
aflak: Advanced Framework for
Learning Astrophysical Knowledge

—A visual programming approach to analyze
multi-spectral astronomical data—

—ビジュアルプログラミング・アプローチを用いた

天文学における分光データ解析—

Malik Olivier Boussejra

Graduate School of Science and Technology
Center for Information and Computer Science

Keio University

慶應義塾大学

大学院理工学研究科開放環境科学専攻

This dissertation is submitted for the degree of
Doctor of Philosophy in Engineering

August 2019

I would like to dedicate this thesis to my loving family, especially李若菲.

iii

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Malik Olivier Boussejra
August 2019

iv

Acknowledgements

Nothing could have been done with the tremendous help from my advisor, Professor Issei
Fujishiro, yet a lot of people assisted me at all times I needed help, including many spe-
cialists in astronomy. I should first warmly thank the members of the jury, Professor
Makoto Uemura, Professor Tomoharu Oka and Professor Hideo Saito for their feedback
on my doctoral defense. Professor Fujishiro introduced Professor Makoto Uemura from
Hiroshima University, who in turned introduced Dr. Kazuya Matsubayashi from the De-
partment of Astronomy at Kyoto University. Dr. Matsubayashi guided us towards so-
lutions to astronomical computational problems, especially equivalent widths. Professor
Yuriko Takeshima fromTokyo University of Technology provided valuable pieces of advice
thanks to her expertise in visualization, and helped in evaluating aflak.

When I was struggling to find a new theme for my Ph. D. thesis, while wandering in
Keio University’s Yagami campus, I met with Professor Tomoharu Oka from the same uni-
versity, who introduced me to his then Ph. D. student Shunya Takekawa. Shunya is now
a researcher at the Nobeyama Radio Observatory in Minamimaki, Nagano. He is the one
who guided me into approaching the problem with a visual programming language for as-
tronomical data analysis. I am extremely thankful for his advice, and his recommendations
of various conferences and workshops to present aflak.

During one of such conferences, the Astronomical Data Analysis Software & System
(ADASS)XXVIII conference, I met Dr. François Bonnarel from the StrasbourgAstronomical
Data Center, to whom I would like to extend warm thanks for his thorough explanations
and knowledge about various astronomical standards, especially the SIA standard. The
same thanks should be directed to Dr. Hendrik Heinl from the Center for Astronomy of
the University of Heidelberg for the tutorial he presented about IVOA interoperability
standards and the time he offered me for answering a beginner’s questions.

In my own laboratory, Mr. Rikuo Uchiki implemented most of the astrophysical primi-
tives, while I was mostly concerned with the overall design and the computational engine.
Mr. Yuhei Iwata, a Ph. D. candidate under Professor Oka, helped with some debugging on
the macOS release. Thanks to him, aflak could run on the latest Mojave.

v

I should as well thank all the people who provided their help during a concurrent
project on forensic medicine. A lot of people assisted me at all time I needed help, includ-
ing specialists in forensic medicine from University of Yamanashi starting from Professor
Noboru Adachi, Professor Hideki Shojo and Dr. Ryohei Takahashi, but also specialists in
computer graphics such as Professor XiaoyangMao and Professor Masahiro Toyoura. Pro-
fessor Fujishiro was the first person who thought about applying computer visualization
to computational forensics, and who proposed to create a mark-up language to describe
forensic medicine operations. Professor Noboru Adachi, Professor Hideo Shojo and Dr. Ry-
ohei Takahashi shared with us all their forensic knowledge for us to build a semantically
correct mark-up language, and their constant suggestions for improving our framework
were priceless.

This work is supported in part by both JSPS KAKENHI Grant Numbers 17K00173 and
17H00737. Until 2017, the work was as well supported in part by JSPS KAKENHI under
Grant-in-Aid for Scientific Research (A) No. 26240015, and by a Grant-in-Aid for the Lead-
ing Graduate School program for “Science for Development of Super Mature Society” from
the Ministry of Education, Culture, Sport, Science, and Technology in Japan.

The template used to typeset this thesis is based on the Cambridge University Engi-
neering Department Ph. D. thesis template created by Krishna Kumar.

vi

aflak: Advanced Framework for Learning
Astrophysical Knowledge

—A visual programming approach

to analyze multi-spectral astronomical data—

Abstract

This thesis describes an extendable graphical framework, aflak (Advanced Framework
for Learning Astronomical Knowledge), which provides a collaborative visualization en-
vironment for the exploratory analysis of multi-spectral astronomical datasets. aflak
allows the astronomer to share and define analytics pipelines though a node editing in-
terface, in which the user can compose together a set of built-in transforms (e.g. dataset
import, integration, Gaussian fit) over astronomical datasets. aflak supports the loading
and exporting of Flexible Image Transport System (FITS) files, the de facto data interchange
format used in astronomy, allowing interoperability with existing astronomy software.

The contribution of this thesis lies in that we leverage visual programming techniques
to conduct fine-grained astronomical transformations, filtering and visual analyses on
multi-spectral datasets, with the possibility for astronomers to interactively fine-tune all
the interacting parameters. As the visual program is gradually designed, the computed
results can be visualized in real time, thus aflak puts the astronomer in the loop.

Moreover, aflak can query and load datasets from public astronomical data reposito-
ries, by implementing standard query protocols used in astronomy, such as Simple Image
Access (SIA). aflak extends the FITS standard in a manner such that the full provenance
of the output data created by aflak be preserved and reviewable, and that the exported
file be usable by other common astronomical analysis software. By embedding aflak’s
provenance data into FITS files, we both achieve interoperability with existing software
and full end-to-end reproducibility of the process by which astronomers make discoveries.

Not only is aflak fast and responsive, but the macro it supports can be conveniently
exported, imported and shared among researchers using a purposefully built data inter-
change format and protocol. A user can implement some common analytical procedure
either by combining several nodes and creating a macro with aflak’s user interface, or
by programmatically implementing new nodes in the Rust programming language.

vii

During the development of aflak, we worked together with astronomers to provide
a universal tool that suits their analytic needs as close as possible. aflak joins ease of
use, responsiveness, shareability and reproducibility of the analytical process by which
astronomers make discoveries.

Keywords

Astronomy, Astrophysics, Provenance, Visual Programming, Scientific Visualization.

viii

aflak: Advanced Framework for Learning
Astrophysical Knowledge

—ビジュアルプログラミング手法を使用した天文学における

分光データ解析—

論文要旨

本学位請求論文では，協働的な可視化環境を提供することにより，天文学分光デ
ータの探究的分析を可能とする拡張可能なグラフィカルフレームワーク aflak
（Advanced Framework for Learning Astronomical Knowledge）を提案する．そのノー
ドエディタ・インタフェースを通じて，天文学者はシステムに予め組み込まれた
変換関数（天文データの取込み，積分，ガウス関数フィッティング等）から分析
パイプラインを組み上げられるほか，そのパイプラインを他の研究者と共有する
こともできる．aflakは，天文学における事実上の標準データ交換フォーマット
である Flexible Image Transport System（FITS）のファイル読込み/書出しに対応し
ているので，既存の天文学ソフトウェアとの相互運用も可能である．
　本研究の主要な貢献は，ビジュアルプログラミングの技術を活用して，天文学
で多用されている，粒度の細かい変換やフィルタリング，視覚分析に関連するパ
ラメタ群を容易に微調整させられることである．ビジュアルプログラムの設計途
中でも，その算出結果をリアルタイムで可視化できるので，まさに「天文学者・イ
ン・ザ・ループ」を構築している．
　さらに aflakは、Simple Image Access（SIA）等の天文学の標準的な照会プロ
トコルに対応しており，公開されている天文データレポジトリのデータセットを
照会したり読み込んだりすることができる．しかも aflakは，FITS様式を拡張
して，書き出したデータの完全な出自を保持できるので，外部での検閲を許すだ
けでなく，その FITSファイルを他の天文ソフトウェアにも読み込ませることや，
天文学者の発見につながったデータ処理プロセスを完全に再現することも可能で
ある．
　 aflakの特長は速い応答性だけではない．そのユーザインタフェースを利用
して，ユーザは複数のノードを組み合わせて一般的な分析手順を提供するマクロ
を作成することもできる．また，マクロ定義に利用される新たなノードを，プロ
グラミング言語 Rustで実装することもできる．作成されたマクロは，意図的に構

ix

築されたデータ交換フォーマットとプロトコルを利用して読込み/書出しができ，
研究者間で便利な共有も可能である．
　 aflakは，天文学者のニーズに最大限に応えられるような汎用ツールを提供
する目的で，天文学者と協同で開発されてきた．aflakは，使いやすさや応答性，
共有可能性，発見に資する分析プロセスの再現性を兼備している．

キーワード

　天文学，宇宙物理学，出自，ビジュアルプログラミング，科学技術データ可視化．

Table of contents

List of figures xiii

List of tables xvii

1 Introduction: How Do Astronomers Analyze Datasets? 1
1.1 A collaborative endeavor . 1
1.2 Data used by astronomers . 2
1.3 Data retrieval and analysis for the astronomer 3
1.4 An aside about forensics . 4
1.5 aflak’s introduction . 5

2 Related Works 7
2.1 Viewers and analyzers for astronomical use 7

2.1.1 Viewing astronomical datasets . 7
2.1.2 Inspiration from non-astronomy viewers 8
2.1.3 Tools for data analytics . 8
2.1.4 Moving to Python . 11

2.2 Visual programming language paradigm 12
2.3 A visual programming approach for viewing and analyzing astronomical

datasets . 13
2.4 Visualization and provenance in forensic science 15

3 aflak: Advanced Framework for Learning Astronomical Knowledge 20
3.1 Background and motivation . 20
3.2 Design goals . 22

3.2.1 Ease of use and responsiveness . 22
3.2.2 Re-usability and extendability . 22
3.2.3 Collaborative development . 22

3.3 System overview . 22

Table of contents xi

3.3.1 Description . 22
3.3.2 Detailed description of components 23
3.3.3 Value nodes, type checking and error handling 32

4 Implementation Details 35
4.1 Description of algorithms and implementation 35

4.1.1 Language and library choices . 35
4.1.2 Multi-crate structure . 36
4.1.3 cake: Computation mAKE . 36
4.1.4 MetaTransform data structure . 38
4.1.5 Computing output with cache . 40

4.2 Macro support for cake . 41
4.2.1 Design decisions . 41
4.2.2 Data structures for macro support 42
4.2.3 Some changes in computation logic 43
4.2.4 Macro user interface . 43

4.3 SIA integration for provenance management 45
4.3.1 Overview of the SIA specification 45
4.3.2 Integration with SIA . 45
4.3.3 Provenance management with aflak 46

4.4 User interface: An event-based architecture 48
4.5 Implementing astronomical libraries in Rust 49

4.5.1 FITS libraries . 49
4.5.2 Convenience in opening FITS files 50
4.5.3 Virtual Observatory standards . 51

4.6 Defining your own nodes with Rust . 51
4.7 DevOps . 53

4.7.1 Portability: Challenges in supporting Linux (Debian and Ubuntu),
macOS and Windows . 54

4.7.2 Development workflow . 54
4.7.3 Release mechanism . 54

5 Evaluation 56
5.1 Checking compliance to standards . 56
5.2 First use case: Equivalent width . 58

5.2.1 Introduction to human-in-the-loop concept 58
5.2.2 Use case . 59

Table of contents xii

5.3 Second use case: Velocity field map . 59
5.4 Comparison with current tools . 59

5.4.1 In-depth comparison . 61
5.4.2 Equivalent width with a macro . 63

5.5 Advantages of provenance management in a visual context not limited to
astronomy . 63

5.6 Distribution and recognition . 66

6 Future Works 69
6.1 Stronger interoperability with VO standards 69
6.2 Application to other astronomical problems 70

6.2.1 Arbitrary non-linear slicing . 70
6.2.2 Interferometry . 70

6.3 More room for improvement . 73

7 Conclusion 74

References 76

List of figures

1.1 General workflow for a user of the proposed framework, aflak. Datasets
can be loaded either from the file system or by issuing requests to open data
repositories. The visual program can be interactively developed while the
user can see a visualization of the program’s output in real time. 6

1.2 General workflow of the Legal Medicine Mark-up Language framework,
with all the involved users. 6

2.1 A screen capture of SAOImageDS9. ThoughDS9 ismainly used as a viewer,
we can still see some sub-menus related to data analysis. 9

2.2 A screen capture of PyQtGraph in use. Output windows in aflak’s in-
terface to visualize datacubes were inspired from PyQtGraph’s interface
(screen capture from [Cam]). 10

2.3 AVS/Express screenshot, from Bungartz et al [BFM98]. 13
2.4 KNIME’s node editor interface. 14
2.5 Example of a semi-complex use of aflak to extract the equivalent width

of a three-dimensional dataset (refer to Carroll’s book for precise definition
of equivalent width [CO07]). The open_fits node opens a FITS file,
then several transformations are applied to the file to extract the equivalent
width in the right-most output node (Output #3). The result of each output
node is visualized in a corresponding output window. Continuum emission
is computed by node #4 on the left side, and by node #6 on the right side.
The average of the emission line is computed by node #5. Intermediary
results are visualized via output nodes #1 and #2. 16

2.6 LMML Browser: Data input interface (head external examination). Top:
Fixed forms for data relevant to head examination. Bottom: Preview of the
paragraph dealing with the head included in the final forensic report. . . . 18

2.7 LMML Browser: A visualization to explore the result of the autopsy. 19

List of figures xiv

3.1 An example of transformation node, which computes the linear composi-
tion of two images. It has four inputs (on the left): two images 𝑢, 𝑣 and two
scalar parameters 𝑎 and 𝑏. The transformation node has a single output
slot (on the right) from which the image 𝑎𝑢 + 𝑏𝑣 comes out. Parameters
𝑎 and 𝑏 can either be directly input by the user inside the node, or can be
taken from the value of an output of another node. 23

3.2 General UI ofaflak. We can see all ofaflak’s components. (a) Current
node list (b) Documentation of last selected node (active node) (c) Node
editor, with output nodes on the left (d) Output windows for visualization 25

3.3 Left pane of aflak’s interface, containing the list of nodes in the current
editor’s window. 26

3.4 The figure shows the pop-up dialog that allows to select a new node to
add to the node editor’s graph. The pop-up dialog can be opened by right-
clicking on any empty space in the node editor. 27

3.5 Interfaces of an output window showing a 2D image with several color
maps and axes. 29

3.6 Examples of interaction handles representing a bound value in a visualiza-
tion of a two-dimensional image. 30

3.7 Visualization of the waveform of a datacube. This is the interface of a one-
dimensional image when displayed in an output window. The vertical line
is an interactive handle that represents an 𝑥-axis value selected by the user. 31

3.8 Many types of value nodes as they appear in aflak. 33
3.9 aflakwill prevent the user from wasting their CPU resources. No cyclic

dependencies can be created. The same kind of errors will be detected,
prevented and a message will be displayed if a user tries to nest recursive
macros. 33

3.10 An output window shows a runtime error. The fits_to_image node
cannot find a FITS HDU with index 20. So the error bubbles up to Output
#2, and its stack-trace is displayed in the output window for easy debug-
ging. 34

4.1 aflak’s modular structure. 37

List of figures xv

4.2 Example of a macro that opens an image from the MaNGA dataset [B+15].
This simple macro takes two inputs: a FITS file and an integer representing
a frame number. Themacro then outputs the waveform and the image data
at the provided frame. This is the result that can be seen in output windows
#1 and #2. Theway the FITS file is open and the choice of extension (FLUX)
is quite specific to the MaNGA dataset, hence the merit of defining a macro
for such task. 44

4.3 aflak querying and displaying an object from the GAVO (German Astro-
physical Virtual Observatory) repository. The user can select the sky coor-
dinates of the object and a data repository that will be queried. The record
is then downloaded, cached and displayed on the screen. Some intermedi-
ary results, like the direct URL fromwhich the image is downloaded or FITS
metadata are displayed as well. The displayed object has the following ID:
ivo://org.gavo.dc/~?rosat/image_data/rda_1/us900176p-

1_n1_p1_r2_f2_p1/rp900176a01_mex.fits.gz 47
4.4 FITS file structure. Image courtesy of Introduction to the HST Data Hand-

books, section 2.2 on “Multi-Extension FITS File Format” [S+11]. 50

5.1 Image with a size in the gigabyte range queried fromGAVO SIAP 1.0 repos-
itory, as shown within aflak. SIAP 1.0 dates from around 2002 and
does not support any sort of “ID” for datasets. GAVO SIAP 1.0: http:
//dc.zah.uni-heidelberg.de/hppunion/q/im/siap.xml 57

5.2 The visualization discovery process as presented by Johnson et al. [JMM+05].
This figure represents the core visualization concept of human-in-the-loop. 58

5.3 A node graph for computing the velocity field map using the effect of
Doppler shift on an emission line. It generates two field maps (one in out-
put #1 and one in output #2) with two different computation methods. Av-
erage value of the image around the emission line in shown in output #3.
We see that there is a fast moving object on the lower right-hand side. . . 60

5.4 Example of using an aflak macro to compute equivalent width. The
macro encapsulates all the logic implemented as shown in the node editor
in Figure 2.5, only exposing the relevant constants that the astronomers
are expected to gradually adjust until they get a satisfactory outcome. . . 64

5.5 An example graph of provenance discovery. Startingwith a released dataset
(left), the involved activities (blue boxes), progenitor entities (yellow rounded
boxes) and responsible agents (orange pentagons) are discovered. [SRB+19] 66

http://dc.zah.uni-heidelberg.de/hppunion/q/im/siap.xml
http://dc.zah.uni-heidelberg.de/hppunion/q/im/siap.xml

List of figures xvi

5.6 Provenance in forensics: Reconstitution of crime according to different
hypotheses. 66

5.7 aflak’s repository has 12 stargazers. We never attempted to do any kind
of pro-active campaign to earn stars. 67

6.1 Representation of aflak’s planned extension to support arbitrary slicing. 71
6.2 Block diagram of AIPS from a user point of view. Various communications

paths are shown among the main interactive program, AIPS, the batch pro-
gram AIPSB, and the collection of separate tasks (Figure 1 in [Gre03]). . . 72

List of tables

4.1 Dynamic Syntax Tree data structure . 38
4.2 MetaTransform data structure . 39
4.3 Transform data structure . 39
4.4 Data structure of Algorithm enumeration 39
4.5 Macro data structure . 42

List of listings

2.1 Example of use of IRAF’s command-line interface 11
4.1 Event enumeration used for node editor’s user interface 48
4.2 How to define your own custom node in Rust 52
4.3 Load a FITS file . 53
5.1 Extracting equivalent width with Bash/IRAF 62
5.2 Installing aflak: A one-liner. 68

Chapter 1

Introduction: How Do Astronomers
Analyze Datasets?

