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Abstract

Over the last two decades, online user-generated content has been exponentially increasing.

With its increase, a proportionally increasing interest has been attributed to this data from the

research community. While several works have been targeting different types of user-generated

media such as photos, videos and audio content, text has always attracted most of the attention for

several reasons. To begin with, due to the unique properties of natural languages, the analysis of

such data presents several challenges. Nevertheless, hitherto, average internet users still use text

more than any other type of media to interact with one another.

The studies performed on online generated text cover a wide range of types of analysis. These

include but are not restricted to the analysis of motivations of users to share information, the eval-

uation of interests in events, the identification of prominent users, etc. Sentiment analysis, in

particular, presents nowadays a hot topic of research. Sentiment analysis, also known as opinion

mining, refers to the automatic identification and aggregation of opinions of people towards spe-

cific topics by analyzing their online written texts and publications. Sentiment analysis has several

applications, ranging from product analytics to market analysis and public opinion orientation

towards events such as elections, etc. Nevertheless, it is a field that is yet to be explored, with

several of its challenges are yet to be dealt with. Instances of these include fine-grained sentiment

analysis, evolution of sentiments over time, aspect-based sentiment analysis, etc.

On a related context, over the last decade or so, the focus of sentiment analysis has shifted

from review websites, such as movie reviews websites, or online shops such as amazon etc., to-

wards social media and microblogging websites. This is because these (i.e., social media and

microblogging websites) have become the top attraction of online users, and the most visited and

consulted platforms on the internet today. Twitter, in particular, has attracted a lot of attention, due

to the ease of access to its data and the nature of the relationships between its users. That being

the case, in our work, our experiments will be mostly conducted on data collected from Twitter.

This dissertation explores several of the challenges of sentiment analysis on social media,

notably fine-grained sentiment analysis and sarcasm detection.

ix



Chapter 1 introduces the concept of sentiment analysis on social media, its applications and

challenges. We present several of the existing work which dealt with this task. We focus mainly on

works on Twitter. However, relevant works which were performed on other social media or online

websites will be presented as well. This chapter also summarized the scope and contribution of

this dissertation.

Chapter 2 tackles a common challenge that has always been difficult to perform, yet very

important to enhance the performance of sentiment analysis systems, i.e. the identification of

sarcasm on social media. We use machine learning and the concept of patterns to identify sarcastic

statements on Twitter. We run our experiments on a data set of texts posted on Twitter (i.e., tweets)

and compare the performance of our proposed method to that of some conventional works. We

also show how the identification of such statements can enhance the performance of sentiment

analysis.

Chapter 3 focuses on a different task: multi-class sentiment analysis. As yet, most of the

core of research on this field has been interested in the binary and ternary classification of texts.

These refer to the classification of texts into positive and negative, and into positive, negative

and neutral, respectively. Instead of limiting ourselves to such a coarse-grained classification, we

go into a further level of granularity and classify texts into multiple sentiments. We re-use the

concept introduced in the previous chapter, i.e., patterns, to perform this task. Alongside, we

introduce SENTA (SENTiment Analyzer); a tool we have built that allows to extract, out of a wide

variety of features, ones that can be used for applications such as sentiment analysis or sarcasm

detection, through an easy-to-use graphical user interface.

Chapter 4 discusses in more details the results obtained in the previous one, explains the lim-

itations of the task of multi-class classification which make it inherently difficult, and in some

extreme cases impossible and describes the relation between sentiments and how correlated ones

can be with some others. This chapter also offers possible solutions to overcome the limitations

of multi-class sentiment analysis.

Chapter 5 presents a substitution to multi-class classification, which we refer to as Sentiment

Quantification. Sentiment quantification refers to the identification of multiple sentiments ex-

pressed in a text, and attributing different scores to them to reflect their importance and weight

within that text. In our proposed approach we use patterns and special type of unigrams to at-

tribute scores to different sentiments to rank them and identify which ones are present in a given

text, and which are not.

Finally, Chapter 6 concludes this dissertation highlighting its key points and the contribution

made within, and proposes possible venues for future research of the topic of sentiment analysis.

x
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This dissertation is concerned with two main topics. The first one is to tackle several challenges

related to sentiment analysis in social media. The second one is how to make use of advanced

techniques of sentiment analysis on several applications.

1.1 Background

Over the last few years, online social media have become a huge part of people’s daily life, a

phenomenon which has not been observed prior to our era thanks to the advances in the field of

communications. This made the social networks of a typical person a combination of both his

real-life social network, and his online one(s). These two have been strongly forged together to a

point where people bring events happening with them online, discuss their daily life-related topics

both online and offline. That being the case, the online User-Generated Contend (UGC) has been

exponentially increasing, mainly on social media and blogging/microblogging platforms. With ev-

ery tweet, every Facebook post, people tend to relate what happens to them, whether that regards

their private life, or more interestingly regards a product, an idea, a person, a concept or a service

they encounter. This UGC, despite being noisy, unregulated and full of redundancy, untrustwor-

thiness and subjective and unreliable data, has attracted the attention of researchers for several

reasons. As a matter of fact, researchers believe that UGC has tremendously changed the relation-

ship between companies and customers. Several studies have shown that it has been shifting the

power from firms to customers, altering the way marketing works [1]. Furthermore, it is believed

that the trust one gives to his fellow users is far greater than that given to companies and firms

[2]. This means that companies need indeed to pay more attention to what their customers share

amongst themselves. Other than the content of posts and microblogs, etc., researchers have been

also interested in the nature of interactions between the users which are unique to the cyberspace.

Interacting from behind a screen is undoubtably different from face-to-face interactions, for good

or for bad [3–6]. Nevertheless, researchers have been interested as well on online (potentially

hidden) communities [7], mutual influence of users [8–10], public opinion changes, [11] or even

the “creation” of online celebrities [12], etc.

Sentiment analysis, in particular, has been an interesting instance of a study that has been

performed heavily on this content. To begin with, despite the existence of websites dedicated

to reviews, or special sections on online shops dedicated to user reviews, the ratio of reviewers

to users is way too low. Companies are looking for alternatives to collect opinions and reviews.

Social media, for instance, present a good alternative if such reviews can be collected from them.

In addition, people on social media tend to communicate their opinion in a less biased manner.

On online shops review sections, users usually tend to write down their first impressions or report

problems after a while. It is seldom the case that a reviewer writes down his good experience

after using the product for a while. On social media, on the other hand, one can be asked by a

friend an advice about the product he is using, and he would casually give his unbiased impression.

Nevertheless, social media analysis goes beyond product analytics and customer service to cover

user behaviour and human patterns identification.

That being said, social networks sentiment analysis could present a threat to one’s life given

that his private information are exposed, willingly or unwillingly. Such information are accessible
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by influential entities, organizations for example, that are capable of exploiting them to manipu-

late public opinion. Facebook, for instance, was experimenting with the idea of using sentiment

analysis to see if they could manipulate people’s emotions. To do so, they altered their algorithms

to inject sentimental posts (i.e., clearly negative or positive ones) more frequently into users’ news

feeds 1. To reach their goal, they have used a process referred to as “emotional contagion” [13].

Their experiments have shown that it is indeed possible to influence their users’ emotional out-

put by flooding their news feeds with positive or negative posts. Even worse scenarios are those

where users are not even aware of such murky behaviours. In the piece of news mentioned above,

Facebook has never informed its users that they were part of an experiment and may have caused

emotional distress to them in some cases [14].

In the next sections of this chapter, we will formally introduce sentiment analysis and present

some of the relevant work related to this topic of research.

1.2 Sentiment Analysis Fundamentals

1.2.1 Definition and Applications

Definition

With the tremendous amount of content generated at a daily bases, not only by content creators,

but also by average internet users, sentiment analysis has become a key tool for making sense of

such amount of data. Sentiment analysis, is defined as the science of automatically identifying

and extracting opinions from a large amount of data. In a typical scenario, a big amount of data

regarding a specific subject, be it a product, a service, an event or other, is collected; and the target

is to identify some overall statistics of how these data describe the subject. It is fair to affirm

that sentiment analysis converts texts, which are rather descriptive or qualitative into numbers and

statistics, thus bring a quantitative dimension allowing to measure more objectively opinions of

people. In other words, out of an unstructured, subjective and unclean data, it is possible to extract

very useful structured information. For instance, given a product, and a set of reviews, the goal

would be to identify the proportion of reviews reflecting a positive opinion and the proportion of

ones reflecting a negative opinion.

Despite being the key point of sentiment analysis, opinion is not the only feature extracted

using sentiment analysis. Several additional information could be extracted using sentiment anal-

ysis. They include, but are not restricted to, the specific subject of opinion extracted (e.g., if the

review includes information about several aspects of the product), the person or the group of peo-

ple who hold the opinion, the degree of belief in the opinion shown and the evolution over time of

this opinion.

1https://www.theguardian.com/technology/2014/jun/29/facebook-users-emotions-news-feeds
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Applications

Sentiment analysis has a great impact that can be observed on several levels. For example, it

has changed drastically the way companies collect and analyze feedbacks from users as we men-

tioned in the previous section. However, the applications of sentiment analysis are not restricted to

company-consumer interactions. Following a set of examples of sentiment analysis applications:

• Product analytics: This is probably amongst the top applications of sentiment analysis.

Upon receiving feedbacks from users, or collecting data from social media regarding their

products, these are analyzed to keep track of what people like and dislike about the products,

and how to appeal to them [15].

• Customer support: This falls in the same category as the previous one. In order to provide

a good customer support service, feedbacks and comments can be prioritized based on how

critically negative they are, so that very negative ones are processed more urgently by the

customer support team [16].

• Market analysis: Performing sentiment analysis across different markets help a firm iden-

tify which market has been the most successful for them so that they can target it more. It

also helps know which demographics to target and how do their product perform compared

to competitors. Nonetheless, when data collected from reviews and feedbacks are scarce,

social media offer a decent alternative to obtain the same data to analyze [17].

• Brand monitoring: Classically, companies ask users of their products about their opinion

either directly or through surveys and questionnaires, which they analyze in a second stage

to estimate how successful their brand is. This, nowadays, seems to be less used by com-

panies with the spread of internet and the growth of online shopping from popular websites

such as amazon or eBay. In these websites users are encouraged to give feedbacks , by sim-

ply logging to their accounts and filling in some simple forms, and share their experience

with the products they have purchased [18, 19].

• Mass event intention/opinion identification: Unlike targeted surveys and questionnaires

which is usually limited in geography or time, data collected from social media have no

such restrictions. While questionnaires are usually well-prepared and have a clear goal, data

collected from social media are very noisy and unstructured. However, it is possible, thanks

to sentiment analysis, to extract the same information required, from a demography that is

totally random, yet representative of the overall population targeted. Several works in the

past have been proposed to predict election results, stock prices behaviour and more recently

crypto-currency prices one. That being said, these are not necessarily accurate [20–22].

That being said, sentiment analysis has other applications which, as we mentioned in the

previous section could be malicious or privacy invasive. However, such applications are out of the

scope of this dissertation and will not be discussed here.
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1.2.2 Techniques and Methods

Techniques of sentiment analysis in the literature are numerous. However, they can be grouped

into two main categories: supervised techniques and unsupervised ones. A third category can

be added, which combines both. Historically speaking, unsupervised techniques of sentiment

analysis preceded supervised ones.

Unsupervised approaches: These are also referred to as rule-based approaches. They make use

of the classic Natural Language Processing (NLP) techniques, to process a given text, then refer

to a dictionary or a set of dictionaries, referred to as lexicons, to identify the polarity of the text.

A typical example of such approaches is as follows:

1. Create two lists of words qualified as positive and negative,

2. Count in a given text the number of words of each list that occur in the text,

3. Subtract the number of occurring negative words from that of positive words,

4. If the result is positive, the overall text is judged positive, otherwise, it is judged as negative.

Such approach is obviously very naive; however, it introduces the basics of how unsupervised

approaches for sentiment analysis work. In Chapter 3, we discuss more sophisticated unsupervised

approaches for sentiment analysis.

Supervised approaches: Classically, supervised approaches of sentiment analysis do not rely

on a set of rules like unsupervised approaches. They make use of machine learning techniques to

identify the polarity of a text. The opinion identification is modeled as a classification problem

whose goal is to attribute one of two classes to the text: positive or negative. Obviously, supervised

approaches need a set of manually labeled data to learn how to distinguish between the different

classes. The procedure of prediction of the class of a set of unknown data is shown in Fig. 1.1.

Features are extracted from the training data and associated to their corresponding label. The

machine learning algorithm learns automatically how to build its own rules to identify the labels

using the given features. In the prediction phase, the features are extracted from a given instance

of unknown data, and will go through the rules already established by the model built to predict

the label of the given class.

It is fair to affirm that, despite qualified as rule-free, machine learning requires a set of rules to

tell it how to extract features.

Machine learning-based approaches for sentiment analysis have attracted most of the attention

of researchers since introduced by Pang et al. [23]. Their approach relied on words collected

from the training set itself to build the rules of how to identify positive texts from negative ones.

The attention given to supervised machine learning-based techniques came from the fact that these

techniques are, overall, better and present better performance than unsupervised ones. However,

as stated above, these techniques require a big amount of data manually labeled, an obstacle that

might not be easily overcome.
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Training data

Extract features

Train the model

Run the classification

Extract features

Unknown dataLabels

Features       +        label Features

Label

(a) Training phase (b) Prediction phase

Figure 1.1: Classification Using Machine Learning

Hybrid approaches: These are approaches that combine both worlds to make use of the advan-

tages of both. The combination of the two types of approaches can be done at different levels. For

instance, given a small amount of labelled data, an unsupervised approach can be run to enrich

these data to be able to run the classification using machine learning. These are sometimes referred

to as semi-supervised approaches.

Another type of combination could be a voting approach that combines several approaches,

supervised and unsupervised ones, to judge on the sentiment polarity of a given text.

1.3 History, Current State and Future Challenges

1.3.1 History of Sentiment Analysis

Academic research on sentiment analysis has started decades ago. However, with the spread of

use of internet, the accumulation of user generated data, and more interestingly the advances in

software and hardware technologies, it has become possible to process data and perform sentiment

analysis on large scales. This has led to an exponential growth of deployment of sentiment analysis

tools, pushing further the research in this field.

Historically, the first attempts to identify people’s opinion dated back in the Greek times [24,

25]. However, these were scientifically robust studies. The first scientific journal on public opinion

was released in 1937 [26]; however, works on public opinion through questionnaires and surveys

preceded that [24]. These works were mostly made for political purposes [27]. Works on sentiment
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Figure 1.2: Use of Hashtags in Tweets

analysis and opinion mining have since increased in number. However, the spread of internet in

the last decade of the 20th century and the first decades of the new millennia made this topic of

research more interesting and more attractive to the research community. According to Mäntylä et

al. [24] 99% of the publication made in this field were published after 2004.

With this tremendous amount of work on the field, sentiment analysis has been divided into

further narrower fields depending on its application such as customer support using sentiment

analysis [15], stock price prediction using sentiment analysis [28], etc.

Techniques wise, the work of Pang. et al. [23] presents one of the most important milestones,

introducing the usage of machine learning to perform sentiment analysis. Another important mile-

stone is the appearance and spread of online social networks and microblogging websites. Face-

book and more interestingly Twitter have allowed researchers to collect a tremendous amount of

data that can be used to perform sentiment analysis. The introduction and spread of Hashtags by

Chris Messina 2 made the task of sentiment analysis even easier. Hashtags are presonalized words

or phrases preceded by the hash symbol “#” used in social media to identify messages of a certain

topic (Fig. 1.2). Thanks to hashtags, companies can easily collect texts and messages posted on

social media discussing their product for example to perform sentiment analysis on them.

The new breakthroughs in the field of deep learning, mainly the works of Lucen et al. [29]

Hinton et al. [30] and Krizhevsky et al. [31], have marked another milestone in the field of

sentiment analysis. Thanks to these works, it has become possible to train big neural network with

large amounts of data in a reasonable amount of time while making sure the training converges.

Despite being initially focused on computer vision and image classification, deep learning has

attracted researchers from different field thanks to its potential and impressive results compared

with conventional machine learning techniques. These fields include, among others, the field of

sentiment analysis.

2https://www.hashtags.org/featured/hashtag-history-when-and-what-started-it/
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1.3.2 Current State

Sentiment analysis is currently one of the hottest topics of research. The state-of-the-art ap-

proaches have reached impressive results on data collected from several sources on the internet

varying from movie reviews [32, 33] and amazon reviews [34, 35] to tweets and posts collected

from social media [36, 37]. Following, we introduce the most common tasks of sentiment analysis,

along with some relevant works which dealt with each of them:

• Polarity detection: as its name indicates, this is the basic task of sentiment analysis aiming

to detect the sentiment polarity of a given text.

• Subjectivity detection: this refers to the detection of the level of subjectivity of a given

opinion expressed in a text. Excessive use of personal pronoun and opinion words (e.g., “I

think”) or exaggerative adverbs (e.g. “amazingly”) are good indicators to detect such aspect.

• Cross-lingual sentiment analysis: this covers several aspects of sentiment analysis such as

the use of multi-lingual dictionaries and the use of translation to improve the detection of

sentiment polarity.

• Opinion spam detection: a certain behavior has been observed over the last decades from

some companies which spread “fake” and biased reviews of their own to give an impression

of having a good product. Identifying such spammy reviews has increasingly been attracting

the attention of research community.

• Measurement of review usefulness: the objective of this branch of sentiment analysis is

to evaluate which reviews shared are indeed useful and could help both consumers and

companies understand the real value of a product or a service.

• Applications of sentiment analysis: several works have been proposed to apply sentiment

analysis on very specific cases such as trying to predict the results of some elections, or

highlight the impact of some event, etc. Applications of sentiment analysis vary very widely

and new applications are being created every day, on the research level as well as in the

industrial level.

These have been the most common tasks of sentiment analysis, but they are not the only ones.

Other tasks include the identification of vagueness in opinionated texts, hate speech detection, etc.

Table 1.1 illustrates some of the relevant works on the tasks described above.

1.3.3 Challenges

In this subsection, we list several of the most challenging aspects of sentiment analysis. These

include, but are not restricted to the following challenges:

• Time and space-dependent sentiment analysis,

• Identification and profiling of opinion holders,

• Identification of the aspects of the sentiment analysis,



1.3. HISTORY, CURRENT STATE AND FUTURE CHALLENGES 9

Table 1.1: Relevant Work Related to the Defined Sentiment Analysis Tasks

Task Related work

Polarity detection
Wilson et al. [38], Ortigosa et al. [39], Popescu and
Strapparava [40], Kanayama et al. [41]

Subjectivity detection
Wang et al. [42], Banea et al. [43], Bravo Marquez
et al. [44], Molina-González et al. [45]

Cross-lingual sentiment analysis
Hiroshi et al. [46], Wang et al. [47], Martı́n-Valdivia
et al. [48]

Opinion spamming detection
Heydari et al. [49], Ott et al. [50, 51], Banerjee
and Alton [52]

Measurement of review usefulness
Liu et al. [53], Krishnamoorthy [54],
Purnawirawan et al. [55]

Applications of sentiment analysis
Nobata et al. [56], Sriram et al. [57], Cabanlit
et al. [58], Hodeghatta et al. [59]

• Identification of sarcastic statements, and

• Fined-grained sentiment analysis.

In the remainder of this subsection, we describe in more details each of these challenges.

Time and space-dependent sentiment analysis

Amongst the most challenging tasks of sentiment analysis is to structure the data so that we obtain

an overview of the geographical distribution of people’s opinions. An even more challenging

task is to keep track of the changes over the time of these opinion. This is in particular more

challenging when performed on data collected from social media where unstructured, unreliable

and untrustworthy data are posted from all over the world.

In a very recent event, Samsung has revealed their newest foldable phone which was believed

to be the pioneer device of the next generation of mobile devices. This device was received with

a huge hype and enthusiasm. However, with the problems that had occurred to multiple review

units, the phone has had a very offensive criticism3. Despite this overall observation, such a big

company would be very interested in studying both the hype phase and the criticism phase deeply,

extracting information related to the geographic distribution of both. Such task is very difficult to

perform on the cyberspace of internet, while avoiding the invasion of user’s private life.

That being said, location and time-based sentiment analysis has been addressed by researchers

in some recent works such as the work of Almatrafi et al. [60] which discussed the inequitable

distribution of sentiment polarities over different regions of India and that of Paul et al. [61] which

investigated trends based on geographical and temporal basis.

Identification and profiling of opinion holders

The term “opinion holder” refers to the person or group of people how share the same opinion

expressed in a piece of text. More importantly than the individuals themselves is the profiling of

3https://edition.cnn.com/2019/04/18/tech/samsung-galaxy-fold-breaking-debacle/index.html
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these users. A very interesting task would be the identification of the common characteristics of

people who share a certain opinion. Several works have investigated this task. Some have used

techniques such as conditional random fields [62], some have used convolution kernels [63], some

have used Maximum Entropy models. Nevertheless, with the advances in the field of deep learn-

ing, Katiyar and Cardie [64] investigated the use of deep bidirectional LSTMs for joint extraction

of opinion entities and the IS-FROM and IS-ABOUT relations that connect them, to identify,

among others, opinion holder.

Identification of the aspects of the sentiment analysis

Aspect-based sentiment analysis refers to the identification of the opinion of people towards spe-

cific entities of the subject of study. A typical example is as follows: a phone manufacturer is

interested in understanding the impression of users about a newly released phone. Users, when

reviewing the phone, provide their opinion about several aspects of the phone: the screen, the

camera, the battery, etc. Therefore, it might be interesting to identify these individual opinions

regarding each of these aspect separately. This procedure is referred to as aspect-based sentiment

analysis. Aspect-based sentiment analysis is a very challenging task, especially when performed

on data collected from social media and microblogging websites. This is because, unlike proper

reviews on review websites, data from social media are unstructured and very noisy, and there is

no clear indication of what is being discussed at a given moment.

Aspect-based sentiment analysis has attracted the attention of researchers. Several works were

proposed in the literature to tackle this topic.

Che et al. [65] proposed an approach that compresses complicated sentiment sentences into

ones that are shorter and easier to parse and applied a discriminative conditional random field

model to perform the aspect-based sentiment analysis. Similar works were proposed by Singh et

al. [66]. Deep learning has also been used in this context with works such as that of Nguyen and

Shirai [67] who proposed a neural network architecture they called PhraseRNN (Phrase Recursive

Neural Network) which they used to run aspect-based sentiment analysis.

Identification of sarcastic statements

Sarcasm can be roughly defined as “Conveying contempt by saying the opposite of what is really

meant.” In other words, the real meaning of a sarcastic statement is the opposite of what it appears

to be saying. That being the case, sarcastic statements are a main reason of misclassification when

sentiment analysis is performed. This is because sentiment analysis systems and tools rely on the

apparent meaning to detect the polarity of a given text. Therefore, identifying sarcastic statements

is of a great importance towards improving and polishing sentiment analysis.

Chapter 2 of this dissertation tackles the problem of sarcasm detection, and how it can be used

to improve sentiment analysis.

Fine-grained sentiment analysis

Fine-grained sentiment analysis refers to the process of identifying a higher resolution of sentiment

of a given text. In other words, instead of the binary classification of a text (i.e., guessing whether
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Oh no.. no iPhone support for windows XP x64. There are some 
workarounds, but I can’t figure this out.

Nooooooooooo! My iPhone glass cracked :(

Figure 1.3: Negative Tweets with Different Emotions Expressed

a text is positive or negative), fine-grained sentiment analysis divides these two classes into further

ones. For instance, it is possible to sub-divide the class “positive” into 3 different classes: very

positive, positive, almost positive. The same can be done with the class “negative.” A class in-

between, such as the class “neutral” englobing texts with no apparent sentiment shown can be

added as well.

An even more interesting task would be to identify the emotion of the opinion holder, or even

the emotion a text triggers on the reader. For example, the class “positive” can be divided into

multiple classes such as happiness, love, enthusiasm, etc. The class “negative” can be divided

into multiple classes as well such as anger, satisfaction, sadness, etc. To concretize, given the

two tweets shown in FIg. 1.3, two different sentiments/emotions are shown in them despite being

both negative and discussing the same product of a well-known company. While the first shows

emotions of anger and frustration, the second shows emotions of sadness. That being the case, the

interpretation of these emotions are different as well from the company’s perspective. Therefore,

the identification of these individual sentiments is very important and could help the company

prioritze one over the other.

This task has been tackled in Chapters 3 and 5 where we introduce two approaches, one to

perform fine-grained sentiment classification, and the other to solve the a common issue with such

systems (i.e., systems that perform fine-grained classification).

1.4 Scope and Contributions of the Dissertation

1.4.1 Summary of the Dissertation

This dissertation consists of six chapters. Chapters 2, 3, 4 and 5 present novel techniques to

tackle some of the most challenging open problems in sentiment analysis. These include the

identification of sarcastic statements, the fine-grained sentiment analysis and a newer way to look

at the fine-grained sentiment analysis problem and deal with it. Chapters 2, 3 and 5 contain, each,

a particular problem statement, relevant related work existing in the literature, a description of the

proposed method to handle it and an evaluation to its efficiency. Chapter 4, on the other hand,
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Chapter 1: Introduction

Chapter 2: Sarcasm Detection on Social Media
• Approach to detect sarcasm on Twitter
• Approach to make use of sarcasm detection to

enhance the performances of sentiment analysis

Chapter 3: Multi-Class Sentiment Analysis: 
Diving deeper in the Classification

• A scalable approach to classify tweets into 7
different sentiments

• SENTA: A tool to perform multi-class sentiment
analysis on data collected from Twitter

Chapter 4: Multi-Class Sentiment Analysis: 
Promises and Limitations

• Identifying the limits of multi-class sentiment
analysis

• A newer representation of the sentiment space

Chapter 5: Sentiment Quantification: A Better 
Way to Detect Sentiments

• Approach to identify multiple sentiment existing
in a tweet with their appropriate weights

• An update to SENTA to run the quantification

Chapter 6: Conclusion and Future Work

Figure 1.4: Configuration of this Dissertation

discusses the task of fine-grained sentiment analysis, also know as multi-class sentiment analysis,

describes its inherently challenging problems, and introduces the task of sentiment quantification,

which will be discussed in Chapter 5. The overall outline of this dissertation os summarized in

Fig. 1.4.

1.4.2 Scope of the Dissertation

Sentiment analysis cover a wide range of sub-topics. As a matter of fact, sentiment analysis can

be applied on different types of data. These include structured and unstructured data. While it is

very useful to perform sentiment analysis on structured data, these are scarce on the internet and

hard to collect. Unstructured data on the other hand are way more abundant, and are increasing

in size exponentially with the amount of daily user-generated content. Unstructured data are,

however, hard to analyze and present several challenges as we explained in previous sections.
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Types of data

Structured data Unstructured data

Online review 
websites

Online Social 
Media and 

Microblogging 
websites

Surveys & 
Questionnaires

Books, professional 
reviewers, etc.

Figure 1.5: Type of Data Subject to Sentiment Analysis

This dissertation will focus on this particular type of data, more particularly on data collected

from social media and microblogging websites as shown in Fig. 1.5. The proposed approaches

are, nonetheless, applicable to other types of unstructured data.

In Fig. 1.6, we show some of the main challenges related to the field of sentiment analysis.

