmol) was added. The mixture was stirred at room temperature for 16 h. 

Finally, the solvent was removed under reduced pressure and the crude product purified 

twice by column chromatography (ethyl acetate/ methanol 9:1 and ethyl acetate/ 

cyclohexane/ methanol 6:4:1) to obtain compound 28 as a colourless solid. 

Yield:     63.8 mg (58.0 μmol; 6 %); 

DC:      (ethyl acetate/ methanol, 9:1): Rf = 0.51; 
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Melting point:   65 °C; 

Optical rotation:  [α]22
D = +31.1 (c = 0.97 in dichloromethane); 

1H-NMR (500 MHz, MeOD, 300 K): δ = 8.03, 8.02 (2 s, each 1H, Htriazole), 5.21-5.12 (m, 

6H, H-2, H-3, H-4), 4.84 (s, 2H, H-1), 4.72-4.68 (m, 4H, NCH2CH2), 4.62 (s, 4H, 

OCH2Ctriazole), 4.20 (quint, 1H, 3JCH,CH2 = 5.4 Hz, Hcore), 4.17-4.11 (m, 4H, H-6, 

NCH2CH2), 4.02 (2 dd, 2J6,6’ = 12.3 Hz, 3J5,6’ = 2.4 Hz, 2H, H-6’), 3.95 (mc, 2H, 

NCH2CH’2), 3.63-3.52 (m, 5H, H-5 (1), CcoreCH2O), 3.49 (ddd, 3J4,5 = 9.6 Hz, 

3J5,6 = 4.7 Hz, 3J5,6’ = 2.4 Hz, 1H, H-5 (2)), 2.19 (t, 3JNHCOCH2CH2 = 7.5 Hz, 2H, 

NHCOCH2), 2.12, 2.06, 2.03, 1.95 (each s, 24H, 8 COCH3), 1.59 (quin, 

3JNHCOCH2CH2 = 7.5 Hz, 2H, NHCOCH2CH2), 1.36-1.27 (m, 4H, NHCO(CH2)2CH2, 

CH2CH3), 0.89 (t, 3JCH2CH3= 7.1 Hz, 3H, CH3) ppm; 

13C-NMR (126 MHz, MeOD, 300 K): δ = 176.3 (CONH), 172.3, 171.6, 171.5, 171.4 

(8 COCH3), 146.0 (OCH2Ctriazole), 125.9 (CtriazoleN), 98.6 (C-1), 70.6, 70.4 (C-2, C-3), 

70.0 (C-5), 70.0 (CcoreCH2O), 67.3, 67.2 (2 s, NCH2CH2), 66.9 (C-4), 65.1, 65.0 

(OCH2Ctriazole), 63.3 (C-6), 51.0 (NCH2CH2), 51.0 (NHCHCH2), 37.0 (CNHCOCH2), 

32.5 (NHCO(CH2)2CH2), 26.7 (NHCOCH2CH2), 23.4 (CH2CH3), 20.7, 20.4 

(8 COCH3), 14.3 (CH3) ppm; 

IR (ATR-IR): ṽ = 3433 (νCONH), 2944 (νCH2), 1736 (νC=O), 1648 (νCONH), 

1372 (νCH2, νCH3), 1227 (δCH2), 1139, 1087, 1046 (νCOC), 836 (νC=CH) cm-1; 

MALDI-MS: m/z = 1122.441, [M+Na]; (calc. 1122.434 for C47H69N7O23+Na). 

 

3-Cascade: N-(1-oxo-hexyl)-aminomethane[3-1,1,1]: methoxymethyl: 1H[1,2,3] 

triazole-1-ethyl: 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosid 29 

Amino-tris{[1-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)ethyl]-(4-methoxy)-1H-

[1,2,3]-triazolyl}isobutan 26 (600 mg, 375 μmol) and HATU (214 mg, 563 μmol) were 

predried for 30 min in vacuo. After addition of dry DMF (20 mL) and hexanoic acid 27 

(47.0 μL, 376 mmol) the mixture was cooled to 0 °C before DIPEA (77.0 μL, 442 μmol) 

was added. The mixture was stirred at room temperature for 16 h. Finally, the solvent was 

removed under reduced pressure and the crude product purified by column 
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chromatography (ethyl acetate/ cyclohexane/ methanol 6:4:1) to obtain compound 29 as 

a colourless foam. 

Yield:     59.5 mg (44.9 μmol; 10 %); 

DC:      (ethyl acetate/ cyclohexane/ methanol, 8:2:1): Rf = 0.24; 

Optical rotation:  [α]20
D = +31.6 (c = 0.23 in ethyl acetate); 

1H-NMR (600 MHz, MeOD, 300 K): δ = 8.00 (s, 3H, Htriazole), 5.20-5.14 (m, 6H, H-4, 

H-2), 5.15 (dd, 3J2,3 = 3.2 Hz, 3J3,4 = 10.2 Hz, 3H, H-3), 4.85 (s, 3H, H-1), 4.71-4.65 (m, 

6H, NCH2CH2), 4.59 (s, 6H, OCH2Ctriazole), 4.16-4.11 (m, 6H, H-6, NCH2CH2), 4.02 (dd, 

2J6,6’ = 12.3 Hz, 3J5,6’ = 2.3 Hz, 3H, H-6’), 3.96-3.94 (m, 3H, H-7’), 3.80 (s, 6H, 

CcoreCH2O), 3.52 (ddd, 3J4,5 = 9.6 Hz, 3J5,6 = 4.6 Hz, 3J5,6’ = 2.3 Hz, 3H, H-5), 2.15 (t, 

3JNHCOCH2CH2 = 7.5 Hz, 2H, NHCOCH2), 2.12, 2.05, 2.02, 1.95 (each s, 36H, 12 COCH3), 

1.54 (quin, 3JNHCOCH2CH2 = 7.5 Hz, 2H, NHCOCH2CH2), 1.32-1.26 (m, 4H, 

NHCO(CH2)2CH2, CH2CH3), 0.87 (t, 3JCH2CH3= 7.0 Hz, 3H, CH3) ppm; 

13C-NMR (126 MHz, MeOD, 300 K): δ = 172.3 (CONH), 171.7, 171.3, 171.2 

(12 COCH3), 145.9 (OCH2Ctriazole), 125.6 (CtriazoleCN), 98.3 (C-1), 70.3, 70.1 (C-2, C-3), 

69.8 (C-5), 69.1 (CcoreCH2O), 67.0 (NCH2CH2), 66.6 (C-4), 65.1 (OCH2Ctriazole), 63.0 

(C-6), 61.1 (NHCCH2), 50.7 (NCH2CH2), 37.4 (NHCOCH2), 32.2 (NHCO(CH2)2CH2), 

26.5 (NHCOCH2CH2), 23.2 (CH2CH3), 20.4, 20.3 (12 COCH3), 14.1 (CH3) ppm; 

IR (ATR-IR): ṽ = 3436 (νCONH), 2930 (νCH2), 1734 (νC=O), 1660 (νCONH), 

1381 (νCH2, νCH3), 1241 (δCH2), 1241, 1140, 1052 (νCOC), 839 (νC=CH) cm-1; 

MALDI-MS: m/z = 1608.333, [M+Na]; (calc. 1607.599 for C67H96N10O34+Na). 

 

2-Cascade: N-(1-oxo-hexyl)-aminomethane[2-1,1]: methoxymethyl: 1H[1,2,3] 

triazole-1-ethyl :α-D-mannopyranoside 30 

Freshly prepared sodium methoxide solution (1 M, 50.0 μL) was added to a solution of 

compound 28 (63.8 mg, 58.0 μmol) in dry methanol (10 mL). After stirring at room 

temperature for 20 h the mixture was neutralised with Amberlite® IR 120 and filtered. 

The solvent was removed under reduced pressure to yield compound 30 as a colourless 

foam. 
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Yield:     41.9 mg (54.9 μmol; 95 %); 

DC:      (ethyl acetate/ methanol, 9:1): Rf = 0; 

1H-NMR (500 MHz, MeOD, 300 K): δ = 8.00 (2H, Htriazole), 4.73 (s, 2H, H-1) 

4.86-4.62 (m, 4H, NCH2CH2), 4.60 (s, 4H, OCH2Ctriazole), 4.19 (quint, 1H, 

3JCH,CH2 = 5.4 Hz, Hcore), 4.14-4.10 (m, 2H, NCH2CH2), 3.89-3.85 (m, 2H, NCH2CH’2), 

3.77 (dd, 2J6,6’ = 11.8 Hz, 3J5,6 = 2.2 Hz, 2H, H-6), 3.74 (dd, 3J1,2 = 1.5 Hz, 

3J2,3 = 2.9 Hz, 2H, H-2), 3.65 (dd, 2J6,6’ = 11.8 Hz, 3J5,6’ = 5.9 Hz, 2H, H-6’), 3.60-3.52 

(m, 4H, H-3, H-4, CcoreCH2O), 3.24-3.19 (m, 2H, H-5), 2.20 (t, 3JNHCOCH2CH2 = 7.5 Hz, 

2H, NHCOCH2), 1.59 (quin, 3JNHCOCH2CH2 = 7.5 Hz, 2H, NHCOCH2CH2), 1.35-1.26 (m, 

4H, NHCO(CH2)2CH2, CH2CH3), 0.90 (t, 3JCH2CH3 = 6.9 Hz, 3H, CH3) ppm;  

13C-NMR (126 MHz, MeOD, 300 K): δ = 176.3 (CONH), 145.8 (OCH2Ctriazole), 125.5 

(CtriazoleN), 101.4 (C-1), 74.7 (C-5), 72.2, 68.1 (C-4, C-3), 71.6 (C-2), 

69.8 (CcoreCH2O), 66.4 (NCH2CH2), 64.7 (OCH2Ctriazole), 62.5 (C-6), 51.0 (NCH2CH2), 

50.1 (NHCHCH2), 36.7 (CNHCOCH2), 32.2 (NHCO(CH2)2CH2), 26.4 (NHCOCH2CH2), 

23.2 (CH2CH3), 14.3 (CH3) ppm; 

MALDI-MS: m/z = 802.598, [M+K]; 764.607, [M+H]; (calc. 802.324 for 

C31H53N7O15+K); 

IR (ATR-IR): ṽ = 3324, 2924, 1640, 1546, 1367, 1226, 1134, 1091, 1052 cm-1. 

 

3-Cascade: N-(1-oxo-hexyl)-aminomethane[3-1,1,1]: methoxymethyl: 1H[1,2,3] 

triazole-1-ethyl: α-D-mannopyranosid 31 

Freshly prepared sodium methoxide solution (1 M, 45.0 μL) was added to a solution of 

compound 29 (59.5 mg, 44.9 μmol) in dry methanol (10 mL). After stirring at room 

temperature for 20 h the mixture was neutralised with Amberlite® IR 120 and filtered. 

The solvent was removed under reduced pressure to yield compound 31 as a colourless 

syrup. 

Yield:     quant.; 

DC:      (ethyl acetate/ methanol, 9:1): Rf = 0; 
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1H-NMR (500 MHz, MeOD, 300 K): δ = 7.98 (3H, Htriazole), 4.74 (d, 3J1,2 = 1.54 Hz, 3H, 

H-1) 4.68-4.60 (m, 6H, NCH2CH2), 4.57 (s, 6H, OCH2Ctriazole), 4.14-4.10 (m, 3H, 

NCH2CH2), 3.90-3.85 (m, 3H, HNCH2CHH’), 3.79-3.75 (m, 12H, H-2, H-6, CcoreCH2O), 

3.66 (dd, 2J6,6’ = 11.8 Hz, 3J5,6’ = 5.9 Hz, 3H, H-6’), 3.61-3.57 (m, 6H, H-3, H-4), 

3.27-3.23 (m, 3H, H-5), 2.17 (t, 3JNHCOCH2CH2 = 7.5 Hz, 3H, NHCOCH2), 1.54 (quin, 

3JNHCOCH2CH2 = 7.6 Hz, 3H, NHCOCH2CH2), 1.33-1.27 (m, 4H, NHCO(CH2)2CH2, 

CH2CH3), 0.88 (t, 3JCH2CH3= 7.0 Hz, 3H, CH3) ppm; 

13C-NMR (126 MHz, MeOD, 300 K): δ = 176.6 (CONH), 145.9 (OCH2Ctriazole), 125.8 

(CtriazoleCN), 101.7 (C-1), 74.9 (C-5), 72.5, 68.4 (C-4, C-3), 71.9 (C-2), 69.3 (CcoreCH2O), 

66.8 (NCH2CH2), 65.2 (OCH2Ctriazole), 62.8 (C-6), 51.3 (NCH2CH2), 37.6 (CNHCOCH2), 

32.4 (NHCO(CH2)2CH2), 26.7 (NHCOCH2CH2), 23.5 (CH2CH3), 14.3 (CH3) ppm; 

MALDI-MS: m/z = 1082.060, [M+H]; (calc. 1081.490 for C43H72N10O22); 

IR (ATR-IR): ṽ = 3323 (br, OH), 2925 (νCH2), 1647 (νC=O), 1547 (CONH), 

1365 (δOH), 1227 (δCH2), 1134, 1090, 1052 (νCOC) cm-1. 

 

N-(Hexanoyloxy)succinimide 32[285, 289] 

Hexanoic acid 27 (1.88 mL, 20.0 mmol) and DCC (3.73 g, 24.0 mmol) were dissolved in 

dry THF (40 mL), stirred for 10 min and then a solution of N-hydroxysuccinimide 

(2.08 g, 24.0 mmol) was added. The reaction mixture was stirred at room temperature for 

60 h. The solvent was removed under reduced pressure and the crude product was purified 

by column chromatography (cyclohexane → cyclohexane/ ethyl acetate 5:1) to obtain 

compound 32 as a colourless oil which contained unreacted hexanoic acid. Compound 32 

was used without further purification. 

Yield:    3.48 g (16.3 mmol; 82 %), lit.[289]: 74 %; 

TLC:    Rf = 0.38 (cyclohexane/ ethyl acetate 7:1). 

 

1,3-Bis(propargyloxy)-2-propanamine 38[420] 

Trifluoroacetic acid (5.00 mL, 65.3 mmol) was added to a solution of Boc-protected 

compound 20 (3.23 g, 12.1 mmol) in DCM (40 mL). The mixture was stirred at room 
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temperature for 5 h before the solvent was removed under reduced pressure. The crude 

product was codestilled with DCM (3 x 60 mL) to obtain amine 38 quantitatively. 

Yield:    quant., lit.[420]: quant.; 

TLC:    Rf = 0.28 (cyclohexane/ ethyl acetate 9:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 6.65 (s, 1H, NH2), 4.32-4.26 (m, 1H, 

NH2CH), 4.19-4.18 (d, 4J = 2.4 Hz, 2H, CHH’C≡CH), 4.18-4.17 (d, 4J = 2.4 Hz, 2H, 

CHH’C≡CH), 3.74-3.70 (dd, 2J = 9.6 Hz, 3J = 4.5 Hz, 2H, NH2C(CHH’)), 3.67-3.64 (dd, 

2J = 9.6 Hz, 3J = 5.5 Hz, 2H, NH2C(CHH’)),2.47-2.46 (t, 2H, CH2C≡CH) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 79.1 (C≡CH), 75.3 (C≡CH), 67.4 

(CH(CH2)2), 58.7 (CH2C≡CH), 49.2 (CH(CH2)2) ppm; 

EI-MS: m/z = 154.10, [M-CH]; (calc. 167.0946 for C9H13NO2). 

 

Tris[(propargyloxy)methyl]aminomethane 39[292] 

Trifluoroacetic acid (5.00 mL, 65.3 mmol) was added to a solution of Boc-protected 

compound 21 (3.00 g, 8.94 mmol) in DCM (30 mL). The mixture was stirred at room 

temperature for 16 h before the solvent was removed under reduced pressure. The crude 

product was codestilled with DCM (3 x 60 mL) to obtain amine 39 quantitatively. 

Yield:    quant., lit.[292]: quant.; 

TLC:    Rf = 0.28 (cyclohexane/ ethyl acetate 9:1); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 4.22 (m, 6H, CH2C≡CH), 3.72 (s, 6H, 

NH2C(CH2)), 2.93 (m, 3H, CH2C≡CH) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 78.8 (C≡CH), 75.7 (C≡CH), 67.2 

(C(CH2)3), 59.5 (C(CH2)3), 58.9 (CH2C≡CH) ppm; 

IR (ATR): ṽ = 3299, 2899, 2859, 1656, 1179, 1142, 1098, 1019, 802, 722, 684, 629 cm-1; 

EI-MS: m/z = 236.12887, [M+H]; (calc. 236.12867 for C13H17NO3). 
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N-[1,3-Bis(propargyloxy)-2-propyl]hexylamide 40 

Amine 38 (327 mg, 1.96 mmol) and HATU (1.12 g, 2.95 mmol) were predried for 30 min 

in vacuo. After addition of hexanoic acid 27 (250 μL, 2.00 mmol) and dry DMF (12 mL) 

the mixture was cooled to 0 °C before DIPEA (410 μL, 2.35 mmol) was added. The 

mixture was stirred at 0 °C for 1 h and additional 16 h at room temperature. The solvent 

was removed under reduced pressure before the crude product was purified by column 

chromatography (cyclohexane/ ethyl acetate 4:1 → 1:1) to obtain compound 40 as a 

colourless oil. 

Yield:    263 mg (991 μmol, 51 %); 

TLC:    Rf = 0.12 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 5.84 (d, 3JNHCH = 8.01 Hz, 1H, NH), 

4.31-4.25 (m, 1H, NHCH), 3.71-3.62 (dd, 2JCHCH2 = 9.4 Hz, 3JCHCH2 = 4.4 Hz, 2H, 

CHCHH‘), 3.61-3.55 (dd, 2JCHCH2 = 9.4 Hz, 3J CHCH2 = 5.7 Hz, 2H, CHCHH‘), 4.18-4.17 

(d, 4JCH2≡CH = 2.4 Hz, 2H, CHH‘C≡CH), 4.17-4.16 (d, 4JCH2≡CH = 2.4 Hz, 2H, 

CHH‘C≡CH), 2.48-2.41 (t, 4JCH2≡CH = 2.3 Hz, 2H, CH2C≡CH), 2.20-2.16 (dd, 

2JCH2 = 9.7 Hz, 3JCH2CH2 = 5.6 Hz, 2H, (C=O)CH2), 1.67-1.60 (m, 2H, CH2), 1.35-1.27 (m, 

4H, CH2), 0.92-0.87 (t, 3JCH2CH3 = 7.0 Hz 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 173.0(C=O), 79.6 (C≡CH), 74.8 

(C≡CH), 68.4 (CH(CH2)2), 58.6 (CH2C≡CH), 48.1 (CH(CH2)2), 36.9 ((C=O)CH2), 31.5, 

25.5, 22.5 (CH2), 14.1 (CH3) ppm; 

IR (ATR): ṽ = 3291, 2956, 2929, 1643, 1536, 1240, 1096, 663, 630 cm-1; 

EI-MS: m/z = 265.16779, [M]; (calc. 265.16779 for C15H23NO3). 

 

N-{Tris[(propargyloxy)methyl]methyl]}hexylamide 41 

DCC (1.13 g, 8.93 mmol) and hexanoic acid 27 (1.06 mL, 8.50 mmol) were dissolved in 

ice-cold dry DCM (12 mL). After addition of a solution of amine 39 (1.00 g, 4.25 mmol) 

in dry DCM, the reaction mixture was stirred at 0 °C for 1 h and at room temperature for 

additional 16 h. The crude product was then filtered to remove precipitated 

dicyclohexylurea. The solvent was removed under reduced pressure and the crude product 
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was purified by column chromatography (cyclohexane/ ethyl acetate 4:1) yielding 

compound 41 as a colourless oil. 

Yield:    964 mg (2.89 mmol, 68 %); 

TLC:    Rf = 0.38 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 6.59 (s, 1H, NH), 4.19-4.15 (d, 

4JCH2≡CH = 2.4 Hz, 6H, CH2C≡CH), 3.87 (s, 6H, NHC(CH2)), 2.48-2.43 (t, 

4JCH2≡CH = 2.3 Hz, 3H, CH2C≡CH), 2.39-2.31 (m, 2H, (C=O)CH2), 1.70-1.58 (m, 2H, 

CH2), 1.39-1.27 (m, 4H, CH2), 0.95-0.85 (t, 3JCH2CH3 = 7.1 Hz 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 179.8 (C=O), 79.2 (C≡CH), 75.4 

(C≡CH), 67.7 (C(CH2)3), 60.3 (C(CH2)3), 58.7 (CH2C≡CH), 33.8 ((C=O)CH2), 31.4, 

24.3, 22.4 (CH2), 13.9 (CH3) ppm; 

IR (ATR): ṽ = 3294, 2935, 1708, 1214, 1159, 1093, 632 cm-1; 

EI-MS: m/z = 332.05, [M-H], 262.02 [M-(CH2)4CH3]; (calc. 333.19401 for C19H27NO4). 

 

N-[1-(hydroxymethyl)-3-hydroxypropyl]-N-(hexyl)thiourea 43 

A solution of serinol 15 (1.00 g, 11.0 mmol) and DIPEA (3.43 mL, 19.7 mmol) in dry 

DMF (12 mL) was prepared and subsequently added to a solution of hexyl 

isothiocyanate 42 (2.02 mL, 13.2 mmol) in dry DMF (12 mL). The mixture was stirred at 

room temperature for 16 h. The solvent was removed under reduced pressure and the 

crude product was purified by column chromatography (ethyl acetate) to obtain 

compound 43 as a colourless solid. 

Yield:    2.34 g (9.98 mmol, 91 %); 

TLC:    Rf = 0.28 (ethyl acetate); 

Melting point   52 °C; 

1H-NMR: (200 MHz, MeOD, 300 K): δ = 4.81 (s, 2H, OH), 4.41-4.28 (m, 1H, NHCH), 

3.76-3.59 (m, 4H, CHCH2), 3.51-3.39 (t, 3JCH2CH2 = 6.9 Hz, 2H, (NHCH2), 1.66-1.48 (m, 

2H, CH2), 1.43-1.23 (m, 6H, CH2), 0.96-0.87 (t, 3JCH2CH3 = 6.8 Hz 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 158.7 (C=S), 62.8 (CH(CH2)2), 62.5 

(CH(CH2)2,), 31.7 ((C=O)CH2), 26.8 (CH2), 22.7 (CH2), 14.2 (CH3) ppm; 
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IR (ATR): ṽ = 3269, 2926, 2856, 1554, 1356, 1049, 1031, 673, 559 cm-1; 

EI-MS: m/z = 234.14020, [M]; (calc. 234.14020 for C10H22N2O2S). 

 

N-[tert-Butyl(1,3-bis(prop-2-in-1-yloxy)propan-2-yl)]-N-(hexyl)thiourea 44 

A suspension of TRIS 16 (1.00 g, 8.25 mmol) and DIPEA (2.59 mL, 14.9 mmol) in dry 

DMF (40 mL) was prepared and subsequently added to a solution of hexyl 

isothiocyanate 42 (1.52 mL, 9.91 mmol) in dry DMF (12 mL). The mixture was stirred at 

room temperature for 16 h. The solvent was removed under reduced pressure and the 

crude product was purified by column chromatography (ethyl acetate) to obtain 

compound 43 as a colourless solid. 

Yield:    1.16 g (4.39 mmol, 53 %); 

TLC:    Rf = 0.19 (ethyl acetate); 

Melting point   84 °C; 

1H-NMR: (200 MHz, MeOD, 300 K): δ = 4.76 (s, 3H, OH), 3.65 (s, 6H, C(CH2)3), 3.50-

3.40 (t, 3JCH2CH2 = 6.9 Hz, 2H, (NHCH2), 1.61-1.47 (m, 2H, CH2), 1.40-1.21 (m, 6H, 

CH2), 0.94-0.81 (t, 3JCH2CH3 = 6.8 Hz 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 157.6 (C=S), 64.7 (C(CH2)3), 62.5 

(C(CH2)3), 32.7 ((C=O)CH2), 30.0, 27.8, 23.7 (CH2), 14.4 (CH3) ppm; 

IR (ATR): ṽ = 3282, 3251, 1246, 1091, 986, 646, 633 cm-1; 

EI-MS: m/z = 264.15076, [M]; (calc. 264.15076 for C11H24N2O3S). 

 

2-Isothiocyanato-1,3-dipropargyloxypropane 45 

A solution of thiophosgene (1.85 mL, 24.1 mmol) in dry DCM (14 mL) was added 

dropwise to an ice-cold solution of amine 38 (2.00 g, 12.0 mmol) and triethylamine 

(4.94 mL, 35.6 mmol). The mixture was stirred at room temperature for 16 h. The solvent 

was removed under reduced pressure and the residue was dissolved in ethyl acetate 

(400 mL) and washed with H2O (300 mL). The organic layer was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 
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by column chromatography (cyclohexane/ ethyl acetate 7:1) to yield compound 45 as a 

brownish oil. 

Yield:    661 mg (3.16 mmol, 26 %); 

TLC:    Rf = 0.27 cyclohexane/ ethyl acetate 6:1); 

1H-NMR: (200 MHz, CDCl3, 300 K): δ = 4.25-4.18 (d, 4JCH2≡CH = 2.4 Hz, 4H, 

CH2C≡CH), 4.08-3.96 (m, 1H, (NCS)CH), 3.77-3.66 (m, 4H, CHCH2), 2.50-2.44 (t, 

4JCH2≡CH = 2.4 Hz, 2H, CH2C≡CH) ppm; 

EI-MS: m/z = 208.05, [M-H]; (calc. 209.05105 for C10H11NO2S); 

 

Tris(propargyloxymethyl)isothiocyanatomethane 46 

Procedure A 

A solution of thiophosgene (1.31 mL, 17.1 mmol) in dry DCM (10 mL) was added 

dropwise to an icecold solution of amine 39 (2.00 g, 8.50 mmol) and triethylamine 

(3.50 mL, 25.2 mmol). The mixture was stirred at room temperature for 16 h. The solvent 

was removed under reduced pressure and the residue was dissolved in ethyl acetate 

(400 mL) and washed with H2O (300 mL). The organic layer was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (cyclohexane/ ethyl acetate 7:1) to yield compound 46 as a 

brownish oil. 

Yield:    1.73 g (6.24 mmol, 73 %); 

TLC:    Rf = 0.34 cyclohexane/ ethyl acetate 6:1); 

 

Procedure B 

Azide 50 (600 mg, 2.30 mmol) was dissolved in CHCl3 (20 mL) and carbon disulfide 

(5.63 mL, 93.2 mmol) and triphenyl phosphine (2.41 g, 9.20 mmol) were added. The 

mixture was stirred for 16 h at room temperature before the solvent was removed under 

reduced pressure. The crude product was purified by column chromatography 

(cyclohexane / ethyl acetate 6:1 → 2:1) to obtain compound 46 as a brownish oil. 

Yield:    570 mg (2.06 mmol, 89 %); 
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TLC:    Rf = 0.34 (cyclohexane/ ethyl acetate 6:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 4.18-4.16 (d, 4JCH2≡CH = 2.4 Hz, 6H, 

CH2C≡CH), 3.87 (s, 6H, C(CH2)3), 2.47-2.45 (t, 4JCH2≡CH = 2.4 Hz, 3H, CH2C≡CH) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 157.0 (NCS), 79.2 (C≡CH), 75.2 

(C≡CH), 67.8 (CHCH2), 60.3 ((NCS)Cq), 58.9 (CH2C≡CH) ppm; 

EI-MS: m/z = 276.04, [M-H]+; (calc. 277.07726 for C14H15NO3S). 

 

N-[1-(propargyloxymethyl)-3-propargyloxypropyl]-N-(hexyl)thiourea 48 

A solution of hexylamine 47 (283 μL, 2.15 mmol) and DIPEA (678 μL, 3.89 mmol) in 

dry DCM (5 mL) was prepared and then added to a solution of isothiocyanate 45 (542 mg, 

2.59 mmol) in dry DCM (7 mL). The mixture was stirred at room temperature for 16 h. 

The solvent was removed under reduced pressure. Column chromatography 

(cyclohexane/ ethyl acetate 4:1) yielded compound 48 as a colourless oil. 

Yield:    596 mg (1.92 mmol, 74 %); 

TLC:    Rf = 0.23 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR: (500 MHz, CDCl3, 300 K): δ = 4.19-4.18 (d, 4JCH2≡CH = 2.4 Hz, 2H, 

CHH‘C≡CH), 4.18-4.17 (d, 4JCH2≡CH = 2.4 Hz, 2H, CHH‘C≡CH), 4.45-4.32 (m, 1H, 

(NHCH), 3.75-3.65 (m, 4H, CHCH2), 3.46-3.28 (m, 2H, NHCH2), 2.46-2.44 (t, 

4JCH2≡CH = 2.4 Hz, 2H, CH2C≡CH), 1.61-1.55 (m, 2H, NHCH2CH2), 1.38-1.25 (m, 6H, 

CH2), 0.90-0.86 (t, 3JCH2CH3 = 6.9 Hz, 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 181.9 (C=S), 79.2 (C≡CH), 75.2 

(C≡CH), 69.3 (CHCH2), 68.7 (NHCH2), 58.7 (CH2C≡CH), 53.9 (NHCH), 31.6, 28.9, 

26.7, 22.6 (CH2), 14.1 (CH3) ppm; 

IR (ATR): ṽ = 3297, 2918, 2850, 1649, 1248, 1097, 630 cm-1; 

EI-MS: m/z = 152.12, [M-NH(C=S)NH(CH)2CH3+H]+; (calc. 310.17150 for 

C16H26N2O2S). 
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Tris(propargyloxymethyl)azidomethane 50 

Amine 39 (1.27 g, 5.41 mmol), potassium carbonate (1.49 g, 10.8 mmol) and 

CuSO4·5H2O (13.5 mg, 54.1 μmol) were dissolved in methanol (30 mL). After addition 

of imidazol-1-sulfonylazide hydrochloride 35 (1.81 g, 8.66 mmol) the reaction mixture 

was stirred at room temperature for 16 h. The solvent was removed under reduced 

pressure and the residue was dissolved in ethyl acetate (100 mL) and washed with H2O 

(100 mL). The organic layer was dried over MgSO4, filtered and the solvent removed 

under reduced pressure. The crude product was purified by column chromatography 

(cyclohexane/ ethyl acetate 3:1 → 1:1) to obtain compound 50 as raw product which was 

used without further purification. 

Yield:    608 mg (2.33 mmol, 43 %); 

TLC:    Rf = 0.42 (cyclohexane/ ethyl acetate 1:1); 

IR (ATR): ṽ = 3260, 2878, 2114, 1092 cm-1; 

MALDI-MS: m/z = 284.3, [M+Na]; (calc. 284.10 for C13H15N3O3+Na). 

 

2-Cascade: N-(1-hexylthioureamethane)[2-1,1]: methoxymethyl: 1H[1,2,3] triazole-

1-ethyl: 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosid 51 

Alkyne 48 (435 mg, 1.40 mmol), mannoside 22 (1.17 g, 2.80 mmol) and copper 

bromide (80.3 mg, 560 μmol) were dissolved in dry DMF (12 mL). After addition of 

PMDTA (118 μL, 560 μmol) the mixture was stirred at room temperature for 16 h. The 

solvent was removed under reduced pressure end the residue dissolved in ethyl acetate 

(200 mL) and washed with H2O (3 x 150 mL). The organic layer was dried over MgSO4 

and the solvent was removed under reduced pressure. Compound 51 was obtained as 

colourless solid after column chromatography (ethyl acetate/ cyclohexane 7:3 → ethyl 

acetate/ cyclohexane/methanol 7:3:1). 

Yield:    987 mg (862 μmol, 62 %); 

TLC:    Rf = 0.17 (ethyl acetate/ cyclohexane/ methanol 7:3:1); 

Melting point:   64 °C; 

Rotational value:  [α]20
D = +24.8 (c = 0.28 in ethyl acetate); 
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1H-NMR (500 MHz, CDCl3, 300 K): δ = 7.72 (s, 2H, Htriazole), 6.38 (br s, 2H, NH), 5.28-

5.15 (m, 6H, H-2, H-3, H-4), 4.80 (s, 2H, H-1), 4.70-4.55 (m, 8H, NCH2CH2, 

OCH2Ctriazole), 4.23-4.17 (m, 2H, H-6), 4.16-4.10 (m, 2H, NCH2CHH’), 4.07-4.02 (m, 

2H, H-6’), 3.92-3.87 (m, 2H, NCH2CHH’), 3.75-3.69 (m, 4H, CcoreCH2O), 3.60-3.53 (m, 

2H, H-5), 3.48 (m, 1H, Hcore), 2.14, 2.10, 2.04, 2.00 (each s, each 6H, 8 x COCH3), 1.58-

1.51 (dt, 2J = 14.8 Hz, 3J = 7.2 Hz, 2H, NHCH2), 1.36-1.25 (m, 6H, (CH2)3), 0.91-0.86 (t, 

3J = 6.9 Hz, 3H, CH3) ppm; 

13C-NMR (126 MHz, CDCl3, 300 K): δ = 170.8, 170.7, 170.2, 169.7 (8 COCH3), 170.2 

(C=S) 145.1, 145.0 (OCH2Ctriazole), 124.1, 123.9 (Ctriazole), 97.6 (C-1), 69.3 (C-2, C-3, 

C-5), 69.1 (Ccore), 66.4 (NCH2CH2), 66.3 (CcoreCH2O), 65.8, 65.7 (C-4), 64.6, 64.5 

(OCH2Ctriazole), 62.3 (C-6), 49.8 (NCH2CH2), 31.6, 29.1, 26.7 (CH2), 22.6, 20.9, 20.8 

(C=OCH3), 14.1 (CH3) ppm;  

IR (ATR): ṽ = 2931, 1742, 1368, 1217, 1087, 1043, 599 cm-1; 

ESI-MS: m/z = 1183.46910, [M+K]; (calc. 1183.41189 for C48H72N8O22S+K). 