“Astronomy is similar to forensic science, in that it relies
entirely on the detection and analysis of the leftovers of past
events—mostly consisting of radiation—to reconstruct a
plausible explanation for what is being observed.”

Author’s re-rendering of a speech by Kirk Borne [Bor18]

1.1 A collaborative endeavor

As all scientific disciplines, astrophysics requires deep collaborative support among re-
searchers in order to make breakthrough results. The cliché of the lonely researcher hardly
exists anymore in real life. Astrophysicists are expected to provide to their peers re-
producible research and accurate retelling of the analytic process by which a result was
achieved. This cooperation is clearly shown by the ever increasing average number of
co-authors in papers, including for example the 2019 highly mediatized technological de-
velopment that allowed the M87* black hole to be directly imaged. Imaging such a far
away object requires a telescope roughly the size of the Earth in order to mitigate light
diffraction on collecting the photons from an object with an angular size as small as M87*.
Such feat can only be done by creating a virtual telescope through the cooperation of many
telescopes scattered over the whole Earth—the paper by Akiyama et al. that revealed the
black hole image boasts 143 different affiliations [AAA+19].

Interestingly, astronomy is sometimes compared to forensic science in that astronomers
are only able to gather the traces of what is left of far away physical phenomena, and from

1.2 Data used by astronomers 2

there draw conclusions [Bor18]. Indeed, all that is left to analyze and understand these
phenomena is mostly the radiation that was emitted from them eons ago1.

In astrophysics, datasets are already publicly shared via open repositories, with each
data sample being assigned a unique identifier, but not the same can be said about the com-
plete raw analysis process, which involves everything from the original data to the output
that allowed an astronomer to draw specific conclusions. This of course includes the ana-
lytical program devised by the astronomer, but as well all the steps by which this program
was refined. Hence, we can foresee the need for better sharing practices of analytical pro-
cesses and provenance data to improve reproducibility and potential for collaboration.

1.2 Data used by astronomers

Astrophysical data typically consists of multi-spectral images. Depending on the specific
field of study an astrophysicist may dive in, one may encounter datasets with three to five
dimensions. In addition to the two common spatial axes (usually right ascension and decli-
nation, but other kinds of domain-specific spacial coordinates, such as galactic coordinates
may as well be used), one may found:

Wavelength: The spacial period of a given ray received by a pixel’s sensor. By taking
into account the Doppler effect, radial speed towards the Earth may be extracted
from this value. Thus datasets only containing the resulting speed may be found
(e.g. datasets used by Oka et al. [OTI+17]).

Polarization: A value characteristic of specific milieu or objects (e.g. blazars emit a po-
larized light [FSN+18]).

Time: Dynamic phenomenon may include time-dependent data (e.g. solar flare).

Those kinds ofmulti-dimensional data are represented as datacubes. Themost common
format used by astronomers to store and exchange such data is Flexible Image Transport
System (FITS) [WG79]. FITS is a data format developed in the 70s and 80s for university
mainframes, already from a need to facilitate data exchange between research centers, and
has evolved along the decades it has been in use. FITS is a very interesting format to in-
vestigate for the interested. Through its evolution, it has remained backward-compatible
with its newer extended features, but still displays peculiar characteristics for the modern
observer. Indeed, FITS was developed to be conveniently recorded on IBM punch-cards,

1As a pedantic addition, apart from electromagnetic radiation, neutrinos or gravitational waves may as
well be detected.

1.3 Data retrieval and analysis for the astronomer 3

which were 80 columns long. This is why if one takes a look at the modern FITS specifica-
tion, one will see many instances of paddings to fill bits by multiples of 80 characters. All
those rules may seem strange to the non-initiated, however they make sense when looked
through the lens of their historical backgrounds. This fact alone is of deep intellectual
interest for anyone dealing with a parser or a writer that must support this format. The
author had the privilege to meet with Jessica Mink, the creator of the FITS format, who
also happens to be the discoverer of the rings of Uranus.

A simple FITS file will be separated into two parts: header and data. The header will
contain, as one may expect, metadata regarding the content of the file2. The data will
contain an array of numbers, represented using a little-endian representation, which is
the contrary to the big-endian representation of numbers now commonly used by our
processors. A complying modern FITS parser will thus require to do bit-wise conversions
on floating point representations of real numbers.

Apart from number crunching, astronomers also deal with data tables. An extension
of FITS allows to encode data tables within the data part of a FITS file. A standard derived
from the representation was codified and is called ObsCore (Observation Data Model Core
Components and its Implementation in the Table Access Protocol) [LTD+17].

1.3 Data retrieval and analysis for the astronomer

An astronomer’s workflow can be broken down into the following four steps:

1. Find or query a dataset of interest.

2. Run some analytical task on the object.

3. Observe the result of the analytical tasks.

4. Draw conclusions or go back to any of the previous tasks.

Finding and querying datasets can be done using data repositories. Astronomical data
repositories usually expose APIs following certain standards to allow the user to query
datasets according to their properties. Among such standards, the Simple Image Access
(SIA) protocol is widely used [OLD+08]. Objects for example can be queried depending on
their sky coordinates or luminosity. Query along sky coordinates is usually dubbed “cone
search,” as even if two objects appear in the same area of the sky, they can be extremely

2This is not without reminiscing of DICOM (Digital Imaging and COmmunication in Medicine) as used
in medicine.

1.4 An aside about forensics 4

far from each other, both lying within an extremely thin cone (with a dimension rang-
ing around the order of a few milliseconds of arc) stretching from the Earth and passing
through the objects.

The astronomer can then use analytical tools to analyze the queried dataset. Such
tool will compute common image algebra on the object (Gaussian fit, summation, etc.).
The array of analytics is very broad and differs widely between sub-fields of astronomy:
a radio-astronomer will not work using the same analytical primitives as an astronomer
specializing in the visible light. During our research, we attempted to get feedback from as
many astronomers as possible, to avoid alienating any of the tools we develop to a specific
subfield. Indeed, the purpose of our research is to develop ubiquitous and general tools.

Finally, after analytical tasks are done, the astronomer must visualize the result of the
analysis. Many different FITS viewers exist for example. During that phase, there are
several types of conclusions to be drawn. Hopefully, the researcher would be able to find
something worthy enough to become an astronomical paper. However, most of the time
this will not be the case and the result will not be fruitful. The astronomer may instead
conclude that the data they queried does not suit their need, and they will try with another
dataset. Or they may conclude that one of the parameters they used during analysis was
not exactly appropriate, and they may review the analytical pipeline to start another ob-
servation. The point is, whether they can draw appropriate conclusion or not is dependent
on the quality of the visualization tools they use.

1.4 An aside about forensics

Kirk Borne said that “astronomy is similar to forensic science, in that it relies entirely on
the detection and analysis of the leftovers of past events—mostly consisting of radiation—to
reconstruct a plausible explanation for what is being observed” (rephrased by the author).

Forensics is the systematical, scientific method of compiling, analyzing and profiling
data or evidence relevant to the unearthing of past events, in order to understandwhat suc-
cession of happenstances led to the given consequences. Let us focus on the computational
branch of forensic science. The word “computational” can actually be appended to a lot
of disciplines, e.g. computational linguistics or computational biology. In the same vein,
a body of knowledge called computational forensics can be defined. Computational meth-
ods provide tools that enable a medical examiner or investigator to better analyze pieces
of evidence, otherwise even these experts would be overwhelmed by the sheer amount of
information modern data gathering schemes provide [FS08]. The reader is most certainly

1.5 aflak’s introduction 5

already familiar with fingerprint or DNA analysis, which are examples of practical use of
computational forensics methods.

We can see that forensic science and astronomy are not devoid of common points. The
author of this thesis worked on a visualization environment for forensic medicine, called
Legal Medicine Mark-up Language (LMML) [BAS+16b, BAS+16a]. He proposed a frame-
work for computational forensics that allows quicker and smoother input of forensic data
collected during autopsy (i.e. the medical examination of a body to uncover the reasons
that led to death) through a graphical user interface specially designed to be used while
autopsying. From there, the framework can output a graphical visualization of the input
data, so that the application be usable and understandable by medical examiners, investi-
gators and judicial courts alike, each with their own respective point of view. Hence, the
proposed integrated environment serves the specific needs of all the stakeholders involved
in the handling of a forensic case, as shown in Figure 1.2.

Such a system would allow anyone, from the layman to the hardened investigator, to
have a better understanding of a case. We see that the challenges that forensic investigators
and astronomers face are not without common points, in that the need of tracking the
provenance of the measurements and pieces of information from which conclusion are
drawn is paramount to explaining the phenomena by which that information was created.

1.5 aflak’s introduction

This thesis presents a free and open source software framework,aflak (Advanced Frame-
work for LearningAstrophysical Knowledge)3, which allows interactive analysis and prove-
nance management on multi-dimensional spectral data, from the origin of astronomi-
cal data stored into dedicated and public repositories to the final output of the analysis.
aflak is developed and hosted onGitHub athttps://github.com/aflak-vis/
aflak. Binaries can be compiled from source or downloaded from there.

A free software model was chosen for aflak to promote the free exchange of pro-
grams between research. Indeed, most of current tools in astronomy are developed by
astronomers for astronomers. And it is very much natural for them to share the tools they
use to make discoveries. The author does not want to break from this model—not because
he is not greedy, far from it! Hopefully, his knowledge as a software engineer can be help-

3Interestingly, the name aflak is a backronym: The signification of the initials was chosen by Professor
Issei Fujishiro after the author came up with the name aflak. aflak means “stars” in Arabic أفلاك)
aflāk). This is a tribute to the contribution of traditional Arabic astronomers. Even now, many English
names for stars come from Arabic, such as Betelgeuse (from الجوزاء إبط Ibṭ al-Jauzā’) or Aldebaran (from الدبران
ad-Dabarān).

https://github.com/aflak-vis/aflak
https://github.com/aflak-vis/aflak

1.5 aflak’s introduction 6

Export all provenance

in an importable format

Figure 1.1 General workflow for a user of the proposed framework, aflak. Datasets can
be loaded either from the file system or by issuing requests to open data repositories. The
visual program can be interactively developed while the user can see a visualization of the
program’s output in real time.

LMML

�le

Written report

Visual exploration

Authoring

interface

Browsing interface

Data gathered

during autopsy

LMML Browser
DatabaseInput

Output

Medical

examiner

Lawyer

Court

Respective

users

Figure 1.2 General workflow of the Legal Medicine Mark-up Language framework, with
all the involved users.

ful for astronomers to develop better tools suited for their problems, and astronomers will
in turn be able to contribute to the development of aflak.

aflak provides a visual programming environment that allows to load a dataset, to
apply transformations on it and to visualize the outputs of these transformations in real
time, thus providing a fast and smooth feedback loop to astronomers. aflak has built-in
support for FITS files (Flexible Image Transport System, which, as we explained a previous
paragraph, has been the de facto standard for astrophysical image for a long time, and
includes common data transformations used by astronomers [BMT+19, BTU+19, BUT+19].
Visually interacting with the data not only assists the astronomer in finding particular
objects, but it also helps in the design of programs by smoothly and regularly checking the
output, making rapid prototyping of an analysis pipeline possible.

This thesis will first present the state of the art and the motivations behind the need
for a tool such as aflak, before describing how the proposed framework contributes to
data analytics and provenance management in astrophysics. Then opinions regarding the
potential for astronomical research in continuing developing such tools will be expressed.

Chapter 2

Related Works

“[A] handful of astronomers who no longer had patience with
how outdated existing tools were and wanted to move to a
modern environment began to do so. […] The reality is that no
current astronomy institution could have created the
equivalent to Astropy, even if funding were available […]. This
is partly due to institutional culture, partly due to management,
and partly due to the extreme competition for funds. […] The
current code infrastructure (e.g. IRAF, DS9) is rapidly
crumbling, was never designed or intended to have the
longevity being asked of it, and is generations behind modern
design and techniques.”

about Astropy, by Demitri Muna et al. [MAA+16]

2.1 Viewers and analyzers for astronomical use

2.1.1 Viewing astronomical datasets

Astrophysicists use many different kinds of viewers, all of them with their own idiosyn-
crasies and specializations within a specific sub-field. Most of these tools are free and open
source software, andwe know from astronomers that the apparentlymost famous andmost
used of which is SAOImage DS9 [JM03], which can open FITS files and provide simple an-
alytic tools (a screen capture of DS9 can be found in Figure 2.1). Lately, QFitsView [Ott12]
has been gaining traction. Even some commercial endeavors, such as NightLight, have
been released [Mun17]. Kent et al.’s undertaking to re-use existing free modeling software
such as Blender to image FITS files deserves notice [Ken13]. We can as well identify new

2.1 Viewers and analyzers for astronomical use 8

developments to visualize very large datasets that cannot be loaded into a single modern
computer’s running memory. As sensor technology improves, it can only be expected that
such tools will become ever more important in the future [PQF+14, HFB11].

Interestingly, the creator of NightLight, Muna, criticizes the current stance of astro-
physicists who only use free software at the expense of productivity. There are not enough
contributors to free software in astronomy, with very few incentives to become a main-
tainer. Indeed, being amaintainer eats an astronomer’s precious time, a time that cannot be
used to do research or write papers. Few are willing to incur such an opportunity cost. This
causes software quality to significantly drop, according to Muna [MAA+16]. This makes
us reflect on our attempt as visualization researcher to build software for astronomers.

2.1.2 Inspiration from non-astronomy viewers

It is worthy to note that during this research, other data visualization tools that deal with
datacubes were also surveyed. One such tool is PyQtGraph [Cam], a Python library main-
tained by Luke Campagnola, a researcher in neuroscience. PyQtGraph presents many ad-
vantages for exploratory analysis and real-time visualization compared to matplotlib.
It relies on Qt for its rendering engine and is comparatively faster at redrawing than
matplotlib. Its interface as shown in Figure 2.2 is very intuitive to use. Unfortu-
nately, it is still limited in speed by the Python language it is built with. When aflak’s
development was first started, it was attempted to extend PyQtGraph for visualizing as-
tronomical datacubes. However, as soon as the datasets got more than a few hundreds of
megabytes, computing speed started to linger and did not satisfy aflak’s requirements
for real-time analysis, notwithstanding the attempts to re-write the critical parts of the
code in Cython1.

2.1.3 Tools for data analytics

Nonetheless, the tools cited in the previous sections are viewers and they do not pro-
vide many data analytics features, if any. Other tools are in charge of data analytics, the
oldest of which being IRAF [Tod86]. Then, PyRAF was developed with the successful
objective of providing a more user-friendly programming syntax to the IRAF environ-
ment [DLPWG01]. PyRAF, with a Python-based shell syntax, includes a built-in image
algebra and many transformations routinely used in astrophysics. PyRAF can execute
scripts to enable code re-use. PyRAF, rather than adding feature to IRAF, is more of a new

1Cython is a compiler for a superset of Python (a sort of “statically typed” Python) that allows to write
faster code in a Python environment: https://cython.org/.

https://cython.org/

2.1 Viewers and analyzers for astronomical use 9

Figure 2.1 A screen capture of SAOImage DS9. Though DS9 is mainly used as a viewer,
we can still see some sub-menus related to data analysis.

2.1 Viewers and analyzers for astronomical use 10

Figure 2.2 A screen capture of PyQtGraph in use. Output windows in aflak’s in-
terface to visualize datacubes were inspired from PyQtGraph’s interface (screen capture
from [Cam]).

2.1 Viewers and analyzers for astronomical use 11

shell around it that creates a Python-like command-line prompt. We can see an example of
IRAF in use in Listing 2.1. Each IRAF commandwill take some FITS file(s) as input and out-
put a FITS file. For example, the command imcomb (for image combine) in Listing 2.1,
when the combine flag is set to average and given a datacube as input, will average
two-dimensional hyperplanes together into a single two-dimensional image. The other
used command, imarith in the example (for image arithmetic), as its name implies,
will do arithmetic operations on FITS files. In this specific example, it will subtract the
values in on-average.fits from the values in off-average.fits, and store
the result in off-on-average.fits.

Listing 2.1 Example of use of IRAF’s command-line interface
imcomb @fi le −o f f 1 . l i s t o f f 1 −ave rage . f i t s combine= ave rage
imcomb @fi le −on . l i s t on−ave rage . f i t s combine= ave rage
imcomb @fi le −o f f 2 . l i s t o f f 2 −ave rage . f i t s combine= ave rage
imcomb o f f 1 −ave rage . f i t s , o f f 2 −ave rage . f i t s o f f −ave rage . f i t s \

combine= ave rage weight=@scale−o f f . d a t
ima r i t h o f f −ave rage . f i t s − on−ave rage . f i t s o f f −on−ave rage . f i t s

2.1.4 Moving to Python

Then came Astropy, a Python library that solves most of the computing needs of astro-
physicists [RTG+13, MAA+16]. With the Python scientific stack (Numpy, SciPy, etc.), it
is relatively accessible to implement some custom analysis in Python. Astropy is a library
that is a actually a collection of smaller astronomical libraries. For example the PyFITS
library [BB99] was included in the astropy library as the astropy.io.fits module.
However, this does not solve the problem of the lack of software maintainers pointed by
Muna. Moreover, the Python language is not a general graphical tool. It requires the learn-
ing of a programming language and its ecosystem, including many external libraries, the
adoption of tools such as pip2 or virtualenv3 to download and use such libraries,
etc.

Now, we can see the unfortunate divide between visualization and analysis tools in
the astronomy software ecosystem. An astrophysicist’s workflow usually consists in first
manually analyzing datasets by applying and composing transformations on them; only
then do they export the result—usually as a FITS file—to glance at it inside a viewer. Even
for the widely acclaimed Astropy, external libraries (e.g. matplotlib) are necessary

2https://pypi.org/project/pip/
3https://pypi.org/project/virtualenv/

https://pypi.org/project/pip/
https://pypi.org/project/virtualenv/

2.2 Visual programming language paradigm 12

to visualize the results. matplotlib may be suitable to programmatically generating
appealing figures for publication, but because of the slowness of figure generation when
dealing with datasets more than a few hundreds of megabytes, it is not suitable for inter-
active and exploratory analysis.

2.2 Visual programming language paradigm

Several tools make use of a visual programming approach in order to achieve better ac-
cessibility for domain experts. AVS/Express or IBM Data Explorer are the pioneers of
visual programming systems for visualization applications, which have been released as
commercial software from the 1990s [Cam95]. Examples of use of modular visualization
environments such as AVS/Express are highly detailed in a paper by Bungartz [BFM98], and
a screenshot of the system is shown in Figure 2.3. The base of such modular visualization
environment systems is that, as the name indicates, they should be:

modular, in that they include a user-extendable module library;

visualization, in that the program output is a visualization;

environments, in that they provide a visual programming environment.