These challenges have been discussed in more details previously in Section 1.3.3. They include

fine grained sentiment analysis, time and space-dependent sentiment analysis, profiling of the

opinion holders and handling sarcasm. These are, by no means, the only ones. There are several

others challenges that have been addressed by the research community. However, we highlight

the ones related to our work, and which we deal with in the remainder of this dissertation. Being

one of the toughest challenges, the problem of sarcasm detection is tackled in chapter 2. This

chapter also discusses how it can be used to enhance sentiment analysis. Chapters 3 and 4 tackle

the problem of fine-grained sentiment analysis (multi-class sentiment analysis), whereas chapter

5 introduces a new task we refer to as sentiment quantification, and proposes a way to perform it.

In Fig. 1.7, we show the position of our approach to perform sentiment analysis and identify

sarcastic statements in the literature. A wide variety of types of features and techniques have been

used in several works. These include n-grams, textual and non-textual components of the text,

etc. In our work, we propose a set of out-of-the context pattern features which we use in addition

to other features to train a classifier. It is worth mentioning that identifying sarcastic statements

independently from the time or dialogue context has always been a challenging task.
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Sentiment analysis challenges

Time and space-dependent 
sentiment analysis Profiling of opinion 

Holders [62-64]

Aspect-based sentiment 
analysis [65-67]

Fine-grained 
sentiment analysis

Distribution of opinion over 
regions/countries [60]

Changes of opinion over 
the time [61]

Handling sarcasm

Identification of sarcastic 
statements [77-78]

Enhancing sentiment analysis 
classification accuracy [71]

Multi-Class sentiment 
analysis [120-123]

Sentiment Quantification
Chapter 2

Chapter 2
Chapters 3 - 4

Chapter 5

Figure 1.6: Main Challenges Related to the Field of Sentiment Analysis

Sentiment Analysis and Sarcasm Detection Approaches

Machine Learning (ML)-based 
approaches [118-122]

Deep Learning-based 
approaches

N-gram-based approaches [93,94]

Unsupervised 
approaches [81, 82]

Long-Short Term 
Memory (LSTM) [67]

Convolutional 
Neural Networks 

(CNN)

Sentiment-based 
approaches [93]

Pattern-based approachesContext-based approaches [78]

Context-based patterns [77][123]
Context-independent 

patterns
Chapters 2 - 3 - 5

Chapters 3 - 5

Figure 1.7: Sentiment Analysis and Sarcasm Detection in the Literature
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1.4.3 Contributions of the Dissertation

This dissertations introduces the concept of usage of writing patterns as a way to detect one’s

sentiments and/or sophisticated forms of speech such as sarcasm. Patterns are collected based on

Part-of-Speech (PoS) Tags of words. We defined a metric to measure the resemblance between

different patterns and used this metric to extract several features from a given text, which we use

alongside other features to train a classifier and perform the classification.

The dissertation also introduces a tool we have built and called SENTA (SENTiment Analyzer)

which we used to perform the different tasks.

In Chapter 2, we propose an approach that uses out-of-context patterns, alongside with other

features to perform sarcasm detection. Our approach outperforms clearly the baseline ones. In

addition, in contrast to other works which assume that sarcasm is a polarity switcher, we elaborate

more the idea of use of sarcasm detection to identify the polarity of a given piece of text.

In Chapters 3 and 4, we extend the concept of patterns to another dimension and make use

of such type of features to perform the task of multi-class sentiment analysis. We introduce our

tool SENTA which offers the possibility to extract multiple types of features, including but not

limited to patterns. We also discuss the problems which make multi-class sentiment analysis very

challenging.

These challenges are targeted in Chapter 5 which introduces the concept of sentiment quan-

tification. Sentiment quantification refers to the identification of all existing sentiments in a given

text and attributing a score showing how strong they are. This task is part of the novelty introduced

in this thesis. Nevertheless, SENTA has been further enhanced to perform such task.

In Tables 1.2, 1.3, 1.4 and 1.2, we summarize the objectives of each of the aforementioned

chapters (i.e., chapters from 2 to 5), we give a brief description of the conventional works as well

as the limitations these have, and we show our proposed approaches along with their contribution.



16 CHAPTER 1. INTRODUCTION

Table 1.2: Summary of Chapter 2

Objective • Identify sarcastic statements in Twitter posts (i.e., tweets).
• Use this information (whether a given tweet is sarcastic or not) to enhance

sentiment analysis accuracy.

Conventional
Approaches

1. Davidov et al. [77]:

• Rely on context-based patterns.
• Use a dataset of 5.9 million tweets.
• Use a k-nearest neighbors (KNN) classifier to classify tweets into sar-

castic and non-sarcastic.

2. Riloff et al. [96]:

• Propose a bootstrapping algorithm to detect a specific type of sarcasm.
• Start with the seed word “love” and a set of sarcastic tweets. To learn

all possible positive sentiment and negative situation phrases.

3. Rajadesingan et al. [78]:

• Study the behavior of users and the psychology behind sarcasm.
• Propose a system that detects sarcasm based on the history of users
• Extract 5 types of features, each dealing with a specific type of historical

information
• Use Support Vector Machine (SVM) classifier to perform the classifi-

cation

Conventional
Approaches
Limitations

1. Davidov et al. [77]:

• Big number of features: Slow to run.
• Uses a very large set of 5.9 tweets to build the model.

2. Riloff et al. [96]:

• Detects only one type of sarcasm, which is not very commonly used.
• Supposes that all positive expressions and negative situations are

present in the training set.

3. Rajadesingan et al. [78]:

• Requires a previous knowledge base for all users
• Information regarding the sentiment and the sarcasm orientation are col-

lected for all the previous tweets
• Highly context dependent

Contribution • Identify the purposes of use of sarcasm
• Use Part-of-Speech (POS) tag based patterns
• Use few number of features (i.e., 62 features): non contextual features
• Use a fairly small training set: 6,000 tweets for training

Summary
of Findings

• Faster model:

- Training time: 8.12 sec.
- Execution time: 2ms per tweet.

• Performances that are comparable to those of the complex models (i.e., accu-
racy = 90.1% and precision = 91.3% during cross-validation).

• It is possible to enhance Sentiment Analysis performance of fairly fast models
such as the one proposed in [113] from an accuracy equal to 83.67% to 87%.
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Table 1.3: Summary of Chapter 3

Objective For a given tweet, identify, out of multiple sentiment classes, the one that represents
the most the emotion shown in the tweet.

Conventional
Approaches

1. Lin et al. [120, 121]:

• Classifys documents into reader-emotion categories.
• Emotion-based features.
• Kanji- and Chinese word based features.

2. Liang et al. [123]:

• Emoticon (smiley) recommendation for posted texts.
• Features: Similarity measures between emoticon trajectories.

3. LIWC (Linguistic Inquiry and Word Count):

• Tool to extract different types of information (features) from texts in an
automated way.

Conventional
Approaches
Limitations

1. Lin et al. [120, 121]:

• Reader-oriented: focus more on the sentiment the reader feels to show
results on search engines

2. Liang et al. [123]:

• Prediction of emoticons to show for the post writer (Top N emoticons).

3. LIWC (Linguistic Inquiry and Word Count):

• Paid, not open Source.
• Does not allow the extraction of writing patterns.

Contribution • Develop a free, open-source and flexible tool to extract all possible informa-
tion from texts: SENTA (SENTiment Analyzer) is an open-source tool that
allows the extraction of different types of features from texts, including pat-
terns to perform sentiment analysis

• A set of pattern-based features, along with other features to classify tweets.
• Classification of tweets into 7 different sentiment classes: love, fun, happi-

ness, hate, anger, sadness and neutral
• Detect the emotion expressed by the writer

Summary
of Findings

• Binary classification: Accuracy equal to 81.3%.
• Ternary classification: Accuracy equal to 70.1%
• Multi-class classification: Accuracy equal to 60.2%.
• High recall for some sentiments (e.g.,“Hate” and “Love” have respectively

accuracies equal to 90.9% and 75.2%).
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Table 1.4: Summary of Chapter 4

Objective • Identify why Multi-Class Sentiment Analysis (MCSA) inherently a hard task.
• Find a representation for sentiments that allow to identify the level of corre-

lation of ones with the others.

Contribution • A novel representation of the sentiment space.
• A measure of the distance between the sentiments.
• Identification of the main challenges and main reasons of misclassification

when performing MCSA.

Observations • Some sentiments are (highly) correlated (e.g., “Happiness” and “Fun”).
• Multi-class sentiment analysis challenges:

– Context Dependency and Polysemy (Words having different meanings),
– Presence of multiple sentiments within a piece of text,
– Closeness between some sentiments, and
– Absence of sentiment indicators.

Summary
of Findings

• Main challenge in MCSA: Presence of multiple sentiments within a piece of
text

• A possible solution: Performing Sentiment Quantification instead: identify-
ing all existing sentiments and attributing scores highlighting their weights

Table 1.5: Summary of Chapter 5

Objective • Instead of classifying tweets into one from multiple sentiment classes, detect
and quantify all the sentiments present in each tweet.

• This task is referred to as “quantification”.
Conventional
Approaches

• Only multi-class sentiment analysis (MCSA).

Conventional
Approaches
Limitations

• Even MCSA has not been well studied in the literature.

Contribution • Introduce the task of sentiment quantification.
• Propose an approach that relies on writing patterns along with other sets of

features to perform a ternary sentiment classification of tweets (i.e., the clas-
sification into positive, negative and neutral).

• Upon classification, the writing patterns are used again to attribute scores for
each sentiment in every tweet. These scores are used to filter the sentiments
we judge as being conveyed in the tweet (within the process we refer to as
quantification).

• The required quantification components are added to the previously intro-
duced tool SENTA, to make it easy to run the approach.

Summary
of Findings

• F1 score equal to 45.9% and 44.5% on two different test sets.
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2.1 Introduction

Twitter became one of the biggest web destinations for people to express their opinions, share

their thoughts and report real-time events, etc. Throughout the previous years, Twitter content

continued to increase, thus constituting a typical example of the so-called big data. Today, Twitter

has more than 330 million active users, and more than 500 million tweets are sent every day1.

Many companies and organizations have been interested in these data for the purpose of studying

the opinion of people towards political events [68], popular products [69] or movies [59].

However, due to the informal language used in Twitter and the limitation in terms of characters

(i.e., formally 140 characters per tweet, 280 characters per tweet now), understanding the opinions

of users and performing such analysis is quite difficult. Furthermore, presence of sarcasm makes

the task even more challenging: sarcasm is when a person says something different from what he

means. Liebrecht et al. [70] discussed how sarcasm can be a polarity-switcher, and Maynard et

al. [71] proposed a set of rules to decide on the polarity of the tweet (i.e., whether it is positive or

negative) when sarcasm is detected.

The online Oxford dictionary2 defines sarcasm as “the use of irony to make or convey con-

tempt”. Collins dictionary3 defines it as “mocking, contemptuous, or ironic language intended to

convey scorn or insult”. However, sarcasm is a deeper concept, highly related to the language,

and to the common knowledge.

Although different from one another, sarcasm and irony have been studied as two close and

very correlated concepts [72–74] or even as the same one [75–77]. The Free Dictionary4 defines

it also as a form of irony that is intended to express contempt. Since most of the focus on sarcasm

is to enhance and refine the existing automatic sentiment analysis systems, we also use the two

terms synonymously.

Some people are more sarcastic than others, however, in general, sarcasm is very common,

though, difficult to recognize. In general, people employ sarcasm in their daily life not only

to make jokes and be humorous but also to criticize or make remarks about ideas, persons or

events. Therefore, it tends to be widely used in social networks, in particular microblogging

websites such as Twitter. That being the case, the state of the art approaches of sentiment analysis

and opinion mining tend to have lower performances when analyzing data collected from such

websites. Maynard et al. [71] show that sentiment analysis performance can be highly enhanced

when sarcasm within the sarcastic statements is identified. Therefore, the need for an efficient way

to detect sarcasm arises.

In this chapter, we introduce an efficient way to detect sarcastic tweet. Although it does not

need an already-built user knowledge base as in the work of Rajadesingan et al. [78], our approach

considers the different types of sarcasm and detect the sarcastic tweets regardless of their owners

or their temporal context, witch a precision that reaches 91.1%.

Therefore, the main contributions of this chapter are as follows:

1. We identify the main purposes for which sarcasm is used in social networks.

1https://www.statista.com/
2http://www.oxforddictionaries.com/
3http://www.collinsdictionary.com/
4https://www.thefreedictionary.com
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2. We propose an efficient way to detect sarcastic tweets, and study how to use this information

(i.e., whether the tweet is sarcastic or not) to enhance the accuracy of sentiment analysis.

3. We study the added value of the different sets of features used, in particular, in terms of

precision of detection.

The remainder of this chapter is structured as follows: Section 2.2 presents our motivation for

this work and Section 2.3 describes some state of the art work related to our proposed approach.

Section 2.4 describes our proposed approach for sarcasm detection. In Section 2.5, we present and

discuss the obtained results of the approach. In Section 2.6, we show how sarcasm can be used to

enhance sentiment analysis systems and Section 2.7 concludes this chapter.

2.2 Motivations

As mentioned above, the identification of sarcasm helps enhance sentiment analysis task when per-

formed on microblogging websites such as Twitter. Sentiment analysis and opinion mining rely on

emotional words in a text to detect its polarity (i.e., whether it deals “positively” or “negatively”

with its theme). However, the appearance of the text might be misleading. A typical example

of that is when the text is sarcastic. In Twitter, such sarcastic texts are very common. “All your

products are incredibly amazing!!!” might be considered as a compliment. However, considering

the following tweet “Did I say incredibly?? Well, it’s true, nobody would believe that. They break

the second day you buy them - -”, the user explicitly explains that he did not mean what he said.

Although some users indicate they are being sarcastic, most of them do not. Therefore, it might

be indispensable to find a way to automatically detect any sarcastic messages.

Through their work, Rajadesingan et al. [78] highlighted the limitations of some state of the art

tools that perform sentiment analysis, when more sophisticated forms of speech such as sarcasm

are present. They explained why sarcasm is hard to detect even by humans, and showed how the

nature of tweets makes it even more complicated. Therefore arise the importance of detection of

sarcastic utterances in Twitter.

However, several challenges arise and make the task complicated. Joshi et al. [79] highlighted

3 main challenges which are i) the identification of common knowledge, ii) the intent to redicule,

and iii) the speaker-listener (or reader in the case of written text) context.

On a related context, even though Brown et al. [72] stated that sarcasm “is not a discrete

logical or linguistic phenomenon”, works such as [76, 77] were proposed to identify sarcastic

writing patterns to decide on whether or not an utterance is sarcastic. During our experiments as

well as while manually annotating tweets, we noticed that such patterns exist, in particular among

non-native speakers of English. Therefore, we focus on detecting and collecting such patterns

from a manually annotated dataset, and we quantify them so that we can judge whether or not a

given tweet is sarcastic by comparing patterns extracted from it to them.

Throughout this work, we present a pattern-based framework that performs the task of sarcasm

detection, a framework relatively easy to implement, and that presents performances competitive

to those of more complex ones.
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2.3 Related Work

In the last few years, more attention has been given to Twitter sentiment analysis by researchers,

and a number of recent papers have been addressed to the classification of tweets. However, the

nature of the classification and the features used vary depending on the aim. Sriram et al. [57]

used non-context-related features such as the presence of slangs, time-event phrases, opinioned

words, and the Twitter user information to classify tweets into a predefined set of generic classes

including events, opinions, deals, and private messages. Akcora et al. [11] proposed a method

to identify the emotional pattern and the word pattern in Twitter data to determine the changes in

public opinion over the time. They implemented a dynamic scoring function based on Jaccard’s

similarity [80] of two successive intervals of words and used it to identify the news that led to

breakpoints in public opinion.

However, most of the works focused on the content of tweets and were conducted to classify

tweets based on the sentiment polarity of the users towards specific topics. A variety of features

was proposed. Not only they include the frequency and presence of unigrams, bigrams, adjectives,

etc. [23], but they also include non-textual features such as emoticons [81] (i.e., facial expressions

such as smile or frown that are formed by typing a sequence of keyboard symbols, and that are

usually used to convey the writer’s sentiment, emotion or intended tone) and slangs [82]. Dong

et al. [83] proposed a target-dependent classification framework which learns to propagate the

sentiments of words towards the target depending on context and syntactic structure.

Sarcasm, on the other hand, and irony in general have been used by people in their daily con-

versations for a long time. Therefore, sarcasm has been subject to deep studies form psychological

[84] and even neurobiological [85] perspectives. Nevertheless, it has been studied as a linguistic

behavior characterizing the human being [78]. In this context, researchers have recently been in-

terested in sarcasm, trying to find ways to automatically detect it when it is present in a statement.

Although some studies such as [72] highlighted that, unlike irony, sarcasm “is not a discrete log-

ical or linguistic phenomenon”, many works have been proposed and present high accuracy and

precision.

Burfoot et al. [86] introduced the task of filtering satirical news articles from true newswire

documents. They introduced a set of features including the use of profanity and slangs and what

they qualified of “semantic validity”; and used SVM classifier to recognize satire articles.

Campbell et al. [87] studied the contextual components utilized to convey sarcastic verbal

irony and proposed that sarcasm requires the presence of four entities: allusion to failed expecta-

tion, pragmatic insincerity, negative tension and presence of a victim, as well as stylistic compo-

nents.

Nevertheless, other works have been proposed to represent sarcasm. Some of these represen-

tations are given in [79] as follows:

• Wilson et al. [88] suggested that sarcasm arises when there is a situational disparity between

the text and the context.

• Ivanko et al. [89] suggested that sarcasm requires a 6-tuple consisting of a speaker, a listener,

a context, an utterance, a literal proposition and intended proposition.
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• Giora et al. [90] suggested that sarcasm is a form of negation in which an explicit negation

marker is lacking. This implies that the sarcasm is namely a polarity-shifter.

As for the task of detection itself, several goals were defined. Tepperman et al. [91] studied the

occurrence of the expression “yeah right!”, and whether it appears in a sarcastic context or not.

They proposed an approach to automatically detect sarcasm present in spoken dialogues, using

prosodic, spectral and contextual cues. However, this represents the main shortcoming for their

approach: absence of such components makes it impossible to detect sarcasm. In other words,

although the approach itself is very effective in detecting when a specific expression is sarcastic,

this approach is unable to detect any type of sarcasm that might occur. Veale et al. [92] annotated

the occurrences of similes such as “as cool as a cucumber” into ironic or not. This works presents

the same shortcoming as that of Tepperman et al. [91]. Barbieri et al. [93] proposed to classify

texts into politics, humor, irony and sarcasm. Ghosh et al. [94] formulated the task of sarcasm

detection as a sense disambiguation task where a word can have a literal sense or a sarcastic one,

and therefore, through detecting the sense of the word, sarcasm can be detected. Wang et al. [95]

suggested that, rather than trying to detect whether a tweet is sarcastic or not, it makes more sense

to take into account the context: they modeled the problem as a sequential classification task.

However, most of the works simply aim to classify a set of texts as sarcastic and non-sarcastic.

Davidov et al. [77] and Tsur et al. [76] proposed a semi-supervised sarcasm identification

algorithm. They experimented on two data sets: one from amazon and the other from Twitter. The

results they obtained were interesting, though their approach relies on the frequency of appearance

of words which might be misleading if the training set is not balanced in terms of topics it deals

with or if the data are not big enough. In addition, it treats what is called “Context Words” in the

same way regardless of their grammatical function. It also does not make difference between sen-

timental words and non sentimental words. Patterns that do not consider the emotional content of

words, or discard some emotional words because of their low presence might reduce the potential

of the approach.

Maynard et al. [71] relied on hashtags that Twitter users employ in their tweets to identify

sarcasm in Twitter. They also studied how the detection of sarcasm can highly enhance the senti-

ment analysis of tweets, and proposed a rule to decide on the polarity of the tweet (i.e., whether

it is positive or negative) depending on the apparent sentiment of the tweet and the content of the

hashtag.

Riloff et al. [96] proposed a method to detect a specific type of sarcasm, where a positive sen-

timent contrasts with a negative situation. They introduced a bootstrapping algorithm that uses the

single seed word “love” and a collection of sarcastic tweets to automatically detect and learn ex-

pressions showing positive sentiment and phrases citing negative situations. Their approach shows

some potentials. However, most of the sarcastic tweets in Twitter do not fall in the aforementioned

category of sarcasm. In addition, the approach relies on the existence of the all possible “negative

situations” on the training set, which makes it less efficient when dealing with new tweets.

Rajadesingan et al. [78] went deeper and dealt with the psychology behind sarcasm. They

introduced a behavioral modeling for detecting sarcasm in Twitter. They identified different forms

of sarcasm and their manifestation in Twitter, and demonstrated the importance of historical infor-

mation collected from the past tweets for sarcasm detection. Although, it has proven to be very
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efficient, the approach is less performant when there is no previous knowledge about the user.

Most of the features extracted rely on data collected from previous tweets to judge. For a realtime

stream of tweets, where random users are posting tweets, it is hard to run the approach, the size

of the knowledge-base grows very fast, and the training should be redone each time based on the

new tweets collected (i.e., since the previous tweet has the highest impact on the current one, the

new tweet should be taken into consideration for the next iteration).

Muresan et al. [97] proposed a method to construct a corpus of sarcastic Twitter messages,

where the author of the tweet provides the information whether or not a tweet is sarcastic. Through-

out their work, they investigated the impact of lexical and pragmatic factors on machine learning

performance to identify and detect sarcastic tweets and ranked the features according to their con-

tribution to the classification.

Fersini et al. [98] introduced a Bayesian Model Averaging ensemble that takes into account

different classifiers, according to their reliability and their marginal probability predictions to make

a voting system more sophisticated than the conventional majority voting one.

Bharti et al. [99] proposed two approaches for detecting sarcastic tweets: the first one is a

parsing-based lexicon generation algorithm and the second one uses the occurrences of interjection

words.

In general, and based on the method and features used, we can classify these works into 3

categories:

• Rule-based approaches such as the work of Maynard et al. [71] and that of Ghosh et al.

[94],

• Semi-supervised approaches such as the works proposed by Tsur et al. [76], that proposed

by Davidov et al. [77] and that proposed by Bharti et al. [99],

• Supervised approaches such as the work of Muresan et al. [97], that of Wang et al. [95]

and that of Rajadesingan et al. [78].

As for the features used in the supervised approaches they fall mainly into 3 sets:

• n-gram-based features, which have been used along with other features in the majority of

the works such as the works of Barbieri et al. [93], Riloff et al. [96] and that of Ghosh et al.

[94],

• Sentiment-based features such as the works of Reyes et al. [100, 101] and Joshi et al.

[102],

• Saracstic pattern-based features such as the works of Tsur et al. [76], Davidov et al. [77]

and Riloff et al. [96], etc.

Other works added the contextual features to enhance the classification, whether the context is

the historical context as in [78], the conversation context as in [102, 103] or the topical context as

in [95].

In our work, we opt for a supervised approach that learns sarcastic patterns extracted based on

the part-of-speech of words used.
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2.4 Proposed Approach

Given a set of tweets, we aim to classify each one of them depending on whether it is sarcastic

or not. Therefore, from each tweet, we extract a set of features, refer to a training set and use

machine learning algorithms to perform the classification. The features are extracted in a way that

makes use of different components of the tweet, and covers different types of sarcasm. The set of

tweets on which we run our experiments is checked and annotated manually.

2.4.1 Data

Throughout the period ranging from December 2014 to March 2015, we collected tweets, using

Twitter’s streaming API. To collect sarcastic tweets, we queried the API for tweets containing the

hashtag “#sarcasm”. Although Liebrecht et al. [70] concluded in their work that this hashtag is

not the best way to collect sarcastic tweets, other works such as [77] highlighted the fact that this

hashtag can be used for this purpose. However, they also concluded that the hashtag cannot be

reliable and is used mainly for 3 purposes:

• to serve as a search anchor,

• to clarify the presence of sarcasm in a previous tweet, as in “I forgot to add #sarcasm so

people like you get it!”,

• to serve as a sarcasm marker in case of a very subtle sarcasm where it is very hard to get

the sarcasm without an explicit marker, as in “Today was fun. The first time since weeks!

#Sarcasm”.

In total, we collected 58 609 tweets with the hashtag “#sarcasm”, which we cleaned up by remov-

ing the noisy and irrelevant ones, as well as ones where the use of the hashtag does fall into one of

the two first uses of the three described above.

As for non-sarcastic tweets, we collected tweets dealing with different topics and made sure

they have some emotional content.

We prepared 3 data sets for our work as follow:

• Set 1: this set contains 6000 tweets, half of them are sarcastic, and the other half are not.

The tweets on this data set are manually checked and classified depending on their level of

sarcasm from 1 (highly non-sarcastic) to 6 (highly sarcastic). The manual annotation is done

by two people with no background about the tweets or the users who posted them. They have

been asked to attribute the scores. It is important to note that the manual labelling is subject

to the annotators’ own opinion. Therefore, it is taken into account that the classification is

not perfect. However, a sarcastic tweet is never labeled as non-sarcastic, and vice versa.

Therefore, this set contains a trustworthy knowledge base that can be used to train our

model. Tweets having level of sarcasm equal to 3 are mostly ones that, without the hashtag

“#sarcasm”, are very close those of level 4 or 5. In other terms, it is very hard for a human,

with no background about the tweet, to tell whether it is sarcastic or not. The hashtag

“#sarcasm” has not been removed yet when the annotation is done. This first set is used to

train our model. Therefore, in the rest of this work, it will be referred to as the “training

set”. The number of sarcasm levels is also referred to as NS and is equal to 6.
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• Set 2: this set contains 1128 sarcastic tweets, and 1128 non-sarcastic ones. Sarcastic tweets

are collected as described above (i.e., by querying Twitter API). Yet, no manual check is

done, which makes it a very noisy data set. However, to reduce the noise, we filtered-out

the non-english tweets, very short tweets (i.e., that have less than 3 words), and those which

contain URLs. In most of the cases, URLs refer to photo links. We believe that part of the

sarcasm is included in the photo, therefore we discard them. This data set is used during our

experimenting process to optimize the parameters we defined for our features. In the rest of

this work, we will refer to this set as the “optimization set”.

• Set 3: this set contains 500 sarcastic tweets, and 500 non-sarcastic ones. All tweets are

manually checked and classified as sarcastic and non-sarcastic. This set will serve as a test

set, and will be used to evaluate the performances of our proposed approach. Therefore, in

the rest of this work, it will be referred to as the “test set”.

None of the tweets of any of the aforementioned sets is re-used in another. In addition, during

our work, we removed the hashtag “#sarcasm” from all the tweets.

2.4.2 Tools

To perform the different Natural Language Processing (NLP) tasks (i.e., tokenisation, lemmatiza-

tion, etc.), we used Apache OpenNLP5. However, OpenNLP PoS tagger performs poorly with the

given model to tag tweets, due to the irrelevant content and the use of slangs, etc., we used Gate

Twitter part-of-speech tagger [104]. This PoS-tagger reaches an accuracy of 90.5% on Twitter

data.

To perform the classification, we used the toolkit weka [105] which presents a variety of

classifiers. We used libsvm [106] to perform the classification using Support Vector Machine

(SVM).

2.4.3 Features Extraction

Being a sophisticated form of speech, sarcasm is used for different purposes. While annotating

the data, the annotators concluded that these purposes fall mostly, but not totally, in one of three

categories: sarcasm as wit, sarcasm as whimper and sarcasm as avoidance.