 

Butyl-(1,3-dihydroxypropan-2-yl)carbamate 53[293] 

Butyl chloroformate 52 (14.2 mL, 110 mmol) was added to an ice-cold solution of 

serinol 15 (10.0 g, 110 mmol) and sodium carbonate (23.3 g, 220 mmol) in H2O 

(150 mL) and THF (80 mL). The mixture was stirred at room temperature for 16 h. H2O 

(50 mL) was added to the mixture and it was extracted with ethyl acetate (4 x 200 mL). 

The combined organic layers were dried over MgSO4, filtered and the solvent removed 

under reduced pressure. The residue was dissolved in a small amount of ethyl acetate and 

precipitated by adding cyclohexane (200 mL). Filtration yielded compound 53 as a 

colourless solid. 

Yield:    18.5 g (96.9 mmol, 88 %); lit.[293]: 98 %; 

TLC:    Rf = 0.13 (cyclohexane/ ethyl acetate 2:1); 

Melting point   64 °C; 

1H-NMR: (500 MHz, MeOD, 300 K): δ = 4.84 (s, 2H, OH), 4.03 (t, 3JCH2CH2 = 6.5 Hz, 

2H, CH2O(C=O)), 3.66-3.56 (m, 5H, CH(CH2)2), 1.63-1.57 (m, 2H, CH2CH2CH3), 1.46-

1.37 (m, 2H, CH2CH3), 0.95 (t, 3JCH2CH3 = 7.4 Hz, 3H, CH3); 
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13C-NMR (126 MHz, MeOD, 300 K, TMS): δ = 159.1 (C=O), 65.7 (CH2O(C=O)), 62.3 

(CH(CH2)2), 55.8 (CH), 32.3 (CH2CH2CH3), 20.1 (CH2CH3), 14.1 (CH3); 

IR (ATR): ṽ = 3279, 2955, 2873, 1683, 1544, 1307, 1241, 1069, 1041, 741, 621 cm-1; 

EI-MS: m/z = 191.11576, [M]; (calc. 191.11576 for C8H17NO4). 

 

Butyl-(2-Hydroxy-(1,1-Bishydroxymethyl)ethyl)carbamate 54 

Butyl chloroformate 51 (24.0 mL, 186 mmol) was added to an icecold solution of 

TRIS 16 (15.0 g, 124 mmol) and sodium carbonate (26.3 g, 248 mmol) in H2O (250 mL) 

and THF (140 mL). The mixture was stirred at room temperature for 16 h. H2O (70 mL) 

was added to the mixture and it was extracted with ethyl acetate (5 x 200 mL). The 

combined organic layers were dried over MgSO4, filtered and the solvent removed under 

reduced pressure. The residue was dissolved in a small amount of ethyl acetate and 

precipitated by adding cyclohexane (200 mL). Filtration yielded compound 54 as a 

colourless oil. 

Yield:    10.8 g (48.8 mmol, 39 %);  

TLC:    Rf = 0.11 (cyclohexane/ ethyl acetate 2:1); 

1H-NMR: (500 MHz, MeOD, 300 K): δ = 4.84 (s, 3H, OH), 4.01 (t, 3JCH2CH2 = 6.5 Hz, 

2H, CH2O(C=O)), 3.72 (s, 6H, CH2), 1.63-1.58 (m, 2H, CH2CH2CH3), 1.44-1.37 (m, 2H, 

CH2CH3), 0.95 (t, 3JCH2CH3 = 7.4 Hz, 3H, CH3); 

13C-NMR (126 MHz, MeOD, 300 K, TMS): δ = 158.6 (C=O), 65.7 (CH2O(C=O)), 62.6 

(CH(CH2)2), 61.7 (Cq), 32.2 (CH2CH2CH3), 20.1 (CH2CH3), 14.1 (CH3); 

IR (ATR): ṽ = 3396, 2960, 2875, 1748, 1696, 1241, 1050, 789 cm-1; 

EI-MS: m/z = 208.05, [M-2 x CH2OH], 116.02, [M-C(CH2OH)3]; (calc. 221.12632 for 

C9H19NO5). 

 

Butyl-(1,3-dipropargyloxypropan-2-yl)carbamate 55 

Diol 53 (700 mg, 3.66 mmol) and freshly pestled potassium hydroxide (1.69 g, 

30.1 mmol) were dissolved in dry DMF (20 mL) and cooled to 0 °C. Propargyl 

bromide 19 (80 % in toluene, 2.60 mL, 23.4 mmol) was added and the mixture stirred at 
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40 °C for 4 h and additional 16 h at room temperature. The solvent was removed under 

reduced pressure and the residue dissolved in ethyl acetate (50 mL). After washing with 

H2O (3 x 40 mL) the organic layer was dried over MgSO4, filtered and the solvent 

removed under reduced pressure. Column chromatography (cyclohexane/ ethyl acetate 

6:1 → 2:1) yielded compound 55 as a brown oil. 

Yield:    255 mg (955 μmol, 36 %);  

TLC:    Rf = 0.45 (cyclohexane/ ethyl acetate 2:1); 

1H-NMR: (200 MHz, CDCl3, 300 K): δ = 4.41-4.27 (s, 2H, NH), 4.17-4.08 (m, 6H, 

CH2O(C=O), CH2C≡CH), 3.81-3.73 (m, 4H, CH2), 2.44-2.40 (t, 4JCH2≡CH = 2.0 Hz, 2H, 

CH2C≡CH), 2.20-2.13 (m, 1H, NHCH), 1.68-1.55 (m, 2H, CH2CH2CH3), 1.47-1.33 (m, 

2H, CH2CH3), 0.97-0.88 (t, 3JCH2CH3 = 7.3 Hz, 3H, CH3); 

13C-NMR (126 MHz, CDCl3, 300 K, TMS): δ = 156.5 (C=O), 79.6 (C≡CH), 74.8 

(C≡CH), 68.6 (CHCH2), 58.6 (CH2C≡CH), 53.9 (NHCH), 49.9 (CH2(C=O)), 31.1, 19.2 

(CH2), 13.9 (CH3) ppm; 

IR (ATR): ṽ = 3292, 2959, 2873, 1704, 1513, 1239, 1096, 1075, 630 cm-1; 

EI-MS: m/z = 268.15456, [M+H]; (calc. 268.15488 for C14H21NO4+H). 

 

2-Cascade: (Butylchloroformate)-methane[2-1,1,1]:methoxymethyl: 1H[1,2,3] 

triazole-1-ethyl: tetra-O-acetyl-α-D-mannopyranoside 57 

Variante A Click 

Alkyne 55 (1.12 g, 4.18 mmol), mannoside 22 (3.49 g, 8.36 mmol) and copper 

bromide (246 mg, 1.67 mmol) were dissolved in dry DMF (24 mL). After addition of 

PMDTA (351 μL, 1.67 mmol) the mixture was stirred at room temperature for 16 h. The 

solvent was removed under reduced pressure and the residue dissolved in ethyl acetate 

(250 mL) and washed with H2O (3 x 200 mL). The organic layer was dried over MgSO4 

and the solvent was removed under reduced pressure. Compound 57 was obtained after 

column chromatography (ethyl acetate/ cyclohexane/methanol 6:4:1 → ethyl acetate/ 

cyclohexane/methanol 7:3:1). 

Yield:    3.50 g (3.18 mmol, 76 %); 

TLC:    Rf = 0.24 (ethyl acetate/ cyclohexane/methanol 7:3:1); 
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Variante B Butyl chloroformate 

To an ice-cold solution of compound 58 (1.28 g, 1.93 mmol) and sodium bicarbonate 

(551 mg, 6.56 mmol) in water (50 mL) and 1,4 dioxane (20 mL) was added 

butylchloroformate 52 (375 μL, 2.90 mmol). After stirring at room temperature for 60 h 

the solvent was removed at reduced pressure and the mixture was codestilled with 

methanol (2 x 60 mL). The residue was dissolved in acetic anhydride (4.00 mL) and 

stirred for 4 h. The solvent was removed under reduced pressure again and the remaining 

crude product was purified by column chromatography (ethyl acetate → ethyl 

acetate/methanol 15:1) to yield compound 57 as a colourless foam. 

Yield:    1.53 g (1.39 mmol, 72 %); 

TLC:    Rf = 0.24 (ethyl acetate/ cyclohexane/methanol 7:3:1); 

Melting point:   63 °C; 

Rotational value:  [α]25
D = +28.3 (c = 1.12 in dichloromethane); 

1H-NMR: (500 MHz, CDCl3, 300 K): δ = 7.73 (each s, each 1H, CHtriazole), 5.43-5.37 (m, 

1H, NHcarbamate), 5.29-5.16 (m, 6H, H-2, H-3, H-4), 4.81, 4.80 (each d, 3J1,2 = 1.3 Hz, each 

1H, H-1), 4.68-4.57 (m, 8H, NtriazoleCH2, OCH2Ctriazole), 4.21 (dd, 3J5,6 = 5.1 Hz, 

2J6,6’ = 12.4 Hz, 2H, H-6), 4.16-4.11 (m, 2H, NtriazoleCH2CH), 4.07-4.02 (m, 4H, H-6’, 

OcarbamateCH2), 3.99-3.95 (m, 1H, NcarbamateCH), 3.93-3.87 (m, 2H, NtriazoleCH2CH‘), 3.68-

3.55 (m, 6H, NcarbamateCHCH2, H-5), 2.14, 2.10, 2.09, 2.04, 2.00 (each s, 24H, OCOCH3), 

1.61-1.54 (m, 2H, CH2CH2CH3), 1.40-1.32 (m, 2H, CH2CH2CH3), 0.92 (t, 

3JCH2CH3 = 7.4 Hz 3H, CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 170.7, 170.1, 169.7 (COCH3), 156.1 (OC=O), 

145.1 (CtriazoleCH), 124.2 (CtriazoleCH), 97.7 (C-1), 69.3, 69.1 (CCH2), 69.0, 65.8 (C-2, 

C-3, C-4, C-5), 66.3 (NtriazoleCH2CH2), 64.7 (OCH2Ctriazole), 64.4 (OcarbamateCH2), 62.3 

(C-6), 58.8 (CqCH2), 49.8 (NtriazoleCH2), 31.2 (CH2CH2CH3), 20.9, 20.8 (OCOCH3), 19.2 

(CH2CH2CH3), 13.9 (CH2CH3) ppm; 

IR (ATR-IR): ṽ = 2359, 2139, 1225, 1043, 753, 746 cm-1; 

ESI-MS: m/z = 1102.4, [M+Na]; (calc. 1102.432 for C46H67N7O24+H). 
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2-Cascade: Aminomethane[2-1,1]: methoxymethyl: 1H[1,2,3]triazole-1-ethyl: 

2,3,4,6-tetra-O-α-D-mannopyranosid 58 

The crude product 25 (921 mg, 619 μmol) was subsequently dissolved in dry methanol 

(30 mL) and 1M sodium methoxide solution (1.55 mL) was added. After stirring for 16 h 

at room temperature the mixture was neutralised with ion exchanger Amberlite® IR 120. 

The resin was filtered off and the solvent was removed under reduced pressure to yield 

compound 58 quantitatively as a colourless syrup. 

Yield:    quant.; 

TLC:    Rf = 0.0 (ethyl acetate/ cyclohexane/methanol 7:3:1); 

Rotational value:  [α]20
D = +30.7 (c = 0.05 in methanol); 

1H-NMR (500 MHz, MeOD, 300 K): δ = 8.03 (s, 2H, Htriazole), 4.72-4.71 (d, 

3J1,2 = 1.4 Hz, 2H, H-1), 4.68-4.62 (m, 8 H, OCH2Ctriazole, NCH2CH2), 4.14-4.09 (m, 2H, 

NCH2CHH‘), 3.94-3.84 (m, 3H, NCH2CHH‘, CH(CH2)2), 3.75-3.69 (m, 6H, H-2, H-6, 

H-6‘), 3.69-3.50 (m, 8H, CcoreCH2O, H-3, H-4), 3.10-3.05 (m, 2H, H-5); 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 145.3 (CtriazoleCH), 125.9 (CtriazoleCH), 101.1 

(C-1), 74.7 (Cq), 74.6 (C-5), 72.1 (C-3), 71.4 (C-2), 68.0 (NH2CHCH2), 67.9 (C-4), 66.1 

(NtriazoleCH2CH2), 64.6 (OCH2Ctriazole), 62.3 (C-6), 52.1 (CH(CH2)2), 50.9 (NtriazoleCH2) 

ppm; 

IR (ATR-IR): ṽ = 3324, 2948, 2837, 1650, 1449, 1016, 750, 578, 517 cm-1; 

ESI-MS: m/z = 666.29288, [M+H]; (calc. 666.29408 for C25H43N7O14+H). 

 

3-Cascade: Aminomethane[3-1,1]: methoxymethyl: 1H[1,2,3]triazole-1-ethyl: 

2,3,4,6-tetra-O-α-D-mannopyranosid 59 

The crude product 26 (921 mg, 619 μmol) was subsequently dissolved in dry methanol 

(30 mL) and 1M sodium methoxide solution (1.55 mL) was added. After stirring for 16 h 

at room temperature the mixture was neutralised with ion exchanger Amberlite® IR 120. 

The resin was filtered off and the solvent was removed under reduced pressure to yield 

compound 59 quantitatively as colorless syrup. 

Yield:    quant.; 
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TLC:    Rf = 0.0 (ethyl acetate/ cyclohexane/methanol 7:3:1); 

Rotational value:  [α]20
D = +23.6 (c = 0.01 in methanol); 

1H-NMR (600 MHz, MeOD, 300 K): δ = 8.03 (s, 3H, Htriazole), 4.73-4.71 (m, 3H, H-1), 

4.67-4.62 (m, 12 H, OCH2Ctriazole, NCH2CH2), 4.15-4.10 (m, 3H, NCH2CHH‘), 3.90-3.85 

(m, 3H, NCH2CHH‘), 3.77-3.73 (m, 6H, H-2, H-6), 3.66-3.61 (m, 9H, H-6‘, CcoreCH2O), 

3.61-3.53 (m, 6H, H-3, H-4), 3.16-3.12 (m, 3H, H-5); 

13C-NMR: (151 MHz, MeOD, 300 K): δ = 145.1 (CtriazoleCH), 126.0 (CtriazoleCH), 101.6 

(C-1), 74.9 (C-5), 72.5 (C-3), 71.9 (C-2), 69.8 (NH2CCH2), 68.4 (C-4), 66.7 

(NtriazoleCH2CH2), 65.2 (OCH2Ctriazole), 62.8 (C-6), 51.4 (NtriazoleCH2) ppm; 

IR (ATR-IR): ṽ = 3325, 2923, 1596, 1369, 1226, 1133, 1090, 1052, 1031, 977, 578 cm-1; 

ESI-MS: m/z = 983.41443, [M+H]+ (calc. 983.41692 for C37H63N10O21 + H). 

 

3-Cascade: (Butylchloroformate)-methane[3-1,1,1]:methoxymethyl:1H[1,2,3] 

triazole-1-ethyl: tetra-O-acetyl-α-D-mannopyranoside 60 

To an ice-cold solution of compound 59 (660 mg, 672 μmol) and sodium bicarbonate 

(192 mg, 2.28 mmol) in water (40 mL) and 1,4 dioxane (20 mL) was added 

butylchloroformiate 52 (131 μL, 1.01 mmol). After stirring at room temperature for 60 h 

the solvent was removed at reduced pressure and the mixture was codestilled with 

methanol (2 x 60 mL). The residue was dissolved in acetic anhydride (4.00 mL) and 

stirred for 4 h. The solvent was removed under reduced pressure again and the remaining 

crude product was purified by column chromatography (ethyl acetate → ethyl 

acetate/methanol 30:1) to yield compound 60 as a colourless foam. 

Yield:    633 mg (399 μmol, 59 %); 

TLC:    Rf = 0.35 (ethyl acetate / cyclohexane / methanol, 8:2:1); 

Melting point:   79 °C; 

Rotational value:  [α]20
D = +28.7 (c = 0.28 in ethyl acetate); 

1H-NMR: (500 MHz, CDCl3, 300 K): δ = 7.75 (s, 3H, CHtriazole), 5.31 (s, 1H, NHcarbamate), 

5.27-5.19 (m, 9H, H-2, H-3, H-4), 4.82 (s, 3H, H-1), 4.65-4.62 (m, 12H, NtriazoleCH2, 

OCH2Ctriazole), 4.23-4.19 (dd, 3J5,6 = 5.1 Hz, 2J6,6’ = 12.3 Hz, 3H, H-6), 4.16 (m, 3H, 
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NtriazoleCH2CH), 4.02 (dd, 2J6,6’ = 12.3 Hz, 3J5,6’ = 2.4 Hz, 3H, H-6’), 3.97 (t, 

3JCH2CH3 = 6.7 Hz, 2H, OcarbamateCH2), 3.94-3.89 (m, 3H, NtriazoleCH2CH‘), 3.77 (m, 6H, 

NcarbamateCCH2), 3.63 (ddd, 3J4,5 = 9.4 Hz, 3J5,6 = 5.1 Hz, 3J5,6’ = 2.4 Hz, 3H, H-5), 2.14, 

2.09, 2.04, 1.99 (each s, each 9H, OCOCH3), 1.58-1.53 (m, 2H, CH2CH2CH3), 1.39-1.31 

(m, 2H, CH2CH2CH3), 0.91 (t, 3JCH2CH3 = 7.4 Hz 3H, CH3) ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 170.7, 170.2, 170.1, 169.7 (COCH3), 156.5 

(OC=O), 145.2 (CtriazoleCH), 124.0 (CtriazoleCH), 97.6 (C-1), 69.3, 69.0 (CCH2), 69.1, 66.3 

(C-2, C-3, C-4, C-5), 66.4 (NtriazoleCH2CH2), 65.8 (OCH2Ctriazole), 64.8 (OcarbamateCH2), 

64.6 (C-6), 50.2 (NHCCH2), 49.8 (NtriazoleCH2), 31.2 (CH2CH2CH3), 20.9, 20.8, 20.7 

(OCOCH3), 19.2 (CH2CH2CH3), 13.9 (CH2CH3) ppm; 

IR (ATR-IR): ṽ = 2960, 1741, 1434, 1368, 1216, 1137, 1085, 1042, 980, 600 cm-1; 

ESI-MS: m/z = 1609.5, [M+Na]; (calc. 1609.578 for C66H94N10O35+Na). 

 

2-Cascade: (Butylchloroformate)-methane[2-1,1,1]:methoxymethyl:1H[1,2,3] 

triazole-1-ethyl: α-D-mannopyranoside 61 

To a solution of compound 57 (1.45 g, 1.32 mmol) in dry methanol (15 mL) was added a 

1M sodium methoxide solution (2.30 mL). After stirring for 16 h at room temperature the 

mixture was neutralised with ion exchanger Amberlite® IR 120. The resin was filtered off 

and the solvent was removed under reduced pressure to yield compound 61 quantitatively 

as a colourless solid. 

Yield:    quant.; 

TLC:    Rf = 0.05 (ethyl acetate / cyclohexane / methanol, 8:2:1); 

Rotational value:  [α]25
D = +32.7 (c = 0.97 in methanol); 

1H-NMR: (600 MHz, MeOD, 300 K, TMS): δ = 7.99 (s, 2H, CHtriazole), 4.83 (s, 8H, OH), 

4.72 (s, 2H, H-1), 4.67-4.60 (m, 4H, NtriazoleCH2), 4.60 (s, 4H, OCH2Ctriazole), 4.14-4.09 

(m, 2H, NtriazoleCH2CH), 4.02 (t, 3JCH2CH3 = 6.4 Hz, 2H, OcarbamateCH2), 3.91-3.84 (m, 3H, 

NtriazoleCH2CH‘, NHCH), 3.78-3.73 (m, 4H, H-2, H-6), 3.64 (dd, 2J6,6’ = 11.8 Hz, 

3J5,6’ = 6.0 Hz, 2H, H-6’), 3.60-3.52 (m, 8H, NcarbamateCCH2, H-3, H-4), 3.23-3.19 (m, 2H, 

H-5), 1.62-1.56 (m, 2H, CH2CH2CH3), 1.42-1.35 (m, 2H, CH2CH2CH3), 0.94 (t, 

3JCH2CH3 = 7.4 Hz 3H, CH3) ppm; 
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13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 159.0 (OC=O), 145.9 (CtriazoleCH), 

125.8 (CtriazoleCH), 101.7 (C-1), 75.0 (C-5), 72.5 (C-3), 71.9 (C-2), 70.4 (NcarbamateCCH2), 

68.4 (C-4), 66.8 (NtriazoleCH2CH2), 65.8 (OcarbamateCH2), 65.1 (OCH2Ctriazole), 62.9 (C-6), 

51.4 (NHCH), 51.3 (NtriazoleCH2), 32.3 (CH2CH2CH3), 20.2 (CH2CH2CH3), 14.1 

(CH2CH3) ppm; 

IR (ATR-IR): ṽ = 3309, 1692, 1055, 806, 6721368 cm-1; 

ESI-MS: m/z = 765.19759, [M]; (calc. 765.33923 for C30H51N7O16). 

 

3-Cascade: (Butylchloroformate)-methane[3-1,1,1]:methoxymethyl:1H[1,2,3] 

triazole-1-ethyl: tetra-O-acetyl-α-D-mannopyranoside 62 

To a solution of compound 60 (500 mg, 315 μmol) in dry methanol (10 mL) was added a 

1M sodium methoxide solution (788 μL). After stirring for 16 h at room temperature the 

mixture was neutralised with ion exchanger Amberlite® IR 120. The resin was filtered off 

and the solvent was removed under reduced pressure to yield compound 62 quantitatively 

as a colourless foam. 

Yield:    quant.; 

TLC:    Rf = 0.35 (ethyl acetate / cyclohexane / methanol, 8:2:1); 

Rotational value:  [α]25
D = +34.6 (c = 0.96 in methanol); 

1H-NMR: (600 MHz, MeOD, 300 K): δ = 7.98 (s, 3H, CHtriazole), 4.83 (s, 12H, OH), 4.73 

(d, 3J1,2 = 1.3 Hz, 3H, H-1), 4.68-4.60 (m, 6H, NtriazoleCH2), 4.58 (s, 6H, OCH2Ctriazole), 

4.14-4.10 (m, 3H, NtriazoleCH2CH), 3.96 (t, 3JCH2CH3 = 6.7 Hz, 2H, OcarbamateCH2), 3.90-

3.85 (m, 3H, NtriazoleCH2CH‘), 3.79-3.75 (m, 6H, H-2, H-6), 3.70 (m, 6H, NcarbamateCCH2), 

3.66 (dd, 2J6,6’ = 11.8 Hz, 3J5,6’ = 5.9 Hz, 3H, H-6’), 3.63-3.57 (m, 6H, H-3, H-4), 3.28-

3.26 (m, 3H, H-5), 1.60-1.55 (m, 2H, CH2CH2CH3), 1.41-1.34 (m, 2H, CH2CH2CH3), 

0.93 (t, 3JCH2CH3 = 7.4 Hz 3H, CH3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 158.0 (OC=O), 145.8 (CtriazoleCH), 125.7 

(CtriazoleCH), 101.6 (C-1), 74.8 (C-5), 72.3 (C-3), 71.7 (C-2), 69.5 (NcarbamateCCH2), 68.3 

(C-4), 66.7 (NtriazoleCH2CH2), 65.3 (OcarbamateCH2), 65.1 (OCH2Ctriazole), 62.7 (C-6), 60.1 

(CCH2), 51.1 (NtriazoleCH2), 32.1 (CH2CH2CH3), 20.0 (CH2CH2CH3), 14.0 

(CH2CH3) ppm; 



246 Experimental section 

 

ESI-MS: m/z = 1105.44910, [M+Na]; (calc. 1105.45130 for C42H70N10O23+Na); 

IR (ATR-IR): ṽ = 3332 (νOH), 1261, 1053, 765 cm-1. 
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8.3.2 Bacterial adhesion assay 

Buffers: PBS buffer: PBS tablets were obtained from GIBCO containing phosphate (as 

sodium phosphates), 10 mM, potassium chloride (KCl), 2.68 mM, sodium chloride 

(NaCl), 140 mM, pH = 7.45; PBST buffer: PBS buffer + 0.05% v/v Tween®20; carbonate 

buffer solution (pH 9.6): sodium carbonate (10.6 g) and sodium hydrogen carbonate 

(8.40 g) were dissolved in bidest. Water (1.0 L), pH values were adjusted by using 0.1 M 

HCl or 0.1 M NaOH. 

Bacterial culture: The GFP-tagged strain PKL1162 was constructed in the KLEMM group 

by introduction of the plasmid pPKL174 into strain SAR18. Plasmid pPKL174 contains 

the fim gene cluster, which is required for type 1 fimbriae assembly and expression. The 

chromosome of strain SAR18 from the REISNER group contains the GFP gene, controlled 

by a constitutive promotor.[239, 421] The bacterial strain PKL1162[421] was cultured from a 

frozen stock in LB media (+ampicillin 100 mg/mL and chloramphenicol 50 mg/mL) 

overnight at 37 °C. The bacterial pellet resulting after centrifugation and decantation of 

media was washed twice with PBS (2 mL) and suspended in PBS buffer afterwards. The 

bacterial suspension was adjusted to OD600 = 0.4 with PBS. 

Functionalisation of microtiter plates and the adhesion assay was performed according to 

HARTMANN et al.[239] Black Immobilizer AminoTM F96 MicroWellTM plates (Nunc) were 

incubated overnight with a 25 mM solution of amine 7 in PBS buffer (100 μL/well, 

100 rpm, room temperature). Plates were washed with PBST three times and afterwards 

glucosides 13, 14, 61 and 62 were added to the plate with serial dilution, starting from a 

25 mM solution in PBS (50 μL/well). Microtiter plates were subsequently irradiated with 

a mercury vapour discharge lamp with a wavelength of 254 nm for 30 minutes. After 

washing three times with PBST, functional groups which remained unreacted on the 

microtiter plate were blocked with a 20 mM solution of ethanolamine in carbonate buffer 

(120 μL/well, room temperature, 100 rpm, 2.5 h). Afterwards, wells were washed with 

PBST twice and finally once with PBS. The prepared bacterial suspension was added then 

(50 μL/well). After incubation for one hour at 37 °C and 100 rpm, microtiter plates were 

washed three times with PBS and filled with PBS (100 μL/well) for terminal fluorescence 

intensity read out (excitation wavelength 485 nm, emission wavelength 535 nm). 
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8.3.3 1H and 13C NMR spectra of synthesised compounds  

 

Figure 215: 1H NMR spectrum of 6 (500 MHz, CDCl3, 300 K). 

 

 
Figure 216: 1H NMR spectrum of 7 (500 MHz, MeOD, 300 K). 
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Figure 217: 1H NMR spectrum of 23 (500 MHz, MeOD, 300 K). 

 

 

Figure 218: 13C NMR spectrum of compound 23 (126 MHz, MeOD, 300 K). 
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Figure 219: 1H NMR spectrum of 24 (500 MHz, MeOD, 300 K). 

 

 

 

Figure 220: 13C NMR spectrum of 24 (126 MHz, MeOD, 300 K). 
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Figure 221: 1H NMR spectrum of deprotected amine 25 (500 MHz, CDCl3, 300 K). 

 

 

 

Figure 222: 13C NMR spectrum of deprotected amine 25 (126 MHz, CDCl3, 300 K). 
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Figure 223: 1H NMR spectrum of deprotected amine 26 (600 MHz, CDCl3, 300 K). 

 

 

 

Figure 224: 13C NMR spectrum of deprotected amine 26 (151 MHz, CDCl3, 300 K). 
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Figure 225: 1H NMR spectrum of compound 28 (500 MHz, CDCl3, 300 K). 

 

 

 

Figure 226: 13C NMR spectrum of compound 28 (126 MHz, CDCl3, 300 K). 
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Figure 227: 1H NMR spectrum of compound 29 (600 MHz, CDCl3, 300 K). 

 

 

 
Figure 228: 13C NMR spectrum of compound 29 (151 MHz, CDCl3, 300 K). 
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Figure 229: 1H NMR spectrum of compound 30 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 230: 13C NMR spectrum of compound 30 (126 MHz, CDCl3, 300 K). 
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Figure 231: 1H NMR spectrum of compound 31 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 232: 13C NMR spectrum of compound 31 (126 MHz, CDCl3, 300 K). 
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Figure 233: 1H NMR spectrum of compound 40 (500 MHz, CDCl3, 300 K). 

 

 

 

Figure 234: 13C NMR spectrum of compound 40 (126 MHz, CDCl3, 300 K). 
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Figure 235: 1H NMR spectrum of compound 41 (500 MHz, CDCl3, 300 K). 

 

 

 

Figure 236: 13C NMR spectrum of compound 41 (126 MHz, CDCl3, 300 K). 
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Figure 237: 1H NMR spectrum of compound 44 (500 MHz, MeOD, 300 K). 

 

 

 

Figure 238: 13C NMR spectrum of compound 44 (126 MHz, MeOD, 300 K). 
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Figure 239: 1H NMR spectrum of compound 45 (200 MHz, CDCl3, 300 K). 

 

 

 
Figure 240: 1H NMR spectrum of compound 46 (500 MHz, CDCl3, 300 K). 
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Figure 241: 13C NMR spectrum of compound 46 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 242: 1H NMR spectrum of compound 48 (500 MHz, CDCl3, 300 K). 
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Figure 243: 13C NMR spectrum of compound 48 (126 MHz, CDCl3, 300 K). 

 

 

 

Figure 244: 1H NMR spectrum of compound 55 (500 MHz, CDCl3, 300 K). 
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Figure 245: 13C NMR spectrum of compound 55 (126 MHz, CDCl3, 300 K). 

 

 

 

Figure 246: 1H NMR spectrum of 57 (500 MHz, CDCl3, 300 K). 
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Figure 247: 13C NMR spectrum of 57 (126 MHz, CDCl3, 300 K). 

 

 

 

Figure 248: 1H NMR spectrum of 58 (500 MHz, MeOD, 300 K). 
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Figure 249: 1H NMR spectrum of 59 (600 MHz, MeOD, 300 K). 

 

 

Figure 250: 13C NMR spectrum of 59 (126 MHz, MeOD, 300 K). 
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Figure 251: 1H NMR spectrum of 60 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 252: 13C NMR spectrum of 60 (126 MHz, CDCl3, 300 K). 
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Figure 253: 1H NMR spectrum of 61 (600 MHz, MeOD, 300 K). 

 

 

Figure 254: 13C NMR spectrum of 61 (126 MHz, MeOD, 300 K). 
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Figure 255: 1H NMR spectrum of 62 (600 MHz, MeOD, 300 K). 

 

 

 
Figure 256: 13C NMR spectrum of 62 (126 MHz, MeOD, 300 K). 
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8.4 Supporting information for chapter 4.2: Bioorthogonal click 

chemistry on glycosylated surfaces for the investigation of bacterial 

adhesion 

8.4.1 Synthesis of glucosides and polysaccharides 

2-tert-Butyloxycarbonylamidoethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyra-

noside 65[325]  

A catalytic amount of activated palladium catalyst (10 % on charcoal) was added to a 

solution of glucoside 64 (550 mg, 1.32 mmol) and di-tert-butyl dicarbonate (431 mg, 

1.98 mmol) in ethyl acetate (35 mL). Hydrogenation was completed after stirring under 

hydrogen atmosphere for 4 h. The catalyst was removed by filtration with a syringe filter 

device (Ø = 0.45 μm). The filtrate was washed with water (40 mL) and saturated sodium 

chloride solution (40 mL). The organic layers were dried over MgSO4 and filtered. The 

solvent was removed under reduced pressure and the crude product was purified by 

column chromatography (cyclohexane/ ethyl acetate 1:1) to yield compound 65 as a 

colourless foam. 

Yield:    616 mg (1.25 mmol, 95 %); lit.[325]: 90 %; 

TLC:    Rf = 0.33 (cyclohexane/ ethyl acetate 1:1); 

Rotational value: [α]D
20 = +5.6 (c = 0.33 in dichloromethane); lit.[325]: 

[α]D
20 = -14 (c = 1.0 in chloroform); 

1H-NMR: (600 MHz, CDCl3, 300 K, TMS): δ = 5.19 (t~dd, 3J3,4 = 9.6 Hz, 1H, H-3), 5.07 

(dd~t, 3J3,4 = 9.6 Hz, 1H, H-4), 4.98 (dd, 3J1,2 = 8.0 Hz, 3J2,3 = 9.6 Hz, 1H, H-2), 4.90 (s, 

1H, NH), 4.48 (d, 3J1,2 = 8.0 Hz, 1H, H-1), 4.24 (dd, 3J5,6 = 4.9 Hz, 2J6,6’ = 12.3 Hz, 1H, 

H-6), 4.13 (dd, 3J5,6’ = 2.1 Hz, 2J6,6’ = 12.3 Hz, 1H, H-6’), 3.85 (ddd, 3JCHCHH = 3.8 Hz, 

3JCHCHH = 5.8 Hz, 2JCHH = 9.9 Hz, 1H, C1OCHH‘), 3.69 (ddd, 3J5,6’ = 2.4 Hz, 

3J5,6 = 4.9 Hz, 3J4,5 = 10.0 Hz, 1H, H-5), 3.66-3.62 (m, 1H, C1OCHH’), 3.36-3.24 (m, 2H, 

CH2N), 2.08, 2.05, 2.01, 1.99 (each s, each 3H, OCOCH3), 1.41 (s, 9H, CH3) ppm; 

13C-NMR: (151 MHz, CDCl3, 300 K, TMS): δ = 170.7, 170.4, 169.6, 169.5 (COCH3), 

155.9 (NC=O), 101.2 (C-1), 79.5 (C-3), 72.8 (C-5), 72.0 (C-2), 71.4 (OCH2), 68.4 (C-4), 

62.0 (C-6), 40.5 (CH2N), 28.5 (C(CH3)), 20.8, 20.7 (OCOCH3) ppm; 

IR (ATR): ṽ = 3408, 2984, 1749, 1712, 1340, 1211, 1116, 1060, 1034 cm-1; 
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ESI-MS: m/z = 514.1, [M+Na]+; (calc. 514.19 for C21H33NO12+Na). 