Furthermore, Parker explains that SCIRun took this concept further by extending the
dataflow visual paradigm to include numerical simulations [PJ95]. And in the same vein,
MeVisLab leverages analogous concepts applied to medical data [mev]. VisTrails system-
atizes provenance management with visual graphs representing the pedigree of the anal-
ysis output [BCC+05], and the same visual approach to workflow management is used by
Kepler [ABJF06]. Meyer et al. presents Voreen [MSRMH09], which implements an exten-
sive graph editor to define volume visualization procedure based on ray-casting. OpenAlea
is an example of visual programming environment to describe plant structural models,
which allows real time visualization of the result [PDKB+08]. ViPEr also presents a visual
programming system for real-time molecular visualization [SSO02].

KNIME [BCD+09] is another interesting example of analytical system used for example
to createmachine learningmodels in bioscience. You can see a sample of KNIME’s interface
in Figure 2.4. KNIME is amodel in term of easy to read visual programming interface. It can
exports data in several formats, including CSV (Comma-Separated Values) or JavaScript
(using the D3.js4 visualization library). Nevertheless, KNIME’s transformations havemany

4Data-Driven Documents: https://d3js.org/.

https://d3js.org/

2.3 A visual programming approach for viewing and analyzing astronomical datasets 13

Figure 2.3 AVS/Express screenshot, from Bungartz et al [BFM98].

hidden parameters. Fiddling with parameters and finding the options the user wants to
modify is a time-consuming process. Besides, rather than recomputing an output in real
time, KNIME’s program must be executed using an execution button.

All these systems, which are designed within the scope of a specific domain and/or
purpose, use the concept of node to represent a module through which the data flows and
is transformed.

2.3 A visual programming approach for viewing and
analyzing astronomical datasets

To get around the shortcomings raised in section 2.1, aflak’s objective is to provide a
universal collaborative and integrated environment to analyze and view astronomical data
with very fast iterations [BMT+19, BTU+19, BUT+19]. While matplotlib provides
publishing quality graphs, it is far from suitable for fast iterations on relatively big datasets.
Moreover, there is no built-in solution for code sharing among researchers. The best one
can do is to share source files, but then no provenance is supported, reducing accessibility
for convenient reproducible research.

Moreover, aflak follows a visual approach similar to the tools mentioned in sec-
tion 2.2, by combining nodes within a node graph to allow the user to compose algebraic

5 Screen capture from https://www.knime.com/knime-software/knime-analytics-platform
(accessed on August 15th 2019).

https://www.knime.com/knime-software/knime-analytics-platform

2.3 A visual programming approach for viewing and analyzing astronomical datasets 14

Figure 2.4 KNIME’s node editor interface5.

2.4 Visualization and provenance in forensic science 15

transforms. Each node has input slots into which data flows, and a number of output slots
from which the transformed data comes out. aflak provides an 𝑛-dimensional image al-
gebra interface [RWD90] similar to that of NumPy or IRAF, which can be used by the user
to smoothly visualize the resulting computations. Other recent frameworks provide analy-
sis tools for visualizing multi-spectral datasets. This includes BASTet [RB18], a web-based
visualization environment fine-tuned for mass spectroscopy imaging. However BASTet
does not provide any visual programming feature, contrary to aflak. The reader may
refer to Figure 2.5 for a view ofaflak in use. Real-time computing is taken very seriously
within aflak: any change in the node editor must flawlessly trigger a re-computation
and a re-rendering of the visualized output. This sets aflak apart from other visual
programming approaches such as the one laid out with KNIME on the previous section.
What’s more, aflak can export the current state of its node editor and embed it into
the end results of the analysis to track provenance and guarantee reproducibility of the
conducted study.

2.4 Visualization and provenance in forensic science

In section 1.4, we saw the common points between astronomy and forensic science and an
introduction to the development of the Legal Medicine Mark-up Language.

Visualization and computer graphics technologies are being more and more utilized in
many jurisdictions of late. They are especially used to show injuries or body positions to
better understand or demonstrate the succession of events that led to such traumas [Per10].
Though they show convincing results, these are ad hocmethods that require someone com-
petent in computer graphics, because of the heavy manual post-processing that is needed.
Such methods inevitably call for large-scale cooperation between medical staff and com-
puter engineers [UBS+12, BGB13].

Therefore, it is desired for the LMML framework to automatize that cooperation by
providing the missing link: a piece of software translating raw autopsy data as input by
the medical examiner to computer graphics, which can then be appreciated by untrained
personnel, including investigators, prosecutors, lawyers and members of the jury. To that
end, these premises require to create a data model to store, describe and arrange foren-
sic data, thus creating an ontology for computational forensics. Ontology is what “defines
a set of representational primitives with which to model a domain of knowledge or dis-
course” [Gru09].

Hitherto, visualization technologies have mainly been used to help for the investiga-
tion. However, their potential to help in bringing about a judgment during trial has been

2.4 Visualization and provenance in forensic science 16

N
o
d
e
 #

4

A
v
e
ra

g
e
 o

n
 l
e
ft

 c
o
n

ti
n
u
u

m

N
o
d
e
 #

5
A
v
e
ra

g
e
 o

n
 e

m
is

s
io

n
 l
in

e

N
o
d
e
 #

6
A
v
e
ra

g
e
 o

n
 r

ig
h
t

c
o
n
ti

n
u

u
m

O
u
tp

u
t

n
o
d
e
 #

1

O
u
tp

u
t

n
o
d
e
 #

2

O
u
tp

u
t

n
o
d
e
 #

3

O
u
tp

u
t

w
in

d
o
w

 #
1

O
u
tp

u
t

w
in

d
o
w

 #
2

O
u
tp

u
t

w
in

d
o
w

 #
3

C
O

N
T
IN

U
U

M

E
M

IS
S
IO

N

(L
E
F
T
)

E
M

IS
S
IO

N

L
IN

E

C
O

N
T
IN

U
U

M

E
M

IS
S
IO

N

(R
IG

H
T
)

N
o
d
e
 #

3

E
x
tr

a
c
t

d
a
ta

c
u
b
e
 f

ro
m

 F
IT

S

le
M

a
k
e
 e

q
u
iv

a
le

n
t

w
id

th

T
h
re

s
h
o
ld

s
 a

re
 i
n
te

ra
c
ti

v
e
ly

 s
e
t

a
n
d
 s

y
n

c
e
d
 i
n
 t

h
e
 n

o
d
e
 e

d
it

o
r

⇐

Fi
gu

re
2.
5
Ex

am
pl
e
of

a
se
m
i-c

om
pl
ex

us
e
of
a
f
l
a
k

to
ex

tra
ct

th
e
eq

ui
va

le
nt

w
id
th

of
a
th
re
e-
di
m
en

sio
na

ld
at
as
et

(re
fe
r
to

Ca
rr
ol
l’s

bo
ok

fo
rp

re
ci
se

de
fin

iti
on

of
eq
ui
va
le
nt

w
id
th

[C
O
07

]).
Th

e
o
p
e
n
_
f
i
t
s

no
de

op
en

sa
FI
TS

fil
e,

th
en

se
ve

ra
lt
ra
ns

fo
r-

m
at
io
ns

ar
ea

pp
lie

d
to

th
efi

le
to

ex
tra

ct
th
ee

qu
iv
al
en

tw
id
th

in
th
er

ig
ht
-m

os
to

ut
pu

tn
od

e(
O
ut
pu

t#
3)
.Th

er
es
ul
to

fe
ac

h
ou

tp
ut

no
de

is
vi
su

al
iz
ed

in
ac

or
re
sp

on
di
ng

ou
tp
ut

w
in
do

w.
Co

nt
in
uu

m
em

iss
io
n
is

co
m
pu

te
d
by

no
de

#4
on

th
el

eft
sid

e,
an

d
by

no
de

#6
on

th
er

ig
ht

sid
e.

Th
ea

ve
ra
ge

of
th
ee

m
iss

io
n
lin

ei
sc

om
pu

te
d
by

no
de

#5
.I
nt
er
m
ed

ia
ry

re
su

lts
ar
ev

isu
al
iz
ed

vi
ao

ut
pu

tn
od

es
#1

an
d
#2

.

2.4 Visualization and provenance in forensic science 17

neglected until now. Thanks to visualization technologies, a trial’s stakeholders can more
easily understand the case at hand. We believe that such mean would allow to hold mem-
bers of the jury to be fairer in their judgment—through a well-informed choice—and their
choosing of the proportioned sentence.

Moreover, the LMML system includes an interface to input forensic data as the autopsy
is being conducted. This is crucial in that, some areas, e.g. Japan, are lacking competent
medical examiners, leading medical staff to be overly solicited [OSSK13]. Examination
must thus be performed quicker to increase efficiency. In short, the contribution of LMML
is three-fold: the design of a semantic language that describes forensic issues, the concep-
tion of an interface to create, edit, analyze or query files written in that language and the
creation of visualizations usable for all the investigation’s stakeholders. Figure 2.6 shows
an example of the authoring interface to define a forensic case, while Figure 2.7 shows a
resulting output visualization generated from the input content.

Regarding LMML’s stake on provenance, provenancemanagement allows to keep track
of whatever was done to solve a case. All the trial and error of the investigators that led
them to the answer would be recorded as well. Thanks to this, LMML can make possible
the reproducibility of an investigation. If a case were to be re-opened, it is not infrequent
that a new investigation must be conducted. We could thus check exactly how the past
investigation was done and improve the new inspection. Beyond any doubt, provenance
management shows the same benefits in the context of astronomy.

2.4 Visualization and provenance in forensic science 18

Figure 2.6 LMML Browser: Data input interface (head external examination). Top: Fixed
forms for data relevant to head examination. Bottom: Preview of the paragraph dealing
with the head included in the final forensic report.

2.4 Visualization and provenance in forensic science 19

Figure 2.7 LMML Browser: A visualization to explore the result of the autopsy.

Chapter 3

aflak: Advanced Framework for
Learning Astronomical Knowledge

“Flow-Based Programming is best understood as a coordination
language, rather than as a programming language.
Coordination and modularity are two sides of the same coin,
and several years ago Nate Edwards of IBM coined the term
“configurable modularity” to denote an ability to re-use
independent components just by changing their
interconnections […]. One of the important characteristics of
systems exhibiting configurable modularity is that you can
build them out of “black box” re-usable modules, much like the
chips which are used to build logic in hardware.”

Paul J. Morrison, IBM [Mor94]

IBM pioneered visual programming systems for business applications since the 1970s and
1980s, then, visual programming systems for visualization applications have been imple-
mented from the 1990s, with IBM-developed commercial systems (IBM Data Explorer), as
we saw in section 2.2.

3.1 Background and motivation

Data-driven science gathers information from several sources and conducts non-trivial
analysis on it. Keeping track of the provenance of the original information and of the
process behind a successful or failed analysis is necessary to validate a hypothesis. Astro-

3.1 Background and motivation 21

physics is such a domain. Though not domain-specific, general frameworks for provenance
management have been developed for scientific workflow [ABJF06, SZP15].

While it was not always the case, lately astronomy journals have been requiring au-
thors to provide the unique identifiers of the original datasets from which they conducted
their analyses. All modern sky surveys and data publishers categorize and assign unique
IDs to astronomical objects. This ID can for example be cited in academic papers to give
credits to the survey that provided the source. Moreover, most astronomical data pub-
lishers implement methods to issue a query on objects using various standards. In fact,
astronomers maintain a body of standards so that all data publishers agree on the means
of transmission, storage and querying of datasets (and other resources). This body of stan-
dards is known as the Virtual Observatory (VO) and is maintained by the International
Virtual Observatory Alliance (IVOA) [ivo]. To promote interoperability with existing soft-
ware, it is both a necessity and an asset for aflak to be compliant with the published VO
recommendations.

Going back to IDs, industrious astronomers will keep track of the identifier of the ob-
jects they study. Where to find such identifier is defined in the ObsCore protocol in use
since 2011 [LTD+17] (we will come back to ObsCore later). Then they will do some analy-
sis on the object, and publish their results. During the analysis process, various operations
such as transforms or data extractions are run. From then, a final output data is created.
The astronomer will then publish the final data along with a description of their analysis.
However, how can other scientists be sure that the analysis is reproducible and that the
description is accurate? There are limits to peer-review, and there is currently no defined
standard in astrophysics to manage provenance. Yet, many astronomers believe defining
guidelines for provenance management is a necessity, and some work has started being
conducted to create standardized methods to describe provenance with a proposed recom-
mendation for a Provenance Data Model [SRB+18, GRS+18]). Unfortunately, there is no
common agreement as of today and the project is yet to be completed.

As a solution to the above problem, the author proposes an aflak extension to the
FITS standard to record provenance within FITS data files, along with an integration of
aflak’s analysis components with astronomical standards for querying images. Among
the various VO standards for querying, the Simple ImageAccess Protocol 2.0 (SIAP) [OLD+08]
was selected to be supported first, for its relative simplicity and integrability with a node
editor interface.

3.2 Design goals 22

3.2 Design goals

aflak is designed to meet the following requirements.

3.2.1 Ease of use and responsiveness

aflak is designed with ease of use in mind. Though using aflak requires astronomy-
related domain-specific knowledge, it is designed to be intuitive. Dataflow is clearly indi-
cated by connections between box-shaped nodes. The interface is responsive: the output
of a visual program is refreshed in real time as the program is being updated, with very
minor delay, so that the user not be confused about the provenance of the data being
shown. Moreover, errors are shown using a stack trace to show at which exact node an
error occurred.

3.2.2 Re-usability and extendability

aflak can export and import the state of its interface. Moreover, aflak allows for the
import and export of shareable composite nodes, referred to as “macro” hereafter. Macros
can be shared among other users via a cloud platform or file exchange. What’s more, nodes
may be implemented as side-loaded shared libraries, allowing to create user-defined nodes
in a language that supports C/C++ calling conventions.

3.2.3 Collaborative development

No research is done alone anymore. aflak aims at making collaborative development
and code-sharing as easy as possible.

3.3 System overview

3.3.1 Description

aflak’s programming interface is composed of a node editor, where nodes can be freely
composed by linking a node’s output slot to another node’s input slot with the mouse
cursor [BMT+19, BTU+19]. The node editor’s left pane contains the node list and the
documentation of the currently selected node. By selecting a node in the node list, the
view will directly jump and center onto that specific node in the node graph. The node
graph basically reads from left (input) to right (output), in accordance with the left-to-right
convention of most writing systems. The node editor itself is a representation of dataflow.

3.3 System overview 23

Figure 3.1 An example of transformation node, which computes the linear composition
of two images. It has four inputs (on the left): two images 𝑢, 𝑣 and two scalar parameters
𝑎 and 𝑏. The transformation node has a single output slot (on the right) from which the
image 𝑎𝑢+𝑏𝑣 comes out. Parameters 𝑎 and 𝑏 can either be directly input by the user inside
the node, or can be taken from the value of an output of another node.

There are three different types of nodes:

Transformation nodes: Composable transformationmodule. Contain a specific amount
of input slots and output slots, each with a specific expected data type. For an ex-
ample of a transformation node, refer to Figure 3.1.

Value nodes: Contain a parameter of a certain data type that can be input by the user, or
that can be externally set by another tool. Some may consider that a value node is a
special case of a transformation node without any input slot. However, in aflak’s
context, they are semantically different in that they are not modular “black boxes,”
as the value in a value node can be externally set or edited using the user interface.
A list of supported types for value nodes can be seen in Figure 3.8.

Output nodes: Final output of the flowing data. Any data type can be redirected to an
output node. When a new output node is created, a new output window containing a
visualization of the data arriving to this node is opened. The output window and the
output node share the same number. Such output windows can be seen in Figure 2.5.

A node may as well be the result of the composition of several nodes. This feature is
referred to as macro. This will be explained further in details in section 4.2.1.

3.3.2 Detailed description of components

Figure 3.2 shows aflak’s interface. The interface has several sub-windows, all of which
can be freely moved, re-sized or minimized (by double-clicking on the window’s header).
On the first run, aflak will infer a workable window layout from the current screen
resolution. On subsequent run, the last used layout—which is user-defined—is re-used.
Indeed, the layout of sub-windows is saved every time aflak is closed.

3.3 System overview 24

Node editor window

The main sub-window is the node editor, on top of Figure 3.2. The left side of the node
editor contains a resizable and minimizable left pane, which holds two dropdowns: a
dropdown containing the list of nodes in the node editor and a dropdown containing
miscellaneous information about the active node. The active node is defined as the lat-
est selected node (several nodes can be selected at the same time by holding the “Shift”
button Shift). In the node list, each transformation and value node is represented by the
string “#<N> <node name>,” where N is the ID the identifies the node in the node
editor. All nodes are assigned a unique ID. Each output node will be represented as
“Output #<N>.” Besides, on clicking on an item in the node list, the node editor will
jump and focus on the clicked node corresponding to the clicked item. This is convenient
to find nodes that are outside of the node editor view. An enlarged view of the left pane
can be seen in Figure 3.3.

The “Active node” dropdown contains information about the current active node. First,
we can find the node ID, then the node name. Then a short explanation about what the
transformation the node performs. After this follows a detailed explanation about the
expected values as input(s) and output(s) for the node. Finally, some metadata is displayed,
including the author of the node, the date of creation and its version.

The node editor itself consists of a visual directed acyclic node graph. The user can
pan the node editor by holding the left control key Ctrl while dragging the mouse on
the background of the node editor. Adding a new node—from value node to output node,
including transformation node—can be done from the “Add node” pop-up dialog as shown
on Figure 3.4, which can be opened by right-clicking anywhere on the background. Nodes
can be wired together by dragging the mouse from an output slot (represented by a circle
on the left of a node) to an input slot (represented by a circle on the right of a node), and
vice-versa. Nodes can be deleted by selecting them with the mouse and pressing Del key
(Shift + Back on macOS), or by right-clicking and choosing “Delete” in the sub-menu. On
addition, a node is added on the nearest available empty space around the point the cursor
of the mouse is located.

Apart from the node graph, the node editor contains both export and import buttons,
which allows to save or load the current start of the editor. It contains as well a few er-
gonomic options. For example showing connection names can disabled to reduce clutter
when numerous nodes are displayed at the same time, allowing the user to only concen-
trate on visualizing the dataflow.

3.3 System overview 25

(a)

(b)

(c)

(d)

Figure 3.2 General UI of aflak. We can see all of aflak’s components.
(a) Current node list
(b) Documentation of last selected node (active node)
(c) Node editor, with output nodes on the left
(d) Output windows for visualization

3.3 System overview 26

Explanation and metadata about

selected node

Figure 3.3 Left pane of aflak’s interface, containing the list of nodes in the current
editor’s window.