• Sarcasm as wit: when used as a wit, sarcasm is used with the purpose of being funny;

the person employs some special forms of speeches, tends to exaggerate, or uses a tone

that is different from that when he talks usually to make it easy to recognize. In social

networks, voice tones are converted into special forms of writing: use of capital letter words,

exclamation and question marks, as well as some sarcasm-related emoticons.

• Sarcasm as whimper: when used as whimper, sarcasm is employed to show how annoyed

or angry the person is. Therefore, it tempts to show how bad the situation is by using

exaggeration or by employing very positive expressions to describe a negative situation.

5https://opennlp.apach.org
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• Sarcasm as evasion: it refers to the situation when the person wants to avoid giving a clear

answer, thus, makes use of sarcasm. In this case, the person employs complicated sentences,

uncommon words and some unusual expressions.

Unlike [107], which classifies sarcasm into 4 different types based on how sentiments appear

in the text, the observations and classification are done based on why sarcasm is used. Although

theses observations are likely to be biased and depend on the annotator’s own opinions, we rely

on these assumptions to build our model. During our work, we rely mainly on writing patterns

to detect sarcastic statements; however, other features are extracted and that help to obtain higher

classification precision and accuracy. The distinction of purposes highlights the use of some fea-

tures as we will describe next.

Four families of features are extracted: sentiment-related features, punctuation-related fea-

tures, syntactic and semantic features, and pattern features.

Sentiment-related Features

A very popular type of sarcasm that is widely used in both regular conversations as well as short

messages such as tweets, is when an emotionally positive expression is used in a negative context.

A similar way to express sarcasm is to use expressions having contradictory sentiments. This type

of sarcasm which we qualified as “whimper” is very common in social networks and microblog-

ging websites. Riloff et al. [96] show that this type of sarcasm can be identified and detected when

a positive statement, usually a verb or a phrasal verb, is collocated with a negative situation (e.g.,

“I love being ignored all the time”). They built a lexicon-based approach that learns the possible

positive expressions and negative situations and used it to detect such contrast in unknown tweets.

However, learning all possible negative situations requires a big and rich source and might be

infeasible because negative situations are unpredictable.

In our work, we opt for a more straight-forward, yet more general approach. We consider any

kind of inconsistency between sentiments of words as well as other components within the tweet.

Therefore, to identify and quantify such inconsistency, we extract sentimental components of the

tweet and count them. For this purpose, we maintain two lists of words qualified as “positive

words” and “negative words”. The two lists contain respectively words that have positive emo-

tional content (e.g., “love”, “happy”, etc.) and negative emotional content (e.g., “hate”, “sad”,

etc.). The two lists of words are created using SentiStrength 6 database. This database contains

a list of emotional words, where negative words have scores varying from -1 (almost negative)

to -5 (extremely negative) and positive words have score varying from 1 (almost positive) to 5

(extremely positive). Using these two lists, we extract two features we denote respectively pw and

nw by counting the number of positive and negative words in the tweet.

Adjectives, verbs and adverbs have higher emotional content than nouns [108]; therefore posi-

tive and negative words that have the associated PoS-tag, shown in TABLE 2.1, are counted again

and used to create two more features that we denote PW andNW and which represent the number

of highly emotional positive words and highly emotional negative words.

6http://sentistrength.wlv.ac.uk
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Table 2.1: PoS-Tags for Words Considered as Highly Emotional

Part of Speech Part of Speech Tag
Adjectives “JJ”, “JJR”, “JJS”
Adverbs “RB”, “RBR”, “RBS”
Verbs “VB”, “VBD”, “VBG”, “VBN”, “VBP”, “VBZ”

We then add three more features by counting the number of positive, negative and sarcastic

emoticons. Sarcastic emoticons are emoticons used sometimes with sarcastic or ironical state-

ments (e.g., “:P”). These emoticons are used sometimes when the person is trying to be funny or

to show that he is just making a joke (i.e., when sarcasm is used as wit).

Hashtags also have emotional content. In some cases, they are used to disambiguate the real

intention of the Twitter user conveyed in his message. For example, the hashtag employed in the

following tweet: “Thank you very much for being there for me #ihateyou” tells that the user does

not really want to thank the addressee, he was rather blaming him for not being there for him.

Therefore, we count also the number of positive and negative hashtags.

In addition to the aforementioned features, we extract features related to the contrast between

these sentimental components. We first calculate the ratio of emotional words ρ(t) defined as

ρ(t) =
(δ · PW + pw)− (δ ·NW + nw)

(δ · PW + pw) + (δ ·NW + nw)
(2.1)

where t is the tweet, pw, PW, nw and NW denote respectively the number of positive words (other

than highly emotional ones), that of highly emotional positive words, that of negative words (other

than highly emotional ones) and that of highly emotional words. δ is a weight bigger than 1 given

to the highly emotional words. In case the tweet does not contain any emotional word, ρ is set to

0. In the rest of this work, δ is set to 3.

We then define 4 features that represent whether there is a contrast between the different com-

ponents. By contrast we mean the coexistence of a negative component and a positive one within

the same tweet. We check the existence of such contrast between words, between hashtags, be-

tween words and hashtags and between words and emoticons and use these information as extra

features. The final sentiment-related feature vector has 14 features.

Punctuation-Related Features

Sentiment-related features are not enough to detect all kinds of sarcasm that might be present. In

addition, they do not make use of all the components of the tweet. Therefore, more features are

to be extracted. As mentioned before, sarcasm is a sophisticated form of speech: not only it plays

with words and meanings, but also it employs behavioral aspects such as low tones [110, 111],

facial gestures [112] or exaggeration. These aspects translate to a certain use of punctuation or

repetition of vowels when the message is written. To detect such aspects, we extract a set of

features that we qualify as punctuation-related features. For each tweet, we calculate the following

values:

• The number of exclamation marks,
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• The number of question marks,

• The number of dots,

• The number of all-capital words, and

• The number of quotes.

We also add a sixth feature by checking if any of the words contains a vowel that is repeated more

than twice (e.g., “looooove”). If such a word exists, the feature value is set to “true”, otherwise,

it is set to “false”.

The excessiv use of exclamation marks or question marks, or the repetition of a vowel, partic-

ularly in an emotional word, might reflect a certain tone that the user intends to show; however,

this tone is not always sarcastic. We believe that these features can be highly correlated with the

number of words in the tweet. Some very short tweets which end with many exclamation marks

might show surprise rather than sarcasm. Following two examples of tweets in which the use of

exclamation marks has two different use cases:

• “Thank you @laur3en, it was amazing !!!”

• “Thanks for another amazing day with your amazing boyfriend!!!!”

In the first case, the exclamation marks are used to show sincere feelings of gratitude. However,

in the second, the exclamation marks serve as an indication of annoyance; the user has no real

intension to thank his friend. Although the use of exclamation is not relevant in itself and might not

show whether the user is expressing sarcasm or any other emotion; combined with other features,

this feature is expected to add value to the classification. We then define one last feature by

counting the number of words in the tweet. In total, 7 punctuation-based features are extracted.

Syntactic and Semantic Features

Along with the punctuation-related features, some common expressions are used usually in a sar-

castic context. It is possible to correlate these expressions with the punctuation to decide whether

what is said is sarcastic or not. Besides, in other cases, people tend to make complicated sentences

or use uncommon words to make it ambiguous to the listener/reader to get a clear answer. This is

common when sarcasm is used as “evasion”, where the person’s purpose is to hide his real feeling

or opinion by using sarcasm. Hence, we extract the following features that reflects these aspects:

• The use of uncommon words,

• The number of uncommon words,

• The existence of common sarcastic expressions,

• The number of interjections, and

• The number of laughing expressions.
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Table 2.2: Expressions Used to Replace the Words of GFI

PoS-tag Expression
“CD” [CARDINAL]
“FW” [FOREIGNWORD]
“UH” [INTERJECTION]
“LS” [LISTMARKER]
“NN”, “NNS”, “NNP”, “NNPS”, [NOUN]
“PRP”, “PRP$” [INTERJECTION]
“MD” [MODAL]
“PB”, “RBR”, “RBS” [ADVERB]
“WDT”, “WP”, “WP$”, “WRB” [WHDETERMINER]
“SYM” [SYMBOL]

In particular, the feature “Existence of common sarcastic expression” is extracted in the same

way we extract the features qualified as “pattern-related” (this will be described in detail in the

next subsection). Here we used a noisy set of 3000 tweets having the hashtag “#sarcasm” (the set

has been discarded later and has not been used neither for training nor for test). We extracted all

possible patterns of length varying from 3 to 6, we selected the patterns that appeared more than

10 times. Being few in number, we manually checked the list and removed the irrelevant ones.

We obtained a list of 13 main patterns including [love PRONOUN when] (e.g., “I love it when I

am called at 4 a.m. because my neighbour’s kid can’t sleep!”), [PRONOUN be ADVERB funny]

(e.g., “You are incredibly funny - -”), etc.

Pattern-Related Features

The patterns selected in the previous subsection, and qualified of “common sarcastic expression”

are very common, even in spoken language. However, their number is small, they are not unique

and most of the tweets in both our training and test sets do not contain them. That being the

case, we dig further and extract another set of features. The idea of our pattern-related features is

inspired from the work of Davidov et al. [77]. In his approach, the author classified words into

two categories: high-frequency words and content words based on their frequency of appearance

in his data set and defined a pattern as an “ordered sequence of high frequency words and slots for

content words”. This approach, although it has some potential to detect sarcasm, presents many

shortcomings as shown in Section 2.3.

Therefore, we propose more efficient and reliable patterns. We divide words into two classes:

a first one referred to as “CI” containing words of which the content is important and a second one

referred to as “GFI” containing the words of which the grammatical function is more important.

If a word belongs to the first category, it is lemmatized; otherwise, it is replaced it by a certain

expression. The expressions used to replace these words are shown in TABLE 2.2. The classifi-

cation into classes is done based on the part of speech tag of the word in the tweet. The list of

part-of-speech tags, their meaning and to which category we classify them is given in TABLE 2.3.
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Table 2.3: Part-of-Speech Tag Classes

POS Tag Description Class
CC coordinating conjunction CI
CD cardinal number GFI
DT determiner CI
EX existential there CI
FW foreign word GFI
IN prep./sub. conjunction CI
JJ adjective CI

JJR adjective, comparative CI
JJS adjective, superlative CI
LS list marker GFI
MD modal GFI
NN noun, singular or mass GFI

NNS noun plural GFI
NNP proper noun, singular GFI

NNPS proper noun, plural GFI
PDT predeterminer CI
POS possessive ending CI
PRP personal pronoun GFI
PRP$ possessive pronoun GFI
RB adverb CI

RBR adverb, comparative CI
RBS adverb, superlative CI
RP particle CI

SYM Symbol GFI
TO to CI
UH interjection GFI
VB verb, base form CI

VBD verb, past tense CI
VBG verb, gerund/present participle CI
VBN verb, past participle CI
VBP verb, sing. present, non-3d CI
VBZ verb, 3rd person sing. present CI
WDT wh-determiner GFI
WP wh-pronoun GFI
WP$ possessive wh-pronoun GFI
WRB wh-abverb GFI
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We generate the vector of words for each tweet according to the rule defined. For example,

the following PoS-tagged tweet “@gilbert: NN you PRP are VBP crazy JJ , , who WP told VBD

you PRP I PRP want VBP to TO drink VB with IN you PRP !!!! .” gives, the following pattern

vector [NOUN PRONOUN be crazy who tell PRONOUN PRONOUN want to drink with PRO-

NOUN.]

We define a pattern as an ordered sequence of words. The patterns are extracted from the

training set and are taken such as their length satisfies

LMin ≤ Length(pattern) ≤ LMax (2.2)

where LMin and LMax represent the minimal and maximal allowed length of patterns in words

and Length(pattern) is the length of the pattern in words. The number of pattern lengths is

NL = (LMax − LMin + 1). Therefore, from the example mentioned above, we can extract the

following patterns:

- [NOUN PRONOUN be crazy],

- [PRONOUN be crazy],

- [be crazy who tell PRONOUN PRONOUN want to],

- etc.

Only patterns that appear at least Nocc times in our training set are kept; the others are discarded.

In the rest of this work, Nocc is set to 2: the value 1 gives lower accuracy and precision and higher

values decrease remarkably the number of patterns, and consequently presents lower accuracy. In

addition, a pattern that appears in a sarcastic tweet and in a non-sarcastic tweet is discarded. This

step is done to filter out patterns that are not related to sarcasm. After the selection, we divide the

resulted patterns into NF sets, where

NF = NL ×NS . (2.3)

We createNF features, as shown in TABLE 2.4. Each feature Fij of the table represents the degree

of resemblance of the tweet to the patterns of degree of sarcasm i and length j. Therefore, given

a tweet t, we calculate the resemblance degree res(p, t) of each pattern in the training set p to the

tweet t, defined as:

res(p, t) =



1, if the tweet vector contains the pat-
tern as it is, in the same order,

α ·n/N , if n words out of the N words of the
pattern appear in the tweet in the cor-
rect order,

0, if no word of the pattern appears in
the tweet.

Given Nij the number of patterns collected from the training set having a sarcasm degree i

and a length j, we focus, among them, on the K patterns (p1, · · · , pk) that resemble the tweet the
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Table 2.4: Pattern Features

Pattern length
L1 L2 · · · LN

1 F11 F12 · · · F1N

Sarcasm 2 F21 F22 · · · F2N

level
...

...
...

. . .
...

6 F61 F62 · · · F6N

most. The value of the feature Fij is

Fij = βj ∗
K∑
k=1

res(pk, t) (2.4)

where βj is a weight given to patterns of length Lj (regardless of their level of sarcasm). We give

different weights for each length of pattern since longer patterns are more likely to have higher

impact. Fij as defined measures the degree of resemblance of a tweet t to patterns of level of

sarcasm i and length j. K in our work is set to 5, and represents the K closest patterns among the

Nij ones described above.

Extension of the training set patterns: Being relatively small in size (i.e., only 6000 tweets),

our training set cannot cover all possible sarcastic patterns. Therefore, we enrich it to obtain more

patterns. We collected 18 959 tweets containing the hashtag “#sarcasm” and 18 959 tweets that do

not. We checked if the tweets having the hashtag “#sarcasm” contain any of the sarcastic patterns

we already extracted from the training set and that have a length equal to or more than 4. If that is

the case, we extract the different patterns from the tweet and add them to the list of patterns of the

training set keeping in mind the rule we made for the selection of patterns (i.e., if the pattern exists

in a non-sarcastic tweet, it is discarded). Although the added tweets are not as reliable as those of

the initial training set, we believe that filtering the tweets that contain at least one pattern that is

identical to a reliable one is reliable enough given it already contains the hashtag “#sarcasm”. We

then did the same to the non sarcastic tweet. Thus, we enriched our data set with more patterns.

This step has been done only to get more patterns, therefore, none of the other families of features

is concerned by the enrichment.

Pattern-related features as defined give a high flexibility to optimize depending on their con-

tribution. In total we have the following parameters to optimize:

• LMin and LMax

• α

• β1, · · · , βNL

To optimize LMin and LMax, we fixed α and βi (i = 1, NL) as follow and tried different

values of pattern lengths: 
α = 0.1,

β1 = · · · = βNL
= 1.0.
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Figure 2.1: Accuracy per Pattern Length for Fixed Values of α, β1, · · · , βNL

We ran a first simulation on our training set (6000 tweets) and optimization set (2256 tweets), for

each pattern length. We obtained the results shown in Fig. 2.1. The results present the accuracy

of the classification of tweets as sarcastic and non-sarcastic. The obtained results show that the

patterns having a length are from 4 to 10 give the highest accuracy (i.e., more than 75% accuracy

during 10-folds cross validation). Pattern length 3 gives the highest accuracy on our optimization

set. Given that the average number of words per tweet is equal to 11.48, we set the parameters

LMin and LMax respectively to 3 and 10.

Afterwards, we set LMin and LMax as mentioned, kept the values of β1, · · · , βNL
as they are

(i.e., equal to 1). We tried different values of α. We ran different simulations on the same data sets

using pattern features, for different values of α. Results of the test are given in Fig. 2.2.

The accuracy of classification varies highly depending on the value of α, that is, the lower the

value is, the better the performances are during the cross validation. This is due to the unicity of

the patterns. In other terms, in the training set, the patterns derived from each tweet will have the

highest score. Thus, the tweet will be classified as the closest to its own patterns. However, in

the optimization set, the accuracy is the highest when α ∈ {0.01, 0.1}. The highest accuracy we

obtained was for α = 0.03 as shown in Fig. 2.2

Finally, for β1, · · · , βNL
, we tried different combinations maintaining the following condition

β1 ≤ · · · ≤ βNL
. (2.5)

The observed results are not very different for all the combinations we tried although we noticed

that the closer the values to 1, the better the performances are. The best performances we obtained

were observed when

βn =
n− 1

n+ 1
. (2.6)
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Figure 2.2: Accuracy of Classification for Different Values of α

The final values of parameters we set for pattern-related features are as follow:

Nocc = 2,

LMin = 3,

LMax = 10,

α = 0.03,

βn = (n− 1)/(n+ 1) ∀n ∈ {3, . . . , 10}.

In the next section, we evaluate the model we built and present the results of our experiments.

2.5 Experimental Results

Once the features are extracted, we proceed to our experiments. The Key Performance Indicators

(KPIs) used to evaluate the approach are:

• Accuracy: it represents the overall correctness of classification. In other words, it measures

the fraction of all correctly classified instances over the total number of instances.

• Precision: it represents the fraction of retrieved sarcastic tweets that are relevant. In other

words, it measures the number of tweets that have successfully been classified as sarcastic

over the total number of tweets classified as sarcastic.

• Recall: it represents the fraction of relevant sarcastic tweets that are retrieved. In other

words, it measures the number of tweets that have successfully been classified as sarcastic

over the total number of sarcastic tweets.

We ran the classification using the classifiers “Random Forest” [109], “Support Vector Ma-

chine” (SVM), “k Nearest Neighbours” (k-NN) and “Maximum Entropy”. Table 2.5 presents the

performances of the classifiers on the dataset.



36 CHAPTER 2. SARCASM DETECTION ON SOCIAL MEDIA

Table 2.5: Accuracy, Precision, Recall and F1-Score of Classification Using Different Classifiers

Overall Acc. Precision Recall F1-Score
Rand. Forest 83.1% 91.1% 73.4% 81.3%

SVM 60.0% 98.1% 20.4% 33.8%
k-NN 81.5% 88.9% 72.0% 79.6%

Max. Ent. 77.4% 84.6% 67.0% 74.8%

The overall accuracy obtained reaches 83.1% using the classifier Random Forest for an F1-

score equal to 81.3%. This accuracy is obtained when setting the parameters of the classifier as

follows [109]:

• Number of Features: 20

• Number of Trees: 100

• Seeds: 20

• Max Depth: 0 (unlimited)

SVM, on the other hand, presents a precision equal to 98.1% for a low F1-score equal to 33.8%.

This means that most of the tweets that were classified as sarcastic are indeed sarcastic. However,

a very few percentage of the sarcastic tweets were detected (almost 20%). In other words, SVM

is capable of detecting sarcasm with a high precision and the output can indeed be used to refine

sentiment analysis, however, it does not cover all the sarcastic tweets. In a real stream of tweets,

the number of sarcastic tweets is quite lower than that in the dataset used; therefore, the results

obtained mean that only one out of five sarcastic tweets will be detected. Classifiers such as k-NN

and Maximum Entropy present a high accuracy and F1-scores, however, the results using Random

Forest are the highest. During the preliminary experiments (i.e., parameters optimization) as well

as for the rest of our analysis, the results used are those returned by the classifier Random Forest.

2.5.1 Performances of Each Set of Features

We first checked the performances of classification of each set of features apart. Figs. 2.3 and 2.4

present the performances of the different sets of features.

During cross-validation

Fig. 2.3 shows the performances of classification during cross-validation. We notice that the

performances of the pattern-related features is very high during cross-validation. This has been

discussed in the previous section: the value of α as chosen makes each tweet in the training set the

closest to itself. This explains the very good results obtained by Davidov et al. [77].

On the other hand, we notice that the syntax-related features present a very low accuracy and

recall. The features seem to be not very efficient, if used alone, to classify the tweets as sarcastic

and non-sarcastic. One reason is the low presence of these features in the data set. TABLE 2.6

shows the existence rate of each of the features in the training set. In addition, due to the informal

language used in Twitter and the noise it has, the PoS-tagger performances are lower than when
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Figure 2.3: Accuracy of Classification During Cross-Validation for each Family of Features

Table 2.6: Ratio of Presence of Syntax-Related Features in the Training Set

True False Ratio
Presence of uncommon words 243 5757 4.05%

Presence of common sarcastic patterns 115 5885 1.92%
Presence of interjections 410 5590 6.83%

Presence of laughters 224 5776 3.73%

applied to a formal text. In particular, the PoS-tagger is not very efficient to detect interjections,

it classifies them in many cases as nouns. However, the precision given by this set of features,

and which exceeded 65% shows the importance of such features to detect sarcastic components. It

refers to the number of sarcastic tweets over the number of tweets judged as sarcastic. Although,

they perform poorly, these features might have higher added value when correlated with other

features, or if their presence is more frequent.

Punctuation-related features and sentiment-related features have higher prediction rate. They

are more efficient, though they perform worse than pattern-related features. They both give an ac-

curacy almost equal to 60%. Furthermore, the precision of sentiment-based features is remarkably

higher than the accuracy. In other terms, from the tweets that have been classified as sarcastic, the

prediction rate is high. This can be explained by the fact that tweets having contrasting emotional

content are likely to be sarcastic. Thus, if detected, they would be classified as sarcastic.

On a test set

Fig. 2.4 shows the performances of classification on our test set. Performance of the classification

on unknown data is clearly lower than that during cross-validation. However, we can notice that

the sets of features that have the highest merit during cross-validation are the same ones that have

the highest merit during the classification of test set tweets.
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Figure 2.4: Accuracy of Classification of the Test Set for each Family of Features

The low accuracy of syntax-related features is due to their low presence in the test set too.

As for Pattern-related features, they have higher performances. Accuracy and precision have very

close values. This can be explained by the fact that, contrarily to sentiment-based features for ex-

ample, which check the existence on some characteristics related to sarcasm in the tweets, patterns

are extracted from both sarcastic and non-sarcastic tweets, and the closeness to these patterns is

checked.

2.5.2 Overall Performances of the Proposed Approach

Together, the features perform better than each one by itself. Fig. 2.5 shows the performance of

the proposed approach when all the features are used.

During cross validation, both the accuracy and precision are higher than 90%. The recall is

lower than 89%. More interestingly, the accuracy obtained for the test set, before enrichment of

the patterns, exceeds 72% with a precision higher than 73%. This shows that, if combined, the

different sets of features, perform better. Although our data set contains many sarcastic tweets

that are hard to identify even by humans (we referred to the hashtag “#sarcasm” to classify them),

the accuracy obtained is high. The enrichment process added more potential to the approach and

increased the accuracy of the classification noticeably. The precision also increased compared to

that without enrichment. It reflects the fact that most of the tweets that have been classified as

sarcastic really are. Recall, on the other hand, has a lower value, though still better than before

enrichment. It shows that, many of the sarcastic tweets were not well classified. As mentioned

before, tweets of sarcasm level 3 are very difficult to be distinguished from the non sarcastic ones,

therefore, we believe that many of the sarcastic tweets that were not classified as sarcastic fall in

this category. Nevertheless, this can be enhanced if we use more tweets for enrichment or in the

training set.

To measure the potential of our method, we consider the approach proposed by Riloff et al.

[96] as well as the n-gram-based approaches as our baseline. In addition to the aforementioned
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Figure 2.5: Accuracy of Classification Using all Features During Training Set-Cross-Validation
and on the Test Set

KPIs, we define a fourth one, which is the F1 score defined as follow:

F1 = 2 · precision · recall
precision+ recall

(2.7)

It combines the precision and recall, therefore it represents a more reliable KPI to compare differ-

ent approaches.

The results of the comparison of our approach with the baseline ones are given by TABLE 2.7.

Our proposed approach clearly outperforms the baseline ones, for the used data set: not only it has

a higher accuracy and precision, our method’s F1 score is neatly higher than that of the baseline

ones.

To begin with, although it performs well when detecting a specific type of sarcasm, the ap-

proach proposed by Riloff et al. [96], performs poorly in our data set since most of the sarcastic

tweets do not fall in the type of sarcasm where a positive sentiment contrasts with a negative situa-

tion. This explains the high precision of that approach and its low recall. In other words, if judged

as sarcastic using this approach, a tweet is very likely to be indeed sarcastic. However, judging

one as such is less likely to happen. To recall, the approach proposed by Riloff et al. [96] starts

with a single seed word “love”, build up two dictionaries of positive verbs and negative situations,

and uses these dictionaries to identify the case of sarcasm where a positive verb co-occur with a

negative situation. This is obviously not the only way to express sarcasm, thus the low recall.

The n-gram approach on the other hand lacks behind for more obvious reasons: while it is

always possible to identify sentimental sentences (i.e., positive or negative ones) by relying on

individual words or expressions composed of 2 or 3 words, it is very difficult to identify sarcas-

tic statements just be relying on such limited amount of words. Sarcasm detection requires an

understanding of the entire sentence or at least a longer expression.

Compared to more sophisticated approaches such as that proposed by Davidov et al. [77] or

Rajadesingan et al. [78], our approach, although it does not require a big training data set, or
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Table 2.7: Performance of the Proposed Approach Compared to the Baseline Ones

Accuracy Precision Recall F-Score
n-grams 65.9% 82.2% 40.6% 65.9%

Riloff et al. [96] 59.4% 65.0% 40.8% 50.1%
Proposed approach 83.1% 91.1% 73.4% 81.3%

a knowledge base of the users, presents competitive results. The two approaches were not re-

implemented and run on our data set for the reason that we do not have a previous knowledge of

the users as in [78], nor do we dispose of 5.9 million tweets to classify words into context words

and highly frequent words as in [77]. However, our proposed presents an F1 score close to that of

the approach [77] which is 82.7% (on the Twitter data set) and an accuracy close to that of [78]

which is 83.46%.

2.6 Use of Sarcasm to Enhance Sentiment Analysis Performance

Given a set of tweets dealing with different topics, we want to deduce for each one of them if it

deals “positively” or “negatively” with its theme. Therefore, from each tweet, we extract a set of

features, refer to a training set and use machine learning algorithms to perform the classification.

2.6.1 Data

The tweets are collected from a big Twitter dataset, publicly available to be used in academia7.

We selected a collection of tweets “classifiable” by humans to positive or negative. Tweets which

are irrelevant or emotionless are discarded. We then manually annotated them into “positive” and

“negative”. Tweets are also selected in a way to belong to one of the following topics: politics,

phone reviews, sports, movie reviews and electronic products (other than phones) reviews. We

added an extra topic we called “general” for tweets that do not belong to any of the aforementioned

topics.

We created two datasets as described: a set of 20 000 tweets for training, and a set of 1200

tweets for test. TABLE 2.8 shows how tweets are split into training and test sets. For the purpose

of our study, we selected 5% of the tweets in a way to be sarcastic.