 

2-tert-Butyloxycarbonylamidoethyl β-D-glucopyranoside 66[325]  

To a solution of glucoside 65 (1.80 g, 3.66 mmol) in dry methanol (15 mL) was added a 

1M sodium methoxide solution (3.33 mL). After stirring for 16 h at room temperature the 

mixture was neutralised with ion exchanger Amberlite® IR 120. The resin was filtered off 

and the solvent was removed under reduced pressure to yield compound 66 as a colourless 

foam. 

Yield:     1.15 g (3.56 mmol, 97 %); 

TLC:     Rf = 0.54 (DCM/methanol 9:1); 

Rotational value: [α]D
20 = -11.3 (c = 0.15 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 4.26 (d, 3J1,2 = 7.8 Hz, 1H, H-1), 3.90-

3.84 (m, 2H, H-6, C1OCHH‘), 3.68-3.59 (m, 2H, H-6’, C1OCHH’), 3.37-3.19 (m, 6H, 

H-2, H-3, H-4, H-5, CH2NH), 1.44 (s, 9H, CH3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 158.5 (NC=O), 104.5 (C-1), 80.1 

(C(CH3)3), 77.9 (C-3, C-5), 75.1 (C-2), 71.6 (C-4), 70.1 (OCH2), 62.7 (C-6), 41.5 (CH2N), 

28.8 (C(CH3)) ppm; 

IR (ATR-IR): ṽ = 3341, 2976, 2927, 1683, 1365, 1162, 1073, 1029 cm-1; 

ESI-MS: m/z = 346.1, [M+Na]+; (calc. 346.15 for C13H25NO8+Na); 

 

2-tert-Butyloxycarbonylamidoethyl6-O-(toluene-4-sulfonyl)β-D-glucopyra- 

noside 67[325] 

4-Methylbenzenesulfonyl chloride (1.13 g, 5.94 mmol) was added to an ice-cold solution 

of glucoside 66 (1.28 g, 3.96 mmol) in pyridine (30 mL). After stirring at room 

temperature for 12 h the reaction was quenched with methanol at 0 °C. The solvent was 

evaporated under reduced pressure and the crude product subsequently purified by 

column chromatography (DCM→DCM/methanol 9:1) to yield compound 67 as a 

colourless foam. 

Yield:    (1.34 g, 2.81 mmol, 71 %); lit.[325]: 70 %; 
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TLC:    Rf = 0.50 (DCM/methanol 9:1); 

Rotational value: [α]D
20 = -6.58 (c = 0.15 in ethyl acetate); lit.: 

[α]D
20 = -5.0 (c = 1.0 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 7.80-7.77 (m, 2H, Ar-Hmeta), 7.44-7.41 

(m, 2H, Ar-Hortho), 4.32 (dd, 3J5,6 = 1.96 Hz, 2J6,6’ = 10.8 Hz, 1H, H-6), 4.19 (d, 

3J1,2 = 7.8 Hz, 1H, H-1), 4.14 (dd, 3J5,6’ = 5.9 Hz, 2J6,6’ = 10.8 Hz, 1H, H-6’), 3.73 (ddd, 

3JCHCHH = 4.6 Hz, 3JCHCHH = 6.0 Hz, 2JCHH = 10.4 Hz, 1H, C1OCHH‘), 3.53-3.47 (m, 1H, 

C1OCHH‘), 3.40 (ddd, 3J5,6’ = 1.9 Hz, 3J5,6 = 5.9 Hz, 3J4,5 = 9.7 Hz, 1H, H-5), 3.29-3.26 

(m, 2H, H-3, CHH‘N), 3.22-3.13 (m, 2H, H-4, CHH‘N), 3.11 (dd, 3J1,2 = 7.8 Hz, 

3J2,3 = 9.2 Hz, 1H, H-2), 2.45 (s, 3H, Ar-CCH3), 1.43 (s, 9H, C(CH3)3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 158.5 (NC=O), 146.5 (Ar-Cpara), 134.4 

(Ar-Cipso), 131.0 (Ar-Cortho), 129.1 (Ar-Cmeta), 104.4 (C-1), 80.2 (C(CH3)3), 77.7 (C-3), 

75.0 (C-5), 74.8 (C-2), 71.1 (C-4), 70.7 (C-6), 70.1 (OCH2), 41.4 (CH2N), 28.8 (C(CH3)), 

21.6 (Ar-CCH3) ppm; 

IR (ATR-IR): ṽ = 3364, 2977, 2930, 1685, 1359, 1173, 1083, 970, 552 cm-1; 

ESI-MS: m/z = 500.15538, [M+Na]+ (calc. 500.15609 for C20H31NO10S + Na). 

 

2-tert-Butyloxycarbonylamidoethyl 6-azido-6-deoxy-β-D-glucopyranoside 68[325] 

Glucoside 67 (1.10 g, 2.30 mmol), sodium azide (449 mg, 6.90 mmol) and 

tetrabutylammonium iodide (40.0 mg, 108 μmol) were dissolved in dry DMF (24 mL). 

The mixture was stirred at 60 °C for 6 h before the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography (ethyl acetate → 

ethyl acetate/methanol 30:1) to yield compound 68 as a colourless foam. 

Yield:    658 mg (1.89 mmol, 82 %); lit.[325]: 81 %; 

TLC:    Rf = 0.28 (ethyl acetate/methanol 30:1); 

Rotational value: [α]D
20 = -37.8 (c = 0.15 in methanol); lit.: 

[α]D
20 = -13.0 (c = 1.0 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 4.58 (s, 1H, NH), 4.30 (d, 3J1,2 = 7.2 Hz, 

1H, H-1), 3.90-3.85 (m, 1H, C1OCHH‘), 3.62-3.57 (m, 1H, C1OCHH‘), 3.51-3.38 (m, 
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3H, H-5, H-6, H-6‘), 3.37-3.32 (m, 2H, H-3, CHH‘N), 3.27-3.18 (m, 3H, H-2, H-4, 

CHH‘N), 1.44 (s, 9H, C(CH3)3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 104.4 (C-1), 80.2 (C(CH3)3), 77.7 

(C-3), 77.1 (C-5), 75.1 (C-2), 72.4 (C-4), 70.1 (OCH2), 52.8 (C-6), 41.8 (CH2N), 28.8 

(C(CH3)) ppm; 

IR (ATR): ṽ = 3355), 2978, 2930), 2097), 1683, 1367, 1162, 1049 cm-1; 

ESI-MS: m/z = 371.1, [M+Na]+; (calc. 371.15 for C13H24N4O7+Na). 

 

2-Aminoethyl 6-azido-6-deoxy-β-D-glucopyranoside 69 

To a solution of glucoside 68 (339 mg, 973 μmol) in DCM (30 mL) was added 

trifluoroacetic acid (372 μL, 4.87 mmol). The reaction mixture was stirred for 16 h at 

room temperature and the solvent was evaporated under reduced pressure afterwards. 

After codestillation with toluene (3 x 30 mL) and DCM (3 x 40 mL) compound 69 was 

obtained quantitatively as a colourless syrup. 

Yield:    quant.; 

TLC:    Rf = 0.05 (ethyl acetate/methanol 6:1); 

Rotational value:  [α]D
20 = -16.8 (c = 0.15 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 4.39 (d, 3J1,2 = 7.7 Hz, 1H, H-1), 4.10-

4.06 (ddd, 3JCHCHH = 4.0 Hz, 3JCHCHH = 5.2 Hz, 2JCHH = 11.4 Hz 1H, C1OCHH‘), 3.83-

3.77 (ddd, 3JCHCHH = 4.3 Hz, 3JCHCHH = 6.8 Hz, 2JCHH = 11.4 Hz 1H, C1OCHH‘), 3.54 (dd, 

3J5,6 = 1.7 Hz, 2J6,6’ = 12.4 Hz, 1H, H-6), 3.51-3.46 (m, 1H, H-5), 3.44 (dd, 3J5,6’ = 6.6 Hz, 

2J6,6’ = 10.8 Hz, 1H, H-6’), 3.37 (dd~t, 3J2,3 = 8.9 Hz, 1H, H-3), 3.28-3.24 (m, 2H, H-2, 

H-4), 3.20-3.16 (m, 2H, CH2NH2) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 104.1 (C-1), 77.7 (C-3), 77.2 (C-5), 

75.0, 72.3 (C-2, C-4), 66.6 (OCH2), 52.7 (C-6), 40.9 (CH2N) ppm; 

ESI-MS: m/z = 249.2, [M+H]+; (calc. 249.11 for C8H16N4O5+H); 

IR (ATR): ṽ = 3264, 2932, 2101, 1662, 1201, 1180, 1129, 1060 cm-1. 

 

 



Experimental section 273 

 

Tosylated dextran 71 

After one hour of pre-drying, dextran 70 (1.00 g, 6.17 mmol) and lithium chloride 

(600 mg, 14.2 mmol) were suspended in N,N’ dimethylacetamide (30 mL) and stirred for 

two hours at 80 °C until the suspension became clear and was cooled to 0 °C 

subsequently. After addition of a solution of triethylamine (5.12 mL, 36.9 mmol) in 

DMAA (5 mL) a solution of 4-methylbenzenesulfonyl chloride (3.52 g, 18.5 mmol) in 

DMAA (10 mL) was added dropwise. The reaction mixture was stirred at 0 °C for 3 h 

and then for additionally 16 h at room temperature. The crude mixture was poured onto 

ice and the precipitate isolated by centrifugation. The crude product was resuspended 

several times in isopropanol (5 x 35 mL) and water (5 x 10 mL) and regained by 

centrifugation after each washing step to yield compound 71 as a brownish solid. 

Yield:    1.59 g (5.03 mmol, 81 %); 

Ds (Tosyl):    1.25; 

1H-NMR: (500 MHz, DMSO-d6, 300 K): δ = 7.77 (CAr-Hortho), 7.35 (CAr-Hmeta), 5.70-

5.00 (OH), 5.00-4.50 (H-1, if C-2 is tosylated), 4.50-3.90 (H-2tos, H-3tos, H-4tos) 3.70-3.10 

(H-2, H-3, H-4, H-5, H-6 (AGU)), 2.36 (CH3) ppm; 

13C-NMR: (126 MHz, DMSO-d6, 300 K): δ = 145.0 (Ar-Cipso), 133.5 (Ar-Cpara), 129.9 

(Ar-Cmeta), 128.0 (Ar-Cortho), 95.1 (C-1 if C-2 tosylated), 79.7 (C-2tos), 70.9-67.9 (C-2, 

C-3, C-4, C-5 (AGU)), 65.3 (C-6), 20.8 (CH3) ppm; 

IR (ATR-IR): ṽ = 3380 (vOH), 2900 (vCH), 1600 (vC=Ar-C), 1350 (vasymSO2), 1174 

(vsymSO2), 1019 (vCOC), 811 (δCAr-H) cm-1; 

elemental analysis: calcd for Ds = 1.25 (%) (C13H16O7S)n: C 49.92 %, H 4.97 %, 

S 11.29 %; found: C 49.00 %, H 5.31 %, S 9.87 %. 

 

Azido dextran 72 

Sodium azide (1.44 g, 22.1 mmol) was added to a solution of tosylated dextran 71 (1.00 g, 

3.16 mmol) in dimethylsulfoxid (20 mL) and the mixture was stirred for 20 h at 100 °C. 

The mixture was then cooled to room temperature and poured onto isopropanol (100 mL). 

The crude product was resuspended several times in isopropanol (5 x 30 mL) and water 
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(2 x 10 mL) and regained by centrifugation after each washing step to yield compound 72 

as a brownish solid. 

Yield:    500 mg (2.13 mmol, 80 %); 

Ds (Tosyl):    0.72; 

Ds (Azid):    0.53; 

1H-NMR: (500 MHz, DMSO-d6, 300 K): δ = 7.79 (CAr-Hortho), 7.37 (CAr-Hmeta), 6.15-

5.12 (OH), 4.92-4.51 (H-1, if C-2 is tosylated or azido-functionalised, respectively), 4.28-

3.90 (H-2tos, H-3tos, H-4tos) 3.80-3.41 (H-2, H-3, H-4, H-5, H-6 (AGU)), 2.37 (CH3) ppm; 

13C-NMR: (126 MHz, DMSO-d6, 300 K): δ = 144.7 (Ar-Cipso), 133.3 (Ar-Cpara), 129.8 

(Ar-Cmeta), 127.8 (Ar-Cortho), 100.1 (C-1 if C-2 azido-functionalised), 95.5 (C-1 if C-2 is 

tosylated), 79.9 (C-2tos), 71.7-69.0 (C-2, C-3, C-4, C-5 (AGU)), 65.0 (C-6), 21.1 (CH3) 

ppm; 

IR (ATR-IR): ṽ = 3500 (vOH), 2930 (vCH), 2112 (vN3), 1600 (vC=Ar-C), 1348 

(vasymSO2), 1173 (vsymSO2), 1019 (vCOC), 813 (δCAr-H) cm-1; 

elemental analysis: calcd for Ds(Tos) = 0.72 and Ds(N3) = 0.53 (%) (C6H9N3O4)n: C 

47.14 %, H 4.79 %, S 9.21 %, N 6.70 %; found: C 45.21 %, H 4.88 %, S 7.36 %, N 

5.49 %. 

 

4-Propiolamidophenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 78 

4-Aminophenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 77 (810 g, 1.84 mmol) 

was added to a solution of propiolic acid (133 μL, 2.15 mmol) and N,N‘-

dicyclohexylcarbodiimide (442 mg, 2.14 mmol) in dry DCM (10 mL). The reaction 

mixture was stirred at room temperature for 16 h before removing the solvent under 

reduced pressure. The crude product was purified by column chromatography 

(cyclohexane/acetone 3:1 → 2:1) to yield compound 78 as a colourless foam. 

Yield:    663 mg (1.35 mmol, 73 %); 

TLC:    Rf = 0.15 (cyclohexane/actone 2:1); 

Melting point:   83 °C; 

Rotational value:  [α]D
25 = +132.7 (c = 0.23 mM, CH2Cl2); 
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1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 7.61 (s, 1H, NH), 7.47-7.44 (m, 2H, 

Ar-Hortho), 7.07-7.04 (m, 2H, Ar-Hmeta), 5.55-5.41 (dd, 3J2,3 = 3.5 Hz, 3J3,4 = 10.0 Hz, 1H, 

H-3), 5.47 (d, 3J1,2 = 1.8 Hz, 1H, H-1), 5.44-5.42 (dd, 3J1,2 = 1.8 Hz, 3J2,3 = 3.5 Hz, 1H, 

H-2), 5.38-5.33 (dd~t, 3J3,4 = 10.0 Hz, 3J4,5 = 10.0 Hz, 1H, H-4), 4.29-4.25 (m, 2H, H-6), 

4.10-4.04 (m, 2H, H-5, H-6‘), 2.93 (s, 1H, C≡CH), 2.19, 2.05, 2.03 (each s, each 3H, 

CH3) ppm;  

13C-NMR: (126 MHz, CDCl3, 300 K, TMS): δ = 170.7, 170.1, 169.9 (COCH3), 152.9 

(Ar-Cipso), 149.7 (NC=O), 132.3 (Ar-Cpara), 121.8 (Ar-Cmeta), 117.3 (Ar-Cortho), 96.2 

(C-1), 77.7 (C≡CH), 74.3 (C≡CH), 69.5 (C-2), 69.4 (C-5), 69.0 (C-3), 66.1 (C-4), 62.3 

(C-6), 21.0, 20.8 (COCH3) ppm; 

ESI-MS: m/z = 514.2, [M+Na]+, (calc. 514.4 for C23H25NO11+Na); 

IR (ATR): ṽ = 3261, 2107, 1744, 1508, 1369, 1213, 1035, 835 cm-1. 

 

4-Propiolamidophenyl α-D-mannopyranoside 79 

To a solution of mannoside 78 (214 mg, 436 μmol) in dry methanol (8 mL) was added a 

1M sodium methoxide solution (16.0 μL). After stirring for 16 hours at room temperature 

the mixture was neutralised with ion exchanger Amberlite® IR 120. The resin was filtered 

off and the solvent was removed under reduced pressure to yield compound 79 as a 

colourless foam. 

Yield:    140 mg (3.56 mmol, 99 %); 

TLC:    Rf = 0.18 (DCM/methanol 9:1);  

Rotational value:  [α]20
D = +125.1 (c = 0.09 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K, TMS): δ = 7.47-7.44 (m, 2H, Ar-Hortho), 7.07-7.04 

(m, 2H, Ar-Hmeta), 5.40 (d, 3J1,2 = 1.8 Hz, 1H, H-1), 4.80 (s, 4H, OH), 3.95 (dd, 

3J1,2 = 1.8 Hz, 3J2,3 = 3.4 Hz, 1H, H-2), 3.84 (dd, 3J2,3 = 3.4 Hz, 3J3,4 = 9.4 Hz, 1H, H-3), 

3.80-3.70 (m, 3H, H-4, H-6) 3.56 (ddd, 3J5,6 = 2.5 Hz, 3J5,6‘ = 5.3 Hz, 3J4,5 = 9.8 Hz, 1H, 

H-5), 3.35 (s, 1H, C≡CH) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K, TMS): δ = 155.0 (Ar-Cipso), 152.2 (NC=O), 133.7 

(Ar-Cpara), 122.8 (Ar-Cmeta), 118.1 (Ar-Cortho), 100.5 (C-1), 78.7 (C≡CH), 76.4 (C≡CH), 

75.4 (C-5), 72.4 (C-3), 72.0 (C-2), 68.4 (C-4), 62.9 (C-6) ppm; 
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IR (ATR): ṽ = 3280, 2931, 2108, 1645, 1508, 1225, 1010, 822, 510 cm-1; 

ESI-MS: m/z = 346.08944, [M+Na]+, (calc. 346.09027 for C23H25NO11+Na). 

 

3-Cascade:(Propargylchloroformate)-methane[3-1,1,1]:methoxymethyl:1H[1,2,3] 

triazole-1-ethyl: tetra-O-acetyl-α-D-mannopyranoside (85) 

To an ice-cold solution of deprotected compound 26 (634 mg, 619 μmol) and sodium 

bicarbonate (177 mg, 2.10 mmol) in water (40 mL) and 1,4 dioxane (20 mL) was added 

propargyl chloroformate (90.2 μL, 929 μmol). After stirring at room temperature for 60 h 

the solvent was removed at reduced pressure and the mixture was codestilled with 

methanol (2 x 60 mL). The residue was dissolved in acetic anhydride (20.0 mL) and 

pyridine (3 mL) and stirred for 3 h. The solvent was removed under reduced pressure 

again and the remaining crude product was dissolved in DCM (100 mL) and washed with 

water (50 mL). The organic layer was dried over MgSO4 and filtered. The solvent was 

removed under reduced pressure and the crude product was purified by column 

chromatography (DCM/ methanol 19:1) to yield compound 85 as a colourless foam. 

Yield:    406 mg (258 μmol, 42 %); 

TLC:    Rf = 0.37 (DCM/ methanol 19:1); 

Rotational value:  [α]20
D = +19.3 (c = 0.16 in ethyl acetate); 

1H-NMR: (500 MHz, CDCl3, 300 K): δ = 7.73 (s, 3H, CHtriazole), 5.55 (s, 1H, NHCarbamat), 

5.27-5.18 (m, 9H, H-2, H-3, H-4), 4.81 (d, 3J1,2 = 1.0 Hz, 3H, H-1), 4.68-4.60 (m, 12H, 

NtriazoleCH2, OCH2Ctriazole), 4.59-4.57 (d, 4JCH2C≡CH = 2.4 Hz, 2H, CH2C≡C), 4.23-4.18 

(dd, 3J5,6 = 5.2 Hz, 2J6,6’ = 12.3 Hz, 3H, H-6), 4.16-4.11 (m, 3H, NtriazoleCH2CH), 4.04 (dd, 

2J6,6’ = 12.3 Hz, 3J5,6’ = 2.4 Hz, 3H, H-6’), 3.93-3.88 (m, 3H, NtriazoleCH2CH‘), 3.77 (s, 

6H, CarbamatCCH2), 3.63-3.59 (ddd, 3J4,5 = 9.4 Hz, 3J5,6 = 5.1 Hz, 3J5,6’ = 2.4 Hz, 3H, H-5), 

2.46 (t, 1H, 4JCH2C≡CH = 2.4 Hz, C≡CH), 2.13, 2.09, 2.04, 1.99 (each s, each 9H, OCOCH3) 

ppm; 

13C-NMR: (126 MHz, CDCl3, 300 K): δ = 170.7, 170.1, 169.8 (COCH3), 155.8 (OC=O), 

145.2 (CtriazoleCH), 124.1 (CtriazoleCH), 97.7 (C-1), 78.8 (CH2C≡C), 74.7 (C≡CH), 69.3, 

69.1, 69.0 (C-2, C-3, C-5, CCH2), 66.4 (NtriazoleCH2CH2), 65.9 (C-4), 64.8 (OCH2Ctriazole), 

62.4 (C-6), 59.2 (NHCCH2), 52.1 (CH2C≡C), 49.8 (NtriazoleCH2), 21.0, 20.9, 20.8, 

(OCOCH3) ppm; 



Experimental section 277 

 

ESI-MS: m/z = 1569.54774, [M+H]+ (calc. 1569.54863 for C65H88N10O35 + H). 

 

3-Cascade:(Propargylchloroformate)-methane[3-1,1,1]:methoxymethyl:1H[1,2,3] 

triazole-1-ethyl: α-D-mannopyranoside 86 

Compound 85 (200 mg, 127 μmol) was dissolved in dry methanol (10 mL) and 1M 

sodium methoxide solution (40 μL) was added. After stirring for 16 h at room temperature 

the mixture was neutralised with ion exchanger Amberlite® IR 120. The resin was filtered 

off and the solvent was removed under reduced pressure to yield compound 86 

quantitatively as a colourless syrup. 

Yield:    quant.; 

TLC:    Rf = 0 (ethyl acetate/ methanol 4:1); 

Rotational value:  [α]20
D = +74.9 (c = 0.42 in methanol); 

1H-NMR: (500 MHz, MeOD, 300 K): δ = 7.98 (s, 3H, CHtriazole), 5.49 (s, 1H, 

NHCarbamate), 4.86 (s, 12H, OH), 4.73 (d, 3J1,2 = 1.2 Hz, 3H, H-1), 4.69-4.59 (m, 8H, 

NtriazoleCH2, CH2C≡CH), 4.58 (s, 6H, OCH2Ctriazole), 4.15-4.09 (m, 3H, NtriazoleCH2CH), 

3.90-3.84 (m, 3H, NtriazoleCH2CH‘), 3.80-3.74 (m, 6H, H-2, H-6), 3.70 (s, 6H, 

NCarbamateCCH2), 3.68-3.55 (m, 9H, H-3, H-4, H-6‘), 3.27-3.22 (m, 3H, H-5), 2.89 (m, 1H, 

C≡CH) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 145.8 (CtriazoleCH), 125.8 (CtriazoleCH), 101.6 

(C-1), 79.4 (CH2C≡C), 75.0 (C-5), 74.9 (C≡CH), 72.5 (C-3), 71.9 (C-2), 69.4 

(NCarbamateCCH2), 68.4 (C-4), 66.7 (NtriazoleCH2CH2), 65.2 (OCH2Ctriazole), 62.9 (C-6), 60.4 

(CCH2), 52.8 (CH2C≡C), 51.3 (NtriazoleCH2) ppm; 

IR (ATR): ṽ = 3356, 2926, 1712, 1242, 1055, 1026, 976, 675 cm-1; 

ESI-MS: m/z = 1087.40215, [M+Na]+, (calc. 1087.40435 for C41H64N10O23+Na). 

 

8.4.2 Bacterial adhesion assay 

Buffers: PBS buffer: PBS tablets were obtained from GIBCO containing phosphate (as 

sodium phosphates), 10 mM, potassium chloride (KCl), 2.68 mM, sodium chloride 

(NaCl), 140 mM, pH = 7.45; PBST buffer: PBS buffer + 0.05% v/v Tween®20; carbonate 
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buffer solution (pH 9.6): sodium carbonate (10.6 g) and sodium hydrogen carbonate (8.40 

g) were dissolved in bidest. Water (1.0 L), pH values were adjusted by using 0.1 M HCl 

or 0.1 M NaOH. 

Bacterial culture: The GFP-tagged strain PKL1162 was constructed in the KLEMM group 

by introduction of the plasmid pPKL174 into strain SAR18. Plasmid pPKL174 contains 

the fim gene cluster, which is required for type 1 fimbriae assembly and expression. The 

chromosome of strain SAR18 from the REISNER group contains the GFP gene, controlled 

by a constitutive promotor.[239, 421] The bacterial strain PKL1162[421] was cultured from a 

frozen stock in LB media (+ampicillin 100 mg/mL and chloramphenicol 50 mg/mL) 

overnight at 37 °C. The bacterial pellet resulting after centrifugation and decantation of 

media was washed twice with PBS (2 mL) and suspended in PBS buffer afterwards. The 

bacterial suspension was adjusted to OD600 = 0.4 with PBS. 

Functionalisation of microtiter plates and the adhesion assay was performed in 

dependence on HARTMANN et al.[239, 270] Black Immobilizer AminoTM F96 MicroWellTM 

plates (Nunc) were incubated overnight with a 20 mM solution of amine 69 respectively 

2-[2-[2-(2-Azidoethoxy)ethoxy]ethoxy]ethan amine 87 in PBS buffer (100 μL/well, 

100 rpm, room temperature). Black microtiter plates (Nunc, MaxiSorp) were incubated 

overnight with azido-functionalised dextran 72 (1.2 mg/mL carbonate buffer/ DMSO 9:1, 

120 μL/well) at 37 °C at 100 rpm. Plates were washed with PBST three times. Dextran-

functionalised microtiter plates were blocked with PVA (poly vinyl alcohol) by adding a 

solution of 1 % PVA in PBS (120 μL/well) and incubation at room temperature, 3 h, 

100 rpm. Amine-prefunctionalised plates were blocked with a 20 mM solution of 

ethanolamine in carbonate buffer (120 μL/well, room temperature, 100 rpm, 2.5 h). 

Afterwards, wells were washed with PBST three times. Then, click reactions were 

performed on the microtiter plates. Therefore glycosides 75, 79, 83, 84, 86 were added to 

the plates with serial dilution starting from a 20 mM solution in case of compounds 75 

and 83, and 10 mM solutions in case of compounds 79, 84, 86. Solutions of copper 

sulphate (10 mM) and sodium ascorbate (19.2 mM) in PBS were prepared on separate 

microtiter plates in serial dilution and subsequently transferred to the azido-functionalised 

microtiter plates (25 μL/well of sodium ascorbate solution and 25 μL/well of copper 

sulphate solution). After a reaction time of 3 h at 37 °C and 100 rpm plates were washed 

with PBST twice and finally once with PBS. The prepared bacterial suspension was added 

(50 μL/well) then. After incubation for one hour at 37 °C and 100 rpm, microtiter plates 

were washed three times with PBS and filled with PBS (100 μL/well) for terminal 
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fluorescence intensity read out (excitation wavelength 485 nm, emission wavelength 535 

nm). 
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8.4.3 1H and 13C NMR spectra of synthesised compounds  

Figure 257: 1H NMR spectrum of compound 65 (600 MHz, CDCl3, 300 K, TMS). 

 

 

Figure 258: 13C NMR spectrum of compound 65 (151 MHz, CDCl3, 300 K, TMS). 
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Figure 259: 1H NMR spectrum of compound 66 (500 MHz, MeOD, 300 K, TMS). 

 

 

Figure 260: 13C NMR spectrum of compound 66 (126 MHz, MeOD, 300 K, TMS). 
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Figure 261: 1H NMR spectrum of compound 67 (500 MHz, MeOD, 300 K, TMS). 

 

 

Figure 262: 13C NMR spectrum of compound 67 (126 MHz, MeOD, 300 K, TMS). 
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Figure 263: 1H NMR spectrum of compound 68 (500 MHz, MeOD, 300 K, TMS). 

 

 

 

Figure 264: 13C NMR spectrum of compound 68 (126 MHz, MeOD, 300 K, TMS). 
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Figure 265: 1H NMR spectrum of compound 69 (500 MHz, MeOD, 300 K, TMS). 

 

 

 

Figure 266: 13C NMR spectrum of compound 69 (126 MHz, MeOD, 300 K, TMS). 
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Figure 267: 1H NMR spectrum of compound 71 (500 MHz, DMSO-d6, 300 K). 

 

Figure 268: 13C NMR spectrum of compound 71 (126 MHz, DMSO-d6, 300 K). 

 

 
Figure 269: 1H NMR spectrum of compound 72 (500 MHz, DMSO-d6, 300 K). 
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Figure 270: 13C NMR spectrum of compound 72 (126 MHz, DMSO-d6, 300 K). 

 

 

 

Figure 271: 1H NMR spectrum of compound 78 (500 MHz, CDCl3, 300 K, TMS). 
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Figure 272: 13C NMR spectrum of compound 78 (126 MHz, CDCl3, 300 K, TMS). 

 

 

 

Figure 273: 1H NMR spectrum of compound 79 (500 MHz, MeOD, 300 K, TMS). 
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Figure 274: 13C NMR spectrum of compound 79 (126 MHz, MeOD, 300 K, TMS). 

 

 

 
Figure 275: 1H NMR spectrum of compound 85 (500 MHz, CDCl3, 300 K, TMS). 
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Figure 276: 13C NMR spectrum of compound 85 (126 MHz, CDCl3, 300 K, TMS). 

 

 

 

Figure 277: 1H NMR spectrum of compound 86 (500 MHz, MeOD, 300 K, TMS). 
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Figure 278: 13C NMR spectrum of compound 86 (126 MHz, MeOD, 300 K, TMS). 
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8.5 Supporting information for chapter 5: Labelling FimH: Towards 

the photochemical control of carbohydrate recognition 

8.5.1 Synthesis 

S-Phenyl-2-[4-(2-phenylazo)phenyl]thioacetate 7 

Triethylamine (326 μL, 2.35 mmol) was added to an ice-cold solution of acid 81 (470 mg, 

1.96 mmol), DPPA (76) (506 μL, 2.35 mmol) and thiophenol (998 μL, 9.78 mmol) in 

DMF (10 mL). The mixture was stirred at room temperature for 16 h. The mixture was 

then diluted with DCM (200 mL) and washed with 1 N HCl (aq) (70 ml) and sat. NaCl 

solution (70 mL). The solvent was removed under reduced pressure and the residue 

dissolved in diethyl ether. After washing with H2O (70 mL) the organic phase was dried 

over MgSO4, filtered and the solvent removed under reduced pressure. Compound 7was 

obtained as an orange solid after column chromatography (toluene). 

Yield:     310 mg (932 μmol; 48 %);  

TLC:    Rf = 0.58 (cyclohexane/ ethyl acetate 6:1); 

Melting point:   100 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.94-7.90 (m, 4H, Ar-Hortho, Ar-Hortho’), 7.55-

7.46 (m, 5H, Ar-Hmeta, Ar-Hmeta’, Ar-Hpara’), 4.00 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 195.0 (C=O), 152.8 (Ar-Cipso’), 152.1 

(Ar-Cipso), 136.4 (Ar-Cpara), 134.6 (SPh), 131.2 (Ar-Cpara’), 130.6 (Ar-Cmeta), 129.7, 129.4 

(SPh), 129.3 (Ar-Cmeta’), 127.7 (SPh), 123.3, 123.0 (Ar-Cortho, Ar-Cortho), 50.1 (CH2) ppm; 

IR (ATR): ṽ = 2922, 1699, 1439, 1008, 998, 774, 684, 549 cm-1; 

EI-MS: m/z = 254.06, [M-C6H6]
+; (calc. 332.0983 for C20H16N2OS). 

 

S-Phenyl-2-[4-(2-biphenylazo)phenyl]thioacetate 8 

Triethylamine (44.7 μL, 322 μmol) was added to an ice-cold solution of acid 82 (85.0 mg, 

269 μmol), DPPA (76) (69.3 μL, 322 μmol) and thiophenol (137 μL, 1.34 mmol) in DMF 

(10 mL). The mixture was stirred at room temperature for 3 h. The solvent was removed 

under reduced pressure and the residue was dissolved in diethyl ether (80 mL). After 

washing with 1 N HCl (aq) (40 ml) and sat. NaCl solution (40 mL) the organic phase was 
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dried over MgSO4, filtered and the solvent removed under reduced pressure. Compound 8 

was obtained as an orange solid after column chromatography (toluene). 