3.3 System overview 27

Fi
gu

re
3.
4
Th

e
fig

ur
e
sh

ow
s
th
e
po

p-
up

di
al
og

th
at

al
lo
w
s
to

se
le
ct

a
ne

w
no

de
to

ad
d
to

th
e
no

de
ed

ito
r’s

gr
ap

h.
Th

e
po

p-
up

di
al
og

ca
n
be

op
en

ed
by

rig
ht
-c
lic

ki
ng

on
an

y
em

pt
y
sp

ac
e
in

th
e
no

de
ed

ito
r.

3.3 System overview 28

Output windows

Any type can be redirected to an output node in the node editor. Each output node is
assigned an ID (starting from 1). For each output node a corresponding output window
is opened to visualize the data flowing into the output node. Depending on the data type
that goes into the output node, a different interface will be used for the output window.
Figure 3.5 shows examples of output windows for visualizing a two-dimensional image.
In any case, each output window has a save feature, inside the menu “File,” then “Save.”
Using the save feature, the content of the output window will be saved to a FITS or text
file. Only multi-dimensional images are saved into FITS files. Other types will use text
files.

The design of the output window is partly inspired from PyQtGraph, as was revealed
in section 2.1.2. On the right, a color bar shows the mapping from value to colors, along
with a histogram showing the distribution of values. The histogram used logarithmic coor-
dinates, as in astronomy, there is usually a huge difference (several orders of magnitude)
of luminosity (photon count) between empty areas, a planet or galactic periphery, and
a bright star or galaxy core. Several color maps are available. They can be selected by
right-clicking on the color bar. The default color map is the “Flame” color map shown in
Figures 3.5a and 3.5b. Figure 3.5c shows an example of the “GreyClip” color map, which is
very convenient to singularize points above or below a specific threshold. The user may as
well drag the top arrows and bottoms on the right of the color bar, to change the contrast
and selectively decide what are the more appropriate objects that should be visualized. An
example of change in contrast is shown in Figure 3.5d.

Besides, the “two-dimensional image” view of an output window contains a feature to
select a region of interest, as shown in Figure 3.6b, and a feature to select specific values
on the 𝑥- or 𝑦-axis (in Figure 3.6a).

Finally, Figure 3.7 shows the view of an output window that renders a one-dimensional
image (a waveform) as a curve. The user can zoom in and out with the wheel of the mouse,
and select a value on the 𝑥-axis.

It should be as well noted that apart from one- and two-dimensional images, output
windows in current version of aflak can visualize simple types such as boolean values,
integers, floating point numbers, strings of characters, but also more complex types such
as astronomical tables or FITS files (the content of the FITS header would then be shown).

3.3 System overview 29

(a) A two-dimensional image visualized with sky coordi-
nates used as axis.

(b) A two-dimensional image visualized with pixel coordi-
nates used as axes. Pixel coordinates can be selected by
toggling the menu “File,” then “Show pixels.”

(c)The color Look-Up Table (LUT) can be changed from the
“Swap LUT” menu.

(d)The arrows on the right of the color map can be dragged
to change contrast. On this image, the background is made
darker to discern more clearly the galactic core.

Figure 3.5 Interfaces of an output window showing a 2D image with several color maps
and axes.

3.3 System overview 30

(a) This sub-figure demonstrates the feature to select
an axis (horizontal or vertical) value of interest on a
two-dimensional image.

(b)This sub-figure demonstrates the feature to select region
of interest on a two-dimensional image. Several regions of
interest can be drawn on the same image. The “active” re-
gion of interest is highlighted on the image and is the one
which is actually being drawn when the mouse is clicked.
The user can change the active region of interest at any time
via the dropdown menu on the bottom.

Figure 3.6 Examples of interaction handles representing a bound value in a visualization
of a two-dimensional image.

3.3 System overview 31

Fi
gu

re
3.
7
Vi

su
al
iz
at
io
n
of

th
e
w
av

ef
or

m
of

a
da

ta
cu

be
.
Th

is
is

th
e
in
te
rfa

ce
of

a
on

e-
di
m
en

sio
na

li
m
ag

e
w
he

n
di
sp

la
ye

d
in

an
ou

tp
ut

w
in
do

w.
Th

e
ve

rti
ca

ll
in
e
is

an
in
te
ra
ct
iv
e
ha

nd
le

th
at

re
pr

es
en

ts
an

𝑥-
ax

is
va

lu
e
se
le
ct
ed

by
th
e
us

er
.

3.3 System overview 32

3.3.3 Value nodes, type checking and error handling

Value nodes

A value node could be considered and is in fact the same as a transformation node without
input. However, there is a non-negligible conceptual difference. Value nodes are not black
boxes. Their values can be set from the interface. Please refer to Figure 3.8 to see how the
value nodes look like on aflak’s interface. For example, the value node of type Path
contains a local path referring to a file on the user’s file system. It is natural that the value
node of a variable of type Path allows the user to select a file by exposing a file-explorer-
like interface.

A value node of type Integer allows the user to input an integer, which will become
the value encased in the node. It is moreover suited for an integer input interface to provide
decrement (-) and increment (+) buttons.

While a Float value node simply contains a float that can be input by the user. The
same can be said for Str (for “string”) and Bool (for “boolean”).

It should be noted that all values that can be selected and manipulated inside output
windows as shown in Figures 3.7 and 3.6b can be redirected and bound to a value node
and be re-used within the node editor. The binding is bi-directional: editing the value
of the node from the node interface will update the representation of the value in the
output window as well. This allows the user have fine-grained visual control on several
parameters while designing an analytics pipeline.

Type checking

aflak is type-checked when the node editor is built. An output slot can only be attached
to an input slot with the same type. If the user wrongfully attempts to join two incompat-
ible slots together, the action will be aborted and an explanatory message error similar to
the one shown in Figure 3.9 will pop up on the screen. However, for convenience, some
restricted type conversions are also possible. For example, integer can be converted to
float (trivially) and float can be converted back to integer by rounding. This improves the
user experience as they may wire an output slot of type Integer to an input slot of type
Float.

Error handling

There are two types of errors: graph errors and runtime errors. Graph errors are han-
dled and detected before they actually cause issues. These may be type errors or doing
something that creates an uncomputable graphs, as shown in Figure 3.9.

3.3 System overview 33

Figure 3.8 Many types of value nodes as they appear in aflak.

Input #1 of node #5 Output #1 of node #6

Figure 3.9 aflak will prevent the user from wasting their CPU resources. No cyclic
dependencies can be created. The same kind of errors will be detected, prevented and a
message will be displayed if a user tries to nest recursive macros.

3.3 System overview 34

Figure 3.10 An output window shows a runtime error. The fits_to_image node
cannot find a FITS HDU with index 20. So the error bubbles up to Output #2, and its
stack-trace is displayed in the output window for easy debugging.

Runtime errors, on the other hand, are not detected when the graphical program is cre-
ated. The output value of a node returning an error will bubble up, following the dataflow,
until an output node. Then the linked output window will print a stack-trace explaining
what kind of error occurred. Such a runtime error is shown in Figure 3.10.

Chapter 4

Implementation Details

“The devil is in the detail.”

Common English idiom

4.1 Description of algorithms and implementation

4.1.1 Language and library choices

In order to achieve high speed and responsiveness, care was taken to design efficient al-
gorithms and data structures. The author first started developing a prototype of aflak
in Python, based on PyQtGraph. However, he quickly faced the limitation of Python. As
PyQtGraph is still a bunch of classes around PyQt, itself a wrapper of the C++ library Qt,
writing Python code on top of PyQt was required. The result was slow and did not meet
our standards of responsiveness. At first, some study was done to go closer to the metal
by directly writing C++ code in Qt. The author could have proceeded into that direction.
If not for the idea to borrow technologies from the gaming industry. Indeed, few software
can boast to be as responsive as games. Games are engineered from the ground up to be
responsive. This is when he decided not to use Qt, a graphical library suited for graphical
desktop applications (such as text editors, calculators, etc.), but to use an immediate-mode
graphical user interface. Our choice went with the C++ library “Dear ImGui”1. Then re-
garding the language, it was decided to use Rust.

1Dear ImGui is an open-source library to make portable user interface using a drawing back-end such
as OpenGL. It is free, open-source and available at https://github.com/ocornut/imgui. The author
of this thesis is a maintainer of the Rust bindings for Dear ImGui, a crate called imgui-rs hosted at
https://github.com/Gekkio/imgui-rs.

https://github.com/ocornut/imgui
https://github.com/Gekkio/imgui-rs

4.1 Description of algorithms and implementation 36

aflak is indeed written in Rust, which allows C/C++-like fine-grained control on
memory layout to maximize performance, while providing a higher-level syntax and a
memory-safe paradigm for writing highly concurrent programs, boosting the productivity
of the implementer. Given the highly parallel code structure of aflak (the node editor’s
program is evaluated using several threads on several CPU cores, in addition to the single-
threaded UI loop), Rust was a natural choice.

4.1.2 Multi-crate structure

aflak boasts a modular structure separated into several crates2. Its architecture is pre-
sented in Figure 4.1. It is completely modular. All components are theoretically indepen-
dent and can be re-used by another independent piece of software.

The upper layer consists of an node editor (whose crate is called node_editor)
engine and a plotting library (aflak_plot) to visualize the output data. The plotting
library was written from scratch tailored for our needs, using simple OpenGL calls for ren-
dering. All the content of the output windows showing image data are basically rendered
with the plotting library.

The node editor engine has a compute back-end, which was named cake, that man-
ages pending computational tasks in a multi-threaded manner. cake itself relies on a
defined set of elementary primitives—you could call that a “standard library” for our visu-
alization domain—used to define all the transforms usable in the node graph. Primitives
and data types are completely interchangeable. However, for the purpose of this thesis,
only data types and primitives adapted to astrophysical data were developed—for example,
the primitive module to open FITS files and load its content from the file system is only
relevant in the astronomy community.

All of computational tasks run by aflak are managed in an independent sub-crate
called aflak_cake (a.k.a. cake, standing for Computational mAKE). First the basic
structure of cake, excluding macro support, will be presented. Then macro implementa-
tion will be explained in detail, while highlighting the choice of data structures.

4.1.3 cake: Computation mAKE

cake’s main data structure is called “𝐷𝑆𝑇 ” (for Dynamic Syntax Tree). It is defined
as shown in Table 4.1. What must be kept in mind is that a 𝐷𝑆𝑇 represents a directed
acyclic graph of nodes. To represent such graph, we must keep a collection of transforma-

2A crate refers to a importable module, in Rust’s terms. This is what Ruby calls a gem, Python calls a
package, etc.

4.1 Description of algorithms and implementation 37

aflak

Frontend layer

node_editor aflak_plot

Backend layer

Dear ImGui cake primitives

OpenGLpthreads

Figure 4.1 aflak’s modular structure.

tion nodes (field transforms in Table 4.1). To do that, we assign a unique identifier to
all nodes in the node editor. When a new node is added, an unused identifier—for a trans-
formation node, an instance of TransformId is used as identifier—is assigned to the new
node. The actual node whose inner data is contained in a MetaTransform data structure is
then inserted into the sorted map containing all transforms.

But keeping the collection of transformation nodes is not enough: edges in the di-
rected acyclic graph must as well be kept in memory. This is done in the edges field
in Table 4.1. For aflak’s use case, the data structure Output represents the 𝑛-th output
slot of the node indexed by TransformId as the tuple (TransformId, 𝑛). Similarly, the data
structure Input represents the 𝑛-th input slot of the node indexed by TransformId as the
tuple (TransformId, 𝑛). The collection of edges of a graph can then be defined as a map
from an output to a list of inputs, as shown in Table 4.1. Indeed, a single output slot can
be attached to an indefinite number of input slots (one-to-many relationship). The other
way around (single input slot attached to many output slot) does not make any sense as
data can only flow from an output slot to (an)other node(s)’s input slot(s).

Finally, the collection of final outputs, which are defined as the actual values that are
computed out of the graph, is stored in as a map in the field outputs in Table 4.1. Each

4.1 Description of algorithms and implementation 38

Table 4.1 Dynamic Syntax Tree data structure

𝐷𝑆𝑇
transforms 𝑀𝑎𝑝⟨𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐼𝑑, 𝑀𝑒𝑡𝑎𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚⟩
edges 𝑀𝑎𝑝⟨𝑂𝑢𝑡𝑝𝑢𝑡, 𝐿𝑖𝑠𝑡⟨𝐼𝑛𝑝𝑢𝑡⟩⟩
outputs 𝑀𝑎𝑝⟨𝑂𝑢𝑡𝑝𝑢𝑡𝐼𝑑, 𝑂𝑝𝑡𝑖𝑜𝑛⟨𝑂𝑢𝑡𝑝𝑢𝑡⟩⟩

Input
transform_id TransformId
input_index Unsigned Integer
Output
transform_id TransformId
output_index Unsigned Integer

output is assigned an identifier (an OutputId). Each OutputId is associated through a map
with nothing—the final output is an orphan and not attached to any node’s output slot—,
or with an output slot—represented with the data structure Output defined above. The
concept “an output slot or nothing” is represented as the data structure 𝑂𝑝𝑡𝑖𝑜𝑛⟨𝑂𝑢𝑡𝑝𝑢𝑡⟩.

When a 𝐷𝑆𝑇 instance is constructed and every time a new node is added, the graph
is checked for consistency. For example, no circular path can ever be created, cake will
not allow that and gracefully abort the addition of a new node. aflak will then print the
error message to the screen to let the user know what error was successfully avoided.

4.1.4 MetaTransform data structure

As referenced in Table 4.1, the content of a node is stored as a MetaTransform data struc-
ture. AMetaTransform is a Transform to which metadata is added. The Transform contains
the actual data describing how the computation for this node should be processed. Meta-
Transform’s metadata contains the input_defaults field, which is a list of optional
values that represents the user-editable default input values for the node. For example, for
the node in Figure 3.1, input_defaults’s value would be:

[𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒, 𝑆𝑜𝑚𝑒(1.0), 𝑆𝑜𝑚𝑒(1.0)]
(first and second input slots have no default values, third and fourth input slots have 1.0
as default value).

Whenever the node is updated (e.g. by updating a default input value), theupdated_on
field is updated to contain the instant3 on which the node was updated. As we will see later
in section 4.1.5 on cache, storing the instant at which the node is updated is crucial so that
cache be functional.

3 In aflak’s current implementation, an instant is not really a timestamp, but a measurement of a
monotonically non-decreasing clock.

4.1 Description of algorithms and implementation 39

Table 4.2 MetaTransform data structure

MetaTransform
t Transform
input_defaults 𝐿𝑖𝑠𝑡⟨𝑂𝑝𝑡𝑖𝑜𝑛⟨𝑇 ⟩⟩

(where 𝑇 is the type of the
values passed around when a
graph is computed)

updated_on Instant

Table 4.3 Transform data structure

Transform
algorithm Algorithm
updated_on Instant

Transform’s data structure tabulated in Table 4.3 is just a tuple of an Algorithm and
the instant on which the Algorithm data structure was updated. Algorithm, as shown in
Table 4.4, is an enumeration that can be one of the three following variants:

Function: A pointer to a pure function that takes an array of data of type 𝑇 and returns
an array of data of type either 𝑇 or 𝐸, where 𝑇 is the data type on which compu-
tations are done (an enumeration over multi-spectral data, images, FITS files, etc.
in aflak’s context) and 𝐸 is an error type, that can be represented as a human-
readable string for ease of debugging.

Constant: A constant of type 𝑇 . This actually represents a constant node. Such a node
has no input slot and has a single output slot that always returns 𝑇 ’s value.

Macro: Contains a handle to a macro MacroHandle (see section 4.2.1).

All in all, we now have explained all the data structures used to store a node graph. We
will then see how the computing is actually running.

Table 4.4 Data structure of Algorithm enumeration

Algorithm’s variant list
Function Pure function pointer with some

meta-data (name, description, ver-
sion number, default values, input
and output types etc.)

Constant 𝑇
Macro MacroHandle (see section 4.2.1)

4.1 Description of algorithms and implementation 40

4.1.5 Computing output with cache

Computation model

Given a 𝐷𝑆𝑇 representing a node graph, we iterate over each final output identified by
an OutputId. For each final output attached to a node’s output slot, the value at this output
slot is computed and then returned.

A value at an output slot is computed as follows. Let 𝑁 a node with 𝑛 input slots and
𝑚 output slots. For 𝑖 and 𝑗 two non-zero integers, 𝐼𝑁

𝑖 is defined as 𝑁 ’s 𝑖-th input slot, and
𝑂𝑁

𝑗 is defined 𝑁 ’s 𝑗-th output slot, The value at the 𝑖-th output slot of node 𝑁 is noted as
𝑜𝑁

𝑖 , while value at the 𝑗-th output slot of node 𝑁 is noted as 𝑜𝑁
𝑗 .

Let 𝑓 the function so that 𝑓(𝑖𝑁
1 , ..., 𝑖𝑁

𝑛) = (𝑜𝑁
1 , ..., 𝑜𝑁

𝑚), i.e. 𝑓 is equivalent to the func-
tion that is evaluated when data (𝑖𝑁

1 , ..., 𝑖𝑁
𝑛) enters node 𝑁 .

Let us say we want to compute one of the 𝑜𝑁
𝑗 for 1 ≤ 𝑗 ≤ 𝑚. For each 𝑖 such as 1 ≤ 𝑖 ≤

𝑛, we have either one of the three following cases:

• 𝐼𝑁
𝑖 is not attached to any output slot and has no default value. In that case, 𝑜𝑛

𝑗 is
uncomputable and an error indicating that a dependency is missing is raised and
propagated.

• 𝐼𝑁
𝑖 has an associated default value 𝑥 and is not attached to any output slot. Then

𝑖𝑁
𝑖 ← 𝑥.

• 𝐼𝑁
𝑖 is attached to an output slot, say 𝑂𝐷

𝑗′ (designating 𝑗′-th output of node 𝐷, where
𝐷 is a dependency of 𝑁 attached to 𝐼𝑁

𝑖). Then 𝑖𝑁
𝑖 ← 𝑜𝐷

𝑗′ .

With the above premises, we can then assuredly compute 𝑓(𝑖𝑁
1 , ..., 𝑖𝑁

𝑛), and thus we have
𝑜𝑁

𝑗 . The values of dependencies such that 𝑜𝐷
𝑗′ can be recursively computed. The recursion

will terminate, as the graph has no cycle and is finite, so there exists a starting node 𝑁𝑠𝑡𝑎𝑟𝑡
such as no of 𝑁𝑠𝑡𝑎𝑟𝑡’s input slots are attached to another node’s output slot.