2.6.2 Features Used

Sarcasm, despite its definition, does not always mean that what is said is the opposite of what

is meant. Therefore we should not assume the polarity of the tweet automatically to the oppo-

site when sarcasm is employed. Therefore, we extract the following features as described in the

previous section:

• The contrast features described in Section 2.4,

• The presence of a repeated vowel in an emotional word,

7http://help.sentiment140.com/for-students
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Table 2.8: Structure of the Dataset Used

Positive Negative
Topic Training Test Training Test
General 5165 120 5165 120
Sports 670 120 670 120
Phone reviews 815 120 815 120
Movie reviews 1405 96 1405 96
Electronic products reviews 1371 96 1371 96
Politics 574 48 574 48
Total 10 000 600 10 000 600

• The use of uncommon words,

• The number of laughters,

• The number of interjections, and

• The existence of sarcastic patterns.

These features have been added to a set of features we proposed in a previous work [113] to

perform sentiment analysis. The features introduced in [113] are the following:

• The number of positive words and that of negative ones,

• The number of highly emotional positive words and that of highly emotional negative ones,

• The ratio of emotional words,

• The number of positive hashtags and that of negative ones,

• The number of positive emotions, that of negative ones and that of neutral ones,

• The number of question marks and that of exclamation marks.

The total number of features used is 23. We run our experiments using the new set of fea-

tures and compare the results of this approach to the one where sarcasm-related features are not

included.

2.6.3 Experiment Results

Classification is conducted using Naive Bayes, SVM, and Maximum Entropy algorithms. Table.

2.9 shows the accuracy of sentiment classification before and after taking sarcasm-related fea-

tures into consideration. The results show a noticeable enhancement after taking the sarcasm into

consideration. Albeit the low number of sarcastic tweets in our test set (i.e., less than 5%), our

approach helped enhance the results.

In addition, since most of the sarcastic tweets are basically negative tweets that have been

classified as positive, we focus on the recall of negative tweets. We compared the recall before

and after taking sarcasm into consideration. TABLE 2.10 shows that the recall has noticeably

increased after taking sarcasm into consideration. In other words, many of the tweets, previously

classified wrongly as positive are now well classified.



42 CHAPTER 2. SARCASM DETECTION ON SOCIAL MEDIA

Table 2.9: Accuracy of Sentiment Analysis Before and After Adding Sarcasm-Related Features

Classifier Naive Bayes SVM Max Entropy
Before 82.94% 83.67% 82.45%
After 84.92% 87.00% 83.7%

Table 2.10: Recall of Negative Tweets Before and After Adding Sarcasm-Related Features

Classifier Naive Bayes SVM Max Entropy
Before 83.9% 85.7% 82.3%
After 85.9% 92.0% 83.8%

2.6.4 Discussion

Presence of sarcasm has always been one of the main misclassification reasons. Throughout this

section, we have demonstrated that is always possible to enhance sentiment analysis accuracy just

by identifying sarcastic statements. Despite being fast, the identification of sarcastic statements

prior to sentiment analysis might not be very practical. It is always a better option to evaluate how

much sarcasm is present in the data set and decide whether or not to add this extra step.

In addition to sarcasm, several other misclassification reasons exist, namely the absence of

sentiment indicators, the context-dependency, etc. In such case, if the individual pieces of text

don’t matter, and the overall accuracy is what matters, it is always possible to use other techniques

to get an accurate overview of the opinion of users. For example, it is possible to use several

small test sets, run the classification (regardless of how good the results are), compare the results

to the expected ones, and learn how to adjust the ratio of the different classes. This allows, when

performing the classification on unknown data sets to evaluate accurately the distribution of the

different classes. This process is referred to in several works as “quantification”, however, it is out

of the scope of the current thesis.

2.7 Conclusion

In this chapter, we described our method to detect sarcasm in Twitter. The proposed method makes

use of the different components of the tweet. Our approach makes use of Part-of-Speech-tags to

extract patterns characterizing the level of sarcasm of tweets. The approach has shown good

results, though might have even better results if we use a bigger training set since the patterns we

extracted from the current one might not cover all possible sarcastic patterns.

We also proposed a more efficient way to enrich our set with more sarcastic patterns using an

initial training set of 6000 Tweets, and the hashtag “#sarcasm”.

We then have demonstrated the importance of detection of sarcastic statements to enhance

sentiment analysis and opinion mining: we proposed a method to detect sarcastic tweets, and

proved how the recognition of sarcastic tweets helps boosting the sentiment classification.
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3.1 Introduction

Twitter, as well as other Online Social Networks (OSN) and microblogging websites became lit-

erally the biggest web destinations for people to communicate with each other, to express their

thoughts about products [114] [58] or movies [59], share their daily experience and communicate

their opinion about real-time and upcoming events, such as sports or political elections [68], etc.

While new platforms such as Snapchat1 focused on video- and multimedia-based communi-

cation, Twitter, for its properties that we have introduced in Chapter 1, remains a ver interesting

subject of data mining. Thanks to these properties, this ecosystem presents a very rich, source

of data to mine. However, due to the limitation in terms of characters (i.e. 140 characters per

tweet), mining such data present lower performance than that when mining longer texts. In ad-

dition, classification into multiple classes remains a challenging task: binary classification of a

text usually relies on the sentiment polarity of its components (i.e., whether they are positive or

negative); whereas, when positive and negative classes are divided into subclasses, the accuracy

tends to decrease remarkably.

In this chapter, we propose an approach that relies on writing patterns, and special unigrams to

classify tweets into 7 different classes, and demonstrate how the proposed approach presents good

performances (i.e., classification accuracy and precision). The main contributions present in this

chapter are as follows:

1. We introduce SENTA (SENTiment Analyzer), a user-friendly tool that allows the extraction

of a wide set of features from texts that cover both the content and the form,

2. We introduce, in addition to some conventional features, writing pattern-related features to

help enhance the accuracy of classification,

3. We use SENTA to extract a set of features to classify tweets into 7 different sentiment

classes.

The remainder of this chapter is structured as follows: In Section 3.2 we present our moti-

vations for this work and in Section 3.3 we describe some of the related work. In Section 3.4,

we present SENTA, our tool to extract different features from tweets, and that we will use later

on to perform the multi-class classification. In Section 3.5 we describe in details the proposed

method. In Section 3.6 we detail our experiments and the results obtained. Section 3.7 concludes

this chapter and proposes possible directions for future work.

3.2 Motivations

3.2.1 Why Multi-Class Sentiment Analysis?

Social networks and microblogging websites such as Twitter have been the subject to many studies

in the recent few years. Automatic sentiment analysis and opinion mining present a hot topic of

study. Social networks present a huge source of data representing the opinions of a significant, yet

totally random, proportion of users and customers who are using a product of a service. However,

1https://www.snapchat.com
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due to the informal language used, the presence of non-textual content and the use of slang words

and abbreviations, classification of data extracted from such microblogging websites is rather

a challenging task. Ghag et al. [115] defines “Hidden Sentiment Identification” which is the

identification of the real feeling rather than the sentiment polarity, “Handling Polysemy” which is

the existence of multiple meanings that might have different sentiment polarity for the same word,

and “Mapping Slangs” which is the identification of the meaning and the polarity of slang words,

among others as the most challenging tasks facing the sentiment analysis of short microblog texts.

On a related context, the state of the art proposed approaches are mostly focusing on the binary

and ternary sentiment classification. In other words, they classify texts either into “positive” and

“negative”, or into “positive”, “negative” and “neutral”. However, to study the opinion of a user, it

would be more interesting to go deeper in the classification, and detect the sentiment hidden behind

his post. Following two examples of tweets which are negative, however, reflect two completely

different aspects:

• “Damn damn.. no iPhone support for windows XP x64. There are some workarounds, but I

can’t figure this out.”

• “Nooooooooooo! My iPhone glass cracked :(”

In the first example, the user is expressing his fury towards the absence of support of his phone on

an operating system. However, in the second he is expressing some feeling of sadness because of a

physical problem his phone faced. The first example shows some important information regarding

the satisfaction of the user, therefore, it might be more important to study. However, in general,

both information can be used, yet, they have to be distinguished from each other.

3.2.2 The Need for an Open-Source Tool for Feature Extraction from Tweets

Nowadays, a variety of tools such as LIWC [116] offer the option to extract advanced features

for different languages from texts, most of these tools are paid and require some programming

knowledge to use.

In addition, to the best of our knowledge, none of these tools offer the possibility to extract,

in a flexible way, writing patterns, that can be used to enhance the performances of classification

tasks such as the detection of sarcasm or, as in the current work, the multi-class sentiment analysis.

Therefore, arises the need for a more flexible, yet easy to use and user-friendly tool that al-

lows the extraction of multiple types of features, while offering the possibility to customize them

depending on the use case, to obtain performance as high as possible.

In this chapter, we present the first version of SENTA, an open-source tool that performs the

extraction of features so they can be used by tools such as Weka [105] to perform the classification.

This tool, as described, is publicly open for any contribution, and hopefully makes a start point

for an open-source efficient tool to perform text classification for any purpose.
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3.3 Related Work

Twitter data mining has been a hot topic of research in the last few years. Nature of the data mined

varies widely depending on the aim and the final result expected. Consequently, the techniques

used to process data and extract the needed information are different.

Akcora et al. [11] proposed a method to determine the changes in public opinion over the

time, and identify the news that led to breakpoints in public opinion. In a related context, Sriram

et al. [57] proposed a method to classify tweets depending on their natures into a set of classes

including private messages, opinions and event, etc.

However, most of the work has been focusing on the content of the tweets and how to extract

opinions of users towards specific topics or objects. The work of Pang et al. [23] presented the

pioneer work for the use of machine learning to classify texts based on their sentiment polarity. In

their work, the authors used unigrams, bigrams and adjectives in different ways to classify a set

of movie reviews into positive or negative. Other works iterated more on the idea, and new types

of features have been used for the classification, depending on the aim and application: Boia et

al. [81] and Manuel et al. [82] proposed two approaches that, respectively, rely on emoticons to

detect the polarity of tweets and on slang words to assign a sentiment score to online texts. These

two works proved how non-textual components can be used to detect the polarity of a text.

More recent works went deeper, and new models have been built: Gao et al. [117] pro-

posed a recent approach that focus in the repartition or the frequency of sentiment classes in the

set they analyze. Moving from classification to quantification, the authors concluded that us-

ing a quantification-specific algorithm presents a better frequency estimation than using regular

classification-oriented algorithms.

Few works have been conducted on the multi-class sentiment analysis. Most of them focused

on assessing the sentiment strength into different sentiment strength levels (e.g., “very negative”,

“negative”, “neutral”, “positive” and “very positive”) or simply give numeric sentiment scores

to the texts [118, 119]. Nevertheless, other works were conducted to classify texts into differ-

ent sentiment classes: Lin et al. [120, 121] proposed an approach that classifies documents into

reader-emotion categories. They relied on what they qualify as similarity features and word emo-

tion features along with other basic features. The approach, although it shows some potential, is

oriented towards the reader rather than the writer. Therefore, the sentiment classes proposed are

different from what a writer might intend to show. Similarly, Ye et al. [122] studied the prob-

lem of emotion detection of news articles from reader’s perspective, and tried various multi-label

classification methods and different strategies for features selection to conclude which are to be

adopted to solve the problem. Liang et al. [123] proposed an emoticon recommendation system

that recommends emoticons for posted texts to help to author decide which emoticon to insert to

show what he intends.

3.4 SENTA - A Tool for Features Extraction from Texts

SENTA is a user-friendly tool we developed to extract different features from the tweets, and texts

in general, to perform in a later step the classification of tweets/texts into different classes. The

features extracted vary widely, and cover the context as well as the form of the text.
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SENTA has several graphical interfaces that allow the user to easily input his data, choose the

features he wants to extract, and save the output in different formats. In this work, we have used

SENTA to extract the necessary features that we used to perform the task of multi-class sentiment

analysis in Twitter.

3.4.1 Tools

SENTA was built using Java and Java FXML. While many libraries were used to build this pro-

gram, mainly OpenNLP was exploited in most of the tasks. OpenNLP has been used to perform

the NLP basic tasks such as the tokenization, Part-of-Speech (PoS) tagging and the lemmatization

of the texts (i.e., tweets in our case).

3.4.2 Convention

For the rest of this Section, the user of the program SENTA will be referred to as “the user”, while

the Twitter user whose tweet is processed will be referred to as “the twitterer”

In addition, by interface, we mean a graphical user interface of SENTA.

3.4.3 Pre-Processing of Tweets

During this work, we pre-process each tweet as shown in Fig. 3.1: we start by removing the URLs,

tags at the beginning of the tweets and irrelevant content. We then use OpenNLP to tokenize the

tweet, get the PoS tags of the obtained tokens, and refer to both (tokens + PoS tags) to get the

lemmas of all the words. We then generate what we call a negation vector of the tweet. A negation

vector is a vector having the same length as that of the tokens. If the tweet contain a negation word

(e.g., “not”, “never”, etc. ), all the tokens (words) that come after, until the next punctuation

mark are considered as negated, and are attributed a value equal to 1 in the corresponding negation

vector. This will help later detect which words are positive and which are negative. Obviously,

many works such as [124] present better solutions to handle the presence of negation and polarity

shifting in sentiment analysis, however, we opted for this more straight-forward, yet less complex

and faster approach.

We also made an internal tool that decomposes the hashtags into words referring to a dictionary

of words occurrence probability as we will describe later on in this work. This decomposition is

used also for detecting any sentiment hidden in the hashtags. On a small set of hashtags (i.e., 100

different hashtags) our tool reached a good accuracy of decomposition that reached 88%.

3.4.4 Graphical User Interfaces

Main windows

Project type window As mentioned above, SENTA was developed as a user-friendly tool to

extract different possible features from texts. Therefore, to assist the user all over the process,

different interfaces are present.
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Figure 3.1: Pre-Processing of Tweets

From the first window shown in Fig. 3.2, the user chooses whether he wants to open an already

existing project, import features from an existing file (and eventually add them to the ones he will

extract once he goes to the next step), or start a new project.

Import project window The import of an existing project supposes that a project has already

been created. SENTA allows the user to save an existing project in a file with the extension

“*.senta”, along with the different files required to load the project.

Fig. 3.3 shows the interface displayed when the user chooses to open an existing project. He

has the choice to browse his computer to look for a project, or to select directly one of the recently

opened/created projects.

After the selection of the file, the user needs to click “Get” to collect the different options,

parameters and features to be collected.

• Project type: this refers to whether the sets used in the existing project are a training set and

a test set or a training set and a non-annotated set. The difference between a test set and a

non-annotated set will be explained later in this section.

• Project name: the name of the project as saved earlier, and this cannot be changed for the

existing project, but when saving the current project, the user might choose a different name.

• Training and test files: these are the data sets used previously.
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Figure 3.2: The “Main” Window of SENTA

Figure 3.3: The “Open an Existing Project” Window
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Figure 3.4: The “Import Features” Window

• Sentiment classes: these are the classes that the tweets are supposed to be classified to

(extracted from the training set)

• Features file: the different sets of features and feature parameters as selected previously for

the opened project.

• Extra files: these are used to make the feature extraction faster, if they have previously been

extracted and saved in the corresponding files. These will be explained further later.

For the same project, the user can choose a different training and/or test set (or non-annotated

set). He can also choose not to use the old set of features, and select new ones.

Import features window As stated above, in addition to the extraction of features, SENTA

allows the import of extra features, which have been extracted using external tools) so that they

are added to the set of features extracted by SENTA. Fig. 3.4 shows the window where the extra

features can be imported.

In addition to the training and the test/non-annotated sets themselves, the user inputs 2 files

corresponding to the extra features.

The user needs to specify the format of the file. Only a Weka file (i.e., “*.arff”), a text file (i.e.,

“*.txt” tabulation separated) or a CSV file (i.e., “*.csv” comma separated), can be imported.
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Figure 3.5: The “Start a New Project” Window

The extra features extracted from both the training and the test/non-annotated set need to be

provided for all the instances (tweets). In case one of the files is missing or in case of inconsistency

in terms of number of instances, the extra features will be dismissed entirely.

Once the user specifies the location of all the files, he needs to click on “Collect features” to

get the tweets and their features. The training and test/non-annotated sets have a specific format

required that will be discussed later on. However, regarding the extra features files, they are highly

recommended to contain the Tweet ID field so that the features can match the actual tweets col-

lected from the data sets. If such a field does not exist, the features will be attributed automatically

to the tweets in the same order. Obviously in case of inconsistency (e.g., the number of lines in

the data set file and the features file are not equal) the features file will be dismissed.

Creation of a new project window However, during this work, no features, other than the ones

extracted with SENTA are used. Therefore, we opt for the creation of a new project. To start a

new project, the user is supposed to provide two datasets: a training set and either a test set or a

non-annotated set as shown in Fig. 3.5. The training set and test set have to contain at least the

following attributes:

• Tweet ID: this is the unique ID of the tweet, that will be used in the rest of the work to

identify the tweet and that will be used later to save the tweets features.
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• Username: the name of the twitterer who posted the tweet. While this information is not

used for any purpose during this work, this information might be needed in a future exten-

sion (e.g., to detect the gender/location of the user as extra features).

• Tweet message: the content of the tweet itself.

• Class: the user-defined class of the tweet.

The last attribute supposes that the tweets have already been manually annotated by the user,

and therefore can be used for training and/or testing. For the same reason, if the user decides to opt

for a non-annotated set, in which case he will extract the features and try to perform the prediction

of the classes of the different tweets, this attribute is not supposed to be provided, and if given is

simply ignored.

Once the files containing the data sets are selected, the user can check the different classes by

selecting “Load classes”. The user has also the possibility to add extra classes. While this might

seem irrelevant and meaningless at this point, these extra classes can be used later to extract extra

features (e.g., Unigram features), to enhance the accuracy of classification. This will be discussed

later on in this Section.

Feature selection window After the collection of the training tweets and the test/non-annotated

tweets, the user is supposed to select the features he wants to extract. The features that can be

extracted using SENTA are divided into 7 different sets as shown in Fig. 3.6 that we will cover

later on. However, note that all the interfaces that manage the extraction of features are similar.

The 7 sets of features are:

• Sentiment-related features

• Punctuation features

• Syntactic and stylistic features

• Semantic features

• Unigram Features

• Top words

• Pattern-related features

To select a set of features, the user has to check it, and then customize it. The small question

mark button next to the name of the set of features opens a help window that explains what the set

of features does, and how to configure it.

The features selection along with their parameters can be exported and re-imported for a future

project any time.

Once the features and their associated parameters are set, on the main window, the number of

features to be extracted for each family of features is displayed.
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Figure 3.6: The “Features Selection” Window

Save project window The user is then called to choose the different options to save his project

as shown in Fig. 3.7, where he has to specify a name for his project, a location for it to be saved,

along with the different save options including the type of output and whether some extra data are

to be saved or not.

Inside the project directory specified, a subfolder will be created and named after the project

name.

The features qualified as “Top words” and “Pattern-related features” require the extraction

of some words, expressions or patterns from the training set (or an independent set other than

the test/non-annotated set) as we will discuss later. However, given the fact that this procedure

takes some time, or that the user might prefer to extract these dictionaries from an independent

set, SENTA offers the option to let the user import these from a different source (and checks if

they are valid or not). SENTA also allows him to save the patterns and/or top words at this stage

that will be extracted from the current training set (this requires that the user already selected these

features to be extracted).

The features, once extracted, can be saved in different formats: a Weka file (i.e., “*.arff”), a

text file (i.e., “*.txt” tabulation separated) and/or a CSV file (i.e., “*.csv” comma separated).

Start extraction window Once the project details have been set, the user can start the feature

extraction, and keep track of which task is currently being run as well as the tasks already finished
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Figure 3.7: The “Save Project” Window

as shown in Fig. 3.8. The time displayed is in seconds (s). The user can also pause the task any

time but this will not free any space in the memory neither free the thread being run.

Project Summary window The last interface in the main windows is a recapitulation of the

project along with the output files is displayed as shown in Fig. 3.9.

The recapitulation includes in addition to the project name, directory and type, the location

and size of the training and test sets, and the files generated along with the project file.

From this point the user can go to the previous interface, go back to the main interface or open

in the system explorer the project directory to browse the saved files.

Feature customization windows

Feature customization window appears when a user presses the button “customize”. For all the

sets of features, we added the button “Default” that selects by default the features that we used to

perform the multi-class classification in the rest of this work to make it easy to replicate.

Sentiment features Sentiment features are features which rely on the sentiment polarities of the

different components of the text such as the words themselves, emoticons, hashtags, etc. These

features are extracted using already-built dictionaries and small sub-tools we use internally. No-

ticeably we referred to SentiStrength to build our dictionary of emotional words, however, we are
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Figure 3.8: The “Start of Collection and Project Progress” Window

Figure 3.9: The Window Displaying the “Summary of the Project”
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Figure 3.10: The “Sentiment features customization” window

currently building our own. Sentiment features are divided into 5 sub-categories as shown in Fig.

3.10:

- Textual features: these are features that deal with the textual component of the tweet. These

include the following features:

• Number of positive words

• Number of negative words

• Number of highly emotional positive words (i.e., words having score returned by Sen-

tiStrength greater or equal to 3)

• Number of highly emotional negative words (i.e., words having score returned by Sen-

tiStrength less or equal to -3)

• Number of capitalized positive words

• Number of capitalized negative words

• Ratio of emotional words ρ(t) defined as

ρ(t) =
PW (t)−NW (t)

PW (t) +NW (t)
(3.1)

where t is the tweet, PW and NW are the total score of positive words and that of negative

words as returned by SentiStrength. In case the tweet does not contain any emotional word,

ρ is set to 0.
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Figure 3.11: The “Punctuation Features Customization” Window

- Emoticons-related features: these include the count of positive, negative, neutral and joking

(or ironic) emoticons. Emoticons qualified of neutral are ones who do not show clear emotion such

as “(. .)” while joking emoticons are ones used sometimes with ironical or sarcastic statements

(e.g., “:P”).

- Hashtags-related features: these include the count of positive and negative hashtags. To

decide on a hashtag’s polarity, we defined a simple probabilistic model that decomposes the tweet

into words, and detects the polarity of the resulting expression.

- Slang words-related features: these include the count of positive and negative slang words.

To extract these we refer to a dictionary containing the most common slang words along with their

polarities.

- Contrast features: these detect whether there is any contrast between the different compo-

nents. By contrast we mean the coexistence of a negative component and a positive one within the

same tweet, whether the two components have the same nature (e.g., words, emoticons, etc.) or

different natures (e.g., words vs emoticons, etc.). In total 5 features are extracted which include

the contrast between words, between hashtags, between words and hashtags, between words and

emoticons and between hashtags and emoticons.

Punctuation features Punctuation features are ones related to the use of punctuation marks as

well as the capitalization of words, etc. as shown in Fig. 3.11. They are divided into 4 sub-

categories:

- Punctuation marks: these include the number of full stops, commas, semicolons, exclama-

tion marks and question marks.
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Figure 3.12: The “Stylistic and Semantic Features Customization” Window

- Parentheses and similar symbols: these include the number of parentheses, brackets and

braces.

- Words and characters these include the count of words and characters, the average number

of words and characters per sentence, etc.

- Apostrophe and quotation marks

Syntactic and stylistic features Syntactic and stylistic features are ones related to the use of

words and expressions in the tweet/text. They are divided into 3 sub-categories as shown in Fig.

3.12:

- Use of content words-related features: content words are nouns, verbs, adjectives and

adverbs. The features extracted are the count and the ratio of each aside.

- Syntactic features: these are related to the use of some speech forms, proper nouns, and

symbols.

- Use of words: these are features related to the use of non-content words such as particles,

interjections, pronouns, negation. They also include the use of uncommon words (which might

obviously be content words). To judge whether a word is common or not, we referred to a big

amount of texts collected online. We calculated the probability of use of the different words and

qualified the top 5,000 words as “common” while the rest are considered as “uncommon”.

Semantic features Semantic features are ones related to the meanings of words in the language

as well as the logic behind it. Fig. 3.13 shows the features window. In the current version

of the project, very few features are to be extracted. They include the use of opinion words or
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Figure 3.13: The “Semantic Features Customization” Window

expressions, the use of highly sentimental words, the use of uncertainty words and the use of

active and passive forms.

Unigram features Unigram features are kind of special features that are extracted with reference

to dictionaries built according to the user’s defined parameters. Since proposed by Pang et al. [23],

unigrams and n-grams in general, have been used as basic features for sentiment analysis using

machine learning. In the different approaches, unigrams are collected from the training data sets,

and either the count or the presence of these unigrams is used as features for the classification.

In this work, we make use of WordNet [125] to collect unigrams related to each sentiment class.

The user is supposed to come up with a small set of seed words few in number for each class, and

used WordNet to collect their synonyms and hyponyms down to a certain depth. The choice of

synonyms and hyponyms is based on the fact that these words are highly correlated with the initial

seed word, and usually describe the same object, if not a more precise one. While synonyms refer

usually to equivalent terms, hypernyms and hyponyms show the relationship between the more

general term and its more specific instances.

A hypernym, or a superordinate, is a broader term than a hyponym, whereas a hyponym is

a word or an expression which is more specific than its hypernym. For example, for the word

“feeling”, two of its direct hypernyms are “perception” and “idea”. The words “happiness”,

“anger” and “fear” are some of its hyponyms.

Hypernyms might lose some of the specificities of the initial word, therefore, in our study, we

collect only synonyms and hyponyms of the seed words. On the other hand, hyponyms also might

lose the original meaning of the word, and collide with some of other classes. Therefore, the depth
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Figure 3.14: Flowchart of the Procedure of Unigram Extraction

down to which we collect the hyponyms is set to a certain value we refer to as Depth (or Dhypo,

which is a parameter to optimize by the user).

This is explained in Fig. 3.14 which shows how the dictionaries are extracted: we start with a

set of seed words for each sentiment class. We then collect the synonyms and hyponyms to get to

new sets of words, from which we further extract the synonyms and hyponyms. The same process

is repeated over and over Dhypo times.

Fig. 3.15 show the different parameters set for unigram features: in SENTA, the extracted

words can be used as individual binary features (i.e., a feature for each word that detects whether

or not that word appear in the tweet/text or not) or they are all summed for each sentiment class,

and the count of words from each set on a given tweet is used as a separate feature. They can also

be separated based on their PoS (i.e., nouns, verbs, adjectives and adverbs each aside) so instead

of having one group of words per sentiment class, the user can get up to 4. This is because the

number of words to be extracted totally has to be set prior to the extraction. The user can also

choose to collect only words of just one or two PoS out of the 4. This set of features has been

proven to be very efficient in detecting the sentiment of tweets as we will discuss later in this

chapter.

The sets of seed words can be defined by pressing “manage seed words”. By default, SENTA

offers seed words for 12 different sentiment classes so that, if any of them is present, when the

user chooses to import default seed words, they are added. The interface showing how to add a

seed word is given in Fig. 3.16. The user types the word, chooses its PoS and the class it belongs

to.

Top Words Top words, as their name indicate, are the words that occur the most in the training

set. Fig. 3.17 shows the parameters related to this set of features: The user can choose the PoS of

the top words to be collected, whether he wants each PoS-related words to be extracted separately,

the number of Top Words per class or PoS, and again whether the features are binary or numeric.