Yield:     40.7 mg (99.6 μmol; 37 %);   

TLC:    Rf = 0.43 (toluene); 

Melting point:   176 °C (decomposition); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.02-7.99 (m, 2H, Ar-Hortho’), 7.96-7.92 (m, 

2H, Ar-Hortho), 7.77-7.74 (m, 2H, Ar-Hmeta’), 7.69-7.66 (m, 2H, Ar-Hortho’’) 7.52-7.46 (m, 

4H, Ar-Hmeta, Ar-Hmeta’’), 7.42-7.38 (m, 6H, SPh, Ar-Hpara’’), 4.01 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 194.9 (C=O), 152.3 (Ar-Cipso), 151.9 

(Ar-Cipso’), 144.0 (Ar-Cpara’), 140.4 (Ar-Cipso’’), 136.4 (Ar-Cpara), 134.6 (SPh), 130.6 

(Ar-Cmeta), 129.7, 129.4 (SPh), 129.1 (Ar-Cmeta’’), 128.1 (SPh), 128.0 (Ar-Cpara’’), 127.4 

(Ar-Cortho’’), 123.6 (Ar-Cortho’), 123.4 (Ar-Cortho), 50.1 (CH2) ppm; 

IR (ATR): ṽ = 3055, 2919, 1699, 1598, 1484, 984, 846, 766, 687 cm-1; 

EI-MS: m/z = 408.12599, [M]+; (calc. 408.12963 for C26H20N2OS). 

 

S-Phenyl-2-[4-(2-(3,5-dimethoxycarbonyl)phenylazo)phenyl]thioacetate 9 

Triethylamine (56.0 μL, 404 μmol) was added to an ice-cold solution of acid 83 (120 mg, 

337 μmol), DPPA (76) (87.0 μL, 404 μmol) and thiophenol (172 μL, 1.68 mmol) in DMF 

(8 mL). The mixture was stirred at room temperature for 2 d. The solvent was removed 

under reduced pressure and the residue was dissolved in DCM (70 mL). After washing 

with 1 N HCl (aq) (40 ml) and sat. NaCl solution (40 mL). The solvent was removed under 

reduced pressure and the residue was dissolved diethyl ether (80 mL). after washing with 

H2O (40 mL) the organic phase was dried over MgSO4, filtered and the solvent removed 

under reduced pressure. Compound 9 was obtained as an orange solid after column 

chromatography (cyclohexane/ethyl acetate 2:1). 

Yield:     48.2 mg (107 μmol; 32 %);   

TLC:    Rf = 0.39 (cyclohexane/ethyl acetate 2:1); 

Melting point:   109 °C ; 
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1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.72-8.71 (t, 4J = 1.6 Hz, 1H, Ar-Hpara’), 8.67-

8.66 (d, 4J = 1.6 Hz, 2H, Ar-Hortho’), 7.91-7.88 (m, 2H, Ar-Hortho), 7.45-7.43 (m, 2H, 

Ar-Hmeta), 7.33 (s, 5H, SPh), 3.95 (s, 2H, CH2), 3.93 (s, 6H, CH3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 194.8 (S(C=O)), 165.9 (COOMe), 152.9 (Ar-

Cipso’), 151.8 (Ar-Cipso), 137.4 (Ar-Cpara), 134.6 (SPh), 132.5 (Ar-Cpara’), 130.7 (Ar-Cmeta), 

129.7, 129.4 (SPh), 127.6 (Ar-Cortho’), 123.7 (Ar-Cortho), 52.8 (CH3), 50.0 (CH2) ppm; 

IR (ATR): ṽ = 3082, 2657, 2895, 1731, 1721, 1697, 1241, 1214, 986, 755, 745, 688 cm-1; 

EI-MS: m/z = 448.09819, [M]+; (calc. 448.10923 for C24H20N2O5S). 

 

4-[(E)-[4-(2-Trimethylammoniumacetamido)methyl]phenylazo]phenyl-(phenyl-

thioacetate) 10 

Triethylamine (593 μL, 4.28 μmol) was added to an icecold solution of acid 66 (791 mg, 

2.14 mmol), DEPC (77) (650 μL, 4.28 mmol) and thiophenol (328 μL, 3.21 mmol) in 

DMF (12 mL). The reaction mixture was stirred for 16 h at room temperature. The 

solvent was then removed under reduced pressure. The crude product was purified by 

column chromatography (DCM → DCM / methanol 6:1) to yield compound 10 as an 

orange solid. 

Yield:    436 mg (945 μmol, 44 %); 

TLC:    Rf = 0.28 (DCM / methanol 4:1); 

Melting point:   198 °C; 

1H-NMR (CDCl3, 200 MHz, 300 K): δ = 7.95-7.87 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.56-

7.48 (m, 4H, Ar-H,meta, Ar-Hmeta‘), 4.52 (s, 2H, NHCH2), 4.20 (s, 2H, NCH2(C=O)), 4.08 

(s, 2H, Ar-CCH2C=O), 3.35 (s, 9H, N(CH3)3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 173.7 (O(C=O)), 164.9 (N(C=O)), 153.4 

(Ar-Cipso), 152.9 (Ar-Cipso‘), 142.6 (Ar-Cpara), 140.9 (Ar-Cpara‘), 134.2 (SPh), 131.8 

(Ar-Cmeta‘), 129.8 (Ar-Cmeta), 129.4, 129.0 (SPh), 122.7 (Ar-Cortho’), 122.4 (Ar-Cortho), 

65.6 (CH2NMe3), 54.9 (N(CH3)3), 43.8 (NCH2), 42.2 (CH2(C=O)) ppm; 

IR (ATR): ṽ = 3344, 1693, 1587, 1494, 1231, 1119, 1002, 976, 840, 667, 546 cm-1; 
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EI-MS: m/z = 256.05, [M-C6H4CH2NHC=OCH2NMe3+H]+; (calc. 461.2006 for 

C26H29N4O2S). 

 

4-[(E)-(4’-Hydroxy-3,4-dimethyl[1,1’-biphenyl]-4-yl)azo]phenylthioacetate 11 

Triethylamine (248 μL, 1.79 mmol) was added to an ice-cold solution of acid 30 (323 mg, 

896 μmol), DEPC (77) (272 μL, 1.79 mmol) and thiophenol (137 μL, 1.34 mmol) in 

DMF (5 mL). The reaction mixture was stirred for 16 h at room temperature. The solvent 

was then removed under reduced pressure. The residue was dissolved in diethyl ether 

(50 mL) and washed with H2O (25 mL). The organic phase was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (cyclohexane/ethyl acetate 6:1 → 2:1) to yield compound 11 

as an orange solid. 

Yield:    198 mg (437 μmol, 49 %); 

TLC:    Rf = 0.50 (cyclohexane/ethyl acetate 2:1); 

Melting point:   156 °C; 

1H-NMR (CDCl3, 600 MHz, 300 K): δ = 7.90-7.88 (d, 3J = 8.49 Hz, 2H, Ar-H,meta‘), 7.86-

7.84 (d, 3J = 8.32 Hz, 2H, Ar-H,ortho), 7.63-7.60 (d, 3J = 8.49 Hz, 2H, Ar-H,ortho‘), 7.43-

7.40 (d, 3J = 8.31 Hz, 2H, Ar-H,meta), 7.33 (s, 5H, SPh), 7.23 (s, 2H, Ar-H,ortho”), 4.64 (s, 

1H, OH), 3.93 (s, 2H, CH2), 2.27 (s, 6H, CH3) ppm; 

13C-NMR (CDCl3, 151 MHz, 300 K): δ = 195.0 (C=O), 152.6 (Ar-Cpara”), 152.3 

(Ar-Cipso), 151.4 (Ar-C,para‘), 144.0 (Ar-Cipso”), 136.2 (Ar-Cpara), 134.6, 132.4 (SPh), 

130.6 (Ar-Cmeta), 129.7, 129.4 (SPh), 127.7 (Ar-Cortho”), 127.6 (Ar-Cmeta“), 127.4 

(Ar-Cortho‘), 123.6 (Ar-Cmeta‘), 123.5 (Ar-Cortho), 123.3 (Ar-Cipso‘), 50.1 (CH2), 16.2 

(CH3) ppm; 

IR (ATR): ṽ = 3508, 2917, 1700, 1598, 1478, 1175, 1165, 1008, 999, 835, 740, 686, 554 

cm-1; 

EI-MS: m/z = 452.15585, [M]+; (calc. 452.15585 for C28H24N2O2S). 
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4-[(E)-(4-(4-Pyridinyl)phenyl)azo]phenylthioacetate 12 

Triethylamine (247 μL, 1.78 mmol) was added to an ice-cold solution of acid 32 (283 mg, 

892 μmol), DEPC (77) (270 μL, 1.78 mmol) and thiophenol (137 μL, 1.34 mmol) in 

DMF (8 mL). The reaction mixture was stirred for 16 h at room temperature. The solvent 

was then removed under reduced pressure. The residue was dissolved in diethyl ether 

(50 mL) and washed with H2O (25 mL). The organic phase was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (cyclohexane/ ethyl acetate 7:1) to yield compound 12 as an 

orange solid. 

Yield:    164 mg (401 μmol, 45 %); 

TLC:    Rf = 0.35 (DCM/ethyl acetate 9:1); 

Melting point:   168 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.92-7.89 (m, 2H, ’Ar-H,meta’), 7.88-7.85 (m, 

2H, CAr-H,meta‘), 7.66-7.63 (m, 2H, Ar-H,ortho‘), 7.51-7.47 (m, 4H, Ar-H,ortho”, Ar-H,meta), 

7.39 (s, 5H, SPh), 7.32-7.28 (m, 2H, Ar-H,ortho), 4.00 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 125 MHz, 300 K): δ = 195.0 (C=O), 152.2 (Ar-Cipso’), 152.0 

(Ar-Cpara‘), 151.7 (Ar-Cipso), 138.6 (Ar-Cmeta”), 136.7, 134.7 (SPh), 130.5 (Ar-Cmeta), 

129.8, 129.5 (SPh), 129.3 (Ar-Cortho), 127.8 (Ar-Cortho”), 127.0 (Ar-Cpara’), 124.8 

(Ar-Cortho’), 123.6 (Ar-Cmeta’), 50.1 (CH2) ppm; 

IR (ATR): ṽ = 1692, 1497, 1439, 1299, 1003, 985, 831, 749, 710, 689, 547 cm-1; 

 

4-[(E)-(2’-Methylsulfonamido[1,1’-biphenyl]-4-yl)azo] phenylthioacetate 13 

Triethylamine (136 μL, 981 μmol) was added to an ice-cold solution of acid 31 (170 mg, 

464 μmol), DEPC (77) (149 μL, 925 μmol) and thiophenol (76.0 μL, 745 μmol) in 

DMF (7 mL). The reaction mixture was stirred for 16 h at room temperature. The solvent 

was then removed under reduced pressure. The residue was dissolved in diethyl ether 

(50 mL) and washed with H2O (25 mL). The organic phase was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (toluene/methanol 7:1) to yield compound 13 as an orange 

solid. 
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Yield:    152 mg (302 μmol, 65 %); 

TLC:    Rf = 0.24 (toluene/methanol 7:1); 

Melting point:   153 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.06-8.03 (m, 2H, Ar-H,ortho‘), 7.97-7.94 (d, 

2H, Ar-H,ortho), 7.69-7.67 (dd, 3J = 8.3 Hz, 2J = 0.94 Hz, 1H, Ar-H,ortho”), 7.53-7.49 (m, 

4H, Ar-H,meta, Ar-H,meta‘), 7.45-7.41 (m, 1H, Ar-H,para”), 7.41 (s, 5H, SPh), 7.35-7.32 (dd, 

3J = 7.6 Hz, 2J = 1.6 Hz, 1H, C(NH)CAr-H,meta”), 7.29-7.25 (m, 1H, Ar-H,meta”), 6.48 (s, 

1H, NH), 4.02 (s, 2H, CH2), 2.92 (s, 3H, CH3) ppm; 

13C-NMR: (CDCl3, 125 MHz, 300 K): δ = 194.8 (C=O), 152.0 (Ar-Cipso, Ar-Cipso‘), 140.0 

(Ar-Cipso”)136.6 (Ar-C,para), 134.4 (SPh), 132.4 (Ar-Cpara‘), 130.5 (Ar-Cmeta, 

C(NH)Ar-Cmeta”), 129.9 (Ar-Cmeta‘), 129.5 (Ar-Cpara”), 129.3 (SPh), 125.1 (Ar-Cmeta”), 

123.8 (Ar-Cortho‘), 123.3 (Ar-Cortho), 120.3 (Ar-Cortho”), 49.7 (CH2), 39.9 (CH3) ppm; 

IR (ATR): ṽ = 3271, 1694, 1484, 1402, 135, 1154, 1051, 962, 854, 767, 747, 595, 

527 cm-1; 

EI-MS: m/z = 501.04, [M]+; (calc. 501.11808 for C27H23N3O3S2). 

 

4-[(E)-(4-(3-Pyridinyl)phenyl)azo]phenylthioacetate 14 

Triethylamine (507 μL, 3.66 mmol) was added to an ice-cold solution of acid 36 (580 mg, 

1.83 mmol), DEPC (77) (555 μL, 3.66 mmol) and thiophenol (280 μL, 2.74 mmol) in 

DMF (15 mL). The reaction mixture was stirred for 16 h at room temperature. The 

solvent was then removed under reduced pressure. The residue was dissolved in diethyl 

ether (50 mL), washed with H2O (25 mL). The organic phase was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was purified 

by column chromatography (cyclohexane/ ethyl acetate 7:1) to yield compound 37 as an 

orange solid. 

Yield:    360 mg (879 μmol, 48 %); 

TLC:    Rf = 0.35 (DCM/ethyl acetate 9:1); 

Melting point:   135 °C; 
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1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.94-8.92 (d, 1H, 4J = 1.82 Hz, NCAr-H,ortho”), 

8.65-8.63 (dd, 4J = 1.7 Hz, 3J = 4.8 Hz, 1H, Ar-H,para’’), 8.05-8.03 (m, 2H, Ar-H,meta‘), 

7.97-7.93 (m, 3H, Ar-H,ortho, Ar-H,ortho”), 7.76-7.73 (m, 2H, Ar-H,ortho’), 7.52-7.49 (m, 2H, 

Ar-H,meta), 7.43-7.7.71 (dd, 4J = 0.8 Hz, 3J = 4.8 Hz, 1H, Ar-H,meta’’), 7.40 (s, 5H, SPh), 

4.04 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 125 MHz, 300 K): δ = 194.8 (C=O), 152.2 (Ar-Cipso’), 152.0 

(Ar-Cipso, Ar-Cpara‘), 149.0 (Ar-Cpara”), 148.3 (NCAr-C,ortho”), 140.3 (Ar-C,ipso”), 136.5 

(Ar-C,para), 134.4 (SPh), 134.3 (Ar-Cortho’’), 130.5 (Ar-Cmeta), 129.6, 129.2 (SPh), 127.9 

(Ar-Cortho’), 127.5 (CSPhC=O), 123.7 (Ar-Cmeta‘), 123.5 (Ar-Cmeta”), 123.3 (Ar-Cortho), 49.9 

(CH2) ppm; 

IR (ATR): ṽ = 2984, 1697, 1472, 1440, 1253, 1013, 986, 806, 751, 704, 561 cm-1; 

EI-MS: m/z = 407.13172, [M+H]; (calc. 410.13216 for C25H20N3OS). 

 

2-(4-Nitrophenyl)acetic acid tert butyl ester 16[388] 

Phosphorylchloride (9.93 mL, 106 mmol) was added dropwise to an ice-cold solution of 

nitrophenylacetic acid 15 (15.0 g, 82.8 mmol), pyridine (33.0 mL, 410 mmol) and tert 

butanol (78.0 mL, 831 mmol) in chloroform (250 mL). After stirring at room temperature 

for 16 h the mixture was diluted with DCM (50 mL) and 10 % aqueous hydrochloric acid 

was added. The organic layer was separated, washed with sat. NaCl solution (100 mL) 

and dried over MgSO4. After filtration the solvent was removed under reduced pressure 

and the crude product was purified by column chromatography (cyclohexane/ ethyl 

acetate 7:1) to obtain compound 16 as colourless solid. 

Yield:     16.7 g (70.4 mmol; 85 %); lit.: 95 %;[388]  

TLC:    Rf = 0.52 (cyclohexane/ ethyl acetate 7:1); 

Melting point:   54 °C; lit.[422]: 55 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.13-8.10 (m, 2H, Ar-Hmeta), 7.39-7.36 (m, 2H, 

Ar-Hortho), 3.57 (s, 2H, CH2), 1.37 (s, 9H, CH3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 169.5 (C=O), 147.2 (Ar-Cpara), 142.3 

(Ar-Cipso), 130.3 (Ar-Cortho), 123.7 (Ar-Cmeta), 81.8 (Cq(CH3)3), 42.5 (CH2), 28.1 

(CH3) ppm; 
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IR (ATR): ṽ = 2979, 2933, 1725, 1514, 1344, 1327, 1235, 1135, 1108, 883, 855, 

724 cm-1; 

EI-MS: m/z = 238.08, [M+H]+; (calc. 237.1001 for C12H15NO4). 

 

2-(4-Aminophenyl)acetic acid tert butyl ester 17[387] 

To a solution of compound 16 (8.00 g, 33.7 mmol) in ethyl acetate (150 mL) was added 

a catalytic amount of palladium (10 % on activated charcoal) and the reaction mixture 

was stirred under hydrogen atmosphere for 16 h. The catalyst was removed by filtration 

over celite and the solvent was removed under reduced pressure to yield compound 17 

quantitatively as a colourless oil. 

Yield:    6.98 g (33.7 mmol, quant.); 

TLC:    Rf = 0.17 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.09-7.05 (m, 2H, Ar-Hmeta), 6.69-6.65 (m, 2H, 

Ar-Hortho), 3.41 (s, 2H, CH2), 1.44 (s, 9H, CH3), ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 171.5 (C=O), 144.6 (Ar-Cpara), 130.1 

(Ar-Cortho), 125.1 (Ar-Cipso), 115.5 (Ar-Cmeta), 80.5 (Cq(CH3)3), 41.8 (CH2), 28.0 

(CH3) ppm; 

IR (ATR): ṽ = 3421, 3353, 2976, 1715, 1517, 1336, 1232.44, 1139, 659, 527.4, 504 cm-1; 

EI-MS: m/z = 207.10, [M]+; (calc. 207.1259 for C12H17NO2). 

 

2-(4-Nitrosophenyl)acetic acid tert butyl ester 18 

To a solution of compound 17 (1.50 g, 7.00 mmol) in DCM (50 mL) was added a solution 

of oxone® (3.23 g, 10.5 mmol) in water (20 mL). After stirring for 6.5 h at room 

temperature, the mixture was diluted with DCM (100 mL). After separation of the phases 

the aqueous one was extracted with DCM (4 x 80 mL). The organic phase was washed 

with 1 M HCl (60 mL). After drying over MgSO4 and filtration the solvent was removed 

under reduced pressure. The raw product of target compound 18 was isolated as a mixture 

with compound 16 in a ratio of 85/15 as a green oil and a yield for compound 18 of 72 %. 

The compound was used without further purification. 
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1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.91-7.84 (m, Ar-H), 7.56-7.50 (m, Ar-H), 3.64 

(s, 2H, CH2), 1.45 (s, 9H, CH3) ppm. 

 

General procedure A for the synthesis of methyl esters 

Thionyl chloride (3 eq.) was added dropwise to an ice-cold solution of the particular acid 

(1 eq.) in methanol (20 mL/10 mmol). The reaction mixture was stirred at 0 °C for 

30 minutes and additionally overnight at room temperature. The solvent was removed 

under reduced pressure and the residue was dissolved in ethyl acetate (50 mL/10 mmol) 

and washed with water (30 mL/10 mmol) and sat. NaHCO3 solution (30 mL/10 mmol). 

The organic phase was dried over MgSO4, filtered and the solvent removed under reduced 

pressure to obtain the respective methyl ester as a colourless solid. 

 

2-(4-Nitrophenyl)acetic acid methyl ester 19[388] 

4-nitrophenylacetic acid 15 (10.0 g, 55.2 mmol) was reacted according to General 

procedure A to obtain compound 19 as a colourless solid. 

Yield:     10.7 g (55.0 mmol; quant.);   

TLC:    Rf = 0.47 (cyclohexane/ ethyl acetate 7:3); 

Melting point:   53 °C; lit.[423]: 52.4-53.3 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.21-8.18 (m, 2H, Ar-Hmeta), 7.48-7.45 (m, 2H, 

Ar-Hortho), 3.75 (s, 3H, CH3), 3.73 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 170.5 (C=O), 147.1 (Ar-Cpara), 141.3 

(Ar-Cipso), 130.4 (Ar-Cortho), 123.8 (Ar-Cmeta), 52.3 (CH3), 40.5 (CH2) ppm; 

IR (ATR): ṽ = 3078, 2958, 1732, 1509, 1343, 1170, 996, 852, 815, 713, 577 cm-1; 

EI-MS: m/z = 195.05287 [M]+; (calc. 195.05316 for C9H9NO4). 

 

General procedure B for the reduction of nitro groups 

To a solution of the respective nitro-substituted compound in methanol (40 mL/10 mmol) 

was added a catalytic amount of palladium (10 % on activated charcoal) and the reaction 
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mixture was stirred under hydrogen atmosphere for 24 h. The catalyst was removed by 

filtration over celite and the solvent was removed under reduced pressure to yield the 

respective amine quantitatively as an oil. 

 

2-(4-Aminophenyl)acetic acid methyl ester 20 

Compound 19 (10.5 g, 53.8 mmol) was reacted according to General procedure B to yield 

compound 20 quantitatively as a red oil. 

Yield:    8.88 g (53.8 mmol, quant.); 

TLC:    Rf = 0.47 (cyclohexane/ ethyl acetate 1:1); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.07-7.04 (m, 2H, Ar-Hmeta), 6.66-6.63 (m, 2H, 

Ar-Hortho), 3.67 (s, 3H, CH3), 3.51 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 170.5 (C=O), 145.2 (Ar-Cpara), 130.0 

(Ar-Cortho), 123.7 (Ar-Cipso), 115.1 (Ar-Cmeta), 51.4 (CH3), 39.9 (CH2) ppm; 

IR (ATR): ṽ = 3450, 3365, 2952, 1723, 1625, 1516, 1560, 1223, 1142, 1010, 821, 

519 cm-1; 

EI-MS: m/z = 165.07929 [M]+; (calc. 165.07898 for C9H11NO2). 

 

General procedure C for the synthesis of nitroso compounds 

To a solution of the respective amine (1 eq.) in DCM (15 mL/ mmol) was added a solution 

of oxone® (1.5 eq.) in water (20 mL). After stirring for overnight at room temperature, 

the mixture was diluted with DCM (20 mL/mmol). After separation of the phases the 

aqueous one was extracted with DCM (4 x 15 mL/mmol). The organic phase was washed 

with 1 M HCl (15 mL/mmol) and sat. NaHCO3 solution (15 mL/mmol) subsequently. 

After drying over MgSO4 and filtration the solvent was removed under reduced pressure. 

The raw product of the targeted nitroso compound was isolated as a mixture with the 

respective nitro compound. The nitroso compounds were used without further 

purification. 
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2-(4-Nitrosophenyl)acetic acid methyl ester 21 

Compound 20 (1.00 g, 6.05 mmol) was reacted according to general procedure C. The 

raw product of target compound 21 was isolated as a mixture with compound 19 in a ratio 

of 86/14 as a green oil and a yield for compound 21 of 55 %. The compound was used 

without further purification. 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.28-8.14 (m, Ar-Hmeta (19)), 7.91-7.83 (m, 

Ar-H(21)), 7.58-7.48 (m, Ar-H(21)), 7.51-7.37 (m, Ar-Hortho (19)), 3.74-3.70 (m, CH3, 

CH2) ppm. 

 

4-[(4-Iodophenyl)azo]-(1,1-dimethyl)ethylphenylacetate 23 

Nitroso compound 18 (2.75 mmol) was added to a solution of 4-iodoaniline 22 (602 mg, 

2.75 mmol) in a mixture of glacial acid and DMSO (19:1; 20 mL). After stirring for 48 h 

at room temperature H2O (100 mL) was added. The precipitated raw product was 

separated and the aqueous phase was additionally extracted with DCM (2 x 75 mL). The 

precipitate was added to the organic phase which was subsequently dried over MgSO4, 

filtered and the solvent was removed under reduced pressure. Before column 

chromatography (cyclohexane → cyclohexane/ ethyl acetate 19:1) the raw product was 

codestilled with toluene (2 x 50 mL). Compound 23 was obtained as an orange solid. 

Yield:    690 mg (1.63 mmol, 59 %); 

TLC:    Rf = 0.75 (cyclohexane / ethyl acetate 6:1); 

Melting point:   113 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.82-7.77 (m, 4H, Ar-H,ortho‘, Ar-Hmeta), 7.59-

7.55 (m, 2H, Ar-Hortho), 7.37-7.33 (m, 2H, Ar-H,meta‘), 3.53 (s, 2H, CH2), 1.38 (s, 9H, 

C(CH3)3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 170.4 (C=O), 152.1 (Ar-Cipso), 151.6 

(Ar-Cipso‘, Ar-Cpara‘), 138.5 (Ar-Cortho‘), 130.2 (Ar-Cmeta‘), 124.6 (Ar-Cortho), 123.3 

(Ar-Cmeta), 97.7 (Ar-Cpara), 81.3 (C(CH3)3), 42.8 (CH2), 28.2 (C(CH3)3) ppm; 

IR (ATR): ṽ = 2976, .1730, 1339, 1235, 1154, 1003, 832 cm-1; 

EI-MS: m/z = 422.04912, [M]+; (calc. 422.04912 for C18H19N2O2I). 
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4-[(E)-(4-Iodophenyl)azo]-(1,1-dimethyl)ethylphenylacetate 24 

Nitroso compound 21 (1.94 mmol) was added to a solution of 4-iodoaniline 22 (425 mg, 

1.94 mmol) in glacial acid (8 mL). After stirring for 16 h at room temperature H2O 

(100 mL) was added. The precipitated raw product was separated and purified by column 

chromatography (cyclohexane / ethyl acetate 19:1 → 7:1) Compound 24 was obtained as 

an orange solid. 

Yield:    479 mg (1.26 mmol, 65 %); 

TLC:    Rf = 0.50 (cyclohexane / ethyl acetate 7:1); 

Melting point:   137 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.90-7.84 (m, 4H, Ar-H,ortho‘, Ar-Hmeta), 7.66-

7.62 (m, 2H, Ar-Hortho), 7.45-7.42 (m, 2H, Ar-Hmeta‘), 3.72 (s, 3H, CH3), 3.71 (s, 2H, CH2) 

ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 171.6 (C=O), 152.0 (Ar-Cpara), 151.7 

(Ar-Cipso‘), 138.5 (Ar-Cmeta), 137.5 (Ar-Cpara‘), 130.3 (Ar-Cmeta‘), 124.6 (Ar-Cortho), 123.3 

(Ar-Cortho’), 97.8 (Ar-Cipso), 81.3 (C(CH3)3), 52.3 (CH2), 41.2 (CH3) ppm; 

IR (ATR): ṽ = 2956, 1732, 1475, 1435, 1296, 1240, 1129, 1000, 836, 820, 803, 712, 549, 

528 cm-1; 

EI-MS: m/z = 380.00383, [M]+; (calc. 380.00217 for C15H13N2O2I). 

 

4-[(E)-(4-Iodophenyl)azo]phenylacetic acid 25 

Method A 

Trifluoroacetic acid (6 mL) was added to a solution of compound 23 (690 mg, 

1.63 mmol) in DCM (50 mL) and the mixture was stirred for 4 h at room temperature. 

After dilution with DCM (75 mL) and acetone (25 mL) the organic phase was washed 

with H2O (50 mL), dried over MgSO4 and filtered. The solvent was removed under 

reduced pressure and the residue was dissolved in DCM (80 mL). After cooling the 

product 25 precipitated. After filtration the solvent of the remaining filtrate was 

evaporated and the remaining crude product was purified by column chromatography 

(cyclohexane/ethyl acetate 4:1 → ethyl acetate→ ethyl acetate/methanol 6:1) to yield 

compound 25 as an orange solid.  
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Yield:     535 mg (1.46 mmol, 90 %). 

 

Method B 

Lithium hydroxide (50.4 mg, 1.05 mmol) was added to a solution of compound 24 

(200 mg, 526 μmol) in THF/H2O (2:1; 60 mL) and stirred for 16 h at room temperature. 

The mixture was neutralised with Amberlite® IR 120 and filtered. The solvent was 

removed under reduced pressure to yield compound 25 as an amorphous orange solid 

after lyophilisation. 

Yield:    188 mg (51.3 μmol, 98 %); 

TLC:    Rf = 0.64 (ethyl acetate/ methanol, 4:1); 

1H-NMR (MeOD, 600 MHz, 300 K): δ = 7.98-7.94 (m, 2H, Ar-Hmeta), 7.92-7.88 (m, 2H, 

Ar-H,ortho‘), 7.71-7.68 (m, 2H, Ar-Hortho), 7.53-7.49 (m, 2H, Ar-H,meta‘), 3.73 (s, 2H, CH2) 

ppm; 

13C-NMR (MeOD, 151 MHz, 300 K): δ = 174.7 (C=O), 153.3 (Ar-Cipso), 152.7 

(Ar-Cipso‘), 139.8 (Ar-Cpara‘, Ar-Cmeta), 131.6 (Ar-Cmeta‘), 125.5 (Ar-Cortho), 124.0 

(Ar-Cortho‘), 98.6 (Ar-Cpara), 41.6 (CH2) ppm; 

IR (ATR): ṽ = 3404, 2928, 2251, 1692, 1186, 1050, 1023, 1000, 824, 526 cm-1; 

EI-MS: m/z = 365.98652, [M]+; (calc. 365.98652 for C14H11N2O2I). 

 

4-[(E)-(4’-Hydroxy-3,4-dimethyl[1,1’-biphenyl]-4-yl)azo]phenylacetic acid 30 

Compound 25 (930 mg, 2.58 mmol), boronic ester 26 (640 mg, 2.58 mmol), potassium 

carbonate (1.07 g, 7.74 mmol) and Pd(PPh3)4 catalyst (29.8 mg, 25.8 μmol) were 

dissolved in a mixture of methanol and DMF (5:1, 60 mL) and stirred under reflux for 

5 h. After removal of the solvent under reduced pressure compound 30 was obtained after 

column chromatography (ethyl acetate→ethyl acetate/ methanol 7:1) as an orange solid. 

Yield:    323 mg (896 μmol, 35 %); 

TLC:    Rf = 0.64 (ethyl acetate/ methanol, 4:1); 

Melting point:   186 °C; 
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1H-NMR: (MeOD, 500 MHz, 300 K): δ = 7.95-7.92 (m, 2H, Ar-H,ortho‘), 7.89-7.86 (m, 

2H, Ar-H,ortho), 7.75-7.72 (m, 2H, Ar-H,meta‘), 7.49-7.46 (m, 2H, Ar-H,meta), 7.31 (s, 2H, 

Ar-H,ortho”), 3.71 (s, 2H, CH2), 2.29 (s, 6H, CH3) ppm; 

13C-NMR: (MeOD, 126 MHz, 300 K): δ = 175.0 (C=O), 155.1 (Ar-Cpara”), 153.1 

(Ar-Cipso), 152.4 (Ar-Cipso‘), 145.6 (Ar-Cpara‘), 139.6 (Ar-Cpara), 132.5 (Ar-Cipso”), 131.5 

(Ar-Cmeta), 128.2 (Ar-Cortho”), 128.1 (Ar-Cmeta‘), 126.2 (Ar-Cmeta”), 124.4 (Ar-Cortho‘), 

123.9 (Ar-Cortho), 41.8 (CH2), 17.0 (CH3) ppm; 

IR (ATR): ṽ = 3267, 2982, 2915, 1710 1480, 1233, 1188, 1157, 1012, 973, 843, 746, 570 

cm-1; 

EI-MS: m/z = 360.14739, [M]+; (calc. 360.14739 for C22H20N2O3). 

 

4-[(E)-(2’-Methylsulfonamido[1,1’-biphenyl]-4-yl)azo]phenylacetic acid 31 

Compound 25 (180 mg, 492 μmol), boronic ester 27 (146 mg, 492 μmol), potassium 

carbonate (204 mg, 1.48 mmol) and Pd(PPh3)4 catalyst (5.69 mg, 4.92 μmol) were 

dissolved in a mixture of methanol and DMF (5:1, 60 mL) and stirred under reflux for 

5 h. After removal of the solvent under reduced pressure compound 31 was obtained after 

column chromatography (ethyl acetate → ethyl acetate/ methanol 7:1) as an orange solid. 