Adding cache to the model

Recursively recomputing the value at an output slot from scratch every time the value
must be displayed would take too much time and be extremely inefficient. For aflak to
be responsive, it was necessary to implement caching. The approach used is to keep track
of the instants when values at output slots are first computable.

Let 𝑂𝑁
𝑗 the 𝑗-th output slot of node 𝑁 . aflak appends the smallest instant in time

𝑡𝑂𝑁 when the output slot’s is theoretically computable to the value 𝑜𝑁
𝑗 in the current node

graph’s state.

4.2 Macro support for cake 41

We define an updated_on function that computes 𝑡𝑂𝑁 for each node. It is recur-
sively defined as:

updated_on (𝑁) = 𝑚𝑎𝑥

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N.updated_on
N.t.updated_on
updated_on (𝐷1)

⋮
updated_on (𝐷𝑖)

⋮
updated_on (𝐷𝑛)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.1)

where 𝑁 is a node represented as an instance of the datatypeMetaTransform (see Table 4.2)
and 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑛 the 𝑛 dependencies of 𝑁 (𝑛 may be 0 if 𝑁 has no dependency, in that
case the recursion ends).

By definition, for a node 𝑁 , updated_on(𝑁) is the smallest instant in time when the
outputs of 𝑁 are computable in the current state of the full node graph. We then compute
all the 𝑜𝑁

𝑗 and append updated_on(𝑁) to the value 𝑜𝑁
𝑗 , storing them both into memory.

Considering that we are now at time 𝑡0, let 𝑡0𝑂𝑁 = updated_on(𝑁). Next time 𝑜𝑁
𝑗 needs

to be computed again say, at time 𝑡1, if 𝑡1𝑂𝑁 = 𝑡0𝑂𝑁 then there was no change in the graph
state that would cause 𝑜𝑁

𝑗 to change, so we just retrieve the cached value. If on the contrary
𝑡1𝑂𝑁 > 𝑡0𝑂𝑁 , then 𝑜𝑁

𝑗 will be recomputed and the new value added to the cache alongside
the new 𝑡1𝑂𝑁 . The case 𝑡1𝑂𝑁 < 𝑡0𝑂𝑁 cannot occur.

In addition, the cache data structure needs to support multi-threading, as all aflak’s
computing is done on several threads as a background process. This is aflak leverages
a concurrent hash map implementation based on bucket-level multi-reader locks4.

4.2 Macro support for cake

4.2.1 Design decisions

The representation of a macro is a chunk of memory that has to be shared between several
threads. aflak’s runtime is composed of a UI thread that renders the user interface and
handles the user’s inputs, and several computation threads that compute the node editor’s
outputs. As a result, the UI thread requires read access to display the macro on the node
screen, but requires as well write access to update the macro on user input. The compu-

4 Implementation of the concurrent hashmap used for cache lies in thechashmap crate: https://docs.
rs/chashmap/2.2.2/chashmap/

https://docs.rs/chashmap/2.2.2/chashmap/
https://docs.rs/chashmap/2.2.2/chashmap/

4.2 Macro support for cake 42

Table 4.5 Macro data structure

𝑀𝑎𝑐𝑟𝑜
id 𝑈𝑢𝑖𝑑
name 𝑆𝑡𝑟𝑖𝑛𝑔
dst 𝐷𝑆𝑇
inputs 𝐿𝑖𝑠𝑡⟨𝑀𝑎𝑐𝑟𝑜𝐼𝑛𝑝𝑢𝑡⟩
updated_on Instant

𝑀𝑎𝑐𝑟𝑜𝐼𝑛𝑝𝑢𝑡
name 𝑆𝑡𝑟𝑖𝑛𝑔
slot Input
type_id 𝑇 𝑦𝑝𝑒𝐼𝑑 (where 𝑇 𝑦𝑝𝑒𝐼𝑑 is

a data type whose instance
identifies the expected type
of the variable that flows into
the input slot)

default 𝑂𝑝𝑡𝑖𝑜𝑛⟨𝑇 ⟩

tation thread requires read access to retrieve the macro’s DST and run computation. As a
result, it is clear that a macro must be shared between threads, behind a read-write lock.
We call MacroHandle (which showed up in Table 4.4), an atomically reference-counted
shared pointer to a read-write lock to the actual chunk of memory of a 𝑀𝑎𝑐𝑟𝑜, whose data
structure we will define in the next section.

4.2.2 Data structures for macro support

A macro is a data structure defined as shown in Table 4.5. It includes a UUID version 4
(randomly generated Universally Unique IDentifier)[LMS05], which is unique identifier
that identifies a macro more specifically than its name. The UUID is generated on creation
of a new macro according to the specification to guarantee its uniqueness, even after the
macro is shared among users. Next, a macro contains a human-readable name (used for
display) and an embedded DST that describes the behavior of the macro. In addition, while
the outputs of a macro are determined by the output nodes of the embedded DST, it is
necessary to keep the list of inputs for the macro. This list of inputs is represented by
the inputs field of type 𝐿𝑖𝑠𝑡⟨𝑀𝑎𝑐𝑟𝑜𝐼𝑛𝑝𝑢𝑡⟩. In the current implementation, the list of
inputs is inferred and recomputed every time the macro’s inner DST is updated: the inner
DST’s unattached input slots are considered to be the whole macro’s input slots. Finally,
as for all previously defined data structures, an updated_on Instant is appended.

4.2 Macro support for cake 43

4.2.3 Some changes in computation logic

The algorithm used for the whole graph is the same as the one explained in section 4.1.5,
only the approach to computing the macro node is different. First, for a macro node 𝑁 the
updated_on function is defined as:

updated_on (𝑁) = 𝑚𝑎𝑥

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N.updated_on
N.t.updated_on

macro’s updated_on
updated_on (𝐷1)

⋮
updated_on (𝐷𝑖)

⋮
updated_on (𝐷𝑛)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.2)

The only difference with equation (4.1) is that the macro’s inner updated_on value is
taken into account (in red in equation (4.2)).

When a macro node is evaluated, the macro is first deep-copied and sent to the compu-
tation thread to ensure that the macro’s state does not change during computation. Each
of the current values that flow into the macro’s input slots is copied and rewired to the
corresponding input slots in the macro’s DST. Then the macro’s DST is evaluated and the
macro’s output values are calculated.

4.2.4 Macro user interface

The macro editing user interface is integrated into aflak’s UI. Figure 4.2 shows a screen
capture of aflak’s macro editor. A new macro may be created by a right click on the
graph editor and then selecting the “Create new macro” option. On clicking, an empty
macro will pop up. Once a macro has been created, it can be re-used and added as many
time as one wishes into the node editor. By double-clicking on a macro, this macro’s editor
is opened (if it was not) and focused. The macro editor is mostly similar to aflak’s main
editor. It supports import and export of macros using a tailor-made data format.

In addition, nestedmacros are supported. aflak implements some basic sanity checks
to prevent endless loops from occurring. For example, if a macro is added within itself (i.e.
recursion), aflak will show an error and prevent the user from proceeding and shoot
themselves in the foot.

4.2 Macro support for cake 44

M
a
c
ro

 n
a
m

e
 i
n
p
u
t

a
n
d
 d

is
p
la

y

O
u
tp

u
t

w
in

d
o
w

 #
1

O
u
tp

u
t

w
in

d
o
w

 #
2

O
u
tp

u
t

w
in

d
o
w

 #
1

O
u
tp

u
t

w
in

d
o
w

 #
2

M
a
c
ro

 E
d
it

o
r

M
a
c
ro

 N
o
d
e

M
a
c
ro

 I
n
p
u
t

#
1

M
a
c
ro

 I
n
p
u
t

#
2

In
d
e
p
e
n
d
e
n

t

im
p
o
rt

/e
x
p
o
rt

 o
f

m
a
c
ro

s

Fi
gu

re
4.
2
Ex

am
pl
eo

fa
m
ac

ro
th
at

op
en

sa
n
im

ag
ef

ro
m

th
eM

aN
GA

da
ta
se
t[

B+ 1
5]
.Th

is
sim

pl
em

ac
ro

ta
ke

st
w
o
in
pu

ts
:a

FI
TS

fil
ea

nd
an

in
te
ge

rr
ep

re
se
nt
in
g
a
fra

m
en

um
be

r.
Th

em
ac

ro
th
en

ou
tp
ut
st

he
w
av

ef
or

m
an

d
th
ei

m
ag

ed
at
a
at

th
ep

ro
vi
de

d
fra

m
e.

Th
is

is
th
e
re
su

lt
th
at

ca
n
be

se
en

in
ou

tp
ut

w
in
do

w
s#

1
an

d
#2

.Th
e
w
ay

th
e
FI
TS

fil
e
is

op
en

an
d
th
e
ch

oi
ce

of
ex

te
ns

io
n
(F
LU

X)
is

qu
ite

sp
ec

ifi
ct

o
th
e
M
aN

GA
da

ta
se
t,
he

nc
e
th
e
m
er
it
of

de
fin

in
g
a
m
ac

ro
fo
rs

uc
h
ta
sk

.

4.3 SIA integration for provenance management 45

4.3 SIA integration for provenance management

4.3.1 Overview of the SIA specification

As stated in the previous section, SIA (Simple Image Access) allows to make query on
datasets from a data repository. SIA consists in a server and a client. The server contains
a queryable database of astronomical objects and their corresponding multi-dimensional
data files.

SIA relies on HTTP to communicate with the server in a simple client-server rela-
tionship. Several parameters can be appended to an HTTP GET request within the query
string. Such parameters include POS to query an object by sky coordinates, BAND to
query an object by energy intervals, and so on. Describing all the possible query parame-
ters would be beyond the scope of this paper.

The response to an SIA query is a VOTable, which is basically a table containing specific
astronomical metadata in an XML schema, whose specification is defined in the VOTable
Format Definition [OR+13]. The result returned by an SIA query is a specific subset of
VOTable, called ObsCore table, whose structure is described in the specification of the same
name [LTD+17]. An ObsCore table records much information per row and not all of it is
of interest for aflak’s use cases. The information that mostly interests us for integration
withaflak includes the ID of the object (which is referred to as obj_publisher_id
in the specification, for simplicity, we will hereafter just refer to this string as “ID”), the
direct download link to the dataset (called access_url) and the MIME type of the data
(called access_format). As the SIA standard requires that the link in access_url
points to a FITS file if the access_format is application/fits, we will restrict
our queries to the application/fits format.

As aflak is implemented in Rust [rus], all the standards mentioned above had to be
implemented from scratch in order to integrate them with aflak.5 Implementations in
Python (in the Astropy and PyVO packages [pyv]) exist and were used as references.

4.3.2 Integration with SIA

To integrate Simple Image Access 2.0 with aflak, we created a node called sia_query
that takes the URL of a data repository and some query parameters as input (see Figure 4.3).
The user can use a drop-down to select from a list of common data repositories, or use a
custom URL. The node runs the query, and parses the resulting response into an ObsCore

5Those Rust implementations of the VO standards are available as standalone libraries separate from
aflak in https://github.com/aflak-vis/vo.

https://github.com/aflak-vis/vo

4.3 SIA integration for provenance management 46

table. The resulting ObsCore table can be previewed in a separate window if necessary by
connecting the output result into an output node (as a reminder, all output nodes inaflak
connects to an output window, inside which the data flowing into the output node can be
visualized).

We then created another node, access_url, to extract the direct hyperlink to the
dataset from a row of the ObsCore table via the row index. Finally we prepared a down-
load_fits node that downloads FITS files from a URL, decompresses them (if they are
compressed), and caches them to the disk. By connecting all those four nodes together,
we can query metadata, select a row from the result and download the data to the referred
object. The full workflow can be seen in Figure 4.3.

4.3.3 Provenance management with aflak

The complete current state of the node editor can at any time be exported and serialized as
a .ron file. RON (for Rusty Object Notation)6 is a data format similar to JSON, but more
adapted to Rust data-structure, allowing for smoother integration with aflak. aflak
can then load a RON file, deserialize it and reproduce a previous node editor state, either by
clicking the “Import” button in the graphical interface or by using the --load argument
from the command line interface.

Moreover, each output result can be separately exported. Depending on the type of
output result, it will be exported as a simple text file (for example for string of characters
or numbers), or as a FITS file. Multi-dimensional data (including 1-dimension spectrum) is
all exported as FITS files to which is attached metadata describing how this FITS file was
generated inside aflak’s node editor. Thus, the state of the node editor is embedded in
all exported FITS files. Those FITS files are standard compliant and can be opened with
any FITS viewer. But more importantly, when they are re-opened with aflak, the visual
program that was used to create them is automatically deserialized from the FITS metadata
and displayed in the node editor.

Now, let us explain how we embedded the node editor’s state into a FITS file. A FITS
file is composed of a collections of consecutive Header Data Units (HDUs). Each HDU is
composed of two parts: the required header and an optional data array or table. When
aflak exports a dataset into a FITS file, a FITS file with a single HDU will be created,
with a data array containing the exported dataset encoded as big-endian IEEE 32-bit float-
ing point numbers. Now, the exported FITS file’s header contains a specific key with the
name AFLAPROV (keys in FITS headers are limited to eight ASCII characters), with the

6https://github.com/ron-rs/ron

https://github.com/ron-rs/ron

4.3 SIA integration for provenance management 47

Fi
gu

re
4.
3

a
f
l
a
k

qu
er
yi
ng

an
d

di
sp

la
yi
ng

an
ob

je
ct

fro
m

th
e

GA
VO

(G
er
m
an

A
st
ro
ph

ys
ic
al

Vi
rt
ua

l
O
bs
er
-

va
to
ry

)
re
po

sit
or

y.
Th

e
us

er
ca

n
se
le
ct

th
e

sk
y

co
or
di
na

te
s

of
th
e

ob
je
ct

an
d

a
da

ta
re
po

sit
or

y
th
at

w
ill

be
qu

er
ie
d.

Th
e

re
co

rd
is

th
en

do
w
nl
oa

de
d,

ca
ch

ed
an

d
di
sp

la
ye

d
on

th
e

sc
re
en

.
So

m
e

in
te
rm

ed
ia
ry

re
su

lts
,

lik
e

th
e

di
re
ct

UR
L

fro
m

w
hi
ch

th
e

im
ag

e
is

do
w
nl
oa

de
d

or
FI
TS

m
et
ad

at
a

ar
e

di
sp

la
ye

d
as

w
el
l.

Th
e

di
s-

pl
ay

ed
ob

je
ct

ha
s

th
e

fo
llo

w
in
g

ID
:

i
v
o
:
/
/
o
r
g
.
g
a
v
o
.
d
c
/
~
?
r
o
s
a
t
/
i
m
a
g
e
_
d
a
t
a
/
r
d
a
_
1
/
u
s
9
0
0
1
7
6
p
-

1
_
n
1
_
p
1
_
r
2
_
f
2
_
p
1
/
r
p
9
0
0
1
7
6
a
0
1
_
m
e
x
.
f
i
t
s
.
g
z

4.4 User interface: An event-based architecture 48

serialized state of the node editor as associated value. The FITS 4.0 standard indeed al-
lows for strings of arbitrary length by using the CONTINUE syntax in the header [Gro].
aflak uses this syntax to store the full state of the node editor and thus there is no limit
to the length of the deserialized editor state.

Besides, as definitions of transforms may change with time, it is as well necessary to
version each individual transform defined in aflak. To that aim, aflak uses semantic
versioning [RvDV17]. Currently the code of the transform is not included in the serialized
metadata, only an identifier to the transform, which means that an experienced aflak
user who creates their own nodes (beyond the nodes built in aflak) must as well provide
the code of the transforms he/she created to fully guarantee reproducibility of a result.

4.4 User interface: An event-based architecture

The single-threaded user interface loop that aflak runs follows the following behavior.

1. Frame starts.

2. Pings compute back-end to check if there is any finished task or any task that should
be started.

3. Records all user events (mouse, keyboard, window resize, etc.).

4. Re-draws the interface using OpenGL. The interface is drawn from the current im-
mutable state of the node editor.

5. Converts each received user events into an action (e.g. “create a new node”, or “con-
nect one slot to another”, etc.).

6. Mutates the state of the program given the list of actions to perform.

7. Frame ends.

Each time the user initiate an action, an instance of an event as defined in Listing 4.1
is fired and processed.

Listing 4.1 Event enumeration used for node editor’s user interface
use cake::{

macros,
InputSlot, NodeId, Output, Transform, TransformIdx

};

4.5 Implementing astronomical libraries in Rust 49

pub enum RenderEvent<T: 'static, E: 'static> {
Connect(Output, InputSlot),
AddTransform(&'static Transform<'static, T, E>),
CreateOutput,
AddConstant(&'static str),
SetConstant(TransformIdx, Box<T>),
WriteDefaultInput {

t_idx: TransformIdx,
input_index: usize,
val: Box<T>,

},
RemoveNode(NodeId),
Import,
Export,
AddNewMacro,
AddMacro(macros::MacroHandle<'static, T, E>),
EditNode(NodeId),

}

The name of the events should mostly be self-explanatory. Such architecture allows us
to manage complexity by keeping as many part of the software immutable, while enabling
code re-use. The same event architecture is indeed used for that macro editor and the
main editor. Indeed, only the implementation of the event handler changes depending on
whether the current editor is a macro editor or the main editor.

4.5 Implementing astronomical libraries in Rust

4.5.1 FITS libraries

fitrs is a FITS library that was created for aflak in Rust. It is published on https:
//crates.io/crates/fitrs. At the time of writing, it has 4, 236 downloads.

As shown in Figure 4.4, a FITS file is basically a consecutive lists of headers and data
(the tuple (header, data) is called an HDU for Header/Data Unit in FITS’s jargon). Only the
primary header is required. All subsequent headers and data are optional and thus called
“extensions,” however they are frequently used, especially to compact several kinds of data
inside a single file. When building a FITS library, it is important not to read or load the

https://crates.io/crates/fitrs
https://crates.io/crates/fitrs

4.5 Implementing astronomical libraries in Rust 50

Figure 4.4 FITS file structure. Image courtesy of Introduction to the HST Data Handbooks,
section 2.2 on “Multi-Extension FITS File Format” [S+11].

whole file into memory, but only to jump and access the important data regions for a the
process one wants to achieve. Keeping this in mind is key to writing a fast FITS parser.

4.5.2 Convenience in opening FITS files

Every FITS file is provided in some sort of “sub-dialect.” The previous subsection explains
the general structure of FITS files, and this structure is common to all FITS files. What dif-
fers between sub-dialects is the position or the ordering of the data. Then the question that
comes is, “which extension contains the flux data (for example) I need for my research?”
This depends on the origin of the dataset. Figure 4.2 shows amacro that deals with opening
and displaying a FITS file from the MaNGA dataset.