The two parameters “Min Ratio” and “Min Occurrence” define the criteria of extraction of top

words. For a positive sentiment class “A” (e.g. “Happiness”), the ratio of occurrence of this word
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Figure 3.15: The “Unigram Features Customization” Window

Figure 3.16: The “Seed Words Management” Window



62 CHAPTER 3. MULTI-CLASS SENTIMENT ANALYSIS

Figure 3.17: The “Top Words Features Customization” Window

on the positive sentiment tweets over that on all the negative sentiment tweets should be higher

than “Min Ratio”. In addition, it has to occur on the sentiment class “A” more than the value set for

the parameters “Min Occurrence”. In this work, when we run the multi-class sentiment analysis

on our training and test tweets, Top Words have not been used as features, for the reason that they

present some redundancy with unigram features, since many of the words on both collide.

Pattern-related features The idea of our pattern-related features has been in the previous chap-

ter (i.e., chapter 2) and in our work [126], in which we proposed an approach that relies on PoS-

tags to extract sarcastic patterns. In SENTA we elaborated more this kind of features, and made a

more generic approach to extract patterns. Patterns are extracted based on the PoS-tags of words:

the different possible PoS-tags (36 in total, along with a 37th one referring to the punctuation) are

divided into different groups, and given a sentence S, containing n different words, the words of

S are subject to different actions based on their PoS-tag, and according to the rules defined by the

user.

Fig. 3.18 shows the different parameters of the Pattern features: initially, the user defines

whether he wants his pattern to be used each as a separate feature, or summed based on their

length and sentiment class. If the features are separate (i.e., each is a unique feature), only one

pattern length is taken into account, otherwise he can choose a minimal and a maximal length for

patterns. The user then chooses how many categories he wants his features to be divided into, and

specifies the action to do for each category by pressing “Customize”. The different actions for the

different categories are given in Fig. 3.19: a word can be kept as it is, lemmatized, replaced by a

specific expression, or by a user defined expression, etc.
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Figure 3.18: The “Pattern-Related Features Customization” Window

Figure 3.19: The Different Actions for Different PoS-Tags Categories
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Figure 3.20: The “PoS-Tags Categories Customization” window

The user is next supposed to specify for each PoS tag, which category it belongs to by pressing

the button “Define” which displays the window shown in Fig. 3.20.

Later on this work, when performing the multi-class classification, we will give a concrete

example of how patterns are extracted using SENTA. A pattern should occur on a given sentiment

class at least the value of the parameter “Min # of Occurrences” times to be considered. Given a

full pattern T extracted from a tweet, and a pattern P extracted earlier from the training set, we

define the following resemblance function [77]:

res(p, t) =



1, if the tweet vector contains the pattern as it is, in the same
order,

α, if all the words of the pattern appear in the tweet in the
correct order but with other words in between,

γ · n/N , if n words out of the N words of the pattern appear in the
tweet in the correct order,

0, if no word of the pattern appears in the tweet.

The resemblance function defined above is similar to that in chapter 2; however, it has been

adjusted by adding the parameter γ.

If the patterns are used as unique features, each feature takes the value of resemblance as

defined. Otherwise, the patterns are grouped into different groups based on their sentiment class

and length as shown in TABLE 5.2 where L1 · · ·LM are the different lengths of the patterns, and

S1 · · ·SM are the different sentiments (classes).

Given the K patterns {p1, · · · , pk} extracted for the sentiment class Si which resemble the

most the tweet in question, and the length Lj p the value of the feature Fij is

Fij =

K∑
k=1

res(pk, t) (3.2)
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Table 3.1: Pattern Features

Pattern length
L1 L2 · · · LM

1 F11 F12 · · · F1M

Sentiment
...

...
...

. . .
...

Class
SN FN1 FN2 · · · FNM

Fij as defined measures the degree of resemblance of a tweet t to patterns of class i and length j.

Therefore, two more parameters are to be defined by the user which are α and γ.

3.4.5 Extensibility

In its first version, which we introduce here, SENTA extracts some basic features that allow per-

forming tasks such as sentiment analysis, even for multiple classes. However, for more advanced

tasks, we believe that it requires more features to be added.

In the second version, more sets of features we qualified are added. These include “advanced

semantic features” and “advanced pattern features” that extract deeper features from the texts.

However, othor features related to causality, conditionality, differentiation of informative and in-

terrogative form, etc. are to be added.

The different components added to SENTA are detailed in chapter 5.

3.5 Multi-Class Sentiment Analysis - Proposed Approach

3.5.1 Problem Statement

Given a set of tweets, we aim to classify each one of them to one of the following 7 classes: “love”,

“happiness”, “fun”, “neutral”, “hate”, “sadness” and “anger”. Therefore, from each tweet, we

extract different sets of features, refer to a training set and use machine learning algorithms to

perform the classification.

We have chosen the aforementioned sentiment classes for different reasons. First of all, given

our observation during our work [127], we mainly concluded that we needed a balanced amount

of data between negative and positive classes. In addition, while the aforementioned sentiments

are the ones present the most in tweets as observed in [128].

3.5.2 Data

For the sake of this work, we manually collected and prepared 2 datasets as follow:

• Set 1: this set contains 21 000 tweets which have been manually classified into the 7 classes,

each containing 3 000 tweets. This set is used for training. Therefore, in the rest of this work,

it will be referred to as the “training set”.
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Table 3.2: Structure of the Dataset Used

Class Training set Test set
Fun 3000 2643
Happiness 3000 2963
Love 3000 1945
Neutral 3000 4989
Sadness 3000 4528
Anger 3000 1558
Hate 3000 1115

Total 21 000 19740

• Set 2: this set contains 19 740 tweets. All tweets are manually checked and classified into

the 7 classes. This set will serve as a test set. Therefore, in the rest of this work, it will be

referred to as the “test set”.

The structure of the dataset used is shown in TABLE 3.2.

3.5.3 Features Extraction

Under different emotional conditions, humans tend to behave differently. This includes the way

they talk and express their feelings. Therefore, it might be important to rely, not only on the

vocabularies used, but also on the expressions and sentence structures used under the different

conditions, to quantify and model these feelings. Therefore, in the rest of this section, we rely on

these assumptions to extract different sets (or families) of features.

The features are extracted using SENTA, the tool we introduced in Section 3.4.

Sentiment-based features

As stated above, sentiment-based features are ones based on the sentiment polarity (i.e., “posi-

tive”/“negative”) of the different components of tweets. Out of the different features offered by

SENTA, we extract the following ones:

• The number of positive words and that of negative words,

• The number of highly emotional positive words and that of highly emotional negative words,

• The ratio of emotional words,

• The number of positive and negative emoticons,

• The number of positive and negative slang words.

Punctuation-based features

While punctuation do not usually show any sentiments explicitly, except for exclamation marks

maybe, we believe that the excessive use of some (e.g., question marks, exclamation marks, etc.)

shows the strength of some sentiments. For example, the following two tweets might show differ-

ent sentiments according to the annotators:
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- “Why didn’t you go with him?”

- “Why did you tell her???????”

While in both examples, the twitterers are asking questions, in the first one, the annotators

agreed on classifying the tweet as totally neutral, whereas in the second, some of them pointed out

that the twitterer is most likely angry or upset. Even though, it is quite hard to tell whether it is the

case or not, we agree with the annotator on the fact that the second tweet might be sentimental,

regardless of what sentiment is present, while the first one is neutral.

Out of the variety of punctuation features, after our preliminary experiments, we decided to

use the following ones:

• The number of full stop marks,

• The number of exclamation mark,

• The number of Question Marks,

• The total number of words,

• Number of quotation marks.

Syntactic and stylistic features

In addition to the aforementioned sets of features, we also extract features related to the use of

words. We first extract the ratios of nouns, verbs, adjectives and adverbs in the tweets (out of all

the words, including hashtags, symbols, etc.). We also check whether or not the twitterer employed

the comparative and/or the superlative forms.

Furthermore, our experiments showed the usefulness of the following features as good indica-

tors of sentiment polarity, as well as the sentiment class for some of them:

• The total number of particles,

• The total number of interjections

• The total number of pronouns, that of pronouns of group I and II separately,

• The use of negation,

• The use, and the total number of uncommon words.

Semantic features

Semantic features are features that focus on the meanings in the language or the logic inside of

the sentences. While these features have not all been added, we used few of the existing ones,

including:

• The use of opinion words,

• The use of highly sentimental words,
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• The use of uncertainty words,

• The use of the passive form of speech.

Unigram features Vs top words features

“Unigram features”, as described above, are numeric features that rely on WordNet to be ex-

tracted. In brief, a set of seed words for each sentiment class is provided and we use WordNet to

enrich them. We then extract N features (where N is the number of sentiments) by counting, for

a given tweet, how many words from each set exist in it.

“Top words”, on the other hands, are words that are extracted from the training set itself. From

all the training tweets of a given sentiment S, we collect the most commonly used words while

making sure that the words extracted are ones that show the given sentiment (i.e., that the number

of occurrences of any word in the tweets of the sentiment S is higher enough than its occurrences

in the tweets of the other sentiments). These words are used later as indicators (features) to detect

the sentiment of a given tweet.

However, given the nature of these two sets of features, a huge part of the words will overlap,

and create a useless redundancy that we do not need. Therefore, for the sake of this work, we

discarded “Top Words features”, and focused on what we qualified as “Unigram Features”.

We started with 6 sets of words (i.e., for all the sentiments except the sentiment “Neutral”

containing in total 486 words, with an average number of 81 words for each sentiment. The initial

set of words contains an overlapping equal to 0 between words of sentiments of opposite polarities,

while we tolerated some overlapping for sentiment of the same polarities (e.g., the word “enjoy”

is a seed word for both sentiments “happiness” and “fun”). The words selected can be nouns,

verbs, adjectives and adverbs.

Judging from the Fig. 3.21, the overlapping (or duplication) of words in different sentiments

including that in sentiments of different polarities increases rapidly. Even though, these words

are being removed automatically, the duplication is a crucial indicator of where to stop continuing

collecting the words. In this work, we were restricted to a depth equal to 2.

As described above, we use the resulted sets of words to extract 6 features, by counting the

occurrences of the words in the tweet to classify, taking into consideration the score of the words.

Pattern-based features

As described in Section 3.4, patterns are used as a complementary set of features to detect what

unigrams cannot detect: while in most of the cases, sentimental words are enough to tell the

sentiment of a sentence, in other cases, the person employs some specific longer expressions to

express his sentiment. For example, the following tweet shows sentiments of happiness without

employing any sentimental word showing explicitly happiness:

“You took me to the world I always dreamt of!!! Thank you soooo much!”

Even though the word “thank” refers to a positive attitude or sentiment, the tweets contains

sentiments of happiness that the twitterer shows and for which she thanks her friend.

To detect such expressions and learn them, we refer to patterns of speech.



3.5. MULTI-CLASS SENTIMENT ANALYSIS - PROPOSED APPROACH 69

Figure 3.21: Number of Unigrams Collected from WordNet Using the Seed Words Proposed

Table 3.3: Expressions Used to Replace the Words of EI and GFI

PoS-tag Expression
“CD” [CARDINAL]
“FW” [FOREIGNWORD]
“UH” [INTERJECTION]
“LS” [LISTMARKER]
“NN”, “NNS”, “NNP”, “NNPS”, [NOUN]
“PRP”, “PRP$” [INTERJECTION]
“MD” [MODAL]
“RB”, “RBR”, “RBS” [ADVERB]
“VB”, “VBD”, “VBG”, “VBN”, “VBP”, “VBZ” [VERB]
“WDT”, “WP”, “WP$”, “WRB” [WHDETERMINER]
“SYM” [SYMBOL]

We basically divide the PoS tags into three categories: a first one, referred to as EI, containing

words which might have emotional content, a second one, referred to as “CI”, containing non

emotional words whose content is important and a third one, referred to as “GFI”, containing

the words whose grammatical function is important. If a word belongs to the first category, it is

replaced by the corresponding expression shown in TABLE 3.3 along with its polarity (e.g., the

word “good” would be replaced by POS-ADJECTIVE); if it belongs to the second, it is lemma-

tized and replaced by its lemma; and if it belongs to the third, it is replaced by the corresponding

expression shown in TABLE 3.3.

As mentioned above, the classification into categories is done based on the PoS-tag of the

word. The list of part-of-speech tags and their category is given in TABLE 3.4.

We generate the vector of words for each tweet as defined. For example, the following PoS-

tagged tweet “He PRP is VBP dummy JJ , , why WP would VBD you PRP think VBP I PRP

want VBP to TO go VB with IN him PRP !!!! .” gives, among others, the following pattern vector

[PRONOUN VERB NEG-ADJECTIVE . why VERB PRONOUN VERB PRONOUN POS-VERB
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Table 3.4: Part-of-Speech Tag Categories

Class PoS Tags

CI
“CC”, “DT”, “EX”, “IN”, ‘MD”, “PDT”,
“POS”, “RB”, “RBR”, “RBS”, “RP”, “TO”,
“WDT”, “WP”, “WP$”, “WRB”

GFI “CD”, “FW”, “LS”, “NNP”, “NNPS”,
“PRP”, “PRP$”, “SYM”, “UH”

EI “JJ”, “JJR”, “JJS”, “NN”, “NNS”, “VB”,
“VBD”, “VBG”, “VBN”, “VBP”, “VBZ”

Figure 3.22: Accuracy of Classification Using Pattern-Based Features for Different Value of K

to VERB with PRONOUN .] that can be later used to generate smaller patterns following the rules

defined (i.e., minimal and maximal lengths of patterns).

In this work, we opted for the use of patterns of different lengths, so that the features created

are small in number to make the classification task run faster.

Based on our work [127] and with few adjustments, we set that the most adequate values for

Nocc, Lmin, Lmax, α and γ as follows:

Nocc = 3,

Lmin = 3,

Lmax = 10,

α = 0.1,

γ = 0.02,

On the other hand the parameter K has been introduced in this work since we noticed a high

imbalance between the number of patterns for each class. Fig. 3.22 shows the classification

accuracy using pattern-based features for different values of K. According to the figure, the best

value is 5. Higher values enhance the accuracy during cross-validation, but have no big impact on

that of the test set.
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Table 3.5: Binary Classification Accuracy, Precision, Recall and and F-Measure

Accuracy Precision Recall F-Measure
Positive 0.789 0.820 0.789 0.805
Negative 0.835 0.806 0.835 0.820
Overall 0.813 0.813 0.813 0.813

In the next section, we evaluate the model we built, and present the results of our experiments

in the cases of binary, ternary and multi-class classification.

3.6 Experimental Results

After the extraction of features, we run different test using “Random Forest” [109] classifier. We

use 4 Key Performance Indicators (KPIs) to evaluate the effectiveness of our approach: Accuracy,

Precision, Recall and F-measure:

• Accuracy refers to the overall correctness of classification. It measures the ratio of correctly

classified instances over the total number of instances.

• Precision refers to the fraction of the tweets correctly classified, for a given sentiment, over

the total number of tweets classified as belonging to that sentiment.

• Recall refers to the fraction of tweets correctly classified, for a given sentiment, over the to-

tal number of tweets actually belonging to that sentiment. In other words, for one sentiment,

this KPI is nothing different from its accuracy.

• F-measure is defined as follows:

F-measure = 2 · precision · recall
precision+ recall

. (3.3)

3.6.1 Binary Classification

We first run our experiment to detect the sentiment polarity of tweets. For this sake, we remove

the tweets belonging to the class “Neutral”, and grouped the other classes into two main classes

which are “Positive” and “Negative”. The former class contains tweets from the classes “Fun”,

“Happiness” and “Love”, while the latter contains tweets from the classes “Hate”, “Anger” and

“Sadness”. TABLE 3.5 shows the results of classification. The accuracy obtained reaches 81.3%.

Noticeably, the recall of negative tweets is the highest (i.e., 83.5%), however the precision of

positive tweets is the highest (i.e., 82.0%). This means that tweets which are classified as positive

are mostly positive. However, tweets which have negative polarity tend to be classified more

correctly as shown in the confusion matrix presented in TABLE 3.6.

The classification presents a noticeably low accuracy compared with that of our work [127].

This is because in that work, we exploited the information regarding the detailed sentiment class

for unigram features and pattern features. In other words, when we extracted the features from

the training and the test set, we counted unigrams belonging to the classes “Happiness”, “Love”,

“Anger”, etc. on tweets of the training set and the test set. Furthermore, we extracted patterns



72 CHAPTER 3. MULTI-CLASS SENTIMENT ANALYSIS

Table 3.6: Binary Classification Confusion Matrix

Class Classified as
Positive Negative

Positive 5 684 1 516
Negative 1 245 6 306

related to these detailed sentiments and used them to measure the resemblance between the training

and the test tweets. While that was fair and acceptable given the fact that we dispose of a training

set with the detailed sentiment sub-classes, for a more general case, where a person wants to

classify tweets into “Positive” and “Negative”, such information might not be provided, and so

the training set will contain tweets classified only as “Positive” and “Negative”. Therefore, in

this work, we used the training set as a set of tweets having initially only two classes: only two

unigram features are extracted, and patterns are also extracted from the training set in only two

subsets: positive patterns and negative patterns.

3.6.2 Ternary Classification

Despite its importance, binary classification supposes that the given data are already known to

be emotional. However, Twitter contains many tweets which have no emotional polarity such

as news tweets, etc. Therefore, in this subsection we add neutral tweets as shown before in the

description of our dataset. We then rely on the same set of features to classify the tweets. As

described previously, no information regarding the sentiment sub-class is given or exploited here.

The results obtained are given in TABLE 3.7, and the confusion matrix of classification is given

in TABLE 3.8.

The obtained results show that the introduction of the third class decreases noticeably the

accuracy to reach 70.1%. The new class (i.e., “Neutral”) presents a low accuracy and a low

precision. This can be explained by the fact that the amount of training data (i.e., number of

tweets) for this class is lower than that for the other classes. In addition, tweets, regardless of their

content tend to be polarized (i.e., either classified as positive or as negative). This is because most

of the features used, except for the pattern features, are ones that try to detect any sentimental

component in a given tweet, or find any resemblance of the tweet to ones in the training set (which

is highly unbalanced in favor of the sentimental classes over the neutral class).

Overall, the results obtained are promising.

Table 3.7: Ternary Classification Accuracy, Precision, Recall and F-Measure

Accuracy Precision Recall F-Measure
Positive 0.769 0.737 0.769 0.753
Negative 0.743 0.724 0.743 0.733
Neutral 0.537 0.598 0.537 0.566
Overall 0.701 0.697 0.701 0.699
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Table 3.8: Ternary Classification Confusion Matrix

Class Classified as
Positive Negative Neutral

Positive 5806 924 821
Negative 874 5348 978
Neutral 1196 1114 2679

3.6.3 Multi-Class Classification

In this subsection, we use the 7 sentiment classes that we described in Section 3.5. The classifica-

tion results are given in TABLE 3.9, while the confusion matrix is given in TABLE 3.10.

Despite the number of classes, the accuracy obtained is equal to 60.2%, with a precision that

reaches 60.8%. More interestingly, some sentiments seem to be easier to detect than others. In

particular, tweets belonging to the class “Love” and those belonging to the class “Hate” were

classified with an accuracy equal to 75.2% and 90.9% respectively. This shows that tweets be-

longing to these classes are easily distinguished from other classes. This might be due to the

fact that other classes, such as “Happiness” and “Fun” for example are very close to each other.

Therefore, many tweets of one class are classified as if they belong to the others.

The class “Neutral” on the other side, presents the lowest precision. Many tweets, from all

the other classes were classified as neutral. While this does not go along with our observations

on [127]. We believe that the main difference is that our current training set presents a cleaner

reference for training. The training set used in [127] contains a lot of noise, and most of the noisy

data are mainly neutral, but are used for the other classes, which resulted in a misclassification of

most of the neutral tweets, and made the class “Neutral” present a very low recall.

3.6.4 Discussion

Classifying tweets is, to begin with, a difficult task given the very limited size of tweets. The

challenges presented in Section 3.2 were tackled by many researchers, however, remain still not

completely solved. With reference to this work, we can confirm that classifying tweets into sepa-

rate sentiment classes is a challenging task: as mentioned above, many tweets present more than

one sentiment. Therefore, a more interesting task would be quantifying the sentiments present in

Table 3.9: Multi-Class Classification Accuracy, Precision, Recall and F-Measure

Class Accuracy Precision Recall F-Measure
Fun 0.407 0.605 0.407 0.487
Happiness 0.543 0.586 0.543 0.564
Love 0.752 0.629 0.752 0.685
Nneutral 0.678 0.523 0.678 0.590
Anger 0.622 0.630 0.622 0.626
Hate 0.909 0.804 0.909 0.854
Sadness 0.521 0.653 0.521 0.580
Avg. 0.602 0.608 0.602 0.597
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Table 3.10: Multi-Class Classification Confusion Matrix

Class Classified as
F Hp L N A Ht S

Fun (F) 1077 274 195 756 96 34 211
Happiness (Hp) 267 1610 309 561 50 20 146
Love (L) 69 167 1463 165 16 14 51
Neutral (N) 194 443 178 3383 133 51 607
Anger (A) 22 48 31 268 969 28 192
Hate (Ht) 4 4 6 9 29 1014 49
Sadness (S) 147 200 144 1332 244 100 2360

the tweet: a tweet should be attributed more than one sentiment with different scores. The senti-

ments attributed will represent all the existing sentiments detected in the tweet, whereas the scores

will represent the estimated weight of the detected sentiment. We strongly believe that this would

allow to have a more accurate description of the sentiments in the tweet, and solves the main issue

that we encountered in this work, which is the existence of multiple sentiments in the tweet.

On a related context, even though we have ran several experiments on our dataset, we cannot

confirm that the values set for the parameters defined are always good ones. SENTA presents

several parameters, for the different sets of features. We tried to optimize each set of parameters,

related to the same family of features aside. However, this could be a non-optimal solution given

the fact that the machine learning algorithm used (i.e., Random Forest) does not consider the

features independently. It rather builds the model with reference to all the features combined. On

the other hand, it is unpractical, and almost impossible to try all the combinations of features to

derive the most adequate ones, that give the highest accuracy.

Regarding the test set used itself, its manual annotation was done on crowdflower 2. Several

annotators from different backgrounds participated in the annotation. To check the performance

of the annotators, we randomly picked 300 tweets, annotated them, and compared the results with

those done by the random annotators. Interestingly, the sentiment polarity (whether the tweet is

positive, negative or neutral) of 91.3% of the tweets was agreed on. However, when it came to the

detection of the sentiment itself, the rate of agreement dropped to 72%. However, for many of the

non-agreed on tweets, we understood why the annotators decided to attribute one sentiment over

another, and this goes back to the issue we highlighted earlier: the existence of multiple sentiments

within the same tweet.

3.7 Conclusion

In this chapter, we have proposed a new approach for sentiment analysis, where a set of tweets is

to be classified into 7 different classes. The obtained results show some potential: the accuracy

obtained for multi-class sentiment analysis in the data set used was 60.2%. However, we believe

that a more optimized training set would present better performances.

Throughout this work, we demonstrated that multi-class sentiment analysis can achieve high

accuracy level, but it remains a challenging task. A more interesting task is to quantify sentiments

2https://www.crowdflower.com
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present in the tweet. Therefore, in a future work, we will use the results obtained for ternary

classification (which achieved an accuracy equal to 70.1%) to classify tweets into “Positive”,

“Negative” and “Neutral”. The classified sentimental tweets (i.e., which have been classified as

“Positive” or “Negative”) will then be given scores for the corresponding sentiment subclasses.

This will be discussed in more details in Chapter 4. In Chapter 5, we will describe our own solution

to identify all the existing sentiments.
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4.1 Introduction

Over the recent years, increasing attention has been paid to the analysis of data collected from

social networks and microblogging websites. This is because people tend to discuss all sorts of

topics using these services; topics that might include not only their daily affairs and plans, but

also some services or products they are using. That being the case, companies and organizations

nowadays are trying to analyze posts and discussions of users to extract all possible useful infor-

mation regarding whether or not they are interested in a given topic, the level of satisfaction of

users towards products and services [58, 59], or even their intentions and expectations regarding

upcoming elections, sports events, etc. [68]. One type of information that has been a hot topic

of research in the last few years surrounds the identification of attitudes or opinions expressed by

users in their posts towards a specific topic. This process is called “sentiment analysis”.

Twitter, a popular microblogging website, offers for users a service allowing them to post and

interact with short messages. It has some unique properties that make it interesting for compa-

nies, such as its openness, the length limitation on messages posted, and the wide use of hashtags.

While most social networks require a connection between two users before they can access each

other’s posts, Twitter allows users to follow one another even if no mutual relation has been es-

tablished, which makes it easy to collect information from Twitter. Furthermore, posts are limited

to 140 characters, which means that messages are brief and usually include just one main piece of

information. Due to the wide use of hashtags, companies can easily trace “tweets” (i.e., messages

posted by Twitter users) that deal with their own products or services.

This makes the process of automatically performing sentiment analysis on tweets an inter-

esting task: not only can tweets dealing with a given topic be collected quite easily (due to the

presence of hashtags), but also the information included in a large enough number of tweets usu-

ally represents, with a certain level of fidelity, the opinion of a random, but representative, set of

people towards the given topic.

However, some challenges remain in automatic analyzing tweets. According to Ghag et al.

[115], these challenges include, but are not limited to, opinion object identification, maintaining

opinion time and hidden sentiments identification. While most of the work done on sentiment

analysis deals with the detection of the sentiment polarity of tweets (i.e., whether they are positive,

negative or neutral), hidden sentiment identification refers to the identification within the tweet of

actual hidden sentiments such as anger, happiness, disgust and joy.

In the previous chapter, we have proposed an approach to perform multi-class sentiment anal-

ysis on Twitter. The target of the proposed approach was indeed to find the precise sentiment in a

given piece of text (a tweet in this case). This has proven to be a challenging task.

In the current chapter, we investigate this challenge in more details and present the obstacles

that render it difficult to identify the actual sentiment of a given tweet. We perform a multi-

class sentiment analysis of tweets and discuss how the number of sentiment classes impact the

classification results. We propose a new model to represent sentiments, and use it to show the

relationships between the different sentiments and to explain why the task of multi-class sentiment

analysis is inherently difficult.

The remainder of this chapter is structured as follows. In Section 4.2 we present our moti-

vation for this work and discuss some previous research dealing with the multi-class sentiment
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analysis. In Section 4.3 we describe the data sets we used for this work, and present the procedure

of extraction of features from tweets. In Section 4.4 we present our different experiments and

the obtained results. In Section 4.5 we introduce our model for representing sentiments and the

relation between them, discuss the classification results and analyze the effect of the number of

classes on the classification. Finally, Section 4.6 concludes this work.

4.2 Motivations and Related Work

4.2.1 Motivations

The binary classification into positive and negative of posts collected from online web-sites, social

networks or microblogging services is an interesting approach that allows companies to estimate

the level of satisfaction of users, or their expectations towards an upcoming service. However,

determining whether a tweet is positive or negative might not always be sufficient.

Take the following two tweets:

• “Nooooooooooo! My iPhone glass cracked :(”

• “Damn damn.. no iPhone support for windows XP x64. There are some workarounds, but I

can’t figure this out.”

The difference between these tweets, in terms of sentiment and even interpretations of what the

users want, can be easily seen. Both tweets are obviously negative, but in different respects. As

a matter of fact, for the company producing the product that is the subject of these tweets, the

information that they can extract from each needs to be treated differently. While in the first tweet

the user is expressing a sentiment of sadness because of physical damage to the product, in the

second tweet the user is expressing anger and frustration due to the product’s lack of the support

for a particular operating system. The company would probably be best advised to prioritize the

problem raised in the second tweet; however, in general, both tweets are important in different

ways, and the difference between them needs to be emphasized.