Yield:     189 mg (462 μmol, 94 %); 

TLC:    Rf = 0.48 (ethyl acetate/ methanol, 8:1); 

Melting point:   178 °C; 

1H-NMR: (MeOD, 500 MHz, 300 K): δ = 8.01-7.99 (m, 2H, Ar-H,meta‘), 7.91-7.89 (m, 

2H, Ar-H,ortho), 7.66-7.63 (m, 2H, Ar-H,ortho‘), 7.54-7.47 (m, 3H, Ar-H,meta, Ar-H,ortho”), 

7.45-7.35 (m, 3H, Ar-H,meta”, Ar-H,para‘‘), 3.72 (s, 2H, CH2), 2.78 (s, 3H, CH3) ppm; 

13C-NMR: (MeOD, 125 MHz, 300 K): δ = 175.3 (C=O), 153.2 (Ar-Cipso‘), 153.0 

(Ar-Cipso,), 143.5 (Ar-Cipso”), 139.9 (Ar-C,para), 138.9 (Ar-Cpara‘), 135.3 (Ar-C,ortho”(NH)), 

132.1 (Ar-Cmeta”), 131.7 (Ar-Cortho‘), 131.5 (Ar-Cmeta), 130.1 (C(NH)Ar-Cmeta”), 128.1 

(Ar-Cpara”), 127.8 (Ar-Cortho”), 124.0 (Ar-Cortho, Ar-Cmeta‘), 41.7 (CH2), 39.9 (CH3) ppm; 

IR (ATR): ṽ = 3361, 3282, 1698, 1322, 1149, 849, 768, 539 cm-1; 

EI-MS: m/z = 409.10963, [M]+; (calc. 409.10963 for C21H19N3O4S). 
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4-[(E)-(4-(4-Pyridinyl)phenyl)azo]phenylacetic acid 32 

Compound 25 (802 mg, 2.19 mmol), boronic ester 28 (450 mg, 2.19 mmol), potassium 

carbonate (908 mg, 6.57 mmol) and Pd(PPh3)4 catalyst (25.0 mg, 21.9 μmol) were 

dissolved in a mixture of methanol and DMF (5:1, 60 mL) and stirred under reflux for 

5 h. After removal of the solvent under reduced pressure compound 32 was obtained after 

column chromatography (DCM→methanol 16:1) as an orange solid. 

Yield:    283 mg (892 μmol, 41 %); 

TLC:    Rf = 0.54 (DCM→methanol, 9:1); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.54-8.51 (m, 4H, CAr-H,ortho’’, CAr-H,meta’’), 

7-92-7.90 (m, 2H, Ar-H,meta’), 7.85-7.82 (m, 4H, Ar-H,ortho), 7.67-7.62 (m, 2H, Ar-H,ortho‘), 

7.50-7.47 (m, 2H, Ar-H,meta), 3.59 (s, 2H, CH2) ppm; 

EI-MS: m/z = 168.99, [M-N(C6H4)CH2COOH+H]+; (calc. 317.341 for C19H15N3O2). 

 

4-[(E)-(4-(3-Pyridinyl)phenyl)azo]phenylacetic acid 33 

Compound 25 (945 mg, 2.58 mmol), boronic ester 29 (529 mg, 2.58 mmol), potassium 

carbonate (1.07 g, 7.74 mmol) and Pd(PPh3)4 catalyst (29.8 mg, 25.8 μmol) were 

dissolved in a mixture of methanol and DMF (5:1, 60 mL) and stirred under reflux for 

5 h. After removal of the solvent under reduced pressure compound 33 was obtained after 

column chromatography (DCM→methanol 16:1) as an orange solid. 

Yield:    588 mg (1.85 mmol, 72 %); 

TLC:    Rf = 0.54 (DCM→methanol, 9:1); 

1H-NMR: (DMSO-d6, 500 MHz, 300 K): δ = 9.02-8.99 (m, 1H, NCAr-H,ortho’’), 8.65-

8.60 (dd, 4J = 1.6 Hz, 3J = 4.8 Hz, 1H, Ar-H,para’’), 8.23-8.16 (m, 2H, Ar-H,ortho’’), 8.00-

7.98 (m, 4H, Ar-H,ortho, Ar-H,meta‘), 7.90-7.84 (m, 2H, Ar-H,ortho‘), 7.57-7.46 (m, 3H, 

Ar-H,meta, Ar-H,meta’’), 3.66 (s, 2H, CH2) ppm; 

EI-MS: m/z = 273.14, [M-COOH]+; (calc. 317.341 for C19H15N3O2). 
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4-[(E)-[4-(2-Triethylammoniumacetamido)methyl]phenylazo]phenyl-(phenyl-

thioacetate) 35  

Triethylamine (59.3 μL, 428 μmol) was added to an ice-cold solution of acid 63 (88.1 mg, 

214 μmol), DEPC (77) (68.9 μL, 68.9 μmol) and thiophenol (33.1 μL, 321 μmol) in 

DMF (8 mL). The reaction mixture was stirred for 16 h at room temperature. The solvent 

was then removed under reduced pressure. The crude product was purified by column 

chromatography (DCM → DCM/ methanol 6:1) to yield compound 35 as an orange 

syrup. 

Yield:    54.6 mg (108 μmol, 51 %); 

TLC:    Rf = 0.24 (DCM→methanol, 6:1); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 9.89 (s, 1H, NH), 7.90-7.83 (m, 4H, Ar-Hortho, 

Ar-Hortho‘), 7.49-7.44 (m, 4H, Ar-H,meta, Ar-Hmeta‘), 4.50-4.47 (m, 2H, NHCH2), 4.39-4.34 

(s, 2H, NCH2(C=O)), 3.99 (s, 2H, Ar-CCH2C=O), 3.56-3.48 (m, 6H, CH2CH3), 1.39-1.30 

(t, 3JCH2CH3 = 6.6 Hz, 9H, CH2CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 194.9 (S(C=O)), 163.5 (N(C=O)), 152.0, 151.8 

(Ar-Cipso, Ar-Cipso‘), 141.3 (Ar-Cpara), 136.2 (Ar-Cpara‘), 134.5 (SPh), 130.4 (Ar-Cmeta‘), 

129.5, 129.2 (SPh), 128.5 (Ar-Cmeta), 127.5 (SPh), 123.2, 123.1 (Ar-Cortho, Ar-Cortho‘), 

56.4 (NCH2), 54.4 (CH2), 49.5 (CH2(C=O)), 43.2 (NHCH2), 7.8 (CH3) ppm; 

IR (ATR): ṽ = 3243, 3058, 2986, 1677, 1478, 1274, 1202, 1126, 1042, 801, 749, 609, 

531 cm-1; 

EI-MS: m/z = 503.24695 [M]+; (calc. 503.24752 for C29H35N4O2S). 

 

2-(2-Nitrophenyl)acetic acid methyl ester 42[389] 

2-Nitrophenylacetic acid 40 (16.8 g, 92.7 mmol) was reacted according to General 

procedure A to obtain compound 42 as an amorphous colourless solid. 

Yield:     16.0 g (82.2 mmol; 89 %); lit.: 97 %;[389]   

TLC:    Rf = 0.55 (cyclohexane/ ethyl acetate 7:3); 
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1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.13-8.10 (dd, 3J = 8.2 Hz, 4J = 1.3 Hz, 1H, 

(CNO2)CAr-Hmeta), 7.62-7.53 (m, 1H, Ar-Hmeta), 7.50-7.46 (m, 1H, Ar-Hpara), (dd, 

3J = 7.6 Hz, 4J = 1.1 Hz, 1H, Ar-Hortho), 4.03 (s, 2H, CH2), 3.72 (s, 3H, CH3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 171.2 (C=O), 148.8 (Ar-CorthoNO2), 133.7 

(Ar-Cmeta), 133.3 (Ar-Cortho), 129.7 (Ar-Cipso), 128.6 (Ar-Cpara), 125.3 ((CNO2)Ar-Cmeta), 

52.2 (CH3), 39.5 (CH2) ppm; 

IR (ATR): ṽ = 3092, 2961, 1720, 1515, 1343, 1254, 1013, 795, 107, 664, 589, 416 cm-1; 

EI-MS: m/z = 195.07 [M+H]+; (calc. 195.05316 for C9H9NO4). 

 

2-(3-Nitrophenyl)acetic acid methyl ester 43[391] 

3-Nitrophenylacetic acid 41 (1.00 g, 5.52 mmol) was reacted according to General 

procedure A to obtain compound 43 as a colourless solid. 

Yield:     1.07 g (5.48 mmol; quant.); lit.: 100 %;[391]   

TLC:    Rf = 0.48 (cyclohexane/ ethyl acetate 7:3); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 8.18-8.13 (m, 2H, (C(NO2))CAr-Hortho, 

Ar-Cpara), 7.65-7.62 (m, 1H, Ar-Hortho), 7.54-7.50 (m, 1H, Ar-Hmeta), 3.75 (s, 2H, CH2), 

3.73 (s, 3H, CH3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 170.8 (C=O), 148.3 (Ar-CmetaNO2), 135.7 

(Ar-C,ipso), 135.5 (Ar-C,ortho), 129.4 (Ar-Cmeta), 124.4, 122.2 ((C(NO2))CAr-Hortho, 

Ar-Cpara), 52.2 (CH3), 40.5 (CH2) ppm; 

EI-MS: m/z = 195.05310 [M]+; (calc. 195.05316 for C9H9NO4). 

 

2-(2-Aminophenyl)acetic acid methyl ester 44[390] 

Compound 42 (7.50 g, 38.4 mmol) was reacted according to General procedure B to yield 

compound 44 quantitatively as a red oil. 

Yield:    6.34 g (38.4 mmol, quant.); lit.: 100 %;[390] 

TLC:    Rf = 0.29 (cyclohexane/ ethyl acetate 7:3); 
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1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.12-7.07 (m, 2H, Ar-Hortho, Ar-Hpara), 6.78-

6.71 (m, 2H, Ar-Hmeta), 3.69 (s, 3H, CH3), 3.58 (s, 2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 172.3 (C=O), 145.2 (Ar-C,orthoNH), 131.2 

(Ar-C,para), 128.6 (Ar-C,ortho), 115.1 ((CNH)Ar-Cmeta), 119.1 (Ar-Hipso), 116.7 (Ar-Hmeta), 

52.1 (CH3), 38.3 (CH2) ppm; 

EI-MS: m/z = 165.09 [M]+; (calc. 165.07898 for C9H11NO2). 

 

2-(3-Aminophenyl)acetic acid methyl ester 45[392] 

Compound 43 (1.05 g, 5.40 mmol) was reacted according to General procedure B to yield 

compound 45 quantitatively as a red oil. 

Yield:    892 mg (5.40 mmol, quant.); 

TLC:    Rf = 0.26 (cyclohexane/ ethyl acetate 7:3); 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.12-7.08 (m, 1H, Ar-Hmeta), 6.67-6.65 (m, 1H, 

Ar-Hortho),6.62-6.57 (m, 2H, (C(NO2))CAr-Hortho, Ar-Cpara), 3.68 (s, 3H, CH3), 3.53 (s, 

2H, CH2) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 172.3 (C=O), 146.8 (Ar-CmetaNO2), 135.2 

(Ar-C,ipso), 129.6 (Ar-C,meta), 119.6 (Ar-Cortho), 116.0 ((C(NO2))Ar-Cortho), 114.1 

Ar-Cpara), 52.2 (CH3), 41.4 (CH2) ppm; 

EI-MS: m/z = 165.07879 [M]+; (calc. 165.07898 for C9H11NO2). 

 

tert-Butyl-N-(4-aminobenzyl)carbamate 47[397] 

Di-tert-butyldicarbonate (20.3 g, 93.1 mmol) was added to a solution of 

4-aminobenzylamine 46 (9.30 mL, 84.3 mmol) in THF (100 mL). The mixture was 

stirred at room temperature over night before the solvent was removed under reduced 

pressure. The crude product was purified by column chromatography (cyclohexane/ ethyl 

acetate 2:1) to obtain compound 47 as slightly brown solid. 

Yield:    16.4 g (74.0 mmol, 88 %); lit.: 80 %;[397] 

TLC:    Rf = 0.20 (cyclohexane/ ethyl acetate 2:1); 
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Melting point:   78 °C, lit.[424]: 74-75 °C; 

1H-NMR: (CDCl3, 500 MHz, 300 K): δ = 7.14-6.99 (m, 2H, Ar-Hortho), 6.72-6.55 (m, 

1H, Ar-Hmeta), 4.71 (s, 1H, NH), 4.15 (d, 2H, 3J = 5.1 Hz, CH2NH), 3.32 (s, 2H, NH2), 

1.45 (s, 9H, CH3) ppm; 

13C-NMR: (CDCl3, 126 MHz, 300 K): δ = 155.8 (C=O), 145.7 (Ar-Cpara), 128.9 

(Ar-C,ortho), 128.8 (Ar-C,ipso), 115.2 (Ar-Cmeta), 79.3 (C(CH3)3), 44.4 (CH2), 28.4 (CH3) 

ppm; 

IR (ATR): ṽ = 3427, 3344, 2977, 2932, 1686, 1513, 1363, 1290, 1265, 1172, 817 cm-1; 

EI-MS: m/z = 222.11, [M]+; (calc. 222.1368 for C12H18N2O2). 

 

tert-Butyl-N-(4-nitrosobenzyl)carbamate 48[396] 

Compound 47 (10.0 g, 45.0 mmol) was reacted according to general procedure C. The 

raw product of target compound 48 was isolated as a mixture with the respective nitro 

compound in a ratio of 84/16 as a green oil and a yield for compound 48 of 62 %. The 

compound was used without further purification. 

1H-NMR (CDCl3, 200 MHz, 300 K): δ = 8.25-8.17 (m, Ar-H(NO2)), 7.93-7.83 (m, 

Ar-H(of compound 48)), 7.58-7.48 (m, Ar-H(of compound 48)), 7.51-7.37 (m, 

Ar-H(NO2)), 4.47-4.37 (m, 2H, CH2NH), 1.51-1.43 (s, 9H, CH3) ppm. 

 

(9H-Fluoren-9-yl-methyl)-N-[(4-nitrophenyl)methyl]carbamate 50[393-394] 

Chloroformic acid 9H-fluoren-9-yl-methyl ester (1.37 g, 5.30 mmol) was added to a 

solution of 4-nitrobenzylamine hydrochloride 49 (1.00 g, 5.30 mmol) and DIPEA 

(4.07 mL, 24.9 mmol) in DCM (50 mL). The mixture was stirred at room temperature for 

16 h and then diluted with DCM. The organic layer was washed with aqueous 

hydrochloric acid (10 %, 2 75 mL) and sat NaHCO3 solution (75 mL) and subsequently 

dried over MgSO4. The suspension was filtered and the solvent removed under reduced 

pressure. The crude product was purified by column chromatography and crystallised in 

DCM to obtain compound 50 as a colourless solid.  

Yield:    1.66 g (4.43 mmol, 87 %); lit.: 92 %;[394]; 
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TLC:    Rf = 0.32 (cyclohexane/ ethyl acetate 2:1); 

Melting point:   155 °C; 

1H-NMR (CDCl3, 200 MHz, 300 K): δ = 8.16-8.05 (m, 2H, Ar-H), 7.74-7.66 (m, 2H, 

Ar-HFmoc), 7.56-7.48 (m, 2H, Ar-HFmoc), 7.41-7.21 (m, 6H, Ar-HFmoc, Ar-H), 5.17-5.06 

(m, 1H, NH), 4.54-4.44 (d, 3JCH, CH2 = 6.2 Hz, 2H, CH2, Fmoc), 4.42-4.35 (d, 

3JNH,CH2 = 6.2 Hz, 2H, CH2NH), 4.20-4.09 (t, 3JCH, CH2 = 6.2 Hz, 1H, CHCH2, Fmoc) ppm; 

IR (ATR): ṽ = 3365, 3322, 2950, 1698, 1525, 1345, 1259, 984, 757, 740, 731 cm-1; 

EI-MS: m/z = 374.12, [M]+; (calc. 374.389 for C22H18N2O4). 

 

(9H-Fluoren-9-yl-methyl)-N-[(4-aminophenyl)methyl]carbamate 51[255] 

A solution of compound 50 (1.56 g, 4.17 mmol) in ethanol (120 mL) and dioxane 

(40 mL) was reacted according to general procedure B with a reduced reaction time of 

4 h. Amine 51 was obtained as a colourless solid after column chromatography 

(cyclohexane/ ethyl acetate 2:1). 

Yield:    1.09 mg (3.17 mmol, 76 %); lit.: 80 %;[393] 

TLC:    Rf = 0.26 (cyclohexane/ ethyl acetate 2:1); 

1H-NMR (CDCl3, 200 MHz, 300 K): δ = 7.72-7.65 (m, 2H, Ar-H), 7.58-7.50 (m, 2H, 

Ar-HFmoc), 7.38-7.17 (m, 2H, Ar-HFmoc), 7.06-6.97 (m, 6H, Ar-HFmoc, Ar-H), 6.68-6.58 

(m, 1H, NH), 5.77-5.67 (d, 3JCH, CH2 = 6.2 Hz, 2H, CH2, Fmoc), 4.39-4.30 (d, 

3JNH, CH2 = 6.2 Hz, 2H, CH2NH), 4.22-4.09 (t, 3JCH, CH2 = 6.2 Hz, 1H, CHCH2, Fmoc) ppm. 

 

3-[(E)-(4-tert-Butyl-N-benzylcarbamate)azo]methylphenylacetate 52 

A solution of compound 48 (5.00 mmol) in acetic acid (20 mL) was added to a solution 

of amine 45 (826 mg, 5.00 mmol) in acetic acid (15 mL) and stirred at room temperature 

for 1 d. After addition of H2O (100 mL) the mixture was extracted with ethyl acetate (3 x 

100 mL). The combined organic layers were dried over MgSO4, filtered and the solvent 

was removed under reduced pressure. Column chromatography (toluene → toluene/ethyl 

acetate 9:1) gave compound 52 as an orange solid. 

Yield:    447 mg (1.17 mmol, 23 %); 



Experimental section 311 

 

TLC:    Rf = 0.34 (toluene / ethyl acetate 9:1); 

Melting point:   96 °C; 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.90-7.86 (m, 2H, Ar-H,ortho), 7.84-7.81 (m, 2H, 

Ar-Hortho‘CH, Ar-Hpara), 7.50-7.39 (m, 4H, Ar-Hmeta, Ar-H,meta‘, Ar-Hortho‘), 4.92 (s, 1H, 

NH), 4.40 (d, 3J = 4.1 Hz, 2H, NHCH2), 3.74 (s, 3H, CH3), 3.72 (s, 2H, CH2), 1.48 (s, 9H, 

C(CH3)3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.9 (C=O), 152.9 (Ar-Cipso‘), 152.0 

(Ar-Cipso), 135.2 (Ar-Cmeta’CH2), 141.9 (Ar-Cpara), 132.0 (Ar-Cortho‘Ar-Cmeta’CH2), 129.4 

(Ar-Cmeta’H), 128.0 (Ar-Cmeta), 123.6 (Ar-Cpara‘), 123.3 (Ar-Cortho), 122.2 (Ar-Cortho‘), 79.8 

(C(CH3)3), 52.3 (CH3), 44.2 (NHCH2), 41.2 (CH2), 28.6 (C(CH3)3) ppm; 

IR (ATR): ṽ = 3338, 2983, 1728, 1505, 1245, 1161, 1052, 876, 849, 717, 523 cm-1; 

EI-MS: m/z = 383.18451, [M]+; (calc. 383.18451 for C21H25N3O4). 

 

4-[(E)-(4-tert-Butyl-N-benzylcarbamate)azo]methylphenylacetate 53 

A solution of compound 48 (3.82 mmol) in acetic acid (20 mL) was added to a solution 

of amine 20 (631 mg, 3.82 mmol) in acetic acid (10 mL) and stirred at room temperature 

for 5 d. After addition of H2O (100 mL) the mixture was extracted with ethyl acetate (3 x 

100 mL). The combined organic layers were dried over MgSO4, filtered and the solvent 

was removed under reduced pressure. Column chromatography (toluene → toluene/ethyl 

acetate 9:1) gave compound 53 as an orange solid. 

Yield:    935 mg (2.44 mmol, 64 %); 

TLC:    Rf = 0.33 (toluene / ethyl acetate 9:1); 

Melting point:    137 °C; 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.89-7.86 (m, 4H, Ar-H,ortho, Ar-Hortho‘), 7.44-

7.40 (m, 4H, Ar-Hmeta, Ar-H,meta‘), 4.93 (s, 1H, NH), 4.40 (d, 3J = 5.4 Hz, 2H, NHCH2), 

3.72 (s, 3H, CH3), 3.71 (s, 2H, CH2), 1.48 (s, 9H, C(CH3)3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.7 (C=O), 152.2, 151.8 (Ar-Cipso‘, Ar-Cipso), 

142.2 (Ar-Cpara), 137.1 (Ar-Cpara‘), 130.2 (Ar-Cmeta‘), 128.2 (Ar-Cmeta), 123.2 (Ar-Cortho, 

Ar-Cortho‘), 79.8 (C(CH3)3), 52.1 (CH3), 44.4 (NHCH2), 41.1 (CH2), 28.4 (C(CH3)3) ppm; 
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IR (ATR): ṽ = 3324, 2989, 1737, 1675, 1510, 1250, 1160, 840 cm-1; 

EI-MS: m/z = 383.18425, [M]+; (calc. 383.18451 for C21H25N3O4). 

 

3-[(E)-(4-Aminobenzyl)azo]methylphenylacetate 54     

Trifluoroacetic acid (1.80 mL) was added to a solution of compound 52 (380 mg, 

991 μmol) in DCM (30 mL) and stirred for 5 h at room temperature. The solvent was 

removed under reduced pressure and the crude product was codestilled with toluene 

(3 x 40 mL). Compound 54 was obtained quantitatively as an orange solid. 

Yield:    quant.; 

TLC:    Rf = 0.0 (toluene / ethyl acetate 9:1); 

Melting point:    188 °C; 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 8.01-7.97 (m, 2H, Ar-Hortho), 7.87-7.83 (m, 2H, 

Ar-Hortho‘), 7.66-7.62 (m, 2H, Ar-Hmeta), 7.54-7.50 (t, 3J = 7.6 Hz, 1H, Ar-Hmeta‘), 7.48-

7.45 (t, 3J = 7.6 Hz, 1H, Ar-Hpara‘), 4.22 (s, 2H, NH2CH2), 3.79 (s, 2H, CH2) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 173.6 (C=O), 154.2 (Ar-Cipso), 154.1 

(Ar-Cipso‘), 137.4 (Ar-Cpara), 137.2 (Ar-Cmeta‘), 133.7 (Ar-Cpara‘), 131.0 (Ar-Cmeta), 130.5 

(Ar-Cmeta‘), 124.8 (Ar-Cortho‘) 124.5 (Ar-Cortho), 122.9 (Ar-Cortho‘CH), 52.6 (CH3), 44.0 

(NHCH2), 41.4 (CH2) ppm; 

IR (ATR): ṽ = 3053, 1738, 1662, 1506, 1436, 1214, 1174, 1129, 841, 802, 725, 559 cm-1; 

EI-MS: m/z = 283.13165, [M]+; (calc. 283.13208 for C16H17N3O2). 

 

4-[(E)-(4-Aminobenzyl)azo]methylphenylacetate 55 

Trifluoroacetic acid (3.50 mL) was added to a solution of compound 53 (850 mg, 

2.22 mmol) in DCM (40 mL) and stirred for 5 h at room temperature. The solvent was 

removed under reduced pressure and the crude product was codestilled with toluene 

(3 x 50 mL). Compound 55 was obtained quantitatively as an orange solid. 

Yield:    quant.; 

TLC:    Rf = 0.0 (toluene / ethyl acetate 9:1); 
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Melting point:    190 °C; 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.99-7.96 (m, 2H, Ar-H,ortho‘), 7.90-7.88 (m, 

2H, Ar-Hortho), 7.65-7.62 (m, 2H, Ar-Hmeta‘), 7.49-7.46 (m, 2H, Ar-H,meta), 4.22 (s, 2H, 

NHCH2), 3.77 (s, 2H, CH2), 3.71 (s, 3H, CH3) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 173.5 (C=O), 154.3 (Ar-Cipso‘), 152.9 

(Ar-Cipso), 139.7 (Ar-Cpara‘), 137.3 (Ar-Cpara), 131.5 (Ar-Cmeta‘), 131.0 (Ar-Cmeta), 124.4 

(Ar-Cortho‘), 124.1 (Ar-Cortho), 52.6 (CH3), 44.0 (NHCH2), 41.5 (CH2) ppm; 

IR (ATR): ṽ = 2959, 1738, 1663, 1507, 1214, 1130, 841, 725 cm-1; 

EI-MS: m/z = 283.13208, [M]+; (calc. 283.13208 for C16H17N3O2). 

 

2-(Phenyl)-[(E)-4’-azo-(4’’-fluorenylmethoxycarbonylaminomethyl)phenyl] acetic 

acid tert butyl ester 56 

Amine 51 (947 mg, 2.75 mmol) was dissolved in a mixture of acetic acid and DMSO 

(20 mL, 19:1) and nitroso compound 18 (2.75 mmol) was subsequently added. The 

mixture was stirred at room temperature for 5 d. After addition of water (100 mL) the 

precipitate was isolated and the remaining aqueous phase was extracted with DCM 

(2 x 75 mL). The precipitate was dissolved in the organic phase which was then dried 

over MgSO4, filtered and the solvent removed under reduced pressure. The crude product 

was purified by column chromatography (cyclohexane/ ethyl acetate 6:1 → 2:1) to obtain 

compound 56 as an orange solid. 

Yield:    656 mg (1.20 mmol, 44 %); 

TLC:    Rf = 0.54 (cyclohexane/ ethyl acetate 3:1);  

Melting point:   118 °C; 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.83-7.77 (m, 4H, Ar-Hortho, Ar-Hortho’), 7.71-

7.66 (m, 2H, Ar-HFmoc), 7.56-7.48 (m, 2H, Ar-HFmoc), 7.38-7.29 (m, 6H, Ar-HFmoc, 

Ar-Hpara, Ar-Hpara’), 7.27-7.22 (m, 2H, Ar-HFmoc), 5.08-5.04 (m, 1H, NH), 4.45-4.41 (d, 

3JCH, CH2 = 6.8 Hz, 2H, CH2, Fmoc), 4.40-4.36 (d, 3JNH, CH2 = 6.3 Hz, 2H, CH2NH), 4.19-

4.14 (t, 3JCH, CH2 = 6.8 Hz, 1H, CHCH2, Fmoc), 3.53 (s, 2H, CH2(C=O)), 1.38 (s, 9H, 

CH3) ppm; 
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13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.5 (CH2(C=O)), 156.4 NH(C=O)), 152.2 

(Ar-CFmoc), 151.7 (Ar-Cipso, Ar-Cipso’), 144.0 (Ar-CFmoc), 141.5 (Ar-Cpara), 138.1 

(Ar-Cpara’), 130.1 (Ar-Cmeta‘), 128.2 (Ar-CFmoc), 127.9 (Ar-Cmeta), 127.2 (Ar-CFmoc), 125.1 

(Ar-CFmoc), 123.3, 123.1 (Ar-Cortho‘, Ar-Cortho), 120.2 (Ar-CFmoc), 81.3 (C(CH3)3), 66.9 

(CH2,Fmoc), 47.5 (CH,Fmoc), 44.9 (NHCH2), 42.8 (CH2(C=O)), 28.3 (CH3) ppm; 

IR (ATR): ṽ = 3341, 2974, 1728, 1686, 1535, 1272, 1249, 1140, 731, 554, 419, 412 cm-1; 

EI-MS: m/z = 547.24530, [M]+; (calc. 547.24711 for C34H33N3O4). 

 

4-[(E)-(4-Aminobenzyl)azo]-tert-butylphenylacetate 57 

Piperidine (5.80 mL) was added to a solution of Fmoc protected amine 56 (606 mg, 

1.20 mmol) in dry DMF (30 mL) and the mixture was stirred at room temperature for 

16 h. The solvent was then removed under reduced pressure and the crude product was 

purified by column chromatography (DCM/ methanol 9:1) to obtain amine 57 as an 

amorphous orange solid. 

Yield:    238 mg (731 μmol, 61 %); 

TLC:    Rf = 0.36 (DCM/ methanol 9:1); 

1H-NMR (DMSO-d6, 500 MHz, 300 K): δ = 7.87-7.81 (m, 4H, Ar-H,ortho, Ar-Hortho’), 

7.58-7.55 (m, 2H, Ar-Hmeta), 7.49-7.45 (m, 2H, Ar-Hmeta’), 3.85 (s, 2H, NHCH2), 3.69 (s, 

2H, (C=O)CH2), 3.34 (s, 1H, NH), 1.41 (s, 9H, CH3) ppm; 

13C-NMR (DMSO-d6, 126 MHz, 300 K): δ = 170.5 (C=O), 151.2 (Ar-Cipso, Ar-Cipso’), 

147.5 (Ar-Cpara), 138.8 (Ar-Cpara’), 130.8 (Ar-Cmeta‘), 128.6 (Ar-Cmeta), 122.9 (Ar-Cortho, 

Ar-Cortho’), 80.9 (C(CH3)3), 45.4 (NHCH2), 41.8 ((C=O)CH2), 28.2 (CH3) ppm; 

IR (ATR): ṽ = 3431, 2250, 1660, 1052, 1024, 1004, 822, 759, 614 cm-1; 

EI-MS: m/z = 324.15, [M-H]+; (calc. 325.405 for C19H23N3O2). 

   

3-{(E)-[4-(2-Bromoacetamido)methyl]phenylazo}methylphenylacetate 59 

Bromo acetylchloride 58 (147 μL, 1.76 mmol) was added dropwise to an ice-cold 

suspension of compound 54 (250 mg, 882 μmol), pyridine (78.3 μL, 970 μmol) and 

DMAP (5.39 mg, 44.1 μmol) in DCM (10 mL). The mixture was stirred for another 16 h 
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at room temperature. After addition of 1 N hydrochloric acid (30 mL) and DCM (100 mL) 

the phases were separated and the aqueous one was extracted with DCM (2 x 25 mL). 

The combined organic layers were dried over MgSO4, filtered and the solvent removed 

under reduced pressure. Column chromatography (cyclohexane/ ethyl acetate 6:1 → 1:1) 

gave compound 59 as an amorphous orange solid. 

Yield:    105 mg (260 μmol, 27 %); 

TLC:    Rf = 0.74 (ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.91-7.86 (m, 4H, Ar-H,ortho, Cmeta’CAr-H,ortho‘, 

Ar-Hpara’), 7.45-7.42 (m, 4H, Ar-Hmeta, Ar-H,ortho’, Ar-H,meta‘), 4.59-4.56 (m, 2H, NHCH2), 

4.14 (s, 2H, CH2Br), 3.72 (s, 2H, CH2(C=O)), 3.71 (s, 3H, CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.7 ((C=O)O), 166.1 ((C=O)NH), 152.3, 

151.8 (Ar-Cipso, Ar-Cipso‘), 140.4 (Ar-Cpara), 137.3 (Ar-Cmeta‘CH2), 130.3, 128.6 (Ar-Cmeta, 

Cmeta’Ar-Cortho’, Ar-Cpara’), 123.5, 123.3 (Ar-Cortho, Ar-Cortho‘, Ar-Cmeta‘), 52.4 (CH3), 43.7 

(NHCH2), 42.8 (CH2Br), 41.2 (CH2) ppm; 

IR (ATR): ṽ = 3250, 2925, 1745, 1733, 1646, 1557, 1435, 1296, 1251, 1132, 1011, 844, 

690, 562, 529 cm-1; 

EI-MS: m/z = 403.05, [M]+; (calc. 403.05315 for C18H18BrN3O3). 

 

3-[(E)-[4-(2-Bromoacetamido)methyl]phenylazo]methylphenylacetate 60 

Bromo acetylchloride 58 (130 μL, 1.56 mmol) was added dropwise to an ice-cold 

suspension of compound 55 (222 mg, 782 μmol), pyridine (69.4 μL, 860 μmol) and 

DMAP (4.78 mg, 39.1 μmol) in dry DCM (15 mL). The mixture was stirred for another 

16 h at room temperature. After addition of 1 N hydrochloric acid (30 mL) and DCM 

(100 mL) phases were separated and the aqueous one was extracted with DCM (2 x 

30 mL). The combined organic layers were dried over MgSO4, filtered and the solvent 

removed under reduced pressure. Column chromatography (cyclohexane/ ethyl acetate 

6:1 → 1:1) gave compound 60 as an orange solid. 

Yield:     138 mg (341 μmol, 44 %); 

TLC:    Rf = 0.73 (ethyl acetate); 

Melting point:   124 °C; 
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1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.92-7.88 (m, 2H, Ar-H,ortho‘), 7.85-7.82 (m, 

2H, Ar-Hortho), 7.50-7.40 (m, 4H, Ar-H,meta, Ar-H,meta‘), 4.60-4.56 (m, 2H, NHCH2), 4.15 

(s, 2H, CH2Br), 3.74 (s, 2H, CH2(C=O)), 3.72 (s, 3H, CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.7 ((C=O)O), 165.9 ((C=O)NH), 152.7 

(Ar-Cipso), 152.2 (Ar-Cipso‘), 140.2 (Ar-Cpara’), 135.2 (Ar-Cpara), 131.8 (Ar-Cmeta‘), 128.3 

(Ar-Cmeta), 123.4 (Ar-Cortho’), 121.9 (Ar-Cortho), 52.0 (CH3), 43.7 (NHCH2), 42.7 (CH2Br), 

41.0 (CH2) ppm; 

IR (ATR): ṽ = 3267, 3073, 2953, 1735, 1644, 1553, 1434, 1304, 1248, 1233, 1219, 1128, 

1013, 843, 687, 557 cm-1; 

EI-MS: m/z = 267.07, [M-NHC=OCH2Br]+; (calc. 403.05315 for C18H18BrN3O3). 