Then we may wonder which sub-space of a multi-dimensional data array contains the
data were are interested in. For example, a FITS files that contains polarization may con-
tain a 4-dimensional datacube (right ascension, declination, wavelength and polarization),
however if an astronomer is not interested in the polarization value, they may want to slice
it out right from the beginning. There are even instances of FITS files with a single unique
polarization value (the fourth dimension only holds a single “slice”). In that case, rather
than keeping a 4-dimensional image with a dimension of (𝑥, 𝑦, 𝑧, 1), we can normalize it
to a 3-dimensional image with a dimension of (𝑥, 𝑦, 𝑧). aflak implements some heuris-
tics to pre-generate a node program that allows to visualize the data in the FITS file. The
astronomer can then get started on his analytical work from there.

4.6 Defining your own nodes with Rust 51

4.5.3 Virtual Observatory standards

Theauthor reserved thevo namespace oncrates.io: https://crates.io/crates/vo. From
then, more virtual observatory standards can be implemented, in addition to the imple-
mentation vo_sia and vo_table, which are not published to crates.io yet. The
source for those implementations is available on GitHub at https://github.com/aflak-vis/vo

4.6 Defining your own nodes with Rust

Disclaimer

Please refer for the latest documentation built bycakewithrustdocwhen you attempt
to define your own nodes. This document was written in August 2019 and may not be up-
to-date with the latest advancements!

For this example, we will implement a simplified FITS loader node (a similar loader
already exists, but you may want to create a custom loader for a specific file type that you
use and that aflak does not support).

First, as we are building a black box with some outputs and inputs, we must first de-
termine what are the outputs and inputs that we want. As we saw in section 4.5.1, a FITS
file is composed of several independent HDUs (at least one). We thus need a path and the
index of the HDU we wish to load as input. These are the two inputs we will be using to
building our node. Then what do we need as output? We will assume that the FITS file
to load contains an 𝑛-dimensional image, so we will use the Image type as output. In
listing 4.2, we build a transform with the inputs and output and mentioned above.

https://crates.io/crates/vo
https://github.com/aflak-vis/vo

4.6 Defining your own nodes with Rust 52

Listing 4.2 How to define your own custom node in Rust
#[macro_use]
extern crate aflak_cake as cake;
// IOValue is the internal type for a value that flows in
// the node graph.
// IOErr represents a runtime computational error in the
// dataflow.
use aflak_primitives::{IOValue, IOErr};
// Defines a transform object.
// This object, once loaded by cake, will represent a node.
let transform = cake_transform!(

// This string is similar to a Python docstring.
// It contains the documentation of the node we are
// creating.
"Extract␣dataset␣from␣a␣FITS␣file␣at␣the␣given␣Path.

FITS␣HDU␣is␣chosen␣by␣the␣index␣given␣by␣'hdu_idx'
(defaults␣to␣0,␣i.e.␣the␣Primary␣HDU).

Author:␣␣␣␣Malik␣Olivier␣Boussejra
Date:␣␣␣␣␣␣2019-07-01",

// Versioning of our node,
// abiding by semantic versioning (SemVer)
1, 0, 0,
// Name of our node. Here "fits_path_to_image".
fits_path_to_image<IOValue, IOErr>(

// First input of our node: a file path
path: Path,
// Second input of our node:
// an integer to select the HDU to open
hdu_idx: Integer = 0,

) -> Image {
let image = /* Generate image from path */;
vec![IOValue::Image(image)]

}
);

4.7 DevOps 53

Then Listing 4.3 implements the actual code that was commented out in Listing 4.2,
leaving out all the metadata:

Listing 4.3 Load a FITS file
extern crate fitrs;
// WcsArray is an floating point data array to which
// WorldCoordinates metadata is appended
use aflak_primitives::{IOValue, IOErr, WcsArray};

fits_path_to_image<IOValue, IOErr>(
path: Path,
hdu_idx: Integer = 0,

) -> Image {
let path = path.as_ref();
let result = fitrs::Fits::open(path)

.map_err(|err| IOErr::IoError(
err, format!("Could␣not␣open␣file␣'{:?}'", path)

))
.and_then(|fits| {

// Ignore error handling and validation for hdu_idx
fits.get(hdu_idx as usize).ok_or(

IOErr::UnexpectedInput(format!(
"Could␣not␣find␣HDU␣'{}'␣in␣'{:?}'!",
hdu_idx, path,

))
).and_then(|hdu| WcsArray::from_hdu(&hdu))
.map(IOValue::Image)

});
vec![result]

}

4.7 DevOps

DevOps is a new word that was created during the last decade in the context of software
development and release [BWZ15]. It refers to a set of software development practices
that combine software development (Dev) and information technology operations (Ops).

4.7 DevOps 54

The objective is to shorten the systems development life cycle while delivering features,
fixes, and updates. In this section we will study the processes behind how aflak was
developed.

4.7.1 Portability: Challenges in supporting Linux (Debian andUbuntu),
macOS and Windows

To increase our user-base, we had to build a portable piece of software that runs on all major
operating systems. Astronomers have a culture rooted in UNIX systems. Most research-
oriented astronomers, which are aflak’s target as a userbase, use Linux (usually Debian
or Ubuntu) or macOS. This can be shown with the Debian astro packages: Almost all
astronomy tools are packaged for Debian.

aflak relies on portable technology. It uses a glfw-like Rust library that abstracts
away the interaction of the program with the window and OpenGL management layer
of the operating system. The library is called glium 7. As aflak is mainly developed
on Linux (Debian and Ubuntu), we can assure that it is functional on such platforms. For
some time it used to crash onWindows, but the latest version is functional on theMicrosoft
operating system. As for macOS, OpenGL and user event support kept breaking on macOS
on every new OS version. It was needed to continually test against new macOS versions.
Because the development team does not have any easy access to macOS machines, some
of our macOS users were extremely helpful in helping us debugging aflak.

4.7.2 Development workflow

aflak’s development workflow makes heavy use of GitHub and Travis CI (Continue
Integration). This allows us to waste less time on trivial time-consuming tasks such as
testing and code-merging.

4.7.3 Release mechanism

aflak distributes a binary through a relatively straightforward build system (Linux and
macOS only, no Windows binary for now). The latest nightly binary can be downloaded
from aflak’s main GitHub page.

Besides, all the astro Debian packages which we mentioned in section 4.7.1 are main-
tained by Ole Streicher, from the Leibniz Institute for Astrophysics, whom the author met

7https://github.com/glium/glium

https://github.com/glium/glium

4.7 DevOps 55

at ADASS XXVIII. Ole is open to packaging new useful astro-software to Debian. This is a
path we will consider when packaging aflak.

On the other hand, aflak can be very easily downloaded and installed directly from
its git repository using Rust’s build system, cargo, provided that a user has a working Rust
build environment installed on their machine. This ease of install and the still lack of
maturity of aflak in regards to Debian’s standard of stability is a conclusive reason why
we are still packaging the application ourselves, rather than relying on Debian’s package
managers.

Chapter 5

Evaluation

“Why Evaluate Software Quality?
1. The software product may be hard to understand and difficult
to modify.
2. The software product may be difficult to use, or easy to
misuse.
3. The software product may be unnecessarily
machine-dependent, or hard to integrate with other programs.”

Barry W. Boehm [BBL76]

aflak was evaluated on a middle-end light laptop running Debian 9 with an Intel®
Core™ i7-7560U CPU @ 2.40GHz processor and an integrated GPU chipset. aflak is
supported on all mainstream operating systems (Linux, macOS and Windows 10).

5.1 Checking compliance to standards

aflak connected to the GAVO SIAP 2.0 repository and issued a query to retrieve a dataset
at sky coordinates (161.0, −59.7)1. For the same query, the same result as with PyVO is
gotten. A one-gigabyte dataset from another SIAP 1.0 repository at GAVO was as well
queried, and apart from the initial download duration the first time aflak attempts to
download the dataset, all individual transforms run in less than a second. With the hard-
ware stated above, all animations run perfectly smoothly (see Figure 5.1).

FITS files exported with aflakwere tested with FITS viewers such as SAOImage DS9
and checked for strict compliance with the FITS standard using the Astropy checking tools.
The exported FITS files can of course be re-loaded back into aflak.

1First component is right-ascension, second component is declination.

5.1 Checking compliance to standards 57

Figure 5.1 Imagewith a size in the gigabyte range queried fromGAVOSIAP 1.0 repository,
as shown within aflak. SIAP 1.0 dates from around 2002 and does not support any sort
of “ID” for datasets. GAVO SIAP 1.0: http://dc.zah.uni-heidelberg.de/hppunion/q/im/siap.
xml

http://dc.zah.uni-heidelberg.de/hppunion/q/im/siap.xml
http://dc.zah.uni-heidelberg.de/hppunion/q/im/siap.xml

5.2 First use case: Equivalent width 58

Figure 5.2 The visualization discovery process as presented by Johnson et al. [JMM+05].
This figure represents the core visualization concept of human-in-the-loop.

aflak’s code is free and available on the following link: https://github.com/aflak-vis/aflak.
The implementation of the VO standards used by aflak can be found hereafter:
https://github.com/aflak-vis/vo

5.2 First use case: Equivalent width

5.2.1 Introduction to human-in-the-loop concept

Figure 5.2 shows the visualization discovery process thataflak strives to achieve. aflak
is designed “not to replace the human but to keep the human in the loop by extending hu-
man capabilities.” By allowing fast iteration (and prototyping) with varying input datasets
and algorithms, aflak makes astronomer-in-the-loop a reality. The arrows in Figure 1.1,
aflak’s teaser figure, explicitly shows this feedback loop in that the astronomer can at
any time, by the sight of a visualized output, either go back and choose to re-query another
input datasets, update the analytics pipeline in the visual program, or simply fine-tune pa-
rameters in the same visual program. While any of the above-mentioned action is done,
the output values of the current visual program and thus the content of the output window
is updated in real time. The next sections will give a specific example, that of the comput-
ing of equivalent widths, to prove the effectiveness of the feedback loop provided to the
astronomer by aflak. Equivalent widths are an interesting subject in that they include
several parameters that require manual and gradual tuning before a satisfactory result can
be obtained.

https://github.com/aflak-vis/aflak
https://github.com/aflak-vis/vo

5.3 Second use case: Velocity field map 59

5.2.2 Use case

Figure 2.5 shows an example of workflow extracting the equivalent width using the same
computational method as Matsubayashi et al. [MYG+11]. Equivalent width can be defined
as follows: “The equivalent width of a spectral line is a measure of the area of the line on a
plot of intensity versus wavelength. It is found by forming a rectangle with a height equal
to that of continuum emission, and finding the width such that the area of the rectangle
is equal to the area in the spectral line. It is a measure of the strength of spectral features
that is primarily used in astronomy” [CO07]. In Figure 2.5, the dataset is loaded with the
“open_fits” node #2 and the “fits_to_image” node #3. The continuum emission is computed
on both sides of the emission line by the “average” nodes #5 (left side) and #6 (right side).
Then the average value of the spectral line is computed by the “average” node #4. From
then, equivalent width is computed by node #8. The computed equivalent width is shown
in output #3.

Computing the equivalent width requires a lot of iterations to choose the “just right”
threshold wavelengths on computing continuum emission and the area of the spectral line.
One interviewed astronomer reported that aflak allows to quickly find the appropriate
thresholds thank to the quick feedback loop. If we exclude negligible floating-point round-
ing errors, results obtained with PyRAF and aflak are perfectly consistent.

5.3 Second use case: Velocity field map

Figure 5.3 shows a very simple program demonstrating how an astronomer can select a
band on which there is an emission line (here from frame index 3135 to 3155). Similar to
the first use case, the astronomer can select the appropriate thresholds for the band on
which a velocity field map will be created and quickly try different computation methods.

5.4 Comparison with current tools

Sections 5.2.2 and 5.3 reviewed two analytic use cases for using aflak. But such ana-
lytic features would be irrelevant without the ingrained support for reproducibility, im-
plemented by embedding provenance data in exported FITS files whose compliance is
checked in section 5.1. Bringing about complete reproducibility of non-linear analysis from
a standard-compliant FITS file while maintaining interoperability with existing software
is a first. This method has the advantage of simplicity in that it relies on widely supported
standards and does not multiply the number of files a researcher needs to handle.

5.4 Comparison with current tools 60

O
u
tp

u
t

w
in

d
o
w

 #
1

O
u
tp

u
t

w
in

d
o
w

 #
2

O
u
tp

u
t

w
in

d
o
w

 #
3

O
u
tp

u
t

n
o
d
e
 #

1

O
u
tp

u
t

n
o
d
e
 #

2

O
u
tp

u
t

n
o
d
e
 #

3

Fi
gu

re
5.
3

A
no

de
gr

ap
h
fo
rc

om
pu

tin
g
th
e
ve

lo
ci
ty

fie
ld

m
ap

us
in
g
th
e
eff

ec
to

fD
op

pl
er

sh
ift

on
an

em
iss

io
n
lin

e.
It

ge
ne

ra
te
s

tw
o
fie

ld
m
ap

s(
on

ei
n
ou

tp
ut

#1
an

d
on

ei
n
ou

tp
ut

#2
)w

ith
tw

o
di
ffe

re
nt

co
m
pu

ta
tio

n
m
et
ho

ds
.A

ve
ra
ge

va
lu
eo

ft
he

im
ag

ea
ro
un

d
th
e
em

iss
io
n
lin

e
in

sh
ow

n
in

ou
tp
ut

#3
.W

e
se
e
th
at

th
er
e
is

a
fa
st

m
ov

in
g
ob

je
ct

on
th
e
lo
w
er

rig
ht
-h

an
d
sid

e.

5.4 Comparison with current tools 61

For example, we can compare with PyRAF [DLPWG01], which is a tool that provides
a shell-like command prompt to analyze FITS datasets. Roughly, for each aflak node an
astronomer would need to manually run a PyRAF command. A PyRAF command takes
at least two arguments: an input FITS file and an output FITS file. All the working files
are saved and read on disk. As you may guess, the more PyRAF commands are run, the
more FITS files appear in your working directory, making it very confusing to maintain the
provenance of each file. Assuming that a diligent astronomer kept the history of the PyRAF
commands somewhere in a text file, each command would take a few seconds to run, thus
the whole process of going through a graph like that in Figure 2.5 would take about a
minute. What’s more, the astronomer would need to restart the process from scratch as
soon as they need to change a parameter. Thanks to aflak’s interactive interface, as
soon as the node graph is built once, a user can seamlessly compare two different results
by slightly modifying a single parameter (in a transformation, a query or input file). This
can lead to new insights and discoveries.

But that is not all, thanks to the ability to download datasets from data repositories,
there is no need to always keep a local copy of the data an astronomer wants to ana-
lyze (and remember where it is located). Each piece of data is uniquely identified by its
obs_publisher_did and can be re-downloaded on demand. Query parameters can
be changed with a few mouse movements and the result of the same processing on an-
other input can be visualized after the new dataset is downloaded, or immediately if the
queried dataset is cached on the disk. One interviewed domain expert reported that this is
a non-negligible leap forward in terms of workflow management.

5.4.1 In-depth comparison

Listing 5.1 shows a commented Bash/IRAF script that computes the equivalent width of a
datacube, using the same method as the node editor outlined in Figure 2.5.

5.4 Comparison with current tools 62

Listing 5.1 Extracting equivalent width with Bash/IRAF

Sub-datacube for each band (in Figure 2.5: nodes #3, #4 and #5)

awk ’ BEGIN { for (i = 3 0 9 9 ; i < 3 1 1 9 ; i ++) {
pr int f (”manga−8454−12703−LINCUBE . f i t s [1] [, , % d] \ n ” , i) }

} ’ > f i l e −o f f 1 . l i s t
awk ’ BEGIN { for (i = 3 1 3 4 ; i < 3 1 5 4 ; i ++) {

pr int f (”manga−8454−12703−LINCUBE . f i t s [1] [, , % d] \ n ” , i) }
} ’ > f i l e −on . l i s t

awk ’ BEGIN { for (i = 3 1 7 4 ; i < 3 1 9 4 ; i ++) {
pr int f (”manga−8454−12703−LINCUBE . f i t s [1] [, , % d] \ n ” , i) }

} ’ > f i l e −o f f 2 . l i s t

Then compute average on each band

imcomb @fi le −o f f 1 . l i s t o f f 1 −ave rage . f i t s combine= ave rage
imcomb @fi le −on . l i s t on−ave rage . f i t s combine= ave rage
imcomb @fi le −o f f 2 . l i s t o f f 2 −ave rage . f i t s combine= ave rage

Combine off-band images (in Figure 2.5: nodes #7 and #8)

echo ” 0 . 5 3 3 3 3 3 ” > s c a l e −o f f . d a t
echo ” 0 . 4 6 6 6 6 7 ” >> s c a l e −o f f . d a t
imcomb o f f 1 −ave rage . f i t s , o f f 2 −ave rage . f i t s o f f −ave rage . f i t s \

combine= ave rage weight=@scale−o f f . d a t

Make equivalent-width map (in Figure 2.5: node #9)

ima r i t h o f f −ave rage . f i t s − on−ave rage . f i t s o f f −on−ave rage . f i t s
ima r i t h o f f −on−ave rage . f i t s * 20 f l u x . f i t s
ima r i t h f l u x . f i t s / o f f −ave rage . f i t s e qu i v a l e n t −width . f i t s

As the reader may infer from the above code, each operation is creating files on the
file system, while subsequent operations are using the created files. The content of the
intermediary files can only be seen using dedicated viewers such as DS9. With the ex-
ample of equivalent widths, many constants must be precisely adjusted. Every time a
constant is changed, all the next cascading operations must be re-run. Not only this pro-
cess is time-consuming and error-prone—enlarging an already too long feedback loop—,
but provenance is as well far from being managed. Out of the many files generated in

5.5 Advantages of provenance management in a visual context not limited to astronomy63

the file system, how does the user remember how each individual file was generated? By
comparison, aflak here shines by its fast feedback loop (less than a second is needed to
refresh the visualizations in an output window after a change in the node editor) and au-
tomatic management of provenance. Importantly, if we exclude negligible floating-point
rounding errors, results obtained with PyRAF and aflak are perfectly consistent.

5.4.2 Equivalent width with a macro

The previous section compares existing tools with aflak. This section gives a concrete
example of macro usage for equivalent widths. Figure 5.4 shows an example of a macro
implementing the computation of equivalent widths, the same processing as the one done
in Figure 2.5. The advantage of using macros are clear: visual clutter on the original node
interface is widely reduced, while the computing speed is not impacted for a 423 MB input
dataset. Only the input datacube and the constant parameters that are relevant in comput-
ing the equivalent width are exposed by the macro. Through the sharing and the export of
macros such as this one given as example, common parameterized analytics possibilities
are only a few clicks away.