Therefore, the detection of the real sentiment within a tweet is of great importance. Gagh et

al [115] nominated “hidden sentiments identification” as one of the most challenging tasks when

performing sentiment analysis. They defined it as going beyond the identification of the polarity

to the detection of the specific sentiment shown, such as hate, disgust or anger.

While some works have tried to go beyond the binary or ternary classification of tweets, most

of these have divided the positive and negative classes into subclasses that focus mainly on the

intensity of the sentiment polarity (e.g., “very positive”, “positive”, “mostly positive” and “very

negative”, “negative”, “mostly negative”); other works have dealt with the task of multi-class

classification [120–123], but in a different context as we will describe below.

That said, the current work revolves around two main axes:

• The multi-class classification of tweets; and

• The impact of the number of classes on the classification performance.
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4.2.2 Related Work

With the growth of social network and microblogging websites, people began to openly discuss

their opinions, thoughts and even daily affairs online. This has attracted researchers to study

human behaviors online, collecting and summarizing data posted by people daily. Twitter, for

the reasons stated above, has attracted most of this attention. Some of the research on tweets has

dealt with the form of the data, the use of slang and how these develop over the time, the use of

emoticons and the nature of tweets themselves [57, 81].

However, most of the work has dealt with the actual content of tweets. While the majority

have focused on classifying tweets depending on their sentiment polarity (positive or negative),

whether the topic of the tweets is a product [58], a service [59] or democratic elections [68],

more advanced works have gone deeper into the classification, and focused on assessing the level

of sentiment strength (e.g., “very negative”, “negative”, “mostly negative”, “neutral”, “mostly

positive”, “positive” and “very positive”), or even attributing sentiment intensity scores to different

texts [82, 118, 119].

Nevertheless, classification into multiple sentiment classes has been the subject of multiple

recent works. Lin et al. [120, 121] proposed an approach that classifies documents into reader-

emotion categories. They studied the classification of news articles into different sentiment classes

representing the emotions they trigger in their readers. Their work mainly differs from other

literature in focusing more on what the reader would feel while reading the article rather than what

the writer was feeling while writing it. Similarly, Ye et al. [122] studied the problem of emotion

detection in news articles from the reader’s perspective. Given the limitation of classification into

single-labeled classes, they investigated a multi-label classification. Their work falls into the same

category as that of Bouazizi et al. [127] who investigated the problem of sentiment quantification,

and attributed more than one sentiment class to posts extracted from Twitter. Liang et al. [123]

proposed a system that recommends emoticons to users while they are typing their texts, depending

on the content of what they are writing.

In the context of multi-class classification, we proposed in the previous chapter a scalable ap-

proach that allows the classification of tweets into different sentiment classes. While our approach

can be applied to any number of sentiment classes, we restricted our study to seven. The tool we

developed is used here to extract features from the tweets, and Weka [105] is used to perform the

multi-class classification.

4.3 Multi-Class Classification: Experiment Specifications

In this section, we will show the empirical results of our experiments on two data sets. Despite

the fact that these are purely empirical results, we will later use them as a starting point to identify

several challenges that make the task of multi-class classification difficult and, in some cases,

almost impossible.
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Table 4.1: Structure of the Dataset Used

Class Training set Test set
Fun 3000 2643
Happiness 3000 2963
Love 3000 1945
Neutral 3000 4989
Sadness 3000 4528
Anger 3000 1558
Hate 3000 1115

Total 21 000 19740

4.3.1 Problem Statement

Given a set of tweets, we study the possibility of classifying them into different sentiment classes.

From each tweet, we extract different sets of features, refer to a manually annotated training set

and use machine learning to perform the classification.

Other than the classification itself, which has been detailed in the previous chapter, we study

the impact of the number of sentiment classes on the classification performance (i.e., accuracy,

precision and recall). We analyze the results of the different experiments and conclude with the

limitations that make multi-class classification a difficult task.

4.3.2 Data Sets Used

For our experiments, we used two data sets composed of posts extracted from Twitter that had

been manually annotated into 7 different sentiment classes. The 7 different sentiments present 3

pairs of opposite sentiments (i.e. [Love vs Hate], [Happiness vs Sadness] and [Fun vs Anger]) in

addition to the sentiment class [Neutral].

The structure of the data sets is given in Table 4.1.

We used the data sets either entirely or in part depending on the requirements of each experi-

ment, so will explicitly mention the parts of the data set used in each case.

4.3.3 Features Extraction

To extract the desired features from the different tweets, we used SENTA. While SENTA offers

the possibility to extract a multitude of features, we did not use all of them in this work: in this

sub-section, we briefly introduce the features we did use. The detailed significance of each feature

is described in the previous chapter.

Sentiment features Sentiment features rely on the sentiment polarities of different components

of the tweet. Following are the sentiment features we extracted:

• The number of both positive and negative words,

• The number of both highly emotional positive and highly emotional negative words,
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• The ratio of emotional words,

• The number of both positive and negative emoticons,

• The number of both positive and negative slang words.

Punctuation features With the exception of exclamation marks, punctuation does not usually

reveal any sentiments explicitly; nonetheless, the excessive use of some forms of punctuation

(question marks, exclamation marks, etc.) is a good indicator of the presence of a strong sentiment.

Therefore, the following features are extracted:

• The number of full stops,

• The number of exclamation marks,

• The number of question marks,

• The total number of words, and

• The number of quotation marks.

Syntactic and stylistic features These are features related to the use of words and expressions

in the tweet. The following features are extracted:

• The number of particles,

• The number of interjections,

• The number of pronouns,

• The use of negation, and

• The number and use of uncommon words.

Semantic features Semantic features are features that focus on the meanings in language or the

logic inside of sentences. The following semantic features are extracted:

• The use of opinion words,

• The use of highly sentimental words,

• The use of words expressing uncertainty,

• The use of the passive form of speech.

Unigram features These are features collected with reference to a prebuilt dictionary containing

words that are highly correlated with the different sentiment classes. In each tweet, we check

whether any of the words in the dictionary are present; if so, the feature corresponding to the

sentiment of that word is incremented by 1. In other words, these features count the existence

of words related to each sentiment in the tweet. Therefore, 6 features are extracted (for the 6

sentiments other than Neutral). The prebuilt dictionary is the same as that used in [129].
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Pattern features Patterns are used as a complementary set of features to detect what unigrams

cannot detect. In most of the cases, sentimental words are sufficient indication of the sentiment

present in a sentence, whereas in other cases a person can employ some specific longer expressions

to express a sentiment. Therefore, the main contribution of pattern features is to detect these

longer expressions. Pattern features are extracted from the training set. They are exclusive to each

sentiment polarity (i.e., if a pattern exists in two sentiments of opposite polarities, it is excluded

from the lists of patterns of both sentiments). A resemblance function has also been defined to

measure how close a given tweet is a pattern. As mentioned above, the procedure of the extraction

of pattern features, as well as the other sets of features, is detailed in the previous chapter and in

[129]. The selection of features as well as the optimization of the parameters related to them is

therefore outside of the scope of this chapter.

However, we will discuss pattern and unigram features in more details in a later section when

we introduce our model for representing the sentiment space.

4.3.4 Experiment Specifications

As mentioned above, our data sets contain tweets fitting into 7 sentiment classes. The sentiments

taken into account are divided into 3 pairs of opposite sentiments and an additional single senti-

ment: [Fun vs Anger], [Love vs Hate], [Happiness vs Sadness] and [Neutral]. For convenience, in

what follows, each sentiment class will be referred to by its name or by its abbreviation:

- Fun (F),

- Anger (A),

- Happiness (Hp),

- Sadness (S),

- Love (L),

- Hate (H), and

- Neutral (N).

We used the Random Forest classifier [109] in our experiments, and applied 4 Key Perfor-

mance Indicators (KPIs) for evaluating the classification: Accuracy, Precision, Recall and F-

measure:

• Accuracy refers to the overall correctness of classification, measuring the ratio of correctly

classified instances over the total number of instances.

• Precision refers to the fraction of the tweets correctly classified, for a given sentiment, over

the total number of tweets classified as belonging to that sentiment.

• Recall refers to the fraction of tweets correctly classified, for a given sentiment, over the

total number of tweets actually belonging to that sentiment. In other words, for a single

sentiment, this KPI is equivalent to its Accuracy.
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Table 4.2: Accuracy, Precision, Recall and F-Measure of the Binary Classification

Class Accuracy Prec. Recall F-Measure
Fun 80.1% 88.4% 80.1% 84.0%
Anger 82.2% 70.9% 82.2% 76.1%
Fun vs Anger 80.9% 81.9% 80.9% 81.1%
Happiness 81.9% 74.3% 81.9% 77.9%
Sadness 81.5% 87.3% 81.5% 84.3%
Happiness vs Sadness 81.6% 82.2% 81.6% 81.8%
Love 93.8% 98.9% 93.8% 96.3%
Hate 98.1% 90.1% 98.1% 93.9%
Love Vs Hate 95.4% 95.7% 95.4% 95.4%

• F-measure is defined as follows:

F-measure = 2 · precision · recall
precision+ recall

. (4.1)

4.4 Experimental Results

To evaluate the impact of the number of classes on the classification performance, we measure the

KPIs mentioned above for different numbers of sentiments.

4.4.1 Two Sentiment Classes

In our first experiment, we run the binary classification of the different pairs of sentiments, each

pair apart. To recall, the sentiments are chosen so that they fit into several pairs of approximately

opposite sentiments. The term approximately is used here to highlight the fact that, even though we

treat them as pairs of opposite sentiments, this assumption is not very accurate: this is discussed

in details below.

That being said, in this first round of experiments, we divide our data set into sub-sets, each

contains only the tweets of a pair of sentiments. Additionally, the term “vs” used in the following

in the format [A vs B], where A and B are two sentiments, means that the sentiment A is checked

against the sentiment B. In other words, the classifier is trying to classify the tweets into on of the

two classes A and B”. The classification Accuracy, Precision, Recall and F-measure of the binary

classification of pairs of sentiments are given in Table 4.2.

The binary classification of the different pairs of sentiments presents good Accuracy, Precision

and Recall. All the classification tasks achieved an Accuracy higher than 80%, with the pair [Love

vs Hate] having the highest (95.4%). The average Accuracy of classification is 86.0%.

4.4.2 Three Sentiment Classes

After adding the class Neutral as a third class to the same sets we used in the previous sub-section,

the Accuracy of classification dropped remarkably, as shown in Table 4.3.
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Table 4.3: Accuracy, Precision, Recall and F-Measure of the Ternary Classification

Class Accuracy Prec. Recall F-Measure
Fun (F) 50.0% 63.2% 50.0% 55.8%
Neutral (N) 74.5% 73.6% 74.5% 74.1%
Anger (A) 70.9% 54.0% 70.9% 61.3%
(F) vs (N) vs (A) 66.9% 67.3% 66.9% 66.7%
Happiness (Hp) 68.2% 64.0% 68.2% 66.0%
Neutral (N) 69.3% 62.5% 69.3% 65.8%
Sadness (S) 59.2% 70.7% 59.2% 64.4%
(Hp) vs (N) vs (S) 65.4% 65.8% 65.4% 65.3%
Love (L) 82.0% 75.4% 82.0% 78.6%
Neutral (N) 84.8% 92.2% 84.8% 88.4%
Hate (Ht) 93.0% 77.2% 93.0% 84.3%
(L) vs (N) vs (Ht) 85.3% 86.1% 85.3% 85.5%

Table 4.4: Accuracy, Precision, Recall and F-Measure of the 4-Class Classification

Classes Accuracy Prec. Recall F-Measure
(F) - (A) - (Hp) - (S) 60.4% 60.7% 60.4% 60.2%
(F) - (A) - (L) - (Ht) 74.9% 75.9% 74.9% 74.5%
(Hp) - (S) - (L) - (Ht) 74.5% 75.2% 74.5% 74.7%

While the pair [Love vs Hate] maintained a high Accuracy, Precision and Recall levels, the

two other pairs were highly impacted by the introduction of the third class. In particular, the class

Fun showed a decrease of Accuracy and Precision from 80.1% and 88.4% to 50.0% and 63.2%,

respectively. This decrease will be addressed later, but, in brief, we suspect this to be due to the low

number of sentimental words collected for unigram features for this sentiment, and its proximity

to the class Neutral. The overall average Accuracy with Neutral added is 72.5%.

4.4.3 Four Sentiment Classes

For this set of experiments, we discarded the class Neutral and tried the different possible combina-

tions of pairs of sentiments. For convenience, we kept only the overall classification performance

for each experiment. The results are given in Table 4.4.

Again, the overall Accuracy, Precision, Recall and F-measure are lower than those of the

ternary classification. While the pair [Love vs Hate] achieves the highest Accuracy, the classes

Happiness and Fun present low Accuracy and Recall. These two classes were confused with each

other, the reason for which can easily be seen from the nature of the two classes themselves: they

are quite similar to each other, with most of the sentimental words used to express happiness also

used to express fun and enjoyment. The overall average Accuracy is 69.9%.
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Table 4.5: Accuracy, Precision, Recall and F-Measure of the 5-Class Classification

Classes Accuracy Prec. Recall F-Measure
(F)-(A)-(Hp)-(S)-(N) 54.4% 55.4% 54.4% 54.1%
(F)-(A)-(L)-(Ht)-(N) 66.9% 66.9% 66.9% 66.3%
(Hp)-(S)-(L)-(Ht)-(N) 64.1% 64.6% 64.1% 63.8%

Table 4.6: Accuracy, Precision, Recall and F-Measure for the 6-Class Classification of tweets of 6
Classes

Class Accuracy Precision Recall F-Measure
Fun 39.1% 56.8% 39.1% 46.3%
Anger 59.3% 52.4% 59.3% 55.6%
Happ. 57.6% 54.6% 57.6% 56.0%
Sadness 63.9% 68.6% 63.9% 66.1%
Love 71.1% 55.5% 71.1% 62.3%
Hate 86.8% 73.2% 86.8% 79.4%
Overall 60.4% 60.5% 60.4% 60.0%

4.4.4 Five Sentiment Classes

Keeping the same combinations we used in the 4-class classification, we added the class Neutral

and re-ran the classification. The results are given in Table 4.5.

The same observations made in the previous sub-section are present again: the sentiment Fun

was rather confused with the classes Happiness and Neutral. The introduction of the new class

decreased the overall average Accuracy to 61.8%.

4.4.5 Six Sentiment Classes

For this experiment, we used the entire data set, except fir the tweets of the class Neutral. The

performance of the classification is given in Table 4.6.

The class Fun still presents the lowest Accuracy and Recall, with most of its tweets misclassi-

fied. The tweets of the class Happiness present the second lowest Accuracy and Recall. The pair

of sentiments [Love vs Hate] presents the highest Accuracy and Recall due to the fact that these

sentiments are easily distinguishable from each other, and also from the rest of the sentiments.

The overall average Accuracy is 60.4%, which presents no major difference from that of the

classification into 5 sentiments.

4.4.6 Seven Sentiment Classes

Finally, we ran the classification using the entire data set. The performance of classification into

sentiment classes is given in Table 4.7.

The same trend seems to hold, with the overall Accuracy of 60.2% slightly lower compared to

that of the previous experiment. Again, the classes Love and Hate present the highest Accuracy.
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Table 4.7: Classification Accuracy, Precision, Recall and F-Measure for the Classification of
tweets of 7 Classes

Class Accuracy Precision Recall F-Measure
Fun 40.7% 60.5% 40.7% 48.7%
Anger 62.2% 63.0% 62.2% 62.6%
Happ. 54.3% 58.6% 54.3% 56.4%
Sadness 52.1% 65.3% 52.1% 58.0%
Love 75.2% 62.9% 75.2% 68.5%
Hate 90.9% 80.4% 90.9% 85.4%
Neutral 67.8% 52.3% 67.8% 59.0%
Overall 60.2% 60.8% 60.2% 59.7%
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Figure 4.1: Overall classification Accuracy and Individual Sentiment Classification Accuracy for
Different Number of Sentiment Classes

4.5 Analysis and Discussion of the Results

4.5.1 Observations

Because it is the most important indicator of good classification, we focus mainly on the level of

Accuracy. For each different number of sentiment classes, the level of accuracy for the different

sentiments is shown, alongside the overall Accuracy, in Fig. 4.1.

Obviously, classification Accuracy decreases with an increase in the number of sentiments.

However, the decrease rate slows. Starting from 5 sentiment classes, Accuracy starts to be almost

unchanging. While this is true for the current dataset, we cannot generalize this behavior, nor

determine whether it will maintain the same rate if we continue to add more sentiment classes.

We suggest that the addition of an extra pair of sentiments (e.g., [Enthusiasm vs Boredom]) would

help to clarify this point.

On a side note, the slight improvement in Accuracy of some sentiment classes (e.g., Fun

and Anger) in the 7-class classification over that in the 6-class classification does not mean that

adding a seventh class makes it easier to detect these sentiments; rather it is mainly due to how the
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Figure 4.2: First Representation of the Sentiment Space

classifier works. In other words, the classifier’s rules are built so that the overall Accuracy is the

highest. This can make the rules defined for 6 sentiment classes different from those of 7 sentiment

classes, which results in this slight enhancement of some sentiments over others. Despite this, we

believe that the overall trend still reflects the behavior of classification Accuracy as a function of

the number of sentiments.

In addition, the pair of sentiment classes [Love vs Hate] seem to be the least prone to have

their Accuracies decrease regardless of the number of classes, whereas sentiments such as Fun

and Happiness seem to be easily confused with each other and with other sentiments, such that

many of these tweets are misclassified.

4.5.2 Analysis

Sentiment Space Representation

At a first glance, we could imagine sentiments as defined in this work as pairs of opposite senti-

ments, as we initially intended. Accordingly, we could define a space with n/2 different dimen-

sions, where each dimension has two ends representing the opposite sentiments. Fig. 4.2 shows

this possible representation of the sentiments for 3 pairs of sentiments (the seventh is the sentiment

Neutral). Obviously, the farther a point from the origin, the stronger the sentiment is. A short text

(such as a tweet), in this space, could be represented as a point, or a vector starting from the origin

whose projection on each of the dimensions shows how strong it is. In the same figure, the point

T1 represents a text showing the sentiments [Happiness, Love, Fun], while the point T2 represents

a text showing only the sentiment Hate, and the point T3 represents a Neutral text.

However, in practice, and based on our observations on the data set, this representation has

several flaws. One flaw is that it suggests that the dimensions are orthogonal. This is not always
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Figure 4.3: Second Representation of the Sentiment Space

true, because some sentiments are highly correlated and are not sufficiently independent from

each other to be considered orthogonal, as we discuss below. Also, the class Neutral in this

representation is restricted to an infinitesimal region near the origin.

A more reasonable and practical way to represent the sentiments in a given space is to have

each sentiment represented by a cloud centered on a specific point. This is more natural as it

suggests the texts are by default neutral, unless they are in or near the given region of a particular

cloud (which represents a sentiment). In addition, the dimensions in this space could represent

any information, and does not need to be sentiment related. In Fig. 4.3, we show an example of

this representation in a 2-dimensional space. Some sentiments are obviously close to each other

such as sentiments S2 and S3, and therefore share a common area in the space.

However, in such a representation, it is not clear how a given text could be presented in such

a space. In addition, the cloud representation does not give an accurate description of where the

sentiment is at its strongest. For these reasons, the representation is slightly modified in the current

work as follows: a cloud is denser near the center and fades away as we get farther from it. In

other words, a text located at the edges of the cloud shows less of the sentiment.

More importantly, this representation could allow us to define what we call the distance be-

tween two sentiments. Unlike the case of multi-dimensional representation, sentiments here can

be correlated, and it is possible to define metrics to measure the distance between any two sen-

timents, for example the distance between the centers of the two corresponding clouds. In this

work, we will refer to a cloud corresponding to a given sentiment Si as Ωi.

Given two different sentiments, Si and Sj , they each could share some resemblance, through

similar patterns or expressions, or a set of words that can be used for either of them. The word

“fun” in the expression “@user I’m having soo much fun here!” for example shows sentiments of

Fun and Happiness.
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Distance Between Two Sentiments

A simple way to define the distance between two sentiments Si and Sj is as follows: suppose

there is a set of words, expressions or patterns that are commonly used to show each of the two.

We will refer to the number of words, expressions or patterns that are used to express Si as Ni,

and those that are used to express Sj as Nj . The two sentiments share n words, expressions or

patterns to express them (e.g., the word “upset” could be used to show both Anger and Sadness).

The distance between the two sentiments could be expressed as follows:

D(Si, Sj) = 1− 2 · n

Ni +Nj
. (4.2)

The distance is maximal (i.e., equal to 1) when the two sentiments share nothing in common,

and is minimal (i.e., equal to 0) when they are identical. This representation is efficient but does

not faithfully reflect how we defined the sentiment clouds, as there is no way to tell whether or not

a point is close to the center of the cloud.

Thankfully, in the particular case of words (i.e., unigrams), we could derive an even more

precise and meaningful expression for the distance. To recall, unigrams are simple words that are

extracted in the context of unigram Features using SENTA. SENTA extracts unigrams as follows:

1. For each sentiment, the user defines a small set of words that he judges as highly correlated

with the given sentiment;

2. SENTA refers to WordNet to extract the hyponyms of the words defined by the user and

adds them to the list;

3. SENTA extracts the hyponyms of the new words and adds them to the list, keeping a single

copy of each word; then

4. SENTA keeps repeating Step 3 several times according to the parameters set by the user.

The final list of words for a given sentiment will have the following format:

U(Si) = {w1, w2, · · · , wni}. (4.3)

However, the words that have been added manually by the user are more trustworthy and more

likely to be highly correlated with the sentiment than the ones that are extracted later on. This is

because hyponyms lose part of the meaning of their hypernyms as explained in [127].

In the following, we will suppose that we keep track of the depth at which each unigram is

found for the first time. So words that have been introduced by the user are considered to have

been found at depth 0, whereas words that are hyponyms of the words introduced by the user are

considered to have been found at depth 1, and so on.

In this context, the unigrams of a given sentiment could be seen as a cloud with several layers

as shown in Fig. 4.4, where unigrams closer to the center of the cloud are ones extracted at an

earlier stage (i.e., having a lower depth value). At the very center of the cloud are the words that

are used to name the sentiment along with their direct derivations (e.g., for the class Happiness,

these are “happiness”, “happy”, etc.).
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Following the same logic, we could also represent two sentiments in the same space as two

clouds sharing some of their unigrams, as shown in Fig. 4.5.

With that being said, given the sentiment Si, we will refer to the maximum depth selected by

the user as dmax, a given depth as a or b, and N(i,d) will equal the number of new words added to

the sentiment Si at the depth d. The seed words are those that have a depth equal to 0.

Therefore, returning to the definition of the distance between two sentiments, we express it as

follows:

D(Si, Sj) =

dmax∑
a=0

dmax∑
b=0

δ(a,b) ·
(

1− 2 ·
n(a,b)

(N(i,a) +N(j,b))

)
(4.4)

where n(a,b) is the number of common unigrams of the sentiments Si at the layer a and Sj at the

layer b, and δ(a,b) is a coefficient highlighting the weight of the common unigrams between two

different layers (a and b) of the two clouds. Obviously δ is symmetric (i.e., δ(a,b) = δ(b,a)), and all

of the coefficients δ(a,b) should sum up to 1.

Correlation Between Different Sentiments

Now that the distances between the clouds are defined, we define the question (Q1): “Is it possible

to identify which sentiments are more likely to co-occur or to be highly correlated?”. The short

answer for this question is “yes”. However, below we realistically measure the distances between

sentiments in our data set, and identify which sentiments are likely to co-occur within a tweet.

Another interesting output of the current representation of sentiments is that, given an expres-

sion (or a unigram in this case), we can also tell how far it is from each cloud and what sentiment

it conveys. While we have limited our study in this chapter to unigrams, it is always possible to
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Figure 4.5: The Intersection Between Two Clouds with Several Layers each

extend it to longer n-grams, patterns or even full sentences. This leads us to our next question

(Q2): “Given a sentence (i.e. a tweet in our case), is it possible to attribute different scores to

show the distance the sentence has from the sentiment?”, which can be reformulated into (Q2’):
“Is it possible to attribute different scores showing the strength of each of the sentiments within

the sentence?”. This can be simply seen as representing the sentence by a point in the space intro-

duced above, where the closer that point is to a cloud, the stronger the sentiment corresponding to

the cloud is in the sentence. In other words, the score can be any increasing function of the inverse

of the distance.

In the current work, we briefly introduce the concept of quantification, which we explain in

more detail elsewhere. By quantification, we refer to the attribution of sentiment scores to a given

text, where each score represents how strongly the sentiment is present in the text. The scores are

rarely equal to 0, so we define a certain threshold TL below which a sentiment score is considered

too low, and the corresponding sentiment is thereby considered non-existent or negligible. That

being said, in the current work, given a tweet T , and a set of N sentiments S1, S2, · · · , SN , we

extract 2 different sentiment scores for each of these sentiments using the two sets of features

qualified as unigram features and pattern features, as explained in [129] and which we will refer

to as “unigram score” (su) and “pattern score” (sp), respectively.

In the case of unigram scores su, they are generated simply by counting the number of uni-

grams generated by SENTA for each sentiment present in the tweet.

As for pattern scores, these are computed slightly differently: SENTA, as explained above,

allows for extracting writing patterns from the training set (or eventually any manually annotated

set, which we will be referring to as the “pattern set”) that are unique to each sentiment. These
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patterns could have different lengths. Given a tweet T and a pattern p extracted from the pattern

set for a sentiment Si and whose length is equal to Lj (i.e., the jth length), we have used the

following resemblance function defined in the previous chapter:

res(p, T ) =



1, if the tweet vector contains the pattern as it is, in the same
order,

α, if all the words of the pattern appear in the tweet in the
correct order but with other words in between,

γ · n/N , if n words out of the N words of the pattern appear in the
tweet in the correct order,

0, if no word of the pattern appears in the tweet.

Patterns of different lengths and for different sentiments are saved into different lists. We then

have defined a certain number of features we qualified as “pattern features”, each in the following

format:

Fij =
knn∑
k=1

res(pk, T ) (4.5)

where pk are patterns that most resemble the tweet T , and knn is a parameter referring to the

number of patterns to be considered. These features are used to attribute a pattern score: suppose

that we have set the minimal pattern length to Lmin and the maximal pattern length to Lmax. We

will refer to M = Lmax − Lmin as the number of lengths. The pattern score sp will be defined as

follows:

sp =
M∑
j=1

(
βj ·

knn∑
k=1

res(pk, T )

)
(4.6)

where βj is a weight given to each length. Obviously, the longer the pattern is, the more important

its weight should be.

Using both the unigram scores and the pattern scores, we can attribute scores showing the

strength of the different sentiments within a tweet. However, this step falls outside of the scope of

the current chapter, in which our main goal is to model sentiments in way that makes it possible

for a given text to have multiple sentiments, and to measure the distance between the text and a

given sentiment, as well as the distance between different sentiments.

In the current work, we have used both unigram scores and pattern scores to define the distance

between the different sentiments. We will use equations (4.2) and (4.4) to measure the distances

between sentiments using pattern scores and unigram scores, respectively.