 

4-{(E)-[4-(2-Bromoacetamido)methyl]phenylazo}-tert-butylphenylacetate 61 

Bromo acetylchloride 58 (128 μL, 1.54 mmol) was added dropwise to an ice-cold 

suspension of compound 57 (250 mg, 768 μmol), pyridine (68.3 μL, 846 μmol) and 

DMAP (4.54 mg, 37.2 μmol) in DCM (10 mL). The mixture was stirred for another 16 h 

at room temperature. After addition of 1 N hydrochloric acid (30 mL) and DCM (100 mL) 

phases were separated and the aqueous one was extracted with DCM (2 x 25 mL). The 

combined organic layers were dried over MgSO4, filtered and the solvent removed under 

reduced pressure. Column chromatography (cyclohexane/ ethyl acetate 6:1 → 1:1) gave 

compound 61 as an orange solid. 

Yield:    259 mg (581 μmol, 76 %); 

TLC:    Rf = 0.75 (ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.91-7.86 (m, 4H, Ar-H,ortho‘, Ar-H,ortho‘), 7.45-

7.41 (m, 4H, Ar-Hmeta, Ar-H,meta‘), 4.60-4.55 (m, 2H, NHCH2), 4.14 (s, 2H, CH2Br), 3.60 

(s, 2H, CH2(C=O)), 1.45 (s, 9H, CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.4 ((C=O)O), 165.7 ((C=O)NH), 152.2 

(Ar-Cipso), 151.5 (Ar-Cipso‘), 140.1 (Ar-Cpara), 138.1 (Ar-Cpara‘), 130.0 (Ar-Cmeta‘), 128.4 

(Ar-Cmeta), 123.3 (Ar-Cortho), 123.0 (Ar-Cortho‘), 81.2 (C(CH3)3), 43.5 (NHCH2), 42.6 

(CH2Br, CH2(C=O)), 28.0 (CH3) ppm; 

EI-MS: m/z = 445.10010, [M]+; (calc. 445.10010 for C21H24BrN3O2). 
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4-{(E)-[4-(2-Triethylammoniumacetamido)methyl]phenylazo}-tert-butylphenyl-

acetate 62 

A solution of triethylamine in methanol (5 mL) was added to a solution of compound 61 

(259 mg, 581 μmol) in methanol (20 mL). The mixture was stirred for 2 h at room 

temperature before the solvent was removed under reduced pressure. The residue was 

dissolved in methanol and subsequently poured into diethyl ether. Crude product 62 was 

obtained by filtration as an orange solid which was purified by column chromatography 

(DCM → DCM/methanol 4:1) to yield compound 62 as an orange syrup.  

Yield:    118 mg (252 μmol, 43 %); 

TLC:    Rf = 0.25 (ethyl acetate/ methanol 6:1); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 9.99 (t, 3JNHCH2 = 5.9 Hz, 1H, NH), 7.87-7.84 

(m, 4H, Ar-Hortho, Ar-Hortho‘), 7.56-7.52 (m, 2H, Ar-H,meta), 7.43-7.40 (m, 2H, Ar-Hmeta‘), 

4.60 (s, 2H, NCH2C=O), 4.49 (d, 3JNHCH2 = 5.9 Hz, 2H, NHCH2), 3.60 (s, 2H, 

Ar-CCH2C=O), 3.57-3.51 (q, 3JCH2CH3 = 7.3 Hz, 6H, CH2CH3), 1.45 (s, 9H, C(CH3)3), 

1.41 (t, 3JCH2CH3 = 7.3 Hz, 9H, CH2CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.4 (O(C=O)), 162.9 (N(C=O)), 151.8 

(Ar-Cipso), 151.5 (Ar-Cipso‘), 140.6 (Ar-Cpara), 137.8 (Ar-Cpara‘), 129.9 (Ar-Cmeta‘), 128.7 

(Ar-Cmeta), 122.9 (Ar-Cortho, Ar-Cortho‘), 81.0 (C(CH3)3), 57.0 (NCH2), 54.7 (CH2), 42.5 

(Ar-CCH2C=O), 27.8 (C(CH3)3), 8.0 (CH2CH3) ppm; 

IR (ATR): ṽ = 3412, 3203, 3057, 2979, 2930, 1722, 1678, 1232, 1141, 1012, 842, 

549 cm-1; 

EI-MS: m/z = 438.26, [M-CH2CH3]
+; (calc. 467.30167 for C27H39N4O3). 

 

4-{(E)-[4-(2-Triethylammoniumacetamido)methyl}phenylazo]phenylacetic acid 63 

Trifluoroacetic acid acid (4.00 mL) was added to a solution of compound 62 (100 mg, 

214 μmol) and the mixture was stirred for 4 h at room temperature. Finally, the solvent 

was removed under reduced pressure and the crude product was codestilled with toluene 

(2 x 40 mL) and DCM (40 mL) to yield compound 63 quantitatively as an orange syrup. 

Yield:    quant.; 

TLC:    Rf = 0 (ethyl acetate/ methanol 6:1); 
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1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.92-7.86 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.51-

7.46 (m, 4H, Ar-H,meta, Ar-Hmeta‘), 4.51 (s, 2H, NHCH2), 4.03 (s, 2H, NCH2C=O), 3.72 

(s, 2H, Ar-CCH2C=O), 3.63-3.58 (q, 3JCH2CH3 = 7.3 Hz, 6H, CH2CH3), 1.34 (t, 

3JCH2CH3 = 7.3 Hz, 9H, CH2CH3) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 175.3 (O(C=O)), 164.9 (N(C=O)), 153.7 

(Ar-Cipso), 153.2 (Ar-Cipso‘), 142.8 (Ar-Cpara), 140.1 (Ar-Cpara‘), 131.8 (Ar-Cortho), 130.0 

(Ar-Cmeta), 124.4 (Ar-Cortho, Ar-Cortho‘), 57.5 (NCH2), 55.9 (CH2), 44.2 (NHCH2), 8.1 

(CH3) ppm; 

IR (ATR): ṽ = 3263, 2993, 1671, 1601, 1560, 1420, 1200, 1175, 1127, 1012, 832, 800, 

720, 598, 530 cm-1; 

EI-MS: m/z = 438.26, [M-CH2CH3]
+; (calc. 467.302 for C27H39N4O3). 

 

4-{(E)-[4-(2-Trimethylammoniumacetamido)methyl]phenylazo}methylphenyl-

acetate 65-I 

A solution of trimethylamine in methanol (30 wt.%) (6 mL) was added to a solution of 

compound 60 (224 mg, 502 μmol) in methanol (20 mL). The mixture was stirred for 2 h 

at room temperature before the solvent was removed under reduced pressure. The residue 

was dissolved in methanol and subsequently poured into diethyl ether. Crude product 65-

I was obtained by filtration as an orange solid which was purified by column 

chromatography (DCM → DCM/methanol 4:1) to yield compound 65-I. 

 

4-{(E)-[4-(2-Trimethylammoniumacetamido)methyl]phenylazo}methylphenyl- 

acetate 65-II 

Oxalyl chloride (10.8 mL, 97.2 mmol) was added to an ice-cold solution of betaine 63 

(11.4 g, 97.2 mmol) in dry acetonitrile (120 mL). After adding 20 drops of dry DMF the 

mixture was stirred for 20 min at room temperature. The solvent was then removed under 

reduced pressure and the residue dissolved in dry DMF (60 mL). The solution of the acyl 

chloride of betaine 63 was added dropwise to an ice-cold solution of amine 53 (2.00 g, 

4.86 mmol) and DIPEA (1.65 mL, 9.72 mmol) in dry DMF (60 mL). The mixture was 

stirred at room temperature for 16 h. After removal of the solvent under reduced pressure 

the crude product was purified by column chromatography twice (DCM/ methanol 9:1 
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and ethyl acetate/ethanol 9:1). Finally, compound 64-II was dissolved in ethanol and 

isolated by precipitation with ethyl acetate. Compound 64-II was obtained by filtration 

as an orange solid. 

Yield:    1.38 g (3.30 mmol, 68 %); 

TLC:    Rf = 0.63 (DCM/ methanol 6:1); 

Melting point:   172 °C; 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.90-7.85 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.53-

7.50 (m, 2H, Ar-H,meta), 7.48-7.45 (Ar-Hmeta‘), 4.52 (s, 2H, NHCH2), 4.22 (s, 2H, 

NCH2(C=O)), 3.76 (s, 3H, OCH3), 3.71 (s, 2H, Ar-CCH2C=O), 3.36 (s, 9H, 

N(CH3)3) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 173.4 (O(C=O)), 164.8 (N(C=O)), 153.4 

(Ar-Cipso), 152.9 (Ar-Cipso‘), 142.6 (Ar-Cpara), 139.4 (Ar-Cpara‘), 131.5 (Ar-Cmeta‘), 129.7 

(Ar-Cmeta), 124.1 (Ar-Cortho’), 124.0 (Ar-Cortho), 65.6 (CH2NMe3), 55.0 (N(CH3)3), 52.5 

(OCH3), 43.8 (NCH2), 41.4 (CH2(C=O)) ppm; 

IR (ATR): ṽ = 3356, 3157, 3011, 2948, 1737, 1679, 1416, 1263, 883, 824, 700, 544 cm-1; 

EI-MS: m/z = 323.14, [M-·(C=O)OCH3-H]+; (calc. 382.20832 for C21H27N4O3). 

 

4-{(E)-[4-(2-Trimethylammoniumacetamido)methyl]phenylazo}phenylacaetic 

acid 66 

Lithium hydroxide (192 mg, 8.00 mmol) was added to a solution of methyl 

ester 65 (1.53 g, 4.00 mmol) in a mixture of THF and water (2:1, 60 mL). The mixture 

was stirred at room temperature for 16 h. The mixture was then neutralised with 

Amberlite® IR 120, filtered and the solvent removed under reduced pressure. 

Compound 66 was obtained as an amorphous orange solid.  

Yield:    1.40 g (3.80 mmol, 95 %); 

TLC:    Rf = 0.13 (ethyl acetate/ methanol 6:1); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.91-7.83 (m, 4H, Ar-Hortho, Ar-Hortho‘), 7.57-

7.43 (m, 4H, Ar-H,meta, Ar-Hmeta‘), 4.52 (s, 2H, NHCH2), 4.28 (s, 2H, NCH2(C=O)), 3.72 

(s, 2H, Ar-CCH2C=O), 3.37 (s, 9H, N(CH3)3) ppm; 
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13C-NMR (MeOD, 126 MHz, 300 K): δ = 172.9 (O(C=O)), 164.7 (N(C=O)), 153.4 

(Ar-Cipso), 152.9 (Ar-Cipso‘), 142.6 (Ar-Cpara), 139.1 (Ar-Cpara‘), 131.4 (Ar-Cmeta‘), 129.7 

(Ar-Cmeta), 124.1 (Ar-Cortho’), 123.9 (Ar-Cortho), 67.9 (CH2NMe3), 54.8 (N(CH3)3), 43.8 

(NCH2), 41.4 (CH2(C=O)) ppm; 

IR (ATR): ṽ = 3369, 1728, 1676, 1473, 1297, 1082, 831, 526 cm-1; 

EI-MS: m/z = 334.92, [M-NHC=OCH2N(CH3)3+Br+H]+; (calc. 369.192 for 

C20H25N4O3). 

 

p-[(E)-(p’-Acetic acid methyl ester)phenylazo]phenyl α-D-mannopyranoside 70 

4-Aminophenyl α-D-mannopyranoside 67 (400 mg, 1.48 mmol) and nitroso 

compound 21 (1.48 mmol) were dissolved in acetic acid (50 mL) and stirred at room 

temperature for 2 d. After addition of sat. NaCl solution (200 mL) the mixture was 

extracted with ethyl acetate (4 x 150 mL). The combined organic layers were dried over 

MgSO4, filtered and the solvent was removed under reduced pressure. Column 

chromatography (ethyl acetate → ethyl acetate/ methanol 6:1) gave compound 70 as an 

orange syrup. 

Yield:    267 mg (616 μmol, 42 %); 

TLC:    Rf = 0.30 (ethyl acetate/ methanol 6:1); 

Melting point:   177 °C; 

Rotational value:  [α]20
D = +177.4 (c = 0.06 in methanol); 

1H-NMR (MeOD, 600 MHz, 300 K): δ = 7.91-7.88 (m, 2H, Ar-H,ortho), 7.84-7.82 (m, 2H, 

Ar-Hortho‘), 7.45-7.42 (m, 2H, Ar-Hmeta‘), 7.29-7.26 (m, 2H, Ar-Hmeta), 5.60 (d, 

3JH1H2 = 1.8 Hz, 1H, H-1), 4.05-4.03 (dd, 3JH1H2 = 1.8 Hz, 3JH2H3 = 3.4 Hz, 1H, H-2), 3.94-

3.91 (dd, 3JH2H3 = 3.4 Hz, 3JH3H4 = 9.5 Hz, 1H, H-3), 3.80-3.72 (m, 5H, CH2, H-4, H-6, 

H-6‘), 3.70 (s, 3H, CH3), 3.51-3.46 (ddd, 3JH4H5 = 9.6 Hz, 3JH5H6‘ = 2.3 Hz, 

3JH5H6 = 5.3 Hz, 1H, H-5) ppm; 

13C-NMR (MeOD, 151 MHz, 300 K): δ = 173.6 (C=O), 160.4 (Ar-Cpara), 153.1 

(Ar-Cipso‘), 149.2 (Ar-Cipso), 138.6 (Ar-Cpara‘), 131.3 (Ar-Cmeta‘), 125.6 (Ar-Cortho), 123.7 

(Ar-Cortho‘), 118.1 (Ar-Cmeta), 100.1 (C-1), 75.7 (C-5), 72.4 (C-3), 71.9 (C-2), 68.3 (C-4), 

62.7 (C-6), 52.6 (CH3), 41.5 (CH2) ppm; 
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IR (ATR): ṽ = 3309, 2252, 1733, 1601, 1583, 1497, 1229, 1127, 1005, 967, 838, 671, 

548 cm-1; 

ESI-MS: m/z = 433.16065, [M+H]+; (calc. 433.16109 for C21H24N2O8+H). 

 

p-[(E)-(p’-Acetic acid methyl ester)phenylazo]phenyl α-D-glucopyranoside 71 

4-Aminophenyl α-D-glucopyranoside 68 (500 mg, 1.85 mmol) and nitroso compound 21 

(1.85 mmol) were dissolved in acetic acid (70 mL) and stirred at room temperature for 

2 d. After addition of sat. NaCl solution (200 mL) the mixture was extracted with ethyl 

acetate (4 x 150 mL). The combined organic layers were dried over MgSO4, filtered and 

the solvent was removed under reduced pressure. Column chromatography (ethyl acetate 

→ ethyl acetate/ methanol 6:1) gave compound 71 as an orange syrup. 

Yield:    317 mg (732 μmol, 40 %); 

TLC:    Rf = 0.30 (ethyl acetate/ methanol 6:1); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.95-7.91 (m, 2H, Ar-H,ortho), 7.88-7.85 (m, 2H, 

Ar-H,ortho‘), 7.49-7.46 (m, 2H, Ar-Hmeta‘), 7.38-7.35 (m, 2H, Ar-Hmeta), 5.65 (d, 

3JH1H2 = 3.7 Hz, 1H, H-1), 3.94-3.90 (dd~t, 3JH3H4 = 9.2 Hz, 1H, H-3), 3.82-3.75 (m, 3H, 

CH2, H-6), 3.76-3.63 (m, 6H, CH3, H-2, H-5, H-6‘), 3.51-3.46 (dd, 3JH3H4 = 9.0 Hz, 

3JH4H5 = 9.9 Hz, 1H, H-4) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 173.5 (C=O), 161.1 (Ar-Cpara), 153.1 

(Ar-Cipso‘), 149.2 (Ar-Cipso), 138.6 (Ar-Cpara‘), 131.3 (Ar-Cmeta‘), 125.5 (Ar-Cortho), 123.7 

(Ar-Cortho‘), 118.3 (Ar-Cmeta), 99.2 (C-1), 74.9 (C-3), 74.8 (C-2), 73.2 (C-5), 71.4 (C-4), 

62.4 (C-6), 52.6 (CH3), 41.4 (CH2) ppm; 

ESI-MS: m/z = 433.16078, [M+H]+; (calc. 433.16109 for C21H24N2O8+H). 

 

p-[(E)-(p’-Acetic acid methyl ester)phenylazo]phenyl β-D-glucopyranoside 72 

4-Aminophenyl β-D-glucopyranoside 69 (526 mg, 1.94 mmol) and nitroso compound 21 

(1.94 mmol) were dissolved in acetic acid (8 mL) and stirred at room temperature for 

16 h. After addition of H2O (150 mL) the mixture was extracted with ethyl acetate (4 x 

50 mL). The combined organic layers were dried over MgSO4, filtered and the solvent 
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was removed under reduced pressure. Column chromatography (ethyl acetate → ethyl 

acetate/ methanol 6:1) gave compound 72 as an orange syrup. 

Yield:    421 mg (973 μmol, 50 %); 

TLC:    Rf = 0.30 (ethyl acetate/ methanol 6:1); 

Melting point:   180 °C; 

Rotational value:  [α]20
D = -50.8 (c = 0.08 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.91-7.88 (m, 2H, Ar-H,ortho), 7.85-7.82 (m, 2H, 

Ar-H,ortho‘), 7.45-7.42 (m, 2H, Ar-Hmeta‘), 7.26-7.23 (m, 2H, Ar-Hmeta), 5.04-5.02 (m, 1H, 

H-1), 3.94-3.90 (dd, 3JH5H6 = 2.3 Hz, 3JH6H6‘ = 12.1 Hz 1H, H-6), 3.75-3.71 (m, 3H, CH2, 

H-6‘), 3.70 (s, 3H, CH3), 3.53-3.47 (m, 3H, H-2, H-3, H-4), 3.43-3.39 (m, 1H, H-5) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 171.9 (C=O), 160.2 (Ar-Cpara), 151.1 

(Ar-Cipso‘), 149.2 (Ar-Cipso), 138.7 (Ar-Cpara‘), 131.3 (Ar-Cmeta‘), 125.5 (Ar-Cortho), 123.7 

(Ar-Cortho‘), 118.0 (Ar-Cmeta), 102.0 (C-1), 78.3, 78.0, 75.0 (C-2, C-3, C-4), 71.3 (C-5), 

62.4 (C-6), 52.3 (CH3), 41.3 (CH2) ppm; 

IR (ATR): ṽ = 3413, 3211, 2923, 1720, 1234, 1077, 1048, 1002, 647, 659 cm-1; 

ESI-MS: m/z = 433.16023, [M+H]+; (calc. 433.16109 for C21H24N2O8+H). 

 

p-[(E)-(p’-Acetic acid)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyra-

noside 73 

Lithium hydroxide (29.5 mg, 1.23 mmol) was added to a solution of compound 70 

(267 mg, 616 μmol) in THF/H2O (2:1; 70 mL) and stirred for 16 h at room temperature. 

The mixture was neutralised with Amberlite® IR 120 and filtered. The solvent was 

removed under reduced pressure to yield compound 73 as an orange syrup after 

lyophilisation. 

Yield:    252 mg (603 μmol, 98 %); 

TLC:    Rf = 0.0 (ethyl acetate/ methanol 6:1); 

Melting point:    208 °C (decompodition); 

Rotational value:  [α]20
D = +143.9 (c = 0.06 in methanol); 
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1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.91-7.88 (m, 2H, Ar-H,ortho), 7.85-7.81 (m, 2H, 

Ar-H,ortho‘), 7.47-7.44 (m, 2H, Ar-H,meta), 7.29-7.26 (m, 2H, Ar-H,meta‘), 5.60 (d, 

3JH1H2 = 1.8 Hz, 1H, H-1), 4.05-4.01 (dd, 3JH1H2 = 1.8 Hz, 3JH2H3 = 3.3 Hz, 1H, H-2), 3.96-

3.87 (dd, 3JH2H3 = 3.3 Hz, 3JH3H4 = 9.2 Hz, 1H, H-3), 3.77-3.72 (m, 3H, H-4, H-6, H-6‘), 

3.70 (s, 2H, CH2), 3.61-3.57 (ddd, 3JH5H4‘ = 9.7 Hz, 3JH5H6 = 5.3 Hz, 3JH5H6‘ = 2.4 Hz, 1H, 

H-5) ppm; 

13C-NMR (MeOD, 151 MHz, 300 K): δ = 175.1 (C=O), 160.4 (Ar-Cpara), 153.0 

(Ar-Cipso‘), 149.3 (Ar-Cipso), 139.2 (Ar-Cpara‘), 131.3 (Ar-Cmeta‘), 125.6 (Ar-Cortho), 123.7 

(Ar-Cortho‘), 118.1 (Ar-Cmeta), 100.1 (C-1), 75.8 (C-5), 72.4 (C-3), 71.9 (C-2), 68.3 (C-4), 

62.7 (C-6), 41.8 (CH2) ppm; 

IR (ATR): ṽ = 3325, 1694, 1586, 1496, 1327, 1230, 1105, 1002, 840, 665, 579, 551 cm-1; 

ESI-MS: m/z = 419.14516, [M+H]+; (calc. 419.14544 for C20H22N2O8+H). 

 

p-[(E)-(p’-Acetic acid)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyra-

noside 74 

Lithium hydroxide (35.1 mg, 1.46 mmol) was added to a solution of compound 71 

(317 mg, 732 μmol) in THF/H2O (2:1; 70 mL) and stirred for 16 h at room temperature. 

The mixture was neutralised with Amberlite® IR 120 and filtered. The solvent was 

removed under reduced pressure to yield compound 74 as an orange syrup after 

lyophilisation. 

Yield:    303 mg (725 μmol, 99 %); 

TLC:    Rf = 0.0 (ethyl acetate/ methanol 6:1); 

1H-NMR (MeOD, 200 MHz, 300 K): δ = 7.92-7.79 (m, 4H, Ar-H), 7.48-7.40 (m, 2H, 

Ar-H), 7.35-7.27 (m, 2H, Ar-H), 5.61 (d, 3JH1H2 = 3.6 Hz, 1H, H-1), 3.93-3.82 (dd, 

3JH2H3 = 8.8 Hz, 3JH3H4 = 9.9 Hz, 1H, H-3), 3.79-3.67 (m, 4H, CH2, Hglc), 3.65-3.56 (m, 

2H, Hglc), 3.49-3.37 (m, 1H, Hglc) ppm; 

ESI-MS: m/z = 419.14497, [M+H]+; (calc. 419.14544 for C20H22N2O8+H). 
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p-[(E)-(p’-Acetic acid)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyra-

noside 75 

Lithium hydroxide (721 mg, 30.1 mmol) was added to a solution of compound 72 (1.32 g, 

2.20 mmol) in THF/H2O (2:1; 60 mL) and stirred for 16 h at room temperature. The 

mixture was neutralised with Amberlite® IR 120, diluted with methanol (80 mL) and 

filtered. The solvent was removed under reduced pressure to yield compound 75 as an 

orange syrup. 

Yield:    884 mg (2.11 mmol, 96 %); 

TLC:    Rf = 0.0 (ethyl acetate/ methanol 6:1); 

Melting point:    193 °C; 

Rotational value:  [α]20
D = -48.0 (c = 0.09 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.91-7.88 (m, 2H, Ar-H,ortho), 7.85-7.82 (m, 2H, 

Ar-H,ortho‘), 7.47-7.44 (m, 2H, Ar-Hmeta‘), 7.26-7.22 (m, 2H, Ar-Hmeta), 5.04-5.02 (m, 1H, 

H-1), 3.94-3.90 (dd, 3JH5H6 = 2.2 Hz, 3JH6H6‘ = 12.1 Hz 1H, H-6), 3.74-3.69 (m, 3H, CH2, 

H-6‘),3.53-3.48 (m, 3H, H-2, H-3, H-4), 3.44-3.39 (m, 1H, H-5) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 175.0 (C=O), 161.6 (Ar-Cpara), 153.0 

(Ar-Cipso‘), 149.3 (Ar-Cipso), 139.3 (Ar-Cpara‘), 131.4 (Ar-Cmeta‘), 125.5 (Ar-Cortho), 123.7 

(Ar-Cortho‘), 118.0 (Ar-Cmeta), 102.0 (C-1), 78.4, 78.0, 74.9 (C-2, C-3, C-4), 71.4 (C-5), 

62.6 (C-6), 41.7 (CH2) ppm; 

IR (ATR): ṽ = 3269, 2934, 2459, 1704, 1590, 1495, 1239, 1077, 1047, 1077, 838, 

553 cm-1; 

ESI-MS: m/z = 419.14438, [M+H]+; (calc. 419.14544 for C20H22N2O8+H). 

 

p-[(E)-p’-(Phenylthioacetate)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-α-D-manno-

pyranoside 78 

Triethylamine (170 μL, 1.23 mmol) was added to an ice-cold solution of mannoside 75 

(251 mg, 600 μmol), DEPC (77) (187 μL, 1.23 mmol) and thiophenol (95.0 μL, 

924 μmol) in DMF (10 mL). The reaction mixture was stirred for 16 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 



Experimental section 325 

 

was purified by column chromatography (ethyl acetate /methanol 20:1 → 9:1) to yield 

compound 78 as an orange solid. 

Yield:    176 mg (345 μmol, 58 %); 

TLC:    Rf = 0.38 (ethyl acetate/methanol 9:1); 

Melting point:    176 °C; 

Rotational value:  [α]20
D = +96.9 (c = 0.08 in methanol); 

1H-NMR (DMSO-d6, 500 MHz, 300 K): δ = 7.90-7.82 (m, 4H, Ar-H,ortho, Ar-HSPh), 7.56-

7.52 (m, 2H, Ar-H,meta‘), 7.48-7.44 (m, 3H, Ar-HSPh), 7.43-7.39 (m, 2H, Ar-Hortho‘), 7.30-

7.25 (m, 2H, Ar-Hmeta), 5.53 (d, 3JH1H2 = 1.7 Hz, 1H, H-1), 5.08 (d, 3JH2OH = 4.4 Hz, 1H, 

OH(2)), 4.85 (d, 3JH4OH = 5.8 Hz, 1H, OH(4)), 4.78 (d, 3JH3OH = 6.0 Hz, 1H, OH(3)), 4.45 

(d, 3JH6OH = 6.0 Hz, 1H, OH(6)), 4.18 (m, 2H, CH2), 3.88-3.85 (m, 1H, H-2), 3.73-3.69 

(m, 1H, H-3), 3.63-3.58 (m, 1H, H-6), 3.55-3.45 (m, 2H, H-4, H-6‘), 3.41-3.36 (ddd, 

3JH4H5 = 9.2 Hz, 3JH5H6‘ = 2.6 Hz, 3JH5H6 = 5.4 Hz, 1H, H-5) ppm; 

13C-NMR (DMSO-d6, 126 MHz, 300 K): δ = 194.6 (C=O), 159.0 (Ar-Cpara‘), 151.2 

(Ar-Cipso‘), 146.9 (Ar-Cipso), 136.6 (Ar-Cpara), 134.4 (Ar-Cortho‘), 130.8 (Ar-Cmeta‘), 129.6, 

129.4 (Ar-CSPh), 124.4 (Ar-Cortho), 122.4 (Ar-CSPh), 117.1 (Ar-Cmeta), 98.7 (C-1), 75.2 

(C-5), 70.6 (C-3), 69.9 (C-2), 66.6 (C-4), 61.0 (C-6), 48.9 (CH2) ppm; 

ESI-MS: m/z = 511.15344, [M+H]+; (calc. 511.15390 for C26H26N2O7+H); 

IR (ATR): ṽ = 3322, 2936, 1697, 1497, 1224, 1024, 832, 745 cm-1. 

 

p-[(E)-p’-(Phenylthioacetate)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-α-D-gluco-

pyranoside 79 

Triethylamine (202 μL, 1.46 mmol) was added to an ice-cold solution of glucoside 76 

(303 mg, 725 μmol), DEPC (77) (222 μL, 1.46 mmol) and thiophenol (112 μL, 

1.10 mmol) in DMF (10 mL). The reaction mixture was stirred for 16 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 

was purified by column chromatography (DCM/methanol 30:1 → 9:1) to yield 

compound 79 as an orange solid. 

Yield:    234 mg (458 μmol, 63 %); 
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TLC:    Rf = 0.48 (DCM/methanol 9:1); 

Melting point:   148 °C; 

Rotational value:  [α]20
D = +177.4 (c = 0.18 in methanol); 

1H-NMR (DMSO-d6, 500 MHz, 300 K): δ = 7.91-7.79 (m, 4H, Ar-Hortho, Ar-HSPh), 7.56-

7.51 (m, 2H, Ar-H,meta‘), 7.48-7.37 (m, 2H, Ar-Hortho‘, Ar-HSPh), 7.30-7.26 (m, 2H, 

Ar-Hmeta), 5.55 (d, 3JH1H2 = 3.5 Hz, 1H, H-1), 5.14 (d, 3JH3OH = 6.3 Hz, 1H, OH(3)), 5.00 

(d, 3JH2OH = 5.8 Hz, 1H, OH(2)), 4.97 (d, 3JH2OH = 5.0 Hz, 1H, OH(5)), 4.48 (t, 

3JH6OH = 5.8 Hz, 1H, OH(6)), 4.18 (s, 2H, CH2), 3.68-3.63 (m, 1H, H-3), 3.60-3.55 (m, 

1H, H-6), 3.51-3.39 (m, 3H, H-2, H-4, H-6‘), 3.24-3.19 (m, 1H, H-5) ppm; 

13C-NMR (DMSO-d6, 126 MHz, 300 K): δ = 194.6 (C=O), 159.8 (Ar-Cpara), 151.2 

(Ar-Cpara‘), 146.9 (Ar-Cipso), 136.6 (Ar-Cortho‘), 134.4 (Ar-CSPh), 130.8 (Ar-Cmeta‘), 130.5 

(Ar-Cipso‘), 129.6, 124.4 (Ar-CSPh), 122.4 (Ar-Cortho), 117.3 (Ar-Cmeta), 97.7 (C-1), 74.1 

(C-2), 73.0 (C-3), 71.5 (C-4), 69.8 (C-5), 60.7 (C-6), 48.9 (CH2) ppm; 

IR (ATR): ṽ = 3352, 2161, 1697, 1598, 1497, 1232, 1079, 1025, 841 cm-1; 

ESI-MS: m/z = 511.15360, [M+H]+; (calc. 511.15390 for C26H26N2O7+H). 

 

p-[(E)-p’-(Phenylthioacetate)phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-β-D-

glucopyranoside 80 

Variant A 

Triethylamine (166 μL, 1.20 mmol) was added to an ice-cold solution of glucoside 77 

(500 mg, 1.20 mmol), DPPA (76) (258 μL, 1.20 mmol) and thiophenol (616 μL, 

6.00 mmol) in DMF (6 mL). The reaction mixture was stirred for 3 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 

was purified by column chromatography (ethyl acetate/ methanol 30:1 → 9:1) to yield 

compound 80 as an orange solid. 

Yield:    276 mg (540 μmol, 45 %); 

TLC:    Rf = 0.33 (ethyl acetate/ methanol 9:1); 
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Variant B 

Triethylamine (53.0 μL, 382 μmol) was added to an ice-cold solution of glucoside 77 

(80.0 mg, 191 μmol), DEPC (77) (61.6 μL, 382 μmol) and thiophenol (29.6 μL, 

287 μmol) in DMF (10 mL). The reaction mixture was stirred for 16 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 

was purified by column chromatography (ethyl acetate/ methanol 30:1 → 9:1) to yield 

compound 80 as an orange solid. 

Yield:    59.5 mg (117 μmol, 61 %); 

Melting point:   149 °C; 

Rotational value:  [α]20
D = -41.6 (c = 0.13 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.95-7.85 (m, 4H, Ar-H,ortho, Ar-H,ortho‘), 7.55-

7.50 (m, 2H, Ar-Hmeta‘), 7.45-7.41 (m, 5H, SPh), 7.30-7.26 (m, 2H, Ar-Hmeta), 5.08-5.05 

(m, 1H, H-1), 4.09 (s, 1H, CH2), 3.98-3.94 (dd, 3JH5H6 = 2.2 Hz, 3JH6H6‘ = 12.1 Hz 1H, 

H-6), 3.78-3.74 (m, 1H, 3JH5H6’ = 5.8 Hz, 3JH6H6‘ = 12.1 Hz, H-6‘), 3.57-3.52 (m, 3H, H-2, 

H-3, H-4), 3.47-3.43 (m, 1H, H-5) ppm; 

13C-NMR (MeOD, 126 MHz, 300 K): δ = 196.6 (C=O), 161.6 (Ar-Cpara), 153.2 

(Ar-Cipso‘), 149.2 (Ar-Cipso), 137.9 (Ar-Cpara‘), 136.5, 135.7 (SPh), 131.6 (Ar-Cmeta‘), 

130.6 (SPh), 125.5 (Ar-Cortho), 123.8 (Ar-Cortho‘), 118.0 (Ar-Cmeta), 102.0 (C-1), 78.3, 

78.0, 74.9 (C-2, C-3, C-4), 71.3 (C-5), 62.4 (C-6), 50.1 (CH2) ppm; 

IR (ATR): ṽ = 3329, 1598, 1234, 1011, 836, 751, 529 cm-1; 

ESI-MS: m/z = 533.13528, [M+H]+; (calc. 533.13584 for C26H26N2O7+Na). 

 

2-Nitro-5-hydroxy benzoic acid methyl ester 91[401] 

2-Nitro-5-hydroxy benzoic acid 90 (5.00 g, 27.3 mmol) was reacted according to General 

Procedure A to obtain methyl ester 91 as a colourless oil after column chromatography 

(cyclohexane / ethyl acetate 3:1). 