5.5 Advantages of provenance management in a visual
context not limited to astronomy

Some astronomers highlight the importance of provenance management. A provenance
data model standard is currently in development by the International Virtual Observatory
Alliance, whose name is ProvenanceDM [SRB+19]. A representation of the data recorded
through provenance is shown in Figure 5.5. aflak can be used to reproduce an analysis
pipeline, from the data source to the final output, following a model very similar to that
of ProvenanceDM. As we consider the lists of use cases that ProvenanceDM must fulfill, we
can see that aflak successfully addresses each of them as well, so we can conclude that
aflak provides a reference implementation of the ProvenanceDM data model, as defined
by the International Virtual Observatory Alliance.

Traceability of products: “Track the lineage of a product back to the rawmaterial (back-
wards search), show the workflow or the dataflow that led to a product.” aflak’s
visual approach of representing data flow with a visualized directed acyclic graph
meets this use case.

5.5 Advantages of provenance management in a visual context not limited to astronomy64

O
u
tp

u
t

n
o
d
e

M
a
c
ro

 N
o
d
e

E
x
p
la

n
a
ti

o
n
 a

n
d
 m

e
ta

d
a
ta

 a
b
o
u
t

s
e
le

c
te

d
 n

o
d
e
,

h
e
re

 t
h
e
 e

q
u
iv

a
le

n
t-

w
id

th
 m

a
c
ro

 n
o
d
e

Fi
gu

re
5.
4
Ex

am
pl
eo

fu
sin

g
an
a
f
l
a
k
m
ac

ro
to

co
m
pu

te
eq

ui
va

le
nt

w
id
th
.Th

em
ac

ro
en

ca
ps

ul
at
es

al
lt
he

lo
gi
ci

m
pl
em

en
te
d
as

sh
ow

n
in

th
en

od
ee

di
to
ri

n
Fi
gu

re
2.5

,o
nl
y
ex

po
sin

g
th
er

el
ev

an
tc

on
st
an

ts
th
at

th
ea

st
ro
no

m
er
sa

re
ex

pe
ct
ed

to
gr

ad
ua

lly
ad

ju
st

un
til

th
ey

ge
ta

sa
tis

fa
ct
or

y
ou

tc
om

e.

5.5 Advantages of provenance management in a visual context not limited to astronomy65

Acknowledgment and contact information: “Find the people involved in the produc-
tion of a dataset, the people/organizations/institutes that one may want to acknowl-
edge or can be asked for more information.” aflak’s nodes contain information
about their author, thus aflak meets this use case.

Quality and reliability assessment: “Assess the quality and reliability of an observa-
tion, production step or dataset.” The version and the unique UUIDs of the nodes
used in aflak to generate any dataset are logged, which allows to check quality
and reliability at any time in the future.

Identification of error location: “Find the location of possible error sources in the gen-
eration of a product.” All errors that occur during processing on aflak are logged
and a detailed stack trace is shown to thus user, thus fulfilling this requirement.

Search in structured provenance metadata: “Use provenance criteria to locate datasets
(forward search), e.g. finding all images produced by a certain processing step or de-
rived from data which were taken by a given facility.” It is theoretically possible to
classify FITS files that were exported by aflak grouped by the exact node editor
that generated them, as a serialized node editor is included in all generated FITS
files. Thus this requirement is met.

Besides, Wilkinson et al. define the FAIR principles for data sharing for all fields of
science as “Findable, Accessible, Interoperable, Re-usable” [WDA+16], which is used as a
design principle in the development of ProvenanceDM. aflak’s macro fulfills the need for
re-usability. Moreover, findability, accessiblity and interoperability of datasets and meth-
ods are fulfilled by the implementation of Virtual Observatory standards for data retrieving
and exchange (SIA, FITS format, etc.). Section 6.3 hints at the planned feature of imple-
menting a sharing platform and repository for community-contributed nodes, which can
then seamlessly be downloaded and extend aflak with new analytical features. Such
open repository would fulfill even more the accessiblity requirements of the FAIR princi-
ples.

In any case, provenance management allows to keep track of whatever was done to
come to a conclusion. All the trial and error of the researches that led them to the answer
would be recorded as well. Thanks to this, we make possible the end-to-end reproducibil-
ity of any investigation. If an investigation were to be re-opened, it is not infrequent that
a new investigation must be conducted. We could thus check exactly how the past inves-
tigation was done and improve the current search. The exact same needs can be found
in forensic science. A framework dealing with forensic data thus has everything to gain

5.6 Distribution and recognition 66

Figure 5.5 An example graph of provenance discovery. Starting with a released dataset
(left), the involved activities (blue boxes), progenitor entities (yellow rounded boxes) and
responsible agents (orange pentagons) are discovered. [SRB+19]

Figure 5.6 Provenance in forensics: Reconstitution of crime according to different
hypotheses.

from implementing end-to-end data provenance management, and aflak’s methodology
to managing astronomical data provenance could as well be applied to forensic data prove-
nance. Figure 5.6 represents how a graph-like provenance data model can be applied to a
forensic case.

5.6 Distribution and recognition

A piece of software without users and a community is meaningless. While developing
aflak, the author attempted to build a community around it. And even when this Ph. D.
is finished, the desire to continue aflak’s development will still be there. One could say
that this PhD. was only an alibi to start this project.

5.6 Distribution and recognition 67

Figure 5.7 aflak’s repository has 12 stargazers. We never attempted to do any kind of
pro-active campaign to earn stars.

In any case, this is not much, but aflak’s GitHub page has accumulated 12 stars on
GitHub at the time of writing (see Figure 5.7 to see aflak’s stargazers2.), along with 15
followers to aflak’s newsletter, run by this thesis’s author with Mailchimp3.

We as well went to many astronomical events to give oral presentation and talks. We
received interested feedback from many people and even had the chance to be invited in
the 2019 Integral Field Spectroscopy Study Group4, that will be held in November 2019.

We attempt to reduce the hurdle as low as possible for people starting to use aflak.
Some astronomical software may be very cumbersome to install. As a matter of fact, the
author was never able to get an IRAF installation running on his own machine. TOPCAT
caused a few headaches and fiddling with the author’s Java environment before they could
get it up and running. aflak boasts to be downloadable and installable from source with
a single command—a one-liner—, as demonstrated in Listing 5.2.

2Screenshot taken at https://github.com/aflak-vis/aflak/stargazers on July 7th, 2019
3A marketing automation platform and an email marketing service at https://mailchimp.com/.
4“Integral Field Spectroscopy Study Group” is the author’s rough English translation of this conference’s

original Japanese name, which is面分光研究会２０１９ —新面分光装置で花開く新しいサイエンス—.

https://github.com/aflak-vis/aflak/stargazers
https://mailchimp.com/

5.6 Distribution and recognition 68

Listing 5.2 Installing aflak: A one-liner.
I n s t a l l Ru s t (i f you a l r e a d y have r u s t , s k i p t h i s s t e p)
c u r l −−pro to ’= h t tp s ’ −− t l s v 1 . 2 − s S f h t t p s : / / sh . r u s tup . r s | sh
I n s t a l l a f l a k
ca rgo i n s t a l l −−g i t h t t p s : / / g i t hub . com / a f l a k −v i s / a f l a k a f l a k

Done !

S e e CLI h e l p
a f l a k −−help

Open a F ITS f i l e w i th a f l a k
a f l a k − f <FITS_FILE >

Chapter 6

Future Works

“The long term vision is not one of a fixed specific software
package, but rather one of a framework which enables data
centers to provide competing and co-operating data services,
and which enables software providers to offer a variety of
compatible analysis and visualization tools and user interfaces.”

The Virtual Observatory [Int]

6.1 Stronger interoperability with VO standards

aflak allows to record the story of the analysis of astronomical datasets, and provides a
fast and responsive environment for defining custom analytical macros and sharing them
with fellow astronomers. While it currently uses its own ad hoc description of provenance
using RON-file based deserialization, cooperation with the Provenance Data Model work-
ing group at IVOA would be a huge advantage to agree on a common format. This would
allow interoperability between different software that manages analysis workflows, such
as software used for cleaning and denoising raw data observed by telescopes.

Moreover, more comprehensive integrationwith other VO standards for queryingwould
be a major advantage, including support for Simple Cone Search and Astronomical Data
Query Language [DTB15].

6.2 Application to other astronomical problems 70

6.2 Application to other astronomical problems

6.2.1 Arbitrary non-linear slicing

Some other astronomical problems may be adapted to be solved through exploratory anal-
ysis, as provided by aflak. For the analysis or discovery of high-velocity clouds such as
the ones sighted by Takekawa et al. in our home galaxy [TOI+17], it is very convenient to
be able to make arbitrary, non-linear slicing through datacubes. Current aflak’s built-in
nodes and interface only supports linear slicing, it would be of great help for researchers
to develop such general tool that allows to define a slicing method while visualizing it.
It seems no such general tool currently exists, if we exclude custom, one-off code. We
think that extending aflak to include this feature is possible, and we suggest a design
to implement such feature in Figure 6.1. aflak’s development team plans to present this
feature at the 2019 Integral Field Spectroscopy Study Group that will be held in November
2019.

6.2.2 Interferometry

What’s more, interferometry analysis is a typical example of analysis with many degrees
of freedom. We believe that aflak would be adapted to allow an astronomer to interac-
tively fine-tune the parameters of such analysis. Images produced by an interferometer are
convolved with the Fourier transform of the data sampling, and are also affected by errors
in the gain and phase calibration, often due to short-term changes in the atmosphere. AIPS,
theAstronomical Image Processing System, was designed at about the same time as FITSwas
designed. Its main role has been to put interferometric data calibration, editing, imaging,
and display programs in the hands of astronomers. It has provided useful functionality for
data from various radio interferometers and single-dish radio telescopes [Gre03].

With the aging of AIPS, which was developed through the 1970s to the 1990s, next
CASA (short for Common Astronomy Software Applications) took the role of main software
stack for radio-astronomy analysis [MWS+07]. However, given the size of many datasets
obtained with an interferometer, it may be difficult to maintain fast responsiveness, dear
to aflak. On the other hand, displaying the progress and the intermediary results of the
currently running tasks would then be useful to track advancement and steer the compu-
tation, by offering an implementation of a visualization concept developed by Johnson et
al. called “computational steering” [JPH+99].

6.2 Application to other astronomical problems 71

S
el

ec
t

“d
ra

w
 p

at
h
”

o
p
ti
o
n

D
ra

w

ar
b
it
ra

ry

p
at

h
s

A
rb

it
ra

ry
 p

at
h
 d

ra
w

n
 b

y
u
se

r

V
ie

w
 i
n
 n

o
d
e

ed
it
or

:

V
al

u
e

n
o
d
e

co
n
ta

in
in

g

th
e

d
ra

w
n
 p

at
h

T
h
e

“e
xt

ru
d
e”

 n
o
d
e

ex
tr

u
d
es

 a
 p

la
n
e

w
it
h
 t

h
e

sh
ap

e
of

 t
h
e

d
ra

w
n
 p

at
h

al
on

g
th

e
ax

is
 p

er
p
en

d
ic

u
la

r
to

 t
h
e

p
at

h
.

It
 t

ak
es

 a
 3

d
 i
m

ag
e

(d
at

ac
u
b
e)

 a
n
d
 a

 p
at

h
 a

s
in

p
u
t.
 T

h
e

ou
tp

u
t

is
 a

 2
d
 i
m

ag
e.

Fi
gu

re
6.
1

Re
pr

es
en

ta
tio

n
of
a
f
l
a
k
’s

pl
an

ne
d
ex

te
ns

io
n
to

su
pp

or
ta

rb
itr

ar
y
sli

ci
ng

.

6.2 Application to other astronomical problems 72

Figure 6.2 Block diagram of AIPS from a user point of view. Various communications
paths are shown among the main interactive program, AIPS, the batch program AIPSB,
and the collection of separate tasks (Figure 1 in [Gre03]).

6.3 More room for improvement 73

6.3 More room for improvement

Other limitations include the current feature for selecting region of interest, which is lim-
ited to selecting pixels one at a time. This is sufficient for many use cases using relatively
small datasets, but not in the general case. aflak does not support very large datasets
that do not fit in the computer’s working memory. What’s more, aflak’s user inter-
face was designed with a wide screen in mind—more than 2K pixels—and, although not
impossible, it is impractical to use aflak on smaller screens.

Furthermore, more memory-efficient use of cache is desired to reduce wasting of mem-
ory and have aflak deal with bigger datasets (more than several gigabytes). Smarter
probabilistic cache that garbage collects values that are very unlikely to be queried would
be a huge improvement. The speed of the computing could as well be increased by intro-
ducing Just-In-Time (JIT) compilation technologies and/or clever task scheduling, beseech-
ing us to borrow theoretical concepts from operating systems and compiler programming.
Besides, on the UI side, being able to group several nodes into a single macro from the
node editor screen would be extremely convenient and is a desirable feature.

We discussed about the issue of sharing the code for custom transformations made by
experienced aflak user in section 4.3.3. To overcome this issue, having a public aflak
code repository where anyone can contribute new nodes would be the solution. When
loading a node editor from an exported FITS (or RON) file, the necessary code would be au-
tomatically downloaded from this public repository so that the analysis can really be 100%
reproducible on any computer running aflak. Having a public aflak code repository
where anyone can contribute new nodes or macros is a planned feature. The use of UUIDs
to identify macros is a first step toward building an aflak code repository.

Chapter 7

Conclusion

This thesis is a report on aflak, a visual programming environment that provides fast
and responsive macro support and visualization tools in the astrophysical domain. More-
over, we saw that aflak successfully aims to empower astrophysicists to query and find
insight in existing astrophysical datasets, while guaranteeing reproducibility through end-
to-end provenance management. Ease of use, interactivity, responsiveness, collaboration,
incremental improvements and interoperability with existing software in the astronomy
community via the FITS and Virtual Observatory standards are taken very seriously.

Besides, by porting aflak to the browser using WebAssembly, astronomical analysis
and access to data could be made accessible to a broader audience. Anyone would be
able to visualize and analyze public datasets and make reports that could be submitted to
professional astronomers for review. Indeed, amateur astronomers far outnumber their
professional counterparts.

Achievements

1. M.O. Boussejra, R. Uchiki, S. Takekawa, K.Matsubayashi, Y. Takeshima, M. Uemura,
and I. Fujishiro. “aflak: Visual Programming Environment with Macro Support
for Collaborative and Exploratory Astronomical Analysis,” IIEEJ Transactions on Im-
age Electronics and Visual Computing, vol. 7, no. 2, 2019. [Accepted]

2. M.O. Boussejra, R. Uchiki, Y. Takeshima, K.Matsubayashi, S. Takekawa,M. Uemura,
and I. Fujishiro. “aflak: Visual Programming Environment Enabling End-to-End
Provenance Management for the Analysis of Astronomical Datasets,” Visual Infor-
matics, vol. 3, no. 1, pp. 1–8, 2019.

3. 打木陸雄，M. O. Boussejra，松林和也，竹島由里子，植村　誠，藤代一成.
「AFLAK：モジュール可視化環境による等価幅マップの生成」．日本天文学会
2019年春季年会，R23a，2019年 3月．

4. 木本 真理究，竹川 俊也，打木 陸雄，松林 和也，竹島 由里子，植村　誠，
藤代一成. 「アフラーク：分光データ解析用ビジュアルプログラミング環
境」．宇宙科学情報解析シンポジウム，2019年 2月．

5. M.O. Boussejra, S. Takekawa, R. Uchiki, K.Matsubayashi, Y. Takeshima, M. Uemura,
and I. Fujishiro, “aflak: Visual Programming Environment with Quick Feedback
Loop, Tuned forMulti-Spectral Astrophysical Observations,” in Proceedings of ADASS
XXVIII, 2018. [TBP]

6. M.O. Boussejra, K.Matsubayashi, Y. Takeshima, S. Takekawa, R. Uchiki, M. Uemura,
and I. Fujishiro, “aflak: Pluggable Visual Programming Environment with Quick
Feedback Loop Tuned for Multi-Spectral Astrophysical Observations,” in Proceedings
of IEEE VIS 2018, vol. 3, 2018. [TBP]

7. M.O. Boussejra, N. Adachi, H. Shojo, R. Takahashi, and I. Fujishiro, “LMML:Describing
Injuries for Forensic Data Visualization,” 2016Nicograph International (NicoInt), p. 153,
2016. [Best Poster Award]

8. ——, “LMML: Initial Developments of an Integrated Environment for Forensic Data
Visualization,” in EuroVis 2016 – Short Papers, E. Bertini, N. Elmqvist, and T. Wis-
chgoll, Eds. The Eurographics Association, pp. 31–35, 2016.

9. ——, “LMML:Developing the Environment of the LMMLMark-up Language for Foren-
sic Data Visualization,” The Journal of the Institute of Image Electronics Engineers of
Japan, vol. 45, no. 1, p. 127, 2016.

References

[AAA+19] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball,
M. Baloković, J. Barrett, D. Bintley et al., “First M87 Event Horizon Telescope
results. I.The shadow of the supermassive black hole,”TheAstrophysical Jour-
nal Letters, vol. 875, no. 1, p. L1, 2019.

[ABJF06] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance collection support
in the Kepler scientific workflow system,” in International Provenance and
Annotation Workshop. Springer, 2006, pp. 118–132.

[B+15] K. Bundy et al., “Overview of the SDSS-IV MaNGA Survey: Mapping Nearby
Galaxies at Apache Point Observatory,” The Astrophysical Journal, vol. 798,
no. 1, p. 7, Jan. 2015.

[BAS+16a] M. O. Boussejra, N. Adachi, H. Shojo, R. Takahashi, and I. Fujishiro, “LMML:
Describing injuries for forensic data visualization,” 2016 Nicograph Interna-
tional (NicoInt), p. 153, 2016.

[BAS+16b] ——, “LMML: Initial developments of an integrated environment for forensic
data visualization,” in EuroVis 2016 - Short Papers, E. Bertini, N. Elmqvist, and
T. Wischgoll, Eds. The Eurographics Association, 2016, pp. 31–35.

[BB99] P. Barrett and W. Bridgman, “PyFITS, a FITS module for Python,” in Astro-
nomical Data Analysis Software and Systems VIII, vol. 172, 1999, p. 483.

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of soft-
ware quality,” in Proceedings of the 2nd international conference on Software
engineering. IEEE Computer Society Press, 1976, pp. 592–605.

[BCC+05] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Vistrails: Enabling interactive multiple-view visualizations,”
in Visualization, 2005. VIS 05. IEEE. IEEE, 2005, pp. 135–142.