In particular, regarding equation (4.4), it is important to mention that we have restricted our

extraction of unigrams to a maximum depth dmax = 3. Without loss of generality, we define and

will be using the values of the different combinations of a and b shown in Table 4.8:

The distance measures between the different sentiment classes will be referred to as DU and

DP for unigrams and patterns, respectively. For our data set, these distances are displayed in Table

4.9 and Table 4.10.
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Table 4.8: Values of δ(a,b) for different depths

(a,b) δ(a,b)

(0,0) 1/2(∗)

(0,1), (1,0) 1/8
(1,3), (2,2), (3,1) 1/24

(1,4), (2,3), (3,2), (4,1) 1/64
(2,4), (3,3), (4,2) 1/96
(3,4), (4,3), (4,4) 1/128

Table 4.9: Distance Between the Different Sentiments as measured with DU

(F) (Hp) (L) (N) (A) (S) (Ht)
(F) 0 0.61 0.85 - 1 1 1
(Hp) 0.61 0 0.79 - 1 1 1
(L) 0.85 0.79 0 - 1 1 1
(N) - - - 0 - - -
(A) 1 1 1 - 0 0.83 0.71
(S) 1 1 1 - 0.83 0 0.84
(Ht) 1 1 1 - 0.71 0.84 0

Table 4.10: Distance Between the Different Sentiments as measured with DP

(F) (Hp) (L) (N) (A) (S) (Ht)
(F) 0 0.95 0.94 0.98 1 1 1
(Hp) 0.95 0 0.95 0.99 1 1 1
(L) 0.94 0.95 0 0.99 1 1 1
(N) 0.98 0.99 0.99 0 0.99 0.99 0.99
(A) 1 1 1 0.99 0 0.96 0.97
(S) 1 1 1 0.99 0.96 0 0.96
(Ht) 1 1 1 0.99 0.97 0.96 0
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As expected, and under both metrics, the class Fun has the smallest distance to the class

Happiness. Especially when using the metric DU , these two classes have by far the smallest

distance. This means that these two sentiments have a lot in common, and therefore can be easily

confused. In addition, using the metric DP with reference to the class Neutral, the class Fun has a

relatively small distance compared with all other sentiments.

It is also noticeable that, overall, the positive sentiments have a smaller distance from on

another, compared to that of the negative ones. This translates into a lower Accuracy and Precision

for positive sentiments than negative ones.

4.5.3 Discussion

From our observations and analysis, we can confirm that the task of multi-class sentiment analysis

presents many challenges. To begin with, the presence of multiple classes, in general, makes

it harder for a given classifier to define the borders between different classes. Moreover, in the

case of text sentiment analysis, different sentiments have much in common, and the actual border

between two sentiments, examplified by Happiness and Fun, is somewhat unclear. In other words,

it is sometimes difficult even for humans to detect the difference. In addition, the more classes

there are, the less patterns can be extracted for an individual class. Nevertheless, some sentiments

can coexistent, and a certain sentence can contain more than one sentiment. Given the following

tweet: “Man, I’m having sooo much fun here. Glad my whole family came with me. It’s just

amazing!”, the author explicitly presents enjoyment and happiness. This makes it hard to attribute

the tweet to one sentiment class.

This leads to an important conclusion: even though many texts can be classified into one of

multiple sentiment classes, it might be a more interesting task to detect all of the sentiments that

exist in a tweet, and to attribute a certain score to each sentiment class, reflecting its weight.

4.5.4 Multi-Class Classification: Challenges

To recapitulate, here we list the main challenges that make multi-class sentiment analysis difficult.

We illustrate with tweets from our data set that have been misclassified and explain the reasons for

the misclassification.

Presence of Negation Handling negation has always been an issue when it comes to sentiment

analysis. Not only is it hard to tell whether the presence of negation is a polarity switcher or not,

but also, in the case of multi-class classification, switching polarity does not automatically indicate

that the sentiment of the tweet is the opposite of that negated. This can be seen in the following

tweet: “Well guess what?? I’m not really happy with what he said anyway!”. The word “happy”

is a word that is used usually to express sentiments of Happiness. On the other hand, as stated

in the previous subsections, Happiness and Sadness are supposedly a pair of opposite sentiments.

However, the negation in this tweet did not show the sentiment of Sadness which has been reported

by the classifier, but rather the sentiment of Anger.

Context Dependency Tweets are often intended as replies to other tweets, making them highly

context dependent. We read the tweet “I remember someone saying it’s gonna be fun..” as a
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Neutral tweet, but some of the annotators labelled the tweet as showing sentiments of Anger. This

is because they assumed the user is showing dissatisfaction towards an event that was supposed to

be funny, but in actual fact was not. However, while this assumption can be made by a human,

machines are not able to imagine such scenarios and extract the actual sentiment out of it.

Polysemy Several words in English, as with other languages, have multiple meanings depending

on their context. These meanings could be similar or totally unrelated. However, for multi-class

sentiment analysis, even the similar meanings could indicate different emotions. An example is

the word “mad”, the meanings of which include angry as well as crazy. Furthermore, craziness

often points to something being good or funny. “Mad” can also be used as an adverb meaning

“very”, as can be seen in the following tweet: “It was mad fun man!”. This tweet was classified as

showing sentiments of Anger, despite the presence of two sentimental words. However, the tweet

could have easily been detected as belonging to the class Fun if the PoS-Tagger could identify the

word “mad” as an adverb.

Presence of Multiple Sentiments Even though tweets are short in length and limited to a certain

number of characters (i.e., 140 characters per tweet), they can be poly-sentimental in the sense of

containing more than just one sentiment. As a matter of fact, a large number of the tweets we have

in our data set present multiple sentiments, as illustrated with these tweets:

• “I’ll miss you sooo much! I can’t believe you have to leave.. love you!!” This tweet shows

sentiments of Sadness and Love.

• “Damn it.. This guy behind me just ruined the movie for me. I hate people talking in the

cinema. Idiots!!” This tweet shows sentiments of Anger and Hate.

That being the case, it is quite difficult to identify all existing sentiments present in a few words,

let alone detect which one is predominant. Several tweets that have been misclassified present

multiple sentiments, and the classifier had difficulty determining the predominant one.

Closeness between different sentiments This has been discussed in the previous sub-section.

Sentiments such as Happiness and Fun or Anger and Hate are largely similar, and tweets of one of

each pair could easily be misclassified as being of the other. Along with context dependency, this

is probably the major cause of misclassification.

Absence of Sentiment Indicators As stated above, tweets are short in length, and sometimes

it is hard to extract useful information from them, or even find a common pattern that makes

similar sentences show the same emotion. This has led, in the case of 7-class classification, to the

misclassification of many tweets as Neutral (i.e., a low Precision of the class Neutral), as well as

the misclassification of tweets with sentiments of the same polarity or even of different polarities.

For example, the tweet “Dead sure it was. invite me again anytime soon!” was annotated as being

of the class Happiness but classified as being of the class Sadness.
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4.6 Conclusions

In this chapter, we studied the task of multi-class sentiment analysis. We evaluated the evolution

of various KPIs as the number of sentiment classes increased. We analyzed the difficulties of, and

the different challenges involved with, multi-class classification, and proposed some metrics to

measure the distance between sentiments (i.e., how similar they are to one another). We concluded

that, even though the task of multi-class analysis is important, it might be more interesting to

perform a sentiment detection task through which all of the sentiments present within a text are

extracted. This will be the focus of the next chapter, in which we describe our approach to perform

this task that we refer to as sentiment quantification.
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5.1 Introduction

Sentiment analysis has been deeply studied in the literature: several approaches were proposed to

perform this task on data collected from Twitter [37, 130–132] as well as other sources of online

data [133, 134]. In a previous work [113], we have proposed an approach that performs this task

on data collected from Twitter for several topics, where tweets were classified into positive or

negative.

In chapter 3, we have dealt with a more challenging task, which we refer to as the “multi-

class sentiment analysis”, where tweets were classified into one of 7 different sentiment classes.

However, as we discussed in chapter 4, this task presents several challenges. A major challenge we

have deeply discussed is the fact that tweet simply might contain more than one sentiment. That

being the case, in the current work, we aim to deal with this problem and solve it. We propose

an approach that tries to actually detect all the sentiments existing in a given tweet and attribute

different scores to these sentiments showing their weight, or how relevant they are in the tweet.

We refer to this task as “quantification”.

The contributions of this work are the following:

1. we introduce the task of sentiment quantification as described above and as we will describe

in more detail more later in this work,

2. we propose an approach that relies on writing patterns along with other sets of features to

perform a ternary sentiment classification of tweets (i.e., the classification into “positive”,

“negative” and “neutral”),

3. upon classification, the writing patterns are used again to attribute scores for each sentiment

in every tweet. These scores are used to filter the sentiments we judge as being conveyed in

the tweet (within the process we refer to as quantification),

4. we added the required quantification components to our previously introduced tool SENTA,

to make it easy to run the approach.

The remainder of this chapter will be structured as follows: in section 5.2, we discuss the

limitations of the multi-class sentiment analysis and present our motivations for this work. In

section 5.3, we present some of the work related to the subject we discuss in this chapter. In

section 5.4, we describe the modules and components that we have added to SENTA. In section

5.5 we describe in details our proposed approach for sentiment quantification and in section 5.6

we show the results of our experiments using the approach on a data set made out of tweets, we

analyze the obtained results, and discuss the potentials and limits of the approach. Finally, section

5.7 concludes this work and proposes possible directions for future work.

5.2 Motivations

5.2.1 Multi-Class Classification: Potential and Limits

In chapter 3 and 4, we have explored the task of multi-class sentiment analysis in Twitter: for

given tweet, instead of telling whether it is positive, negative or neutral, our aim was to actually

identify the most dominant sentiment in it, that being “Happiness”, “Love”, “Sadness”, etc.
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Such a task is interesting given that it allows companies, for example, to distinguish between

comments regarding their products that are dissatisfaction-driven and those which relate to physi-

cal damage or other. This can be seen in the following two tweets that show 2 different sentiments,

despite being both negative:

• “C’mon Valve!! get a solution for these bastard cheaters?? They are ruining the game and

soon enough there won’t be anyone playing CSGO!”

• “I bought it yesterday, and now it’s discounted. Just why Valve why? :(”

Even though both tweets could interest the company in question, the first tweet could be judged

as more important and a useful feedback of a frustrated and angry user, whereas the second is,

somehow, showing a sentiment of sadness for the bad luck the user had.

The tweets in question are not unique, nor few in number. A negative tweet could have several

interpretations, depending on the actual sentiment shown. The same can be said about positive

tweets.

This highlights the importance of the multi-class classification, and shows why it is indeed

needed. However, as we will see in more details in the next sections, tweets tend to show more

than one sentiment in a single tweet. In the data set we have used in this work, we have asked

human annotator to attribute one sentiment or more to every tweet, and the results show that more

than 55% of the tweets actually contain more than one sentiment. That is not surprising though:

in the previous chapter, we have studied the performances of the multi-class classification, and

concluded that this is indeed a common thing: a sentimental tweet (i.e., a tweet that is not neutral)

shows usually more than one sentiment. Nevertheless, some sentiments are highly correlated. As

a matter of fact, tweets showing hate tend to show anger and frustration as well.

5.2.2 Why Quantification?

The presence of several sentiments within a tweet, as shown above, makes the task of multi-class

classification a bit obsolete given that, out of all the sentiments presents, only one is identified.

That being the case, the identification of all the existing sentiments is a very challenging task

[115, 129]. Not only does it suggest that the different sentiments co-exist within the tweet, but

also these might have different weights and manifestations. This leads to a more challenging task:

is it possible to identify these sentiments and attribute different scores to them, each showing the

weight of the corresponding sentiment?

In this work, we refer to the task of identification of these sentiments and the attribution of

scores to them as “quantification”.

5.2.3 SENTA: Requirement for an Update

SENTA has previously been introduced for the purpose of multi-class classification: it helps ex-

tract several sets of features and export them in several formats, allowing the user to use later on

any program or tool to perform the classification. However, to makes it easy for a user to ex-

periment with his data, it would be more interesting to allows him to run the classification using

SENTA.
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Nonetheless, as part of the quantification process, tweets are initially classified into 3 classes:

positive, negative and neutral (ternary classification). Performing the classification somewhere

else separately, and re-introducing the results is very inconvenient and impractical. Therefore

arises the need for adding a classifier component to the tool so that the classification is performed

internally.

Nonetheless, for the sake of quantification, other sets of features need to be introduced, notably

what we will refer to as “Advanced Pattern Features”. These features are very important for

quantification, however, they can also be used for classification.

5.3 Related Work

Twitter, being one of the biggest web destinations and a very active microblogging service, has

attracted an important part of the attention of researchers [24]. This is due partially to the several

properties of Twitter that we introduced in Section 5.1. It is also due to the abundance of Twitter-

collected data and the ease of manual annotation of tweets to experiment with.

Twitter analysis has covered several of its properties, and was not restricted to its content.

Some of the works studied the relations between users and the identification of hidden communi-

ties [7, 135] the and the influence they might have on each other [136]. Tweets have also proven to

be able to influence false memory [137] and spread fake information [138], making it interesting

to understand how this platform (i.e., Twitter) orients the public opinion and influences it [114]. In

this context, Achananuparp et al. [139] studied the user behavior with regards to the information

propagation through microblogging websites, taking Twitter as an example. They used retweets

as indicators of originating and promoting behaviors. They proposed several models to measure

these two behaviors and demonstrated their applicability.

In a related context, Twitter has been studied as a potential teaching and learning tool [140]

[141]. In [140], the authors conducted experiments to explore the teaching practice of Twitter as

an active, informal learning tool, while in [141], the authors focused on the impact of Twitter,

whether it is positive or negative, on informal learning, class dynamics, motivations and academic

and psychological development of students.

However, sentiment analysis in social media in general, and Twitter in particular, has been

among the hottest topics of research in the recent years: while sentiment anlysis has been a subject

of research for decades and goes back to the 90s of the previous century (and even way back to the

early years of the 20th century) [24], the rise of internet, followed by the exponential growth of

online content and the spread of social media usage made the topic of a high interest to companies

and organizations [24]. This is because, nowadays, the end-user generated amount of data is

very rich and covers several aspects of the users’ lives as well as their opinions towards various

topics and subjects. Performing sentiment analysis on such data is of great use to companies,

for example, that want to know the opinion of average consumers [58, 59]. This is because data

collected from online shops or dedicate movie review websites tend to be polarized, and people

who are very satisfied or dissatisfied are more likely to share their experiences on these websites.

That being the case, we find in the literature several works that have dealt with the topic of

sentiment analysis in Twitter. These works revolve mostly around the use of machine learning and
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a pre-labeled data set to learn how to classify tweets. They started with simple approaches that

re-applied the existing works that have been proposed previously for other types of texts, and soon

after evolved into a more sophisticated ones that use features that are very specific to Twitter such

as the use of slang words [82] or emoticons [81].

A particular task in sentiment analysis, referred to as aspect-based sentiment analysis, has also

attracted the attention of researchers. Aspect-based sentiment analysis refers to the classification

of sentiments for the different aspects present in a given piece of text. Zainuddin et al. [142]

proposed a hybrid sentiment classification approach in which they use Twitter attributes as features

to improve Twitter-aspect-based sentiment analysis. They ran their approach on several existing

data sets to validate the efficiency of their proposed approach. Similarly, Bhoi and Joshi [143]

proposed to use various classification approaches involving conventional machine learning and

deep learning techniques to perform aspect-based sentiment analysis.

Multi-class sentiment analysis on Twitter has attracted part of the attention as well, but has

not matured yet and the state-of-the-art works are good, but require deeper study. Multi-class

classification refers to the identification of the exact sentiment(s) present in a given piece of text

rather than just determining its overall polarity (whether it is positive, negative or neutral). To

begin with, most of these works have dealt with this task in a different way from that we are

dealing with. In fact, multi-class classification has conventionally referred to the attribution of one

of several sentiment strengths to a text or a tweet. A typical classification task was to attribute one

of the following sentiment classes to tweets: {“very negative”, “negative”, ‘neutral”, “positive”

and “very positive”}, or simply attribute a score ranging from -1 to 1, showing at the same time

the polarity and the strength of the sentiment [118, 119]. Nonetheless, with the wide adoption of

Deep Learning as a cutting edge technology, this task has been dealt with as well in works such as

that of Yu and Chang [144] and that of Araque et al. [145].

However, there have been several approaches which dealt with multi-class classification the

way we do in this work: detect one (or more) sentiment(s) for a given text or tweet. For instance,

Lin et al. [120, 121] proposed an approach in which they extracted features they qualified as

“similarity features” and which they used to classify tweets into reader-emotion categories. A

similar task has been tackled by Ye et al. [122] who proposed an approach that tries to identify

the sentiments of readers of news articles. Nevertheless, Liang et al. [123] proposed a system

that recommends emoticons (which eventually show emotions) for users while they are typing a

text message. These emoticons are obviously generated by analyzing the sentiment in the text

being typed. In a more recent work, Krawczyk et al. [146], has tackled the problem of multi-

class sentiment analysis in imbalanced data collected from Twitter. They proposed an approach

that relies on binarization scheme and pairwise dimensionality reduction to reduce the task into

an easier one: they generate pairwise dichotomies, then for each pair of classes they reduced the

feature dimensions and used several classifiers to perform the binary classification.

In a related, yet a bit far context, the term “quantification” has been used in the context of

sentiment analysis the literature to refer to the estimation of the relative frequency of the different

classes that the instances of a given data set are to be classified into. In other words, in most of

the cases, the party who is performing sentiment analysis, cares more about the the percentage of

data showing each sentiment (mainly in the case of binary or ternary classification). Therefore, it
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might be interesting to find ways to identify these percentages instead of actually finding the class

labels of the individual tweets. This idea has been developed and several approaches were made

to solve this problem [147–150], even for a poor initial classification accuracy of the individual

tweets [117]. It is important to understand that the current task we are dealing with in this work

is completely different. It actually aims to identify the actual labels of the individual tweets. It is

fair to assume it is closer to the context of the multi-class classification.

5.4 SENTA - Integrating the Quantification Components

5.4.1 Tools

To recall, SENTA was built using Java 8 and JavaFX, a platform used to make desktop applica-

tions.

We have also used Apache OpenNLP1 Application Programming Interface (API) to perform

the different Natural Language Processing (NLP) tasks such as the tokenization, Part-of-Speech

(PoS) tagging, lemmatization, etc.

In the current work, we have referred to Weka2 API [105], to make use of the different clas-

sifiers built-in. While Weka has a Graphical User Interface (GUI), we have built our own for the

different classifiers that we have implemented so far.

5.4.2 Convention

As we previously stated in [129], the term “user” will be used to refer to the user of SENTA,

whereas, if needed, the term Twitterer will be used to refer to a Twitter user. Nevertheless, in this

section, the term “interface”, will be used to refer to the graphical user interface of SENTA.

Furthermore, the interfaces and components of SENTA, which have been previously intro-

duced in [129] will not be detailed here.

5.4.3 Graphical User Interfaces

Advanced Features Customization

The sets of features we have introduced previously were enough for tasks such as the multi-class

classification. However, for quantification, our experiments have shown the limits of these in the

detection of all the existing sentiments within a tweet. To begin with, only few sets actually take

into account the different sentiments (i.e., unigram features, top words and pattern features). Other

features, such as punctuation features, do not refer to the sentiments in the tweets, nor do they have

any direct correlation with a given sentiment.

That being the case, we believe that adding more features is required to perform the task of

quantification: we refer to these as “Advanced Features”. Mainly 2 sets of features have been fully

integrated so far, as shown in Fig. 5.1. These are:

• Advanced Unigram Features

1https://opennlp.apache.org
2https://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.1: Advanced Features – Main Window

• Advanced Pattern Features

In the rest of this subsection, we describe these two sets of features, what they refer to and

how they are extracted.

Advanced Pattern Features Advanced pattern features are similar to the old pattern features

[129]. They are extracted from a given set (that could be the training set), and are used in two dif-

ferent ways (either each pattern is a unique feature, or several patterns can be scored and summed

up together as we will explain later on). We rely on both Part-of-Speech tags and sentiment scores

of words to extract the different advanced patterns. First of all, a word can be sentimental or not:

if a word has the PoS of a verb, an adverb, a noun or an adjective, it is qualified as sentimen-

tal given that only these words (as well as some interjections) could convey sentiments; a word

having any of the remaining PoS is qualified as non-sentimental. In addition, the same way we

previously extracted words correlated with a given sentiments [129] (Unigram features) with the

help of WordNet [125], we use the same approach to extract words correlated with each sentiment

that we use in our data set. Obviously, these can only be verbs, adverbs, nouns or adjectives.

Unlike basic patterns, which are extracted for a given tweet regardless of its sentiment, ad-

vanced patterns are extracted differently for different sentiments. An advanced pattern is created

as follows:

- For training tweets (tweets of known sentiments): given a tweet having sentiments {s1, · · · , sN},
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Table 5.1: List of Simplified Part-of-Speech Tags

PoS-tag Expression
“CC” COORDCONJUNCTION
“CD” CARDINAL
“DT” DETERMINER
“EX” EXISTTHERE
“FW” FOREIGHWORD
“IN” PREPOSITION
“LS” LISTMARKER
“MD” MODAL
“JJ”, “JJR”, “JJS” ADJECTIVE
“NN”, “NNS”, “NNP”, “NNPS”, NOUN
“PDT” PREDETERMINER
“POS” POSSESSIVEEND
“PRP”, “PRP$” PRONOUNS
“RB”, “RBR”, “RBS” ADVERB
“VB”, “VBD”, “VBG”, “VBN”, “VBP” VERB
“RP” PARTICLE
“TO” TO
“UH” INTERJECTION
“WDT”, “WP”, “WP$”, “WRB” WHDETERMINER
“.” .

for the sentiment si, the corresponding pattern will be extracted as follows: for each token, if it is

a sentimental word, we verify whether it conveys the sentiment si. If it does, it is replaced in the

pattern by its simplified PoS-Tag as shown in TABLE 5.1 along with the sentiment. Otherwise,

if it is sentimental but does not convey si or if it is not sentimental, it is simply replaced by the

corresponding simplified PoS-Tag as shown in TABLE 5.1.

- For test tweets (tweets whose sentiments are unknown): for all the sentiments that are being

studied, we do the same: for each sentiment si, we extract a separate pattern using the same

approach.

To concretize, given the following tweet:

“I liked it sooo much. Thanks a lot!”

if we suppose this is a tweet of known sentiments that has been annotated by human annotators

into two sentiments “Happiness” and “Love”: this generates the following two full patterns:

- Happiness: [PRONOUN HAPPINESS VERB PRONOUN INTERJECTION ADVERB . HAP-

PINESS NOUN PARTICLE ADJECTIVE ]

- Love: [PRONOUN LOVE VERB PRONOUN INTERJECTION ADVERB . NOUN PARTI-

CLE ADJECTIVE ]

given that the word “like” shows both happiness and love, while “thank” shows only happiness.

If this tweet is of unknown sentiments, and whose sentiments need to be detected, in addition

to the aforementioned patterns, we need to extract all the possible patterns for all the possible

sentiments including:

- Sadness: [PRONOUN VERB PRONOUN INTERJECTION ADVERB . NOUN PARTICLE
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ADJECTIVE ]

- Neutral: [PRONOUN VERB PRONOUN INTERJECTION ADVERB . NOUN PARTICLE

ADJECTIVE ]

- etc.

Patterns are defined as ordered sequence of words with very specific length(s). They are ex-

tracted from the known data set. For a given tweet and a given sentiment, it is possible to extract

several patterns. If a pattern happens to occur in a tweet of negative sentiments and a tweet of

positive ones, it is discarded. Additionally, a pattern needs to occur several times in tweets of a

given sentiment to make sure it really characterizes that sentiment. Patterns can be either unique

features or summed up.

In the case where patterns are used as unique features they must have all the same length, and

each pattern extracted from the known data set will be used to generate a single feature as follows:

For a tweet T , and a reference pattern P extracted earlier from the known data set. We first extract

the full patterns from the tweet and use the following resemblance function [77] to measure how

much T resembles P :

res(p, T ) =



1, if the tweet vector contains the pattern as it is, in the same
order,

α, if all the words of the pattern appear in the tweet in the
correct order but with other words in between,

γ · n/N , if n words out of the N words of the pattern appear in the
tweet in the correct order,

0, if no word of the pattern appears in the tweet.

The result of resemblance is attributed to the corresponding feature, for the tweet T .

Obviously, this adds few parameters, that the user can adjust to maximize the results of detec-

tion of sentiments: he needs to choose the length of a pattern, the values for α and γ, as well as

the minimum number of occurrences of the pattern.

In the case where patterns can have multiple lengths, they are taken such as their length satisfies

the following:

LMin ≤ Len(pattern) ≤ LMax (5.1)

where LMin and LMax refer to the minimal and the maximal allowed length for a pattern, while

Len(pattern) is the length of the pattern. In addition to the aforementioned parameters, one last

parameter, which we refer to as knn, is to be optimized. Given all the patterns extracted for the

sentiment class si and the length Lj , one feature is extracted. The value of this feature, which we

refer to as Fij , is calculated as follows [126]:

Fij =
knn∑
k=1

res(pk, T ) (5.2)
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Figure 5.2: Advanced Pattern Features – Customization Window

where the different patterns pk here are ones that have the highest resemblance to the tweet T . Fij

as defined measures the degree of resemblance of a tweet T to patterns of the sentiment class si
and length j.

The different parameters related to advanced patterns can be optimized via the window shown

in Fig. 5.2.

As stated previously, this set of features can be used for both classification and quantification.

However, in the case of quantification, the user can only use patterns of multiple lengths (later on,

we explain the reason).

Advanced Unigram Features Advanced unigram features are unigrams that the user specifies

manually, and that will be checked against a given tweet. If a unigram exists in that tweet, the

corresponding feature will be attributed the value “True”, otherwise, it will be attributed the value

“False”.

Fig. 5.3 shows the window through which the user configures the advanced unigram features.

The user needs to save the unigrams he wants to check in a file (one unigram per line). He can then

select the file location by pressing “Select”. Optionally, the user can choose whether to compare

the lemmas of the words of the tweets to those of the list he provides, or the actual words. For
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Figure 5.3: Advanced Unigram Features – Customization Window

example, if the the list of words contain the word ”love” and the tweet contains a word such as

“loving”: if the users chooses to check for words, the corresponding feature for the word ”love”

will be attributed “False”, whereas if he chooses to compare lemmas, the feature will be attributed

the value “True”.

Advanced unigram features are supposed to be used in case the basic unigram features or the

top words are not enough. It does not include useful information for the quantification though, so

it will not be used in the current work.

Classification Window

In addition to the new sets of features we have described above, we have implemented several

classifier interfaces, using Weka API. In the current version, we have added several classifiers.

These include, but are not limited to:

• Naive Bayes classifier,

• Random Forest classifier [109],

• Iterative Dichotomiser 3 (J48) classifier [151]
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Figure 5.4: The Main Window Showing the Summery of the Project

Once SENTA has finished extracting the different features selected by the user, in the interface

shown in Fig. 5.4 the user can press the button “Proceed to classification”. Since we are using

Weka API, proceeding to classification requires the files with “*.arff” extension (i.e., weka file

format) for both the training and the test set to be generated. So in case the user has not selected

to generate these files, they will be automatically generated.