Yield:    4.38 g (22.2 mmol, 81 %); lit.: 76 %;[401] 

TLC:    Rf = 0.40 (cyclohexane / ethyl acetate 1:1); 
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1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.02-7.98 (d, 3J = 8.9 Hz, 1H, Ar-Hortho), 7.02-

6.96 (m, 2H, Ar-Hmeta, Ar-Hpara), 6.92 (s, 1H, OH), 3.95 (s, 3H, CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 167.7 (C=O), 160.9 (Ar-CmetaOH), 140.0 

(Ar-CorthoNO2), 131.2 (Ar-Cipso), 127.3 (Ar-CorthoH), 117.7, 115.7 (Ar-CmetaH, Ar-Cpara), 

53.9 (CH3) ppm; 

IR (ATR): ṽ = 3308, 3080, 2967, 1703, 1581, 1523, 1434, 1348, 1314, 1267, 1223, 979, 

839, 640, 580 cm-1; 

EI-MS: m/z = 197.01, [M]+; (calc. 197.032 for C8H7NO5). 

 

3-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-6-(nitro)benzoic acid methyl-

ester 92 

Glucose trichloroacetimidate 88 (3.75 g, 7.61 mmol) and compound 91 (1.35 g, 

6.85 mmol) were predried in vacuo for 15 min and subsequently dissolved in dry DCM 

(50 mL). After adding BF3 etherate (2.87 mL, 22.8 mmol) at 0 °C the reaction mixture 

was stirred at room temperature for 2 d. The mixture was diluted with DCM (200 mL) 

and washed with saturated NaHCO3 solution (75 mL). The organic layer was dried over 

MgSO4, filtered and the solvent removed under reduced pressure. The crude product was 

purified by column chromatography (cyclohexane / ethyl acetate 2:1 → 1:1) to yield 

compound 92 as a colourless solid. 

Yield:    2.19 g (4.15 mmol, 61 %); 

TLC:    Rf = 0.45 (cyclohexane/ ethyl acetate 1:1); 

Melting point:    117 °C; 

Rotational value:  [α]20
D = -22.5 (c = 0.08 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.00 (d, 3J = 9.0 Hz, 1H, Ar-Hmeta), 7.20 (d, 

4J= 2.7 Hz, 1H, CAr-HorthoC(C=O)), 7.14 (dd, 3J = 9.0 Hz, 4J = 2.7 Hz, 1H, Ar-Hortho), 

5.34-5.28 (m, 2H, H-2, H-3), 5.24-5.21 (m, 3J1,2 = 7.5 Hz 1H, H-1), 5.17-5.13 (dd~t, 

3J3,4 = 9.7 Hz, 1H, H-4), 4.26-4.22 (dd, 2JH6H6‘ = 12.4 Hz, 3JH5H6 = 5.8 Hz, 1H, H-6), 4.20-

4.16 (dd, 2JH6H6‘ = 12.4 Hz, 3JH5H6‘ = 2.4 Hz, 1H, H-6‘), 3.96-3.93 (ddd, 3JH5H6 = 5.8 Hz, 

3JH5H6‘ = 2.4 Hz, 3JH4H5 = 10.0 Hz, 1H, H-5), 3.92 (s, 3H, CH3), 2.08, 2.07, 2.06, 2.04 (s, 

each 3H, C=OCH3) ppm; 
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13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.6, 170.2, 169.5, 169.3 ((C=O)CH3), 166.0 

((C=O)OCH3), 159.9 (Ar-C,ipso), 142.3 (Ar-C,para), 131.0 (Ar-C,metaC=O), 126.6 

(Ar-C,metaH), 118.8 (Ar-C,orthoAr-C,metaH), 116.9 (Ar-C,orthoAr-C,metaC=O), 98.2 (C-1), 

72.7 (C-5), 72.5 (C-3), 71.0 (C-2), 68.1 (C-4), 62.0 (C-6), 53.6 (CH3), 20.8, 20.7 

(C=OCH3) ppm; 

IR (ATR): ṽ = 3481, 3373, 2989, 1743, 1697, 1495, 1367, 1207, 1033 cm-1; 

ESI-MS: m/z = 550.11685, [M+Na]+; (calc. 550.11727 for C22H25NO14+Na). 

 

3-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-6-(nitro)benzoic acid methyl-

ester 93 

Mannose trichloroacetimidate 89 (3.82 g, 7.75 mmol), molecular sieves (3 Å) and 

compound 91 (1.53 g, 7.76 mmol) were predried in vacuo for 15 min and subsequently 

dissolved in dry DCM (40 mL). After adding Borontrifluoride diethyletherate (2.92 mL, 

23.0 mmol) at 0 °C the reaction mixture was stirred at room temperature for 2 d. The 

mixture was diluted with DCM (100 mL) and washed with saturated NaHCO3 solution 

(60 mL). The organic layer was dried over MgSO4, filtered and the solvent removed under 

reduced pressure. The crude product was purified by column chromatography 

(cyclohexane / ethyl acetate 2:1 → 1:1) to yield compound 93 as a colourless solid. 

Yield:    3.44 g (6.52 mmol, 84 %); 

TLC:    Rf = 0.23 (cyclohexane/ ethyl acetate 2:1); 

Melting point:    63 °C; 

Rotational value:  [α]20
D = +76.4 (c = 0.52 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 8.03 (d, 3J = 9.1 Hz, 1H, Ar-Hmeta), 7.36 (d, 

4J= 2.7 Hz, 1H, CAr-HorthoC(C=O)), 7.28-7.25 (dd, 3J = 9.1 Hz, 4J = 2.7 Hz, 1H, 

Ar-Hortho), 5.62 (m, 3J1,2 = 1.7 Hz, 1H, H-1), 5.52-5.49 (dd, 3J2,3 = 3.5 Hz, 3J3,4 = 10.0 Hz, 

1H, H-3), 5.45-5.44 (dd, 3J1,2 = 1.7 Hz, 3J2,3 = 3.5 Hz, 1H, H-2), 5.39-5.34 (dd~t, 

3J3,4 = 10.0 Hz, 1H, H-4), 4.28-4.23 (dd, 2JH6H6‘ = 12.4 Hz, 3JH5H6 = 5.9 Hz, 1H, H-6), 

4.08-4.04 (dd, 2JH6,6‘ = 12.4 Hz, 3JH5,6‘ = 2.3 Hz, 1H, H-6‘), 4.01-3.96 (ddd, 

3JH5,6 = 5.8 Hz, 3JH5H6‘ = 2.3 Hz, 3JH4H5 = 10.0 Hz, 1H, H-5), 3.93 (s, 3H, CH3), 2.21, 2.06, 

2.04, 2.03 (s, each 3H, C=OCH3) ppm; 
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13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.6, 170.0, 169.7, 169.3 ((C=O)CH3), 165.9 

((C=O)OCH3), 158.9 (Ar-C,ipso), 142.2 (Ar-C,para), 131.1 (Ar-C,metaC=O), 126.7 

(Ar-C,metaH), 118.5 (Ar-C,orthoAr-C,metaH), 116.8 (Ar-C,orthoAr-C,metaC=O), 96.0 (C-1), 

70.1 (C-5), 68.9 (C-2), 68.5 (C-3), 65.7 (C-4), 62.1 (C-6), 53.6 (CH3), 20.9, 20.8, 20.7 

(C=OCH3) ppm; 

IR (ATR): ṽ = 2365, 2162, 1738, 1587, 1525, 1347, 1213, 1026 cm-1; 

ESI-MS: m/z = 550.11673, [M+Na]+; (calc. 550.11727 for C22H25NO14+Na). 

 

6-(Amino)-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)benzoic acid methyl-

ester 94 

To a solution of glucoside 92 (2.00 g, 3.79 mmol) in ethyl acetate (150 mL) was added a 

catalytic amount of palladium (10 % on activated charcoal) and the mixture was stirred 

under hydrogen atmosphere for 16 h. The catalyst was removed by filtration over celite 

and the solvent was removed under reduced pressure to yield compound 94 quantitatively 

as a colourless foam. 

Yield:    quant.; 

TLC:    Rf = 0.25 (toluene/ ethyl acetate 3:1); 

Melting point:    110 °C; 

Rotational value:  [α]20
D = -16.9 (c = 0.57 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.51 (s, 1H, CAr-HorthoC(C=O)), 7.05-7.02 (dd, 

3J = 8.9 Hz, 4J = 2.9 Hz, 1H, Ar-Hortho), 6.75-6.72 (d, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.30-

5.25 (dd~t, 3J3,4 = 9.5 Hz, 1H, H-3), 5.24-5.19 (dd, 3J1,2 = 7.7 Hz, 3J2,3 = 9.5 Hz, 1H, H-2), 

5.18-5.13 (dd~t, 3J3,4 = 9.5 Hz, 1H, H-4), 4.94 (d, 3J1,2 = 7.7 Hz, 1H, H-1), 4.31-4.26 (dd, 

2JH6H6‘ = 12.3 Hz, 3JH5H6 = 5.2 Hz, 1H, H-6), 4.17-4.13 (dd, 2JH6H6‘ = 12.3 Hz, 

3JH5H6‘ = 2.4 Hz, 1H, H-6‘), 3.87 (s, 3H, CH3), 3.83-3.79 (ddd, 3JH5H6 = 5.2 Hz, 

3JH5H6‘ = 2.4 Hz, 3JH4H5 = 10.0 Hz, 1H, H-5), 2.08, 2.07, 2.03 (s, each 3H, C=OCH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.8, 170.4, 169.5 ((C=O)CH3), 167.8 

((C=O)OCH3), 148.3 (Ar-C,ipso), 145.2 (Ar-C,para), 125.6 (Ar-C,orthoAr-C,metaH), 119.3 

(Ar-C,orthoAr-C,metaC=O), 118.8 (Ar-C,metaH), 111.9 (Ar-C,metaC=O), 100.5 (C-1), 72.8 
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(C-3), 72.1 (C-5), 71.4 (C-2), 68.4 (C-4), 62.0 (C-6), 52.0 (CH3), 20.8, 20.7 

(C=OCH3) ppm; 

IR (ATR): ṽ = 3464, 3364, 2960, 1741, 1698, 1499, 1374, 1206, 1028, 812 cm-1; 

ESI-MS: m/z = 520.14242, [M+Na]+; (calc. 520.14255 for C22H27NO12+Na). 

 

6-(Amino)-3-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)benzoic acid methyl-

ester 95 

To a solution of mannoside 93 (3.44 g, 6.52 mmol) in ethyl acetate (140 mL) was added 

a catalytic amount of palladium (10 % on activated charcoal) and the mixture was stirred 

under hydrogen atmosphere for 16 h. The catalyst was removed by filtration over celite 

and the solvent was removed under reduced pressure to yield compound 95 quantitatively 

as a colourless foam. 

Yield:    quant.; 

TLC:    Rf = 0.25 (toluene/ ethyl acetate 3:1); 

Melting point:   133 °C; 

Rotational value:  [α]20
D = +69.7 (c = 0.58 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.61 (d, 4J = 2.9 Hz, 1H, CAr-HorthoC(C=O)), 

7.10-7.07 (dd, 3J = 8.9 Hz, 4J = 3.0 Hz, 1H, Ar-Hortho), 6.73 (d, 3J = 8.9 Hz, 1H, Ar-Hmeta), 

5.54-5.51 (dd, 3J2,3 = 3.5 Hz, 3J3,4 = 10.0 Hz, 1H, H-3), 5.43-5.42 (dd, 

3J1,2 = 1.8 Hz, 3J2,3 = 3.5 Hz, 1H, H-2), 5.41 (d, 3J1,2 = 1.8 Hz, 1H, H-1), 5.38-5.33 (dd~t, 

3J3,4 = 10.0 Hz, 1H, H-4), 4.32-4.28 (dd, 2JH6H6‘ = 12.2 Hz, 3JH5H6 = 5.4 Hz, 1H, H-6), 

4.14-4.10 (ddd, 3JH5H6 = 5.4 Hz, 3JH5H6‘ = 2.3 Hz, 3JH4H5 = 10.0 Hz, 1H, H-5), 4.09-4.05 

(dd, 2JH6H6‘ = 12.2 Hz, 3JH5H6‘ = 2.3 Hz, 1H, H-6‘), 3.87 (s, 3H, CH3), 2.19, 2.05, 2.04, 

2.03 (s, each 3H, C=OCH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.7, 170.1, 169.9 ((C=O)CH3), 168.0 

((C=O)OCH3), 147.0 (Ar-C,ipso), 145.2 (Ar-C,para), 124.6 (Ar-C,orthoAr-C,metaH), 118.9 

(Ar-C,metaH), 118.2 (Ar-C,orthoAr-C,metaC=O), 111.8 (Ar-C,metaC=O), 96.8 (C-1), 69.6 

(C-2), 69.3 (C-5), 69.0 (C-3), 66.1 (C-4), 62.3 (C-6), 52.0 (CH3), 21.0, 20.9, 20.8 

(C=OCH3) ppm; 

IR (ATR): ṽ = 3483, 3380, 2955, 1742, 1695, 1495, 1368, 1205, 1034, 977 cm-1; 
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ESI-MS: m/z = 498.16059, [M+H]+; (calc. 498.16115 for C22H27NO12+H). 

 

p-[(E)-p’-Acetic acid (tert-butyl ester)phenylazo]phenyl-m-(methyloxycarbonyl) 

2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside 96 

Glucoside 94 (800 mg, 1.61 mmol) and nitroso compound 18 (2.50 mmol) were 

dissolved in acetic acid (30 mL) and stirred at room temperature for 2.5 d. After addition 

of H2O (50 mL) the mixture was extracted with ethyl acetate (3 x 50 mL). The combined 

organic layers were dried over MgSO4, filtered and the solvent was removed under 

reduced pressure. Column chromatography (cyclohexane / ethyl acetate 6:1 → 1:1) gave 

compound 96 as an orange solid. 

Yield:    350 mg (499 μmol, 31 %); 

TLC:    Rf = 0.40 (cyclohexane / ethyl acetate 1:1); 

Melting point:   68 °C; 

Rotational value:  [α]20
D = -5.44 (c = 0.07 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.85-7.82 (m, 2H, Ar-Hortho‘), 7.72-7.69 (d, 

3J = 8.9 Hz, 1H, Ar-Hortho), 7.43-7.40 (m, 2H, Ar-Hmeta‘), 7.37-7.36 (d, 4J = 2.7 Hz, 1H, 

Ar-HmetaC(C=O)), 7.20-7.17 (m, 2H, Ar-Hmeta), 5.35-5.30 (m, 2H, H-2, H-3), 5.21-5.15 

(m, 2H, H-1, H-4), 4.31-4.26 (dd, 2JH6H6‘ = 12.3 Hz, 3JH5H6 = 5.7 Hz, 1H, H-6), 4.21-4.17 

(dd, 2JH6H6‘ = 12.3 Hz, 3JH5H6‘ = 2.3 Hz, 1H, H-6‘), 3.96-3.92 (ddd, 3JH5H6‘ = 2.3 Hz, 

3JH5H6‘ = 5.7 Hz, 3JH4H5 = 10.0 Hz, H-5), 3.91 (s, 3H, CH3), 3.60 (s, 2H, CH2) 2.10, 2.08, 

2.06, 2.05 (s, each 3H, C=OCH3), 1.45 (s, 9H, C(CH3)3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.6, 170.2, 169.4, 169.3 (O(C=O)CH3), 

170.3 (CH2(C=O)), 167.7 (Ar-C(C=O)), 157.7 (Ar-Cpara), 151.4 (Ar-Cipso‘), 147.0 

(Ar-Cipso), 138.3 (Ar-Cpara‘), 131.1 (Ar-Cortho(C=O)), 130.0 (Ar-Cmeta‘), 123.2 (Ar-Cortho‘), 

120.6 (Ar-CorthoH), 120.1 (Ar-CmetaCHortho), 117.0 (Ar-CmetaC(C=O)), 98.6 (C-1), 81.2 

(C(CH3)3), 72.6 (C-2), 72.3 (C-5), 71.1 (C-3), 68.2 (C-4), 61.9 (C-6), 52.5 (CH3), 42.3 

(CH2), 28.0 (C(CH3)3), 20.6 (C=OCH3) ppm; 

IR (ATR): ṽ = 3250, 2922, 2851, 1745, 1733, 1367, 1212, 1133, 1070, 1033, 1013, 838, 

562 cm-1; 

ESI-MS: m/z = 533.21278, [M+H]+; (calc. 532.21352 for C26H32N2O10). 
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p-[(E)-p’-Acetic acid (tert-butyl ester)phenylazo]phenyl-m-(methyloxycarbonyl) 

2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 97 

Mannoside 95 (1.04 g, 2.50 mmol) and nitroso compound 18 (2.50 mmol) were dissolved 

in acetic acid (30 mL) and stirred at room temperature for 2.5 d. After addition of H2O 

(50 mL) the mixture was extracted with ethyl acetate (3 x 80 mL). The combined organic 

layers were dried over MgSO4, filtered and the solvent was removed under reduced 

pressure. Column chromatography (cyclohexane / ethyl acetate 6:1 → 1:1) gave 

compound 97 as an orange solid. 

Yield:    433 mg (617 μmol, 25 %); 

TLC:    Rf = 0.53 (cyclohexane / ethyl acetate 1:1); 

Melting point:   73 °C; 

Rotational value:  [α]20
D = +62.3 (c = 0.17 in ethyl acetate); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.85-7.82 (m, 2H, Ar-Hortho‘), 7.73 (d, 

3J = 8.9 Hz, 1H , Ar-Hortho), 7.51 (d, 4J = 2.7 Hz, 1H , Ar-HmetaC(C=O)), 7.43-7.40 (m, 

2H, Ar-Hmeta‘), 7.29 (dd, 4J = 2.7 Hz, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.63 (d, 3J1,2 = 1.8 Hz, 

H-1), 5.58-5.54 (dd, 3J2,3 = 3.5 Hz, 3J3,4 = 10.0 Hz, 1H, H-3), 5.49-5.47 (dd, 3J1,2 = 1.8 Hz, 

3J2,3 = 3.5 Hz, 1H, H-2), 5.40-5.35 (dd~t, 3J3,4 = 10.0 Hz, 1H, H-4), 4.32-4.27 (dd, 

2JH6H6‘ = 12.8 Hz, 3JH5H6 = 6.3 Hz, 1H, H-6), 4.10-4.05 (m, 2H, H-5, H-6‘), 3.92 (s, 3H, 

CH3), 3.60 (s, 2H, CH2) 2.22, 2.07, 2.05, 2.04 (s, each 3H, C=OCH3), 1.45 (s, 9H, 

C(CH3)3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.6, 170.3, 169.9, 169.7 (O(C=O)CH3, 

CH2(C=O)), 167.5 (Ar-C(C=O)), 156.5 (Ar-Cpara), 151.5 (Ar-Cipso‘), 146.8 (Ar-Cipso), 

138.3 (Ar-Cpara‘), 131.3 (Ar-Cortho(C=O)), 130.0 (Ar-Cmeta‘), 123.3 (Ar-Cortho‘), 120.5 

(Ar-CorthoH), 119.6 (Ar-CmetaCHortho), 116.7 (Ar-CmetaC(C=O)), 95.7 (C-1), 81.2 

(C(CH3)3), 69.6 (C-5), 69.1 (C-2), 68.7 (C-3), 65.8 (C-4), 62.1 (C-6), 52.6 (CH3), 42.6 

(CH2), 28.0 (C(CH3)3), 20.9, 20.7, 20.6 (C=OCH3) ppm; 

IR (ATR): ṽ = 2924, 2853, 1732, 1560, 1436, 1368, 1211, 1132, 1030, 980, 837 cm-1; 

ESI-MS: m/z = 533.21325, [M+H]+; (calc. 532.21352 for C26H32N2O10). 
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p-[(E)-p’-Acetic acid (tert-butyl ester)phenylazo]phenyl-m-(methyloxycarbonyl) 

β-D-glucopyranoside 98 

Sodium methoxide (8.40 mg, 156 μmol) was added to a solution of compound 96 

(350 mg, 499 μmol) in dry methanol (10 mL). After stirring at room temperature for 16 h 

the mixture was neutralised with Amberlite® IR 120 and filtered. The solvent was 

removed under reduced pressure to yield compound 96 after column chromatography 

(ethyl acetate → ethyl acetate / methanol 9:1) as an orange solid. 

 

Yield:    236 mg (443 μmol, 89 %); 

TLC:    Rf = 0.49 (ethyl acetate / methanol 7:1); 

Melting point:   96 °C; 

Rotational value:  [α]20
D = -32.8 (c = 0.08 in methanol); 

1H-NMR (MeOD, 600 MHz, 300 K): δ = 7.83-7.80 (m, 2H, Ar-Hortho‘), 7.78-7.75 (d, 

3J = 8.9 Hz, 1H , Ar-Hortho), 7.45-7.42 (m, 3H , Ar-HmetaC(C=O), Ar-Hmeta‘), 7.37-7.35 

(dd, 4J = 2.7 Hz, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.06-5.03 (d, 3J1,2 = 7.5 Hz, 1H, H-1), 3.94-

3.89 (m, 4H, H-6, CH3), 3.74-3.70 (dd, 3J5,6‘ = 5.7 Hz, 2J6,6‘ = 12.1 Hz, 1H, H-6‘), 3.64 (s, 

2H, CH2), 3.53-3.49 (m, 3H, H-2, H-3, H-4), 3.44-3.40 (m, 1H, H-5), 1.45 (s, 9H, 

C(CH3)3) ppm;  

13C-NMR (MeOD, 151 MHz, 300 K): δ = 172.4 (CH2(C=O)), 169.8 (Ar-C(C=O)), 160.5 

(Ar-Cpara), 152.9 (Ar-Cipso‘), 147.1 (Ar-Cipso), 139.8 (Ar-Cpara‘), 132.7 (Ar-Cortho(C=O)), 

131.2 (Ar-Cmeta‘), 124.0 (Ar-Cortho‘), 121.8 (Ar-CorthoH), 120.6 (Ar-CmetaCHortho), 118.0 

(Ar-CmetaC(C=O)), 102.1 (C-1), 82.3 (C(CH3)3), 78.4 (C-4), 77.9 (C-3), 74.8 (C-2), 71.3 

(C-5), 62.4 (C-6), 53.0 (CH3), 43.2 (CH2), 28.3 (C(CH3)3) ppm; 

IR (ATR): ṽ = 3361, 2927, 1722, 1600, 1438, 1368, 1286, 1150, 1070, 1043, 1013, 834, 

528 cm-1; 

ESI-MS: m/z = 554.5, [M+Na]+; (calc. 532.21352 for C26H32N2O10). 
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p-[(E)-p’-Acetic acid (tert-butyl ester)phenylazo]phenyl-m-(methyloxycarbonyl) 

α-D-mannopyranoside 99 

Sodium methoxide (10.4 mg, 193 μmol) was added to a solution of compound 97 

(533 mg, 617 μmol) in dry methanol (30 mL). After stirring at room temperature for 16 h 

the mixture was neutralised with Amberlite® IR 120 and filtered. The solvent was 

removed under reduced pressure to yield compound 99 as an orange syrup. 

Yield:    312 mg (585 μmol, 95 %); 

TLC:    Rf = 0.49 (ethyl acetate / methanol 7:1); 

Melting point:   55 °C (decomposition); 

Rotational value:  [α]20
D = +120.2 (c = 0.11 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.82-7.79 (m, 2H, Ar-Hortho‘), 7.76 (d, 

3J = 8.9 Hz, 1H , Ar-Hortho), 7.46-7.45 (d, 4J = 2.7 Hz, 1H , Ar-HmetaC(C=O)), 7.45-7.42 

(m, 2H, Ar-Hmeta‘), 7.40-7.37 (dd, 4J = 2.7 Hz, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.63 (d, 

3J1,2 = 1.8 Hz, H-1), 4.06-4.04 (dd, 3J1,2 = 1.8 Hz, 3J2,3 = 3.4 Hz, 1H, H-2), 3.93-3.89 (m, 

4H, H-3, CH3), 3.80-3.70 (m, 3H, H-4, H-6, H-6‘), 3.64 (s, 2H, CH2), 3.59-3.55 (ddd, 

3JH5H6 = 5.5 Hz, 3JH5H6‘ = 2.4 Hz, 3JH4H5 = 9.7 Hz, 1H, H-5), 1.45 (s, 9H, C(CH3)3) ppm;  

13C-NMR (MeOD, 126 MHz, 300 K): δ = 172.4 (CH2(C=O)), 169.8 (Ar-C(C=O)), 159.4 

(Ar-Cpara), 152.9 (Ar-Cipso‘), 147.1 (Ar-Cipso), 139.9 (Ar-Cpara‘), 132.9 (Ar-Cortho(C=O)), 

131.3 (Ar-Cmeta‘), 124.1 (Ar-Cortho‘), 122.0 (Ar-CorthoH), 120.7 (Ar-CmetaCHortho), 117.8 

(Ar-CmetaC(C=O)), 100.3 (C-1), 82.4 (C(CH3)3), 75.9 (C-5), 72.4 (C-3), 71.8 (C-2), 68.3 

(C-4), 62.7 (C-6), 53.1 (CH3), 43.3 (CH2), 28.3 (C(CH3)3) ppm; 

IR (ATR): ṽ = 3362, 2930, 1697, 1597, 1495, 1438, 1206, 1006, 977, 818, 410 cm-1; 

ESI-MS: m/z = 555.2, [M+Na]+; (calc. 532.21352 for C26H32N2O10). 

 

p-[(E)-p’-(Acetic acid)phenylazo]phenyl-m-(methyloxycarbonyl) 2,3,4,6-tetra-O-

acetyl-β-D-glucopyranoside 100 

Trifluoroacetic acid (1.50 mL, 19.5 mmol) was added to a solution of glucoside 98 

(80.0 mg, 164 μmol) in DCM (15 mL). After stirring at room temperature for 16 h the 

solvent was removed under reduced pressure. Codestillation with toluene (3 x 30 mL) 

yielded compound 100 as a red syrup in quantitative yield. 
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Yield:    quant.; 

TLC:    Rf = 0.0 (ethyl acetate / methanol 7:1); 

Melting point:    98 °C (decomposition); 

Rotational value:  [α]20
D = -13.1 (c = 0.01 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.83-7.80 (m, 2H, Ar-Hortho‘), 7.77-7.75 (d, 

3J = 8.9 Hz, 1H , Ar-Hortho), 7.48-7.45 (m, 2H, Ar-Hmeta‘), 7.43-7.42 (d, 4J = 2.7 Hz, 1H, 

Ar-HmetaC(C=O)), 7.37-7.34 (dd, 4J = 2.7 Hz, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.05-5.03 (m, 

1H, H-1), 3.93-3.88 (m, 4H, H-6, CH3), 3.76-3.68 (m, 3H, H-6‘, CH2), 3.54-3.48 (m, 3H, 

H-2, H-3, H-4), 3.43-3.38 (m, 1H, H-5) ppm;  

13C-NMR (MeOD, 126 MHz, 300 K): δ = 175.0 (CH2(C=O)), 169.9 (Ar-C(C=O)), 160.8 

(Ar-Cpara), 152.7 (Ar-Cipso‘), 147.1 (Ar-Cipso), 140.0 (Ar-Cpara‘), 132.7 (Ar-Cortho(C=O)), 

131.5 (Ar-Cmeta‘), 124.0 (Ar-Cortho‘), 121.9 (Ar-CorthoH), 120.5 (Ar-CmetaCHortho), 118.2 

(Ar-CmetaC(C=O)), 102.1 (C-1), 78.3 (C-4), 77.9 (C-3), 75.0 (C-2), 71.3 (C-5), 62.5 (C-6), 

53.2 (CH3), 41.4 (CH2) ppm; 

IR (ATR): ṽ = 3325, 2920, 1716, 1600, 1438, 1288, 1226, 1070, 1013, 831, 801, 559, 

518 cm-1; 

ESI-MS: m/z = 516.16645, [M+K+H]+; (calc. 476.14310 for C22H24N2O10). 

 

p-[(E)-p’-(Acetic acid)phenylazo]phenyl-m-(methyloxycarbonyl) 2,3,4,6-tetra-O-

acetyl-α-D-mannopyranoside 101 

Trifluoroacetic acid (2.37 mL, 30.8 mmol) was added to a solution of mannoside 99 

(170 mg, 347 μmol) in DCM (20 mL). After stirring at room temperature for 5 h the 

solvent was removed under reduced pressure. Codestillation with toluene (3 x 30 mL) 

yielded compound 101 as a red syrup in quantitative yield. 

Yield:    quant.; 

TLC:    Rf = 0.0 (ethyl acetate / methanol 7:1); 

Melting point:    207 °C (decomposition); 

Rotational value:  [α]20
D = +75.2 (c = 0.11 in methanol); 
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1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.83-7.79 (m, 2H, Ar-Hortho‘), 7.78-7.75 (d, 

3J = 8.9 Hz, 1H , Ar-Hortho), 7.49-7.43 (m, 3H, Ar-HmetaC(C=O), Ar-Hmeta‘), 7.40-7.37 (dd, 

4J = 2.7 Hz, 3J = 8.9 Hz, 1H, Ar-Hmeta), 5.63 (d, 3J1,2 = 1.8 Hz, 1H, H-1), 4.06-4.04 (dd, 

3J1,2 = 1.8 Hz, 3J2,3 = 3.4 Hz, 1H, H-2), 3.93-3.90 (dd, 3J2,3 = 3.4 Hz, 3J3,4 = 9.6 Hz, 1H, 

H-3), 3.90 (s, 3H, CH3), 3.80-3.70 (m, 5H, H-4, H-6, H-6‘, CH2), 3.59-3.55 (ddd, 

3JH5H6 = 5.5 Hz, 3JH5H6‘ = 2.5 Hz, 3JH4H5 = 9.9 Hz, 1H, H-5) ppm;  

13C-NMR (MeOD, 126 MHz, 300 K): δ = 172.0 (CH2(C=O)), 169.8 (Ar-C(C=O)), 159.4 

(Ar-Cpara), 152.7 (Ar-Cipso‘), 147.0 (Ar-Cipso), 139.4 (Ar-Cpara‘), 132.9 (Ar-Cortho(C=O)), 

131.5 (Ar-Cmeta‘), 127.9 (Ar-Cortho‘), 122.0 (Ar-CorthoH), 120.7 (Ar-CmetaCHortho), 117.8 

(Ar-CmetaC(C=O)), 100.3 (C-1), 75.9 (C-5), 72.4 (C-3), 71.8 (C-2), 68.3 (C-4), 62.7 (C-6), 

53.1 (CH3), 40.5 (CH2) ppm; 

IR (ATR): ṽ = 3355, 1678, 1440, 1201, 1135, 1037, 1029, 801, 723, 503 cm-1; 

ESI-MS: m/z = 381.29691, [M-CO2CH3-CH2COOH+Na]+; (calc. 476.14310 for 

C22H24N2O10). 

 

p-[(E)-p’-(Phenylthioacetate)phenylazo]phenyl-m-(methyloxycarbonyl) 2,3,4,6-

tetra-O-acetyl-β-D-glucopyranoside 102 

Triethylamine (45.5 μL, 328 μmol) was added to an icecold solution of glucoside 100 

(78.1 mg, 164 μmol), DEPC (77) (52.9 μL, 328 μmol) and thiophenol (25.4 μL, 

246 μmol) in DMF (10 mL). The reaction mixture was stirred for 16 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 

was purified by column chromatography (ethyl acetate/methanol 30:1 → 9:1) to yield 

compound 102 as a red solid. 

Yield:    46.5 mg (81.8 μmol, 50 %); 

TLC:    Rf = 0.21 (ethyl acetate/methanol 12:1); 

Melting point:    80 °C; 

Rotational value:  [α]20
D = -23.6 (c = 0.12 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.86-7.82 (m, 2H, Ar-Hortho‘), 7.78-7.75 (m, 1H 

, Ar-Hortho), 7.52-7.48 (m, 2H, Ar-Hmeta‘), 7.45-7.31 (m, 7H, Ar-HmetaC(C=O)), Ar-Hmeta, 

SPh ), 5.06-5.03 (m, 1H, H-1), 4.07 (s, 1H, CH2), 3.93-3.88 (m, 4H, H-6, CH3), 3.74-3.70 
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(dd, 3J5,6 = 5.7 Hz, 2J6,6’ = 12.2 Hz, 1H, H-6’), 3.54-3.47 (m, 3H, H-2, H-3, H-4), 3.43-

3.39 (m, 1H, H-5) ppm;  

13C-NMR (MeOD, 126 MHz, 300 K): δ = 196.5 (CH2(C=O)), 169.9 (Ar-C(C=O)), 153.1 

(Ar-Cipso), 152.9 (Ar-Cipso‘), 146.7 (Ar-Cpara), 138.5 (Ar-Cpara‘), 135.7 (Ar-CmetaC(C=O)), 

131.6 (Ar-Cmeta‘), 130.7, 130.1 (SPh), 124.1 (Ar-Cortho‘), 121.9 (Ar-CorthoH), 120.6 

(Ar-CmetaCHortho), 118.1 (Ar-CmetaC(C=O)), 102.2 (C-1), 78.5 (C-4), 74.8 (C-3), 73.0 

(C-2), 71.2 (C-5), 62.3 (C-6), 53.1 (CH3), 50.2 (CH2) ppm; 

IR (ATR): ṽ = 3372, 2919, 1703, 1600, 1228, 1071, 1043, 1011, 745 cm-1. 

ESI-MS: m/z = 569.15937, [M+H]+; (calc. 569.15938 for C28H28N2O9S+H). 