[BCD+09] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl,
K. Thiel, and B. Wiswedel, “KNIME – the Konstanz Information Miner: ver-
sion 2.0 and beyond,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp.
26–31, 2009.

[BFM98] H.-J. Bungartz, A. Frank, and F. Meier, “Design and implementation of a mod-
ular environment for coupled systems,” Preprint SFB-438-9802, 1998.

References 77

[BGB13] L. Benali, S. Gromb, and C. Bou, “Post-mortem imaging in traffic fatalities:
from autopsy to reconstruction of the scene using freely available software,”
International Journal of Legal Medicine, vol. 127, no. 5, pp. 1045–1049, 2013.

[BMT+19] M. O. Boussejra, K. Matsubayashi, Y. Takeshima, S. Takekawa, R. Uchiki,
M. Uemura, and I. Fujishiro, “aflak: Pluggable visual programming en-
vironment with quick feedback loop tuned for multi-spectral astrophysical
observations,” Proceedings of IEEE VIS (November 2018), vol. 3, 2019.

[Bor18] K. Borne, “Massive data exploration in astronomy: What does cognitive have
to do with it?” Oral presentation at Astronomical Data Analysis Software
and Systems XXVIII. http://adass2018.umd.edu/abstracts/I4-1.pdf, 2018, ac-
cessed: 2018-12-10.

[BTU+19] M. O. Boussejra, S. Takekawa, R. Uchiki, K. Matsubayashi, Y. Takeshima,
M. Uemura, and I. Fujishiro, “aflak: Visual programming environment
with quick feedback loop, tuned for multi-spectral astrophysical observa-
tions,” in Proceedings of Astronomical Data Analysis Software and Systems
XXVIII, 2019, TBP.

[BUT+19] M. O. Boussejra, R. Uchiki, Y. Takeshima, K. Matsubayashi, S. Takekawa,
M. Uemura, and I. Fujishiro, “aflak: Visual programming environment en-
abling end-to-end provenance management for the analysis of astronomical
datasets,” Visual Informatics, vol. 3, no. 1, pp. 1–8, 2019.

[BWZ15] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspective.
Addison-Wesley Professional, 2015.

[Cam] L. Campagnola, “PyQtGraph,” http://www.pyqtgraph.org/, accessed: 2018-
06-03.

[Cam95] G. Cameron, “Special focus: Modular Visualization Environments (MVEs),”
ACM Computer Graphics, vol. 29, no. 2, pp. 3–60, 1995.

[CO07] B. Carroll and D. Ostlie, An Introduction to Modern Astrophysics, ser. Pearson
International Edition. Pearson Addison-Wesley, 2007.

[DLPWG01] M. De La Pena, R. White, and P. Greenfield, “The PyRAF graphics system,” in
Astronomical Data Analysis Software and Systems X, vol. 238, 2001, p. 59.

[DTB15] P. Dowler, D. Tody, and F. Bonnarel, “IVOA Simple Image Access Version
2.0,” http://www.ivoa.net/documents/SIA/20151223/REC-SIA-2.0-20151223.
pdf, 2015, accessed: 2018-12-09.

[FS08] K. Franke and S. N. Srihari, “Computational forensics: An overview,” in Com-
putational Forensics: Second International Workshop, IWCF 2008. Washington,
DC, USA, August 2008. Proceedings, S. N. Srihari and K. Franke, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–10.

[FSN+18] I. Fujishiro, N. Sawada, M. Nakayama, H.-Y. Wu, K. Watanabe, S. Takahashi,
andM. Uemura, “TimeTubes: Visual exploration of observed blazar datasets,”
Journal of Physics: Conference Series, vol. 1036, no. 1, p. 012011, 2018.

http://adass2018.umd.edu/abstracts/I4-1.pdf
http://www.pyqtgraph.org/
http://www.ivoa.net/documents/SIA/20151223/REC-SIA-2.0-20151223.pdf
http://www.ivoa.net/documents/SIA/20151223/REC-SIA-2.0-20151223.pdf

References 78

[Gre03] E. W. Greisen, “AIPS, the VLA, and the VLBA,” in Information Handling in
Astronomy-Historical Vistas. Springer, 2003, pp. 109–125.

[Gro] F. W. Group, “Definition of the Flexible Image Transport System
(FITS),” https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf, ac-
cessed: 2018-12-09.

[GRS+18] A. Galkin, K. Riebe, O. Streicher, F. Bonnarel, M. Louys, M. Sanguillon,
M. Servillat, and M. Nullmeier, “Provenance for astrophysical data,” in Inter-
national Provenance and Annotation Workshop. Springer, 2018, pp. 252–256.

[Gru09] T. Gruber, “Ontology,” in Encyclopedia of database systems. Springer, 2009,
pp. 1963–1965.

[HFB11] A. H. Hassan, C. J. Fluke, and D. G. Barnes, “Interactive visualization of the
largest radioastronomy cubes,” New Astronomy, vol. 16, no. 2, pp. 100–109,
2011.

[Int] International Virtual Observatory Alliance, “What is the VO?” http://ivoa.
net/about/what-is-vo.html, accessed: 2019-08-12.

[ivo] “International Virtual Observatory Alliance,” http://www.ivoa.net/, ac-
cessed: 2018-12-08.

[JM03] W. Joye and E. Mandel, “New features of SAOImage DS9,” in Astronomical
data analysis software and systems XII, vol. 295, 2003, p. 489.

[JMM+05] C. Johnson, R. Moorhead, T. Munzner, H. Pfister, P. Rheingans, and T. S. Yoo,
“NIH/NSF visualization research challenges report.” Institute of Electrical
and Electronics Engineers, 2005.

[JPH+99] C. Johnson, S. G. Parker, C. Hansen, G. L. Kindlmann, and Y. Livnat, “In-
teractive simulation and visualization,” Computer, vol. 32, no. 12, pp. 59–65,
1999.

[Ken13] B. R. Kent, “Visualizing astronomical data with Blender,” Publications of the
Astronomical Society of the Pacific, vol. 125, no. 928, p. 731, 2013.

[LMS05] P. Leach, M. Mealling, and R. Salz, “A universally unique identifier (UUID)
urn namespace,” Tech. Rep., 2005, https://www.rfc-editor.org/rfc/pdfrfc/
rfc4122.txt.pdf.

[LTD+17] M. Louys, D. Tody, P. Dowler, D. Durand, L. Michel, F. Bonnarel, A. Micol
et al., “Observation Data Model Core Components and its Implementation
in the Table Access Protocol Version 1.1,” http://www.ivoa.net/documents/
ObsCore/20170509/REC-ObsCore-v1.1-20170509.pdf, 2017, accessed: 2018-
12-08.

[MAA+16] D. Muna, M. Alexander, A. Allen, R. Ashley, D. Asmus, R. Azzollini, M. Ban-
nister, R. Beaton, A. Benson, G. B. Berriman et al., “The Astropy problem,”
arXiv preprint arXiv:1610.03159, 2016.

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
 http://ivoa.net/about/what-is-vo.html
 http://ivoa.net/about/what-is-vo.html
http://www.ivoa.net/
https://www.rfc-editor.org/rfc/pdfrfc/rfc4122.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc4122.txt.pdf
http://www.ivoa.net/documents/ObsCore/20170509/REC-ObsCore-v1.1-20170509.pdf
http://www.ivoa.net/documents/ObsCore/20170509/REC-ObsCore-v1.1-20170509.pdf

References 79

[mev] “MeVisLab: Medical image processing and visualization,” http://www.
mevislab.de/, accessed: 2018-12-10.

[Mor94] J. P.Morrison, “Flow-based programming,” in Proc. 1st InternationalWorkshop
on Software Engineering for Parallel and Distributed Systems, 1994, pp. 25–29.

[MSRMH09] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs, “Voreen:
A rapid-prototyping environment for ray-casting-based volume visualiza-
tions,” IEEE Computer Graphics and Applications, vol. 29, no. 6, pp. 6–13, 2009.

[Mun17] D. Muna, “Introducing Nightlight: A new, modern FITS viewer,” in Astro-
nomical Data Analysis Software and Systems XXV, ser. Astronomical Society
of the Pacific Conference Series, N. P. F. Lorente, K. Shortridge, and R.Wayth,
Eds., vol. 512, Dec. 2017, p. 621.

[MWS+07] J. P. McMullin, B. Waters, D. Schiebel, W. Young, and K. Golap, “CASA archi-
tecture and applications,” in Astronomical data analysis software and systems
XVI, vol. 376, 2007, pp. 127–130.

[MYG+11] K. Matsubayashi, M. Yagi, T. Goto, A. Akita, H. Sugai, A. Kawai, A. Shimono,
and T. Hattori, “Spatially resolved spectroscopic observations of a possible
E+A progenitor: SDSS J160241.00+521426.9,” The Astrophysical Journal, vol.
729, no. 1, p. 29, 2011.

[OLD+08] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. A. Nieto-Santisteban,
M. Ohishi, W. O’Mullane, P. Osuna et al., “IVOA Astronomical Data
Query Language Version 2.0,” http://www.ivoa.net/documents/REC/ADQL/
ADQL-20081030.pdf, 2008, accessed: 2019-02-09.

[OR+13] F. Ochsenbein, W. Roy et al., “VOTable Format Definition Version 1.3,”
http://www.ivoa.net/documents/VOTable/20130920/REC-VOTable-1.
3-20130920.pdf, 2013, accessed: 2018-12-09.

[OSSK13] T. Okuda, S. Shiotani, N. Sakamoto, and T. Kobayashi, “Background and cur-
rent status of postmortem imaging in Japan: Short history of ‘Autopsy imag-
ing (Ai)’,” Forensic Science International, vol. 225, no. 1–3, pp. 3–8, 2013, post-
mortem Imaging.

[OTI+17] T. Oka, S. Tsujimoto, Y. Iwata, M. Nomura, and S. Takekawa, “Millimetre-
wave emission from an intermediate-mass black hole candidate in the Milky
Way,” Nature Astronomy, vol. 1, no. 10, p. 709, 2017.

[Ott12] T. Ott, “QFitsView: FITS file viewer,” Astrophysics Source Code Library, Octo-
ber 2012.

[PDKB+08] C. Pradal, S. Dufour-Kowalski, F. Boudon, C. Fournier, and C. Godin, “Ope-
nAlea: A visual programming and component-based software platform for
plant modelling,” Functional Plant Biology, vol. 35, no. 10, pp. 751–760, 2008.

[Per10] A. Persson, “Postmortem visualization: The real gold standard,” in Beauti-
ful Visualization: Looking at Data through the Eyes of Experts, J. Steele and
N. Iliinsky, Eds. ”O’Reilly Media, Inc.”, 2010, pp. 311–328.

http://www.mevislab.de/
http://www.mevislab.de/
http://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf
http://www.ivoa.net/documents/REC/ADQL/ADQL-20081030.pdf
http://www.ivoa.net/documents/VOTable/20130920/REC-VOTable-1.3-20130920.pdf
http://www.ivoa.net/documents/VOTable/20130920/REC-VOTable-1.3-20130920.pdf

References 80

[PJ95] S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming envi-
ronment for computational steering,” in Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing. ACM, 1995, p. 52.

[PQF+14] S. Perkins, J. Questiaux, S. Finniss, R. Tyler, S. Blyth, and M. M. Kuttel, “Scal-
able desktop visualisation of very large radio astronomy data cubes,” New
Astronomy, vol. 30, pp. 1–7, 2014.

[pyv] “PyVO,” https://pyvo.readthedocs.io/en/latest/, accessed: 2018-12-09.

[RB18] O. Rübel and B. P. Bowen, “BASTet: Shareable and reproducible analysis and
visualization of mass spectrometry imaging data via OpenMSI,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 1025–1035,
2018.

[RTG+13] T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Ald-
croft, M. Davis, A. Ginsburg, A. M. Price-Whelan, W. E. Kerzendorf et al.,
“Astropy: A community Python package for astronomy,” Astronomy & As-
trophysics, vol. 558, p. A33, 2013.

[rus] “The Rust Programming Language,” http://www.rust-lang.org, accessed:
2018-09-10.

[RvDV17] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and im-
pact of breaking changes in the Maven repository,” Journal of Systems and
Software, vol. 129, pp. 140–158, 2017.

[RWD90] G. X. Ritter, J. N. Wilson, and J. L. Davidson, “Image algebra: An overview,”
Computer Vision, Graphics, and Image Processing, vol. 49, no. 3, pp. 297–331,
1990.

[S+11] E. Smith et al., Introduction to the HST Data Handbooks, Version 8.0. Balti-
more: STScI, 2011, available online at http://www.stsci.edu/itt/review/dhb_
2011/Intro/intro_cover.html on 2019/07/10.

[SRB+18] M. Servillat, K. Riebe, F. Bonnarel, A. Galkin, M. Louys, M. Nullmeier,
M. Sanguillon, O. Streicher et al., “IVOA Provenance Data Model Ver-
sion 1.0,” http://www.ivoa.net/documents/ProvenanceDM/20181015/
PR-ProvenanceDM-1.0-20181015.pdf, 2018, accessed: 2018-12-08.

[SRB+19] M. Servillat, K. Riebe, C. Boisson, F. Bonnarel, A. Galkin, M. Louys,
M. Nullmeier, N. Renault-Tinacci, M. Sanguillon, and O. Streicher,
“IVOA Provenance Data Model Version 1.0. IVOA Proposed Recom-
mendation 2019-07-19,” http://www.ivoa.net/documents/ProvenanceDM/
20190719/ProvenanceDM-1.0-20190719.pdf, 2019, accessed: 2019-07-31.

[SSO02] M. F. Sanner, D. Stoffler, and A. J. Olson, “ViPEr, a visual programming en-
vironment for Python,” in Proceedings of the 10th International Python confer-
ence, 2002, pp. 103–115.

https://pyvo.readthedocs.io/en/latest/
http://www.rust-lang.org
http://www.stsci.edu/itt/review/dhb_2011/Intro/intro_cover.html
http://www.stsci.edu/itt/review/dhb_2011/Intro/intro_cover.html
http://www.ivoa.net/documents/ProvenanceDM/20181015/PR-ProvenanceDM-1.0-20181015.pdf
http://www.ivoa.net/documents/ProvenanceDM/20181015/PR-ProvenanceDM-1.0-20181015.pdf
http://www.ivoa.net/documents/ProvenanceDM/20190719/ProvenanceDM-1.0-20190719.pdf
http://www.ivoa.net/documents/ProvenanceDM/20190719/ProvenanceDM-1.0-20190719.pdf

References 81

[SZP15] I. Suriarachchi, Q. Zhou, and B. Plale, “Komadu: A capture and visualization
system for scientific data provenance,” Journal of Open Research Software,
vol. 3, no. 1, 2015.

[Tod86] D. Tody, “The IRAF data reduction and analysis system,” in Instrumentation
in astronomy VI, vol. 627. International Society for Optics and Photonics,
1986, pp. 733–749.

[TOI+17] S. Takekawa, T. Oka, Y. Iwata, S. Tokuyama, and M. Nomura, “Discovery of
two small high-velocity compact clouds in the central 10 pc of our galaxy,”
The Astrophysical Journal Letters, vol. 843, no. 1, p. L11, 2017.

[UBS+12] M. Urschler, A. Bornik, E. Scheurer, K. Yen, H. Bischof, and D. Schmalstieg,
“Forensic-case analysis: From 3D imaging to interactive visualization,” IEEE
Computer Graphics and Applications, vol. 32, no. 4, pp. 79–87, Jul–Aug 2012.

[WDA+16] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton,
A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al.,
“The fair guiding principles for scientific data management and stewardship,”
Scientific data, vol. 3, 2016.

[WG79] D. C. Wells and E. W. Greisen, “FITS: A Flexible Image Transport System,” in
Image Processing in Astronomy, 1979, p. 445.

	Table of contents
	List of figures
	List of tables
	List of listings
	1 Introduction: How Do Astronomers Analyze Datasets?
	1.1 A collaborative endeavor
	1.2 Data used by astronomers
	1.3 Data retrieval and analysis for the astronomer
	1.4 An aside about forensics
	1.5 aflak's introduction

	2 Related Works
	2.1 Viewers and analyzers for astronomical use
	2.1.1 Viewing astronomical datasets
	2.1.2 Inspiration from non-astronomy viewers
	2.1.3 Tools for data analytics
	2.1.4 Moving to Python

	2.2 Visual programming language paradigm
	2.3 A visual programming approach for viewing and analyzing astronomical datasets
	2.4 Visualization and provenance in forensic science

	3 aflak: Advanced Framework for Learning Astronomical Knowledge
	3.1 Background and motivation
	3.2 Design goals
	3.2.1 Ease of use and responsiveness
	3.2.2 Re-usability and extendability
	3.2.3 Collaborative development

	3.3 System overview
	3.3.1 Description
	3.3.2 Detailed description of components
	3.3.3 Value nodes, type checking and error handling

	4 Implementation Details
	4.1 Description of algorithms and implementation
	4.1.1 Language and library choices
	4.1.2 Multi-crate structure
	4.1.3 cake: Computation mAKE
	4.1.4 MetaTransform data structure
	4.1.5 Computing output with cache

	4.2 Macro support for cake
	4.2.1 Design decisions
	4.2.2 Data structures for macro support
	4.2.3 Some changes in computation logic
	4.2.4 Macro user interface

	4.3 SIA integration for provenance management
	4.3.1 Overview of the SIA specification
	4.3.2 Integration with SIA
	4.3.3 Provenance management with aflak

	4.4 User interface: An event-based architecture
	4.5 Implementing astronomical libraries in Rust
	4.5.1 FITS libraries
	4.5.2 Convenience in opening FITS files
	4.5.3 Virtual Observatory standards

	4.6 Defining your own nodes with Rust
	4.7 DevOps
	4.7.1 Portability: Challenges in supporting Linux (Debian and Ubuntu), macOS and Windows
	4.7.2 Development workflow
	4.7.3 Release mechanism

	5 Evaluation
	5.1 Checking compliance to standards
	5.2 First use case: Equivalent width
	5.2.1 Introduction to human-in-the-loop concept
	5.2.2 Use case

	5.3 Second use case: Velocity field map
	5.4 Comparison with current tools
	5.4.1 In-depth comparison
	5.4.2 Equivalent width with a macro

	5.5 Advantages of provenance management in a visual context not limited to astronomy
	5.6 Distribution and recognition

	6 Future Works
	6.1 Stronger interoperability with VO standards
	6.2 Application to other astronomical problems
	6.2.1 Arbitrary non-linear slicing
	6.2.2 Interferometry

	6.3 More room for improvement

	7 Conclusion
	References