 

p-[(E)-p’-(Phenylthioacetate)phenylazo]phenyl-m-(methyloxycarbonyl) 2,3,4,6-

tetra-O-acetyl-α-D-mannopyranoside 103 

Triethylamine (83.2 μL, 600 μmol) was added to an icecold solution of glucoside 101 

(143 mg, 300 μmol), DEPC (77) (96.7 μL, 600 μmol) and thiophenol (46.4 μL, 

450 μmol) in DMF (6 mL). The reaction mixture was stirred for 16 h at room 

temperature. The solvent was then removed under reduced pressure and the crude product 

was purified by column chromatography (ethyl acetate/methanol 30:1 → 9:1) to yield 

compound 103 as a red solid. 

Yield:    80.2 mg (141 μmol, 47 %); 

TLC:    Rf = 0.21 (ethyl acetate/methanol 12:1); 

Melting point:   53 °C; 

Rotational value:  [α]20
D = +93.0 (c = 0.08 in methanol); 

1H-NMR (MeOD, 500 MHz, 300 K): δ = 7.85-7.79 (m, 2H, Ar-Hortho‘), 7.78-7.75 (m, 1H 

, Ar-Hortho), 7.52-7.48 (m, 2H, Ar-Hmeta‘), 7.47-7.44 (m, 2H, Ar-HmetaC(C=O), Ar-Hmeta), 

7.42-7.32 (m, 5H, SPh), 5.63 (s, 1H, H-1), 4.06-4.04 (dd, 3J1,2 = 1.8 Hz, 3J2,3 = 3.3 Hz, 

1H, H-2), 3.93-3.88 (m, 4H, H-3, CH3), 3.80-3.67 (m, 5H, H-4, H-6, H-6‘, CH2), 3.59-

3.55 (ddd, 3JH5H6 = 5.4 Hz, 3JH5H6‘ = 2.4 Hz, 3JH4H5 = 9.7 Hz, 1H, H-5) ppm;  

13C-NMR (MeOD, 126 MHz, 300 K): δ = 173.6 (CH2(C=O)), 169.6 (Ar-C(C=O)), 159.5 

(Ar-Cpara), 153.3 (Ar-Cipso‘), 147.0 (Ar-Cipso), 139.2 (Ar-Cpara‘), 135.7 (SPh), 132.7 

(Ar-Cortho(C=O)), 131.6 (Ar-Cmeta‘), 130.3, 128.6 (SPh), 124.2 (Ar-Cortho‘), 121.7 
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(Ar-CorthoH), 120.7 (Ar-CmetaCHortho), 118.0 (Ar-CmetaC(C=O)), 100.2 (C-1), 75.8 (C-5), 

72.4 (C-3), 71.8 (C-2), 68.3 (C-4), 62.6 (C-6), 53.1 (CH3), 41.7 (CH2) ppm; 

IR (ATR): ṽ = 3358, 1728, 1598, 1436, 1218, 1005, 973, 818, 689, 415 cm-1. 

ESI-MS: m/z = 569.15878, [M+H]+; (calc. 569.15883 for C28H28N2O9S+H). 

 

N-(Acetyl)-O-[4-[(E)-(2-phenyl)azo)phenyl acetate]]-L-tyrosine ethyl ester 108 

DCC (227 mg, 1.10 mmol) was added to an ice-cold solution of thioester 81 (240 mg, 

1.00 mmol), N-(Acetyl)-L-tyrosine ethyl ester 107 (538 mg, 2.00 mmol) and DMAP 

(61.0 mg, 500 μmol) in dry DCM (40 mL). The mixture was stirred at room temperature 

for 16 h. The mixture was then diluted with DCM (30 mL) and washed with 1 N HCl (aq.) 

(40 mL) and subsequently with sat. NaHCO3 solution (40 mL). The organic layer was 

dried over MgSO4, filtered and the solvent was removed under reduced pressure. 

Compound 121 was obtained after repeated column chromatography (cyclohexane/ ethyl 

acetate 4:1 → 1:2; toluene/ ethyl acetate 9:1 → 4:1) as an orange solid. 

Yield:    277 mg (585 mmol, 58 %); 

TLC:    Rf = 0.29 (ethyl acetate/ cyclohexane 2:1); 

Melting point:   146 °C; 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.95-7.90 (m, 4H, Ar-Hortho, Ar-Hortho’), 7.55-

7.46 (m, 5H, Ar-Hmeta, Ar-Hmeta’, Ar-Hpara), 7.12-7.08 (m, 2H, Ar-Hmeta, Tyr), 7.02-6.98 (m, 

2H, Ar-Hortho, Tyr), 5.93-5.89 (d, 3JCHNH = 17.6 Hz, NH), 4.86-4.82 (m, 1H, CHNH), 4.19-

4.12 (m, 2H, CH2CH3), 3.93 (s, 2H, Ar-CCH2) 3.13-3.10 (dd, 2JCH2 = 5.8 Hz, 

3JCH2CH = 2.5 Hz, 2H, CH2CH), 1.98 (s, 3H, (C=O)CH3), 1.26-1.21 (t, 3JCH2CH3 = 7.0 Hz, 

3H, CH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.7 ((C=O)OCH2CH3), 169.7 (NH(C=O)), 

169.6 (CH2(C=O)), 152.8 (Ar-Cipso’), 152.1 (Ar-Cipso), 149.9 (Ar-Cipso, Tyr), 136.5 

(Ar-Cpara), 133.9 (Ar-Cpara, Tyr), 131.2 (Ar-Cpara‘), 130.5 (Ar-Cmeta, Tyr), 130.3 (Ar-Cmeta’), 

129.3 (Ar-Cmeta), 123.4, 123.0 (Ar-Cortho, Ar-Cortho’), 121.6 (Ar-Cortho, Tyr), 61.8 (CH2CH3), 

53.2 (CHNH), 41.5 (Ar-CCH2), 37.4 (CH2CH), 23.3 (NH(C=O)CH3), 14.3 

(CH2CH3) ppm; 
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IR (ATR): ṽ = 3328, 2984, 1745, 1729, 1648, 1546, 1349, 1218, 1195, 1169, 1148, 1043, 

806, 689, 542, 455 cm-1; 

EI-MS: m/z = 473.19459, [M]+; (calc. 473.19507 for C27H27N3O5). 

 

  



Experimental section 341 

 

8.5.2 Procedure for photoirradiation experiments 

E → Z isomerisation was induced by irradiation using a LED (emitting 365 nm light) 

from the Nichia Corporation (NC4U133A) with a FWHW of 10 nm and an intensity of 

25 mW/cm2. Z → E isomerisation was performed by irradiation of the probe with a LED 

(emitting 440 nm light) from the Nichia Corporation with a FWHW of 45 nm and an 

intensity of 1 mW/cm2. Photostationary states were determined by 1H NMR 

spectroscopy. Therefore, the samples of azobenzene derivatives were dissolved in the 

respective solvent and were stored at 40 °C overnight to gain the E-isomer. Then, the 

probe was stored in the dark before 1H NMR spectroscopy was performed. Afterwards, 

the probe was irradiated with a 365 nm emitting LED for 20-30 min (with approximately 

5 cm between the LED and the probe) to reach the photostationary state (PSS). The 

sample again was stored in the dark and 1H NMR spectroscopy was performed 

immediately afterwards. The PSS was determined by integration of the the Z and E signals 

of a well separated signal which is influenced by E/Z isomerisation. In case of glycosides 

the H-1 proton lends itself otherwise the CH2 moiety shows a suitable singulett for 

integration. 

By analogy, samples for UV/Vis spectroscopy were prepared. The E-isomers of the 

azobenzene derivatives were dissolved in the respective solvent in a UV cuvette and then 

irradiated for 15 min at 365 nm with a distance between the LED and the cuvette of 

approximately 5 cm. UV/Vis spectra of the Z-isomers were recorded immediately 

afterwards on PerkinElmer Lambda 241. Subsequent irradiation with 440 nm restored the 

E-isomers. Spectra were also recorded.  

The kinetics of the thermal Z→E relaxation process were determined by 1H NMR 

spectroscopy in the dark. The half-life 1/2 was determined as 1/2 = ln2/k. After irradiation, 

the 1H NMR spectra of the samples were recorded in regular intervals (1 h) over a period 

of 3 to 5 days. For the determination of the half-life, signals which are influenced by E/Z 

isomerisation, were integrated, both for the Z- and the E-isomer. In case of glycosides the 

H-1 proton lends itself otherwise the CH2 shows a suitable singulett for integration. The 

decay of the integral of the Z- and the increase of the integral of the E-isomer were charted. 

The decay of the integral of the Z-isomer was plotted and an exponential decay of first 

order was fitted for the obtained data. Half-lifes for compounds which just show E/Z 

isomerisation at low concentrations were determined via UV/Vis spectroscopy (cf. 

chapter 3.2.3). 
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8.5.3 1H and 13C NMR spectra of synthesised compounds  

 

Figure 279: 1H NMR spectrum of compound 7 (500 MHz, CDCl3, 300 K). 

 

 

Figure 280: 1H NMR spectrum of compound 7 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 281: 13C NMR spectrum of compound 7 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 282: 1H NMR spectrum of compound 8 (500 MHz, CDCl3, 300 K). 
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Figure 283: 1H NMR spectrum of compound 8 (Z-isomer) (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 284: 13C NMR spectrum of compound 8 (126 MHz, CDCl3, 300 K). 
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Figure 285: 1H NMR spectrum of compound 9 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 286: 1H NMR spectrum of compound 9 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 287: 13C NMR spectrum of compound 9 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 288: 1H NMR spectrum of compound 10 (500 MHz, CDCl3, 300 K). 
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Figure 289: 1H NMR spectrum of compound 10 (Z-isomer) (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 290: 13C NMR spectrum of compound 10 (126 MHz, CDCl3, 300 K).  
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Figure 291: 1H NMR spectrum of compound 11 (600 MHz, CDCl3, 300 K). 

 

 

 
Figure 292: 1H NMR spectrum of compound 11 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 293: 13C NMR spectrum of compound 11 (151 MHz, CDCl3, 300 K).  

 

 

 
Figure 294: 1H NMR spectrum of compound 12 (500 MHz, CDCl3, 300 K). 
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Figure 295: 13C NMR spectrum of compound 12 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 296: 1H NMR spectrum of compound 13 (500 MHz, CDCl3, 300 K). 
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Figure 297: 1H NMR spectrum of compound 13 (Z-isomer) (500 MHz, CDCl3, 300 K). 

 

 

 

Figure 298: 13C NMR spectrum of compound 13 (126 MHz, CDCl3, 300 K).  
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Figure 299: 1H NMR spectrum of compound 14 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 300: 1H NMR spectrum of compound 14 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 301: 13C NMR spectrum of compound 14 (126 MHz, CDCl3, 300 K).  

 

 

 

Figure 302: 1H NMR spectrum of compound 23 (500 MHz, CDCl3, 300 K). 
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Figure 303: 13C NMR spectrum of compound 23 (126 MHz, CDCl3, 300 K). 

 

 

 

Figure 304: 1H NMR spectrum of compound 24 (500 MHz, CDCl3, 300 K). 
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Figure 305: 13C NMR spectrum of compound 24 (126 MHz, CDCl3, 300 K). 

 

 

 

Figure 306: 1H NMR spectrum of compound 25 (600 MHz, MeOD, 300 K). 
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Figure 307: 13C NMR spectrum of compound 25 (151 MHz, MeOD, 300 K). 

 

 

 

Figure 308: 1H NMR spectrum of compound 30 (500 MHz, MeOD, 300 K). 
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Figure 309: 13C NMR spectrum of compound 30 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 310: 1H NMR spectrum of compound 31 (500 MHz, MeOD, 300 K). 
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Figure 311: 13C NMR spectrum of compound 31 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 312: 1H NMR spectrum of compound 32 (500 MHz, MeOD, 300 K). 
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Figure 313: 1H NMR spectrum of compound 33 (500 MHz, DMSO-d6, 300 K). 

 

 

 

Figure 314: 13C NMR spectrum of compound 33 (151 MHz, DMSO-d6, 300 K). 
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Figure 315: 1H NMR spectrum of compound 35 (500 MHz, CDCl3, 300 K). 

 

 

 
Figure 316: 1H NMR spectrum of compound 35 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 317: 13C NMR spectrum of compound 35 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 318: 1H NMR spectrum of compound 52 (500 MHz, CDCl3, 300 K). 
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Figure 319: 13C NMR spectrum of compound 52 (126 MHz, CDCl3, 300 K).  

 

 

 

Figure 320: 1H NMR spectrum of compound 53 (500 MHz, CDCl3, 300 K). 
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Figure 321: 13C NMR spectrum of compound 53 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 322: 1H NMR spectrum of compound 54 (500 MHz, MeOD, 300 K). 
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Figure 323: 13C NMR spectrum of compound 54 (126 MHz, MeOD, 300 K).  

 

 

 

Figure 324: 1H NMR spectrum of compound 55 (500 MHz, MeOD, 300 K). 
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Figure 325: 13C NMR spectrum of compound 55 (126 MHz, MeOD, 300 K).  

 
Figure 326: 1H NMR spectrum of compound 56 (500 MHz, CDCl3, 300 K). 
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Figure 327: 13C NMR spectrum of compound 56 (126 MHz, CDCl3, 300 K).  

 

 

Figure 328: 1H NMR spectrum of compound 57 (500 MHz, DMSO-d6, 300 K). 
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Figure 329: 13C NMR spectrum of compound 57 (126 MHz, DMSO-d6, 300 K).  

 

 

 
Figure 330: 1H NMR spectrum of compound 59 (500 MHz, CDCl3, 300 K). 
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Figure 331: 13C NMR spectrum of compound 59 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 332: 1H NMR spectrum of compound 60 (500 MHz, CDCl3, 300 K). 
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Figure 333: 13C NMR spectrum of compound 60 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 334: 1H NMR spectrum of compound 61 (500 MHz, CDCl3, 300 K). 
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Figure 335: 13C NMR spectrum of compound 61 (126 MHz, CDCl3, 300 K).  

 

 

 

Figure 336: 1H NMR spectrum of compound 62 (500 MHz, CDCl3, 300 K). 
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Figure 337: 13C NMR spectrum of compound 62 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 338: 1H NMR spectrum of compound 63 (500 MHz, MeOD, 300 K). 
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Figure 339: 13C NMR spectrum of compound 63 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 340: 1H NMR spectrum of compound 65-I (200 MHz, MeOD, 300 K). 
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Figure 341: 1H NMR spectrum of compound 65-II (200 MHz, MeOD, 300 K). 

 

 

 
Figure 342: 13C NMR spectrum of compound 65-II (126 MHz, MeOD, 300 K).  
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Figure 343: 1H NMR spectrum of compound 66 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 344: 13C NMR spectrum of compound 66 (126 MHz, MeOD, 300 K).  
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Figure 345: 1H NMR spectrum of compound 70 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 346: 13C NMR spectrum of compound 70 (126 MHz, MeOD, 300 K).  
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Figure 347: 1H NMR spectrum of compound 71 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 348: 13C NMR spectrum of compound 71 (126 MHz, MeOD, 300 K).  
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Figure 349: 1H NMR spectrum of compound 72 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 350: 13C NMR spectrum of compound 72 (126 MHz, MeOD, 300 K).  
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Figure 351: 1H NMR spectrum of compound 73 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 352: 13C NMR spectrum of compound 73 (126 MHz, MeOD, 300 K).  
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Figure 353: 1H NMR spectrum of compound 75 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 354: 13C NMR spectrum of compound 75 (126 MHz, MeOD, 300 K).  

 

 



380 Experimental section  

 

 
Figure 355: 1H NMR spectrum of compound 78 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 356: 1H NMR spectrum of compound 78 (Z-isomer) (500 MHz, MeOD, 300 K). 
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Figure 357: 13C NMR spectrum of compound 78 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 358: 1H NMR spectrum of compound 79 (500 MHz, MeOD, 300 K). 

 

 



382 Experimental section  

 

 
Figure 359: : 1H NMR spectrum of compound 79 (Z-isomer) (500 MHz, MeOD, 300 K). 

 

 

 
Figure 360: 13C NMR spectrum of compound 79 (126 MHz, MeOD, 300 K).  
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Figure 361: 1H NMR spectrum of compound 80 (500 MHz, MeOD, 300 K). 

 

 

 
Figure 362: 1H NMR spectrum of compound 80 (Z-isomer) (500 MHz, MeOD, 300 K). 
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Figure 363: 13C NMR spectrum of compound 80 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 364: 1H NMR spectrum of compound 92 (500 MHz, CDCl3, 300 K). 
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Figure 365: 13C NMR spectrum of compound 92 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 366: 1H NMR spectrum of compound 93 (500 MHz, CDCl3, 300 K). 
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Figure 367: 13C NMR spectrum of compound 93 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 368: 1H NMR spectrum of compound 94 (500 MHz, CDCl3, 300 K). 
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Figure 369: 13C NMR spectrum of compound 94 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 370: 1H NMR spectrum of compound 95 (500 MHz, CDCl3, 300 K). 
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Figure 371: 13C NMR spectrum of compound 95 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 372: 1H NMR spectrum of compound 96 (500 MHz, CDCl3, 300 K). 
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Figure 373: 13C NMR spectrum of compound 96 (126 MHz, CDCl3, 300 K).  

 

 

 
Figure 374: 1H NMR spectrum of compound 97 (500 MHz, CDCl3, 300 K). 
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Figure 375: 13C NMR spectrum of compound 97 (126 MHz, CDCl3, 300 K).  

 

 

 

Figure 376: 1H NMR spectrum of compound 98 (500 MHz, MeOD, 300 K). 
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Figure 377: 13C NMR spectrum of compound 98 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 378: 1H NMR spectrum of compound 99 (500 MHz, MeOD, 300 K). 
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Figure 379: 13C NMR spectrum of compound 99 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 380: 1H NMR spectrum of compound 100 (500 MHz, MeOD, 300 K). 
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Figure 381: 13C NMR spectrum of compound 100 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 382: 1H NMR spectrum of compound 101 (500 MHz, MeOD, 300 K). 
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Figure 383: 13C NMR spectrum of compound 101 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 384: 1H NMR spectrum of compound 102 (500 MHz, MeOD, 300 K). 
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Figure 385: 13C NMR spectrum of compound 102 (126 MHz, MeOD, 300 K).  

 

 

 
Figure 386: 1H NMR spectrum of compound 103 (500 MHz, MeOD, 300 K). 
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Figure 387: 1H NMR spectrum of compound 103 (Z-isomer) (500 MHz, MeOD, 300 K). 

 

 

 
Figure 388: 13C NMR spectrum of compound 103 (126 MHz, MeOD, 300 K).  
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Figure 389: 1H NMR spectrum of compound 108 (500 MHz, CDCl3, 300 K). 

 

 

 

 

 

 
Figure 390: 1H NMR spectrum of compound 108 (Z-isomer) (500 MHz, CDCl3, 300 K). 
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Figure 391: 13C NMR spectrum of compound 108 (126 MHz, CDCl3, 300 K).  

 

 

8.5.4 UV/Vis spectra of synthesised compounds  

 

 

Figure 392: UV spectra of compound 8. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

15 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 
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Figure 393: UV spectra of compound 9. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

15 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

Figure 394: UV spectra of compound 10. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

15 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

 

Figure 395: UV spectra of compound 11. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

5 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 
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Figure 396: UV spectra of compound 12. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

5 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

 

Figure 397: UV spectra of compound 13. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

5 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

 

Figure 398: UV spectra of compound 14. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

5 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 
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Figure 399: UV spectra of compound 35. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 

5 min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in DCM at 293 K. 

 

 

Figure 400: UV spectra of compound 78. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 5 

min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in MeOH at 293 K. 

 

Figure 401: UV spectra of compound 79. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 5 

min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in MeOH at 293 K. 
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Figure 402: UV spectra of compound 80. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 5 

min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in MeOH at 293 K. 

 

 

 

Figure 403: UV spectra of compound 102. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 5 

min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in MeOH at 293 K. 

 
Figure 404: UV spectra of compound 103. The spectrum of the E-isomer (in blue) was recorded after 16 h 

storage at 40 °C and the spectrum of the Z-isomer (in red) was recorded after irradiation with 365 nm for 5 

min. Irradiation with 440 nm restored the E-isomer. Spectra were recorded in MeOH at 293 K. 
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8.6 Supporting information for chapter 6: Red-shifted azobenzene 

glycoconjugates for in vivo photoswitching expriments 

8.6.1 Synthesis of compounds 

3,5-Dichloro-4-nitrophenol 5[414] 

Sulfuric acid (1.79 mL in 10.0 mL of water) was added to an ice-cold solution of 3,5-

dichlorophenol 2 (4.00 g, 24.7 mmol) and sodium nitrite (2.32 g, 33.6 mmol) in water 

(70 mL). The reaction mixture was then stirred for 6 hours under reflux while additional 

sodium nitrite (10.1 g, 146 mmol) was added in portions. Afterwards the mixture was 

stirred for additional 16 h at room temperature. After extraction with ethyl acetate 

(3 x 150 mL) the combined organic layers were washed with water (250 mL) and sat. 

NaCl solution (250 mL). The organic layer was dried over MgSO4, filtered and the 

solvent removed under reduced pressure. The raw product was purified by column 

chromatography (cyclohexane/ ethyl acetate 7:1 → 2:1). Finally, the product 5 was 

crystallised in cyclohexane in the cold as a brownish solid. 

Yield:     1.90 g (9.14 mmol; 37 %; lit.: 12 %[414]);   

TLC:    Rf = 0.35 (cyclohexane/ ethyl acetate 2:1); 

1H-NMR: (CDCl3, 200 MHz, 300 K): δ = 6.90 (s, 2H, Ar-Hortho), 5.64 (s, 1H, OH) ppm. 

 

3,5-Dichloro-4-aminophenol 6 

3,5-Dichloro-4-nitrophenol 5 (500 mg, 2.40 mmol) was dissolved in methanol (30 mL) 

and a catalytic amount of palladium catalyst on charcoal was added. The mixture was 

stirred under hydrogen atmosphere for 16 h at room temperature. The mixture was then 

filtered with a syringe filter device (Ø = 0.45 μm) before the solvent was removed under 

reduced pressure. The product was obtained quantitatively as a slightly brown solid. 

Yield:     425 mg (2.39 mmol; 99 %);   

TLC:    Rf = 0.0 (cyclohexane/ ethyl acetate 2:1). 

  



404 Experimental section  

 

3,5-Dichloro-4-nitrophenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 10 

Borontrifluoride diethyletherate (543 μl, 4.33 mmol) was added to a solution of mannose 

trichloroacetimidate 9 (426 mg, 865 μmol) and 3,5-Dichloro-4-nitrophenol 5 (180 mg, 

865 μmol) in dry DCM (12 mL) at 0 °C. The reaction mixture was stirred at room 

temperature for 48 h. The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography (cyclohexane/ ethyl acetate, 3:1→ 2:1) 

to obtain mannoside 10 as a colourless solid. 

Yield:     329 mg (616 μmol; 71 %);   

TLC:    Rf = 0.21 (cyclohexane/ ethyl acetate 2:1); 

1H-NMR: (200 MHz, CDCl3, 300 K, TMS): δ = 7.22 (s, 2H, Ar-H), 5.55-5.52 (d, 

3J1,2 = 1.7 Hz, 1H, H-1), 5.64-5.51 (m, 2H, H-2, H-3), 5.39-5.27 (dd~t, 3J3,4 = 9.7 Hz, 1H, 

H-4), 4.35-4.21 (dd, 3J5,6 = 6.4 Hz, 2J6,6’ = 12.3 Hz, 1H, H-6), 4.14-3.93 (m, 2H, H-5, 

H-6’), 2.20, 2.07, 2.06, 2.04 (each s, each 3H, CH3) ppm. 

 

3,5-Dichloro-4-aminophenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 11 

Mannoside 10 (329 mg, 616 μmol) was dissolved in methanol (30 mL) and a catalytic 

amount of palladium catalyst on charcoal was added. The mixture was stirred under 

hydrogen atmosphere for 4 h at room temperature. The mixture was then filtered with a 

syringe filter device (Ø = 0.45 μm) before the solvent was removed under reduced 

pressure. The product 11 was obtained quantitatively as a colourless solid. 

Yield:     306 mg (602 μmol; 98 %);   

TLC:    Rf = 0.2 (cyclohexane/ ethyl acetate 1:1). 

 

4,4’-Azobis(3,5-Dichlorophenol) 16 

Azobenzene derivative 13 (300 mg, 1.40 mmol), NCS (936 mg, 7.01 mmol) and 

Pd(OAc)2 (31.4 mg, 0.14 mmol) were dissolved in acetic acid (16 mL) and stirred at 

130 °C for 16 h in an autoclave vessel. The residue was dissolved in DCM (100 mL) and 

washed with sat. NaCl solution (40 mL). The organic layer was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. The crude product was filtered 

over silica (cyclohexane → cyclohexane/ ethyl acetate 2:1) to obtain a crude product of 



Experimental section 405 

 

compound 16 as a red solid which was transposed directly to the synthesis of 

compound 18. 

 

4-{[2,4-Bis(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosidoxy)-5-chloro-4-hydroxy-

phenyl]hydrazino}-2,5-dichlorophenyl 2,3,4,6-tetra-O-acetyl-α-D-manno-

pyranoside 18 

Borontrifluoride diethyletherate (106 μl, 284 μmol) was added to a solution of mannose 

trichloroacetimidate 9 (140 mg, 284 μmol) and azobenzene derivative 16 (100 mg, 

284 μmol) in dry DCM (15 mL) at 0 °C. The reaction mixture was stirred at room 

temperature for 16 h. The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography (cyclohexane/ ethyl acetate, 4:1→ 2:1) 

to obtain mannoside 18 as a colourless solid. 

Yield:     329 mg (616 μmol; 71 %);   

TLC:    Rf = 0.19 (cyclohexane/ ethyl acetate 4:1); 

1H-NMR: (500 MHz, CDCl3, 300 K, TMS): δ = 7.34 (s, 4H, Ar-H), 5.78-5.77 (dd, 

3J1,2 = 1.8 Hz, 3J2,3 = 3.2 Hz 3H, H-2), 5.60-5.57 (dd, 3J2,3 = 3.2 Hz, 3J3,4 = 10.0 Hz, 3H, 

H-3), 5.42-5.38 (dd~t, 3J3,4 = 10.0 Hz 3H, H-4), 5.36-5.35 (d, 3J1,2 = 1.8 Hz, 3H, H-1), 

4.78-4.62 (ddd, 3J5,6 = 2.3 Hz, 3J5,6’ = 4.8 Hz, 3J4,5 = 10.1 Hz, 1H, H-5), 4.31-4.28 (dd, 

3J5,6 = 5.10 Hz, 2J6,6’ = 5.10 Hz, 3H, H-6), 4.20-4.16 (dd, 3J5,6’ = 2.4 Hz, 2J6,6’ = 5.10 Hz, 

3H, H-6’), 2.07, 1.97, 1.96, 1.92 (each s, each 9H, CH3) ppm; 

13C-NMR: (126 MHz, MeOD, 300 K): δ = 170.6, 169.9, 169.7 (C=O), 148.5 (Ar-CO), 

130.7 (Ar-C), 129.6, 129.1 (Ar-C), 101.2 (C-1), 70.9 (C-5), 69.2 (C-2), 68.6 (C-3), 65.7 

(C-4), 62.3 (C-6), 20.8, 20.7 ((C=O)CH3) ppm; 

EI-MS: m/z = 1347.4 [M+Na]+; (calc. 1324.253 for C54H63Cl3N2O30). 

 

p-[(E)-(p’-Acetic acid methyl ester) phenylazo]phenyl 2,3,4,6-tetra-O-acetyl-β-D-

glucopyranoside 20 

Acetic acid anhydride (505 μL, 5.34 mmol) was added to a solution of glucoside 19 

(288 mg, 667 μmol) in pyridine (15 mL) and stirred at room temperature for 2 d. The 
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solvent was removed under reduced pressure and the crude product was codestilled twice 

with toluene (2 x 30 mL) to obtain compound 20 quantitatively as an orange solid. 

Yield:    400 mg (666 μmol, quant.); 

TLC:    Rf = 0.42 (cyclohexane / ethyl acetate 1:1); 

Rotational value:  [α]D
24 = +10.4 (c = 2.45 mM, CH2Cl2); 

1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.91-7.88 (m, 2H, Ar-Hortho), 7.87-7.84 (m, 2H, 

Ar-Hortho‘), 7.44-7.41 (m, 2H, Ar-Hmeta‘), 7.12-7.09 (m, 2H, Ar-Hmeta), 5.35-5.30 (m, 2H, 

H-2, H-3), 5.21-5.17 (m, 2H, H-1, H-4), 4.33-4.28 (dd, 2J6,6‘ = 12.3 Hz, 3J5,6 = 5.5 Hz, 1H, 

H-6), 4.21-4.18 (dd, 2J6,6‘ = 12.3 Hz, 3JH5H6‘ = 2.4 Hz, 1H, H-6‘), 3.94-3.90 (ddd, 

3J5,6 = 5.5 Hz, 3J5,6‘ = 2.4 Hz, 3J4,5 = 10.0 Hz, 1H, H-5), 3.72 (s, 3H, CH3), 3.71 (s, 2H, 

CH2) 2.09, 2.07, 2.06, 2.05 (s, each 3H, C=OCH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 171.5 (CH2(C=O), 170.6, 170.2, 169.4, 169.3 

(C=O), 158.8 (Ar-Cpara), 151.7 (Ar-Cipso‘), 148.6 (Ar-Cipso), 136.8 (Ar-Cpara‘), 130.0 

(Ar-Cmeta‘), 124.5 (Ar-Cortho), 122.9 (Ar-Cortho‘), 117.0 (Ar-Cmeta),98.7 (C-1), 72.7 (C-3), 

72.2 (C-5), 71.1 (C-2), 68.2 (C-4), 61.9 (C-6), 52.2 (CH3), 41.0 (CH2), 20.7, 20.6 

(C=OCH3) ppm; 

IR (ATR): ṽ = 1732, 1597, 1497, 1367, 1215, 1072, 1037, 1030, 844 cm-1; 

ESI-MS: m/z = 601.20280, [M+H]+; (calc. 601.20335 for C29H32N2O12+H). 

 

4-[(E)-4’-(Acetic acid methyl ester)-3,5-dichlorophenylazo]-3,5-dichlorophenyl 

2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside 21 

Glucoside 20 (50.0 mg, 83.5 μmol), NCS (55.5 mg, 417 μmol) and Pd(OAc)2 catalyst 

(1.88 mg, 8.37 μmol) were suspended in dry acetic acid (1.0 mL) and stirred under 

microwave heating at 140 °C for 1 h. The acetic acid was removed subsequently under 

reduced pressure and the residue dissolved in DCM (40 mL) and washed with phosphate 

buffer (30 mL) and sat. NaCl solution (30 mL). The organic phase was dried over MgSO4, 

filtered and the solvent removed under reduced pressure. Compound 21 was obtained 

after column chromatography (cyclohexane/ ethyl acetate 4:1→ 1:1) as a red solid. 

Yield:    20.3 mg (27.5 μmol, 33 %); 

TLC:    Rf = 0.37 (cyclohexane / ethyl acetate 1:1); 
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1H-NMR (CDCl3, 500 MHz, 300 K): δ = 7.39 (s, 2H, Ar-Hmeta’), 7.12 (s, 2H, Ar-Hmeta‘), 

5.34-5.26 (m, 2H, H-2, H-3), 5.16-5.10 (m, 2H, H-1, H-4), 4.24-4.21 (m, 2H, H-6, H-6‘), 

3.97-3.91 (ddd, 3J5,6 = 5.2 Hz, 3J5,6‘ = 3.7 Hz, 3J4,5 = 10.0 Hz, 1H, H-5), 3.74 (s, 3H, CH3), 

3.64 (s, 2H, CH2) 2.13, 2.09, 2.07, 2.05 (s, each 3H, C=OCH3) ppm; 

13C-NMR (CDCl3, 126 MHz, 300 K): δ = 170.6 (CH2(C=O), 170.5, 170.1, 169.4, 169.2 

(C=O), 156.5 (Ar-Cpara), 146.7 (Ar-Cipso‘), 142.9 (Ar-Cipso), 136.0 (Ar-Cpara‘), 130.2 

(Ar-Cmeta‘), 129.3 (Ar-Cortho), 127.3 (Ar-Cortho‘), 118.0 (Ar-Cmeta),98.5 (C-1), 72.5 (C-5), 

72.5 (C-3), 70.9 (C-2), 68.2 (C-4), 62.1 (C-6), 52.5 (CH3), 40.1 (CH2), 20.7, 20.6 

(C=OCH3) ppm. 

 

8.6.2 1H and 13C NMR spectra of synthesised compounds  

 

Figure 405: 1H NMR spectrum of compound 5 (200 MHz, CDCl3, 300 K). 
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Figure 406: 1H NMR spectrum of compound 10 (200 MHz, CDCl3, 300 K). 

 

 

 

Figure 407: 1H NMR spectrum of compound 18 (500 MHz, CDCl3, 300 K). 
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Figure 408: 13C NMR spectrum of compound 18 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 409: 1H NMR spectrum of compound 20 (500 MHz, CDCl3, 300 K). 
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Figure 410: 13C NMR spectrum of compound 20 (126 MHz, CDCl3, 300 K). 

 

 

 
Figure 411: 1H NMR spectrum of compound 21 (500 MHz, CDCl3, 300 K). 
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Figure 412: 13C NMR spectrum of compound 21 (126 MHz, CDCl3, 300 K). 
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