Upon proceeding, the interface shown in Fir. 5.5, will be displayed. The user chooses the

classifier he wants to use, sets the different parameters of the classifier and selects the operation he

wants to perform (e.g. training set cross validation, experimenting with the test set, etc.). In Fig.

5.6 we show an example of parameters optimization window (that of Random Forest classifier).

The default parameters offered by Weka are used as default parameters here.

The classification results will be saved every time and the user can go back to check them by

selecting the corresponding iteration from the table, and clicking “Display”. However, only the

results are saved, and not the classification model. Additionally, SENTA stores only the results

of classification of the individual tweets only for the last classification operation (Later on, for

quantification, these results are the ones that are used).

Quantification Window

Once the classification is done (on the test set or the validation set), the user can proceed to

the quantification. Basically, if the user has chosen to perform a quantification task, regardless



5.4. SENTA - INTEGRATING THE QUANTIFICATION COMPONENTS 111

Figure 5.5: Classifiers Main Window

Figure 5.6: Classifier Parameters Optimization Window
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Table 5.2: Pattern Features

Pattern length
L1 L2 · · · LM

1 F11 F12 · · · F1M

Sentiment
...

...
...

. . .
...

Class
SN FN1 FN2 · · · FNM

of the number of sentiment classes that he initially selected and that the tweets might contain,

the classification task will classify tweets into one of 3 classes: positive, negative or neutral.

The sentiment classes the user has specified will be used in quantification. This assumes that a

tweet contains exclusively positive, negative or neutral sentiments (i.e., a tweet cannot have two

sentiments of different polarities at once). Despite the fact that this assumption is not always

satisfied (e.g., in our data set less than 3% of the tweet did actually have sentiments of different

polarities), it is needed in order for the ternary classification to make sense. Technically, SENTA is

implemented in a way that, in case a tweet contains sentiments of different polarities, the polarity

of the first sentiment present in the list of sentiments of that tweet is taken into account.

The quantification task will use the results of the classification, and the values of the following

sets of features:

• Unigram features,

• Basic pattern features,

• Advanced Unigram features.

To recall, unigram features work as follows: we dispose of several lists of words, each we

judged highly correlated with a certain sentiment. We count, in every tweet how many words from

each list appear in it.

For a given tweet, suppose that the corresponding features have the following format [U1, U2, · · · , UN ]

where Ui is the ith feature corresponding to the ith sentiment. These values are then normalized

by dividing all of them by the maximum value (obviously if they are all equal to 0, they are kept

as they are). We refer to the resulting scores as SU
i (T ), where i ∈ {1, · · · , N}.

We do the same for the different patterns (basic and advanced patterns work the same way):

Given that the user has set the parameters for LMin and LMax for the minimal and maximal

pattern lengths respectively, and the parameters α and γ, the features will have the format shown

in TABLE 5.2 as detailed in [129].

Given that these features are extracted, we need to derive two scores (one using basic pattern

features and one using advanced pattern features) for each sentiment for a given tweet T . The

scores will have the following format:

SP
i (T ) =

M∑
j=1

(
βj · Fi,j

)
=

M∑
j=1

(
βj ·

knn∑
k=1

res(pk, T )
)

(5.3)
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where SP
i (T ) is the score generated using patterns, of the sentiment i for the tweet T , M is the

number of pattern lengths (to recall, the lengths are {L1, · · · , LM}) and βj is a weight given to

patterns of length Lj (regardless of their class). Currently, we set the values for βj as follows:

βj =
Lj − 1

Lj + 1
, (5.4)

where Lj is the length of the pattern. Again these scores are normalized by dividing them by the

highest score for T . The resemblance function res(pk, t) is the one that we have defined in Section

4.3.1.

We refer to the Basic Pattern Score and Advanced Pattern scores of the ith sentiment in the

tweet T as SBP
i (T ) and SAP

i (T ) respectively.

Finally, the user gets to choose a coefficient that highlights the importance of each of the given

scores (i.e., SU
i (T ), SBP

i (T ) and SAP
i (T )), to detect the sentiments existing in the tweet. In other

words, given the following total score:

Si(T ) = τ · SU
i (T ) + µ · SBP

i (T ) + ν · SAP
i (T ) (5.5)

the user can adjust the values of τ , µ and ν to adjust the importance of the 3 sub-scores. In

addition, τ + µ+ ν = 1.

The different scores Si(T ) are normalized as well. Sentiments that have a score higher than a

certain threshold are ones judged as detected. The threshold is also a parameter to optimize.

In Fig. 5.7, we show the interface through which the user can set these parameters. The user

can also choose to let SENTA automatically optimize these parameters for him. The function to

optimize is the F1-Score, which we will introduce and explain later in this work.

5.4.4 Future Extension

In the current version of SENTA, we have introduced few new sets of features. However, 2 of them

are still under experimenting and require some tuning to be useable. They will be used exclusively

for classification purposes and will not contribute to the quantification. The next version will

include these sets of features.

In addition, we have implemented few classifiers. These are ones that we have found best

fitting in the context of multi-class sentiment analysis (mainly Random Forest). However, a user

might need to compare several machine learning algorithms, or perform a task different from the

one SENTA was designed for (e.g., sarcasm detection or hate speech detection) which will require

a different classifier such as Support Vector Machine (SVM) or others. These classifiers will be

added as well in the next version of SENTA.

Finally, it might be interesting for a user to save the classification model built using his training

set, or import one that he has already built externally using Weka. Such features need to be added

as well.
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Figure 5.7: Quantifier Main Window

5.5 Sentiment Quantification - Proposed Approach

5.5.1 Problem Statement

Although the multi-class classification of tweets has its advantages and makes sense in the context

of detecting the actual sentiment of a given tweet, it has its limitations as we explained in Section

5.2. Among these limitations, we highlighted the particular issue of not being able to identify all

the existing sentiments within the tweet if it contains more than one. In other words, if a tweet

presents more than one sentiment, the classification task will attribute a single sentiment label.

This makes it more reasonable to try to detect all the existing sentiments. As a matter of fact,

in the training set we are using in this work for example, over 59% of the tweets contain more than

2 sentiments (the details of the structure of the data sets used will be given in the next subsection).

That being the case, the task we tackle here is as follows: given a tweet, we first try to detect

its sentiment polarity (i.e., whether it is positive, negative or neutral). We then try to identify all

the existing sentiments by attributing a score for each sentiment. The sentiments are then ranked

according to the attributed scores, and the ones that have the highest scores are judged as conveyed

in the tweet. In other words, a tweet will be classified into one of the 3 classes described, and then

into a further granularity level, but allowing it to have multiple classes.
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5.5.2 Data

For the sake of this work, we have prepared a data set made of tweets collected using Twitter API.

These tweets were manually annotated by several annotators using the services of CrowdFlower3.

We asked the annotators to attribute 1 or more sentiments (out of 11) to each tweet, and encouraged

them to choose more than one. However we have not made this requirement mandatory.

Two annotators annotated each tweet. The outputs of their judgement are merged. Tweets

with inconsistent judgement are discarded from our data set. By the expression “tweets with

inconsistent judgement”, we mean ones that the annotators did not agree on a single sentiment

shown in them. We have also discarded tweets with sentiments of opposite polarities (i.e., tweets

which have at least one positive sentiment and at least on negative sentiment).

As stated above, when running the task, we have asked the annotators to attribute one or more

sentiment(s) for each tweet, from the following sentiment classes:

- Positive sentiments: Enthusiasm, Fun, Happiness, Love and Relief,

- Negative sentiments: Anger, Boredom, Hate, Sadness and Worry,

- Neutral sentiment: Neutral.

This data set has then been divided into 5 data sets, as follows:

• A pattern extraction set: as we described in [129] and in Section 5.4, we need to collect

what we qualified as patterns that we will use later to attribute pattern scores (which we refer

to as “Pattern Features” and “Advanced Pattern Features” and which we use later to perform

both the classification and the quantification). In [129], we extracted these patterns from the

training set itself. However, we believe that this would make the classification favors these

features over the others, because they fit in very well for the training set. Therefore, in the

current work, we use an independent data set (thus the name “Pattern Extraction Set”) to

avoid such problem. This set is used only for the extraction of patterns of each sentiment

class, and will be discarded afterwards.

• A training set: This set is used to train our model for classification.

• A test set: This set is used to run our experiments. The classification and quantification

results obtained in this work are ones that were run on this set.

• A validation set: Throughout our experiments, we have optimized several parameters that

we defined for SENTA. To make sure that these parameters are good, we validate them using

a separate data set. This set will be referred to, in the rest of this work, as the “Validation

Set”.

As stated above, it is important to notice that several tweets were judged by the annotators

as containing sentiments of opposite polarities (i.e., containing at least a positive sentiment and a

negative one). These tweets were discarded as well, since they do not fit in the problem we stated

in the previous subsection.
3htts://www.crowdflower.com/
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Table 5.3: Number of Tweets Having each Sentiment in the Different Data Sets

Pattern set Training set Test set Validation set
Fun 2854 2182 892 925
Enthusiasm 4010 3099 1327 1320
Happiness 4499 3631 1458 1471
Love 2557 2019 780 775
Relief 679 545 216 247
Neutral 4136 1591 395 401
Anger 1820 1080 450 417
Boredom 962 553 189 201
Hate 967 645 277 258
Sadness 3425 2040 827 780
Worry 2578 1522 590 572

Table 5.4: Distribution of Sentiments in the Different Data Sets

Pattern Training Test Validation
1 Sentiment 7937 4287 1478 1463
2 Sentiments 6568 4726 1949 1985
3 Sentiments 866 620 267 274
4 Sentiments 1204 827 306 278
Total # tweets 16575 10460 4000 4000

The structure of the data sets is given in TABLES 5.3 and 5.4: In the first table we describe the

number of tweets having each sentiment in each of the data set. And in the second, we describe

the number of sentiments per tweet in each of the data sets.

Fig. 5.8, shows a diagram of the proposed approach procedure: Initially, from the data set

we have qualified as “Pattern Set”, basic and advanced patterns are extracted following the rules

we have described previously. These two sets of features are then used along with the other sets

of features as described in [129] to train a classification model on the training set. The model is

optimized for the test set. After classification, the quantification process is run on the test set. The

values of the parameters that have given the best results of classification and quantification on the

test set were then verified on a totally independent set, which we refer to as the validation set,

to verify whether they are overfitting the test set or they do present good (probably sub-optimal)

performances on other sets.

5.5.3 Features Extraction

From the tweets, we extract different sets of features, that we use to perform the classification and

later on the quantification. SENTA offers the option to extract the features we need for this work.

Basic Features

Here, we refer to our previous work [129] and extract the same features, with the same parameters.

To recall, the features extracted are the following:
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Figure 5.8: Flowchart of the Proposed Approach

1. Sentiment Features: these are features that help detect the sentiment polarity of the differ-

ent components of the tweet (e.g., words, emoticons, hashtags, etc.).

2. Punctuation Features: these are features related to the use of punctuation in the tweet.

3. Syntactic and Stylistic Features: these are features related to the use of words and expres-

sions in a tweet.

4. Semantic Features: these are features related to the meaning of words, the relations be-

tween them and the logic behind them.

5. Unigram Features: these are features extracted with references to word lists, where each

list presents the words that are highly correlated with a given sentiment.

6. Basic Pattern Features: these are features that try to identify the common patterns or

expressions used in different contexts to show certain emotions. They are extracted with

reference to the data set with manually labeled data.

Advanced Features

In the current work, we will restraint to the use of one set of advanced features, which we qualified

as “Advanced Pattern Features”. Advanced pattern features resemble to basic pattern features, but

are more specific to the different sentiments ad we explained previously in Section 5.4.

We use all the features together to perform the classification and the quantification. However,

unlike [129], we have not referred to the training set to extract the patterns that we use for the

classification, but rather to a separate data set that we qualified as “pattern extraction set”.
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5.6 Experimental Results

In this section, we present the results obtained for ternary classification and quantification, on both

the test set and the validation set. As we explained earlier, the classification parameters and model

as well as the quantification parameters will be optimized for the test set. The validation set is used

to check the validity of these parameters and model on a new data set that has not been involved

in the optimization.

5.6.1 Key Performance Indicators

After the extraction of features, we run different tests using the “Random Forest” [109] classi-

fier. We use 4 Key Performance Indicators (KPIs) to evaluate the classification and quantification

results: True Positives Rate, Precision, Recall and F1-score:

• True Positives Rate (TPR or Recall) measures the rate of tweets correctly classified as part

of a given class over the total number of tweets of that class:

TPR = Rec =
TP

TP + FN
(5.6)

• False Positive Rate (FPR) measures the rate of tweets falsely classified as part of a given

class over the total number of tweets that are not part of that class:

FPR =
FP

FP + TN
(5.7)

• Precision (Prec) measures the rate of tweets correctly classified as being part of a class,

over the total number of tweets classified as belonging to that class:

Prec =
TP

TP + FP
(5.8)

• F1 score is a combination of both precision and recall defined as follows:

F1 score = 2 · Prec ·Rec
Prec+Rec

=
2TP

2TP + FP + FN
. (5.9)

In the context of classification the terms TP, FP, TN and FN are measured for all the tweets at

once and are defined, for a given class C, as follows:

• TP (True Positive) refers to the fraction of tweets belonging to C and identified as belong-

ing to C,

• FP (False Positive) refers to the fraction of tweets not belonging to C and identified as

belonging to C,

• TN (True Negative) refers to the fraction of tweets not belonging to C and identified as not

belonging to C,
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Table 5.5: Sentiments confusion Matrix for a Given Tweet

True sentiments
Predicted TP FP

sentiments FN TN

Table 5.6: Ternary Classification Performances on the Test Set

Class TP Rate FP Rate Precision Recall F1-Score
Positive 0.902 0.349 0.778 0.902 0.836
Negative 0.683 0.086 0.794 0.683 0.734
Neutral 0.319 0.023 0.602 0.319 0.417
Overall 0.774 0.232 0.766 0.774 0.762

• FN (False Negative) refers to the fraction of tweets belonging to C and identified as not

belonging to C.

In the context of quantification, we measure the values of these terms is different. Given the

quantification results of the single tweet shown in TABLE 5.5, where:

• TP (True Positive) refers to the sentiments that are identified correctly by our code as being

shown in the tweet,

• FP (False Positive) refers to the sentiment that were judged as being shown in the tweet,

when in reality, according to the annotators, they are not,

• FN (False Negative) refers to the sentiments that are present, according to the annotators,

in the tweet, but our code could not identify them,

• TN (True negative) refers to the sentiments that are not present in the tweet, and were not

judged as present in the tweet.

In this sense, the overall KPIs measured for the entire test set (and validation set) are the

average of the values of these KPIs measured at tweet level.

5.6.2 Ternary Classification Results

Ternary Classification on the Test Set

We first run the classification on the test set. The classification results returned by the classifier

Random Forest are the best, compared with other classifiers. This goes along with our previous

observations in [126, 127, 129]. The results of classification are given in TABLE 5.6.

The results show that, in the current data set, the positive tweets are easier to detect than the

negative or the neutral ones. The classification TPR of positive tweets reaches 90.2%, whereas that

of negative tweets is 68.3% and that of neutral ones is only 31.9%. As we have explained in [129],

in such data sets, tweets tend to be polarized (classified either as positive or negative, but rarely

neutral) for several reasons including the nature of features themselves which are engineered to

detect the presence of sentimental components, as well as the unbalanced amount of training data

in favor of the non-neutral tweets.
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Table 5.7: Ternary Classification Performances on the Validation Set

Class TP Rate FP Rate Precision Recall F1-Score
Positive 0.897 0.368 0.764 0.897 0.825
Negative 0.680 0.090 0.786 0.680 0.729
Neutral 0.285 0.020 0.617 0.285 0.390
Overall 0.763 0.241 0.756 0.763 0.749

The overall accuracy is equal to 77.4%, with a precision level equal to 76.6%, a recall equal to

77.4% and an F1-score equal to 76.2%. These results are promising, even though they are lower

than those obtained in [129].

Ternary Classification on the Validation Set

Given the same classifier parameters we have used in the previous classification task, we run the

classification on the validation set. The results of classification are given in TABLE 5.7.

As we can observe, the classification results do not differ much from those on the test set.

While we notice a slight decrease in the overall accuracy by about 1.1%, the results are pretty

much close. The overall accuracy on the validation set is equal to 76.3% with a precision equal to

75.6%, a recall equal to 76.3% and an F1-score equal to 74.9%.

Moreover, the classification performances per class are also very similar: the classification

TPR and recall of the positive tweets is the highest marking values equal to 89.7% both. Neutral

tweets are also the hardest to identify with a TPR equal to 28.5%, but with a high precision

level proving again that the reason of misclassification of these tweets is actually the tendency to

polarize tweets. However, once identified as neutral, a tweet is most likely to be neutral (precision

equal to 61.7%).

However, the important results we can conclude is that the classification performances are

independent from the test set, and that we can proceed to the quantification part with no overfitting

issue for the classification part.

5.6.3 Quantification Results

Given a tweet that was annotated by human annotators into m sentiments. The tweet is attributed

n sentiments using our method.

While the different KPIs are being measured, we only focus on optimizing the F1 score given

that it is the most significant KPI. In other words, for a high precision, a high threshold can be

used, which will result in a low recall given that the process of minimizing the False Positives

tends to favor the detection of a single sentiment. The same goes the other way around: for a high

recall, a very low threshold can be used, which will result in a low precision, given that the process

of minimizing the False Negatives tends to favor the detection of almost all sentiments, so that no

True Positive escapes.

Running the quantification on the test set gave us the results shown in TABLE 5.8. The results

shown are the top ones for different values of the tuple [τ , µ, ν]. For convenience and ease of

display, we discarded the combinations that gave lower values.
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Table 5.8: Quantification Results on the Test Set

τ µ ν Precision Recall F1-score
0 0.2 0.8 0.403 0.653 0.459
0 0 1 0.388 0.682 0.459
0 0.3 0.7 0.387 0.683 0.459
0 0.1 0.9 0.388 0.681 0.458
0 0.4 0.6 0.388 0.674 0.457

0.1 0.3 0.6 0.387 0.68 0.457
0.1 0.2 0.7 0.401 0.651 0.456
0.1 0.1 0.8 0.399 0.658 0.456
0.1 0 0.9 0.395 0.665 0.456
0.1 0.4 0.5 0.373 0.703 0.455
0.2 0 0.8 0.39 0.671 0.454
0.2 0.3 0.5 0.382 0.682 0.454
0 0.5 0.5 0.367 0.712 0.454

0.2 0.2 0.6 0.404 0.642 0.453
0.2 0.1 0.7 0.399 0.652 0.453
0.3 0 0.7 0.379 0.688 0.452
0.3 0.3 0.4 0.365 0.714 0.452
0.1 0.5 0.4 0.359 0.726 0.452
0.2 0.4 0.4 0.356 0.733 0.452
0.3 0.2 0.5 0.359 0.729 0.451

The values obtained reach a maximal F1 score equal to 45.9% when [τ , µ, ν] = [0, 0.2, 0.8].

More interestingly, all these top values are obtained for a value of τ equal to 0, or very small. This

translates into the fact that unigram scores do not contribute much to the detection of sentiments.

In fact, this feature returns a score equal to 0 for many tweet, meaning that they actually do not

contain words referring to any sentiments at all.

In TABLE 5.9, we show the results of quantification using the same tuples [τ , µ, ν] (in the

same order). The best result obtained in the test set corresponds to a sub-optimal, yet very good,

results on the validation set. The best F1-score is obtained when [τ , µ, ν] = [0, 0.3, 0.7] (i.e.,

F1-score equal to 47.7%). However, the tuple [0, 0.2, 0.8] presents very good results reaching

44.6%.

As stated previously, if we opt for the optimization of the recall, we observe that for all the

tweets that were correctly classified, the quantification results in attributing a threshold for sen-

timent equal to 0 leading to attributing all the sentiment of the polarity to the tweets. In other

words, given a positive tweet for example, optimizing the Recall results in attributing all the pos-

itive sentiments to the tweet, to make sure the correct sentiments are detected. In a similar way,

the optimization of the precision results in very strict selection, leading to the attribution of a sin-

gle sentiment per tweet. Therefore, we opted for the optimization of F1-score, which makes a

lot of sense. The corresponding values of Recall and Precision are not the optimal, but are more

meaningful.

Since the contribution of the Unigram score is minimal, we collected the different combination

that have τ set to 0. The F1-score of these combinations on the test set and the validation set are

given in Fig. 5.9.
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Table 5.9: Quantification Results on the Validation Set

τ µ ν Precision Recall F1-score
0 0.2 0.8 0.384 0.652 0.446
0 0 1 0.373 0.6765 0.445
0 0.3 0.7 0.369 0.683 0.447
0 0.1 0.9 0.373 0.674 0.446
0 0.4 0.6 0.365 0.683 0.445

0.1 0.3 0.6 0.374 0.666 0.444
0.1 0.2 0.7 0.371 0.677 0.445
0.1 0.1 0.8 0.369 0.680 0.444
0.1 0 0.9 0.366 0.685 0.443
0.1 0.4 0.5 0.365 0.680 0.443
0.2 0 0.8 0.359 0.699 0.442
0.2 0.3 0.5 0.360 0.691 0.442
0 0.5 0.5 0.353 0.707 0.442

0.2 0.2 0.6 0.363 0.689 0.442
0.2 0.1 0.7 0.371 0.673 0.442
0.3 0 0.7 0.356 0.703 0.441
0.3 0.3 0.4 0.352 0.702 0.439
0.1 0.5 0.4 0.349 0.711 0.439
0.2 0.4 0.4 0.366 0.668 0.440
0.3 0.2 0.5 0.355 0.701 0.440

Figure 5.9: F1-Score for Different Values of µ and ν on the Test Set and the Validation Set
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Table 5.10: Comparison Between the Proposed Approach and the Baseline One

Approach Precision Recall F1-Score
Proposed Approach 0.403 0.653 0.459
Baseline 0.270 0.563 0.365

The figure shows a very similar behavior on both the test set and the validation set. It also

highlights the fact that the advanced patterns, which are part of the contribution of this chapter,

are more valuable in terms of detection of sentiments and quantification in general. As a matter of

fact, even if we discard the basic pattern scores (i.e., set µ to 0), the results obtained are very close

to the best ones obtained for [µ, ν] = [0.2, 0.8].

5.6.4 Comparison with a Baseline Approach

To the best of our knowledge, the task we have defined in this work is new, and no previous

work we encountered dealt with it. Therefore, to evaluate our approach, we define a baseline and

compare the performances of our approach to its performances.

The baseline approach is defined as follows: Given a tweet T , we run the binary classification

on each sentiment to guess whether or not that sentiment is present on the tweet or not. We use

all the sets of features, except advanced pattern features (which are part of the contribution of this

work).

This baseline has given very poor results, so it has been adjusted so that it makes use of the

output of the ternary classification. Instead of running the classification on all the sentiments,

we use the output of the ternary classification to restrict the number of sentiments to be verified.

For example, if a tweet is judged as positive, the binary classification of only the five positive

sentiments is run.

A comparison between the performances of the proposed approach and the baseline one on

the test set is given in TABLE 5.10.

5.6.5 Discussion

In this work, we have introduced a task different from the conventional sentiment analysis one,

and even from the multi-class classification task introduced in [129]. Throughout this work we

have tried to identify all the existing sentiments within tweets, by attributing different scores to

each sentiment in a tweet, and selecting ones with the highest scores. We referred to this task as

quantification.

The results of quantification observed were promising. However, we believe that the not-

exceptionally good results can be enhanced in more than one way. Several factors have led to a

low results of classification and/or quantification of many tweets.

To begin with, the quantification task is a challenging task, that is highly subject to the an-

notators’ opinion. This is actually a property that is valid for sentiment analysis in general, even

for simple tasks such as the binary classification, where texts are to be classified into positive or

negative. However, the finer the granularity level of classification is, the harder the task gets, and

the more discrepancy between annotators there is. As a matter of fact, we have studied the data
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set we used in [129] and we found a ratio of agreement between annotators on a sample of 300

tweets to be 67.3% on the 7-class classification, an agreement that jumps to 82.7% for ternary

classification. Therefore, we expect to have even more disagreement (i.e., lower agreement level)

on a data set that needs to be attributed one(s) from 11 sentiment classes.

Nevertheless, it is important to mention that the values of the two parameters α and γ set for

the basic and advanced patterns were optimized for the classification. This means that they might

not be the optimal values for the quantification. In fact, setting these two values to 0.1 and 0.02

respectively decrease greatly the value of sparse and incomplete resemblance of patterns to the

tweet. This leads us to believe that different values for these features might mean different results

for the quantification. This dilemma is set in favor of the classification, given that a misclassified

tweet has an F1-score equal to 0 anyway.

On a related context, we have noticed that the accuracy of classification of the neutral tweets

on both the test and validation sets was very low. It was way lower than that observed in [129].

Again, that is due to the low amount of training data for these tweets, among others. A neutral

tweet that is misclassified has an F1-score equal to 0. This leads to a total decrease in the overall

F1-score.

Over and above that, we believe that more training data instances, and more importantly a

training set that is balanced among all the sentiment classes could improve noticeably the results.

As we can see in TABLE 5.3 that we described in Section 5.5.2, the tweets are very unbalanced

among the different sentiment classes. This is because it is hard to collect a balanced set a priori,

especially with the fact that it is totally up to the annotators to decide on which sentiments exist

in a tweet, and more importantly how many. In fact, we started indeed with a data set extracted

from a bigger one that was automatically annotated into positive and negative (using a previously

trained model). The data set we uploaded for manual annotation was indeed balanced between the

two sentiments.

Another critic that we address is the fact that we assumed that a tweet could contain exclu-

sively positive or negative sentiments (neutral tweets are by definition ones that show no senti-

ment), which is a hard assumption that is not always true. In fact, as we explained in Section

5.5.2, several tweets were annotated as having sentiments of opposite polarities, which we have

discarded for the sake of this work. As observed on our initial data set (before discarding any

tweet), some sentiments tend to co-occur more than others. Namely, the sentiments “Love” and

“Worry” co-occurred in many tweets where the tweeter is worried about something precious to

him, or someone he cares about. In a similar way, in some tweets, the tweeters have shown both

sentiments of “Boredom” and “Relief”, to express how bored they are of some event and how

relieved they are it was over. As mentioned in Section 5.5.2, for the sake of this work, these tweets

have been discarded. We consider only tweets with sentiments of a single polarity. This is because

we rely on the results of classification to choose the set of sentiments from which we guess the

actual sentiments of the tweet. This limits the potential of the proposed approach, and needs to be

addressed in a future work.
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5.7 Conclusion

In this chapter we have introduced the task of sentiment quantification in Twitter: for a given tweet,

we tried to identify in a first step its sentiment polarity (whether it is positive, negative or neutral),

and in a second step we tried to identify all the sentiments conveyed within it. We added several

components to our previously introduced tool SENAT, to make the quantification task feasible and

automated. Our proposed approach has proven to be good in detecting sentiments hidden in tweets

with an average F1-score equal to 45.9% for 11 different sentiment classes.

We have also discussed the different potential misclassification reasons, and presented some

solutions to enhance the performances of the proposed approach, which we will be dealing with as

part of our future work. In our future work, we will also address the case of tweets with sentiments

belonging to different polarities (i.e., tweets which have at the same time positive sentiments and

negative ones), and try find possible ways to identify these sentiments.
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The objective of this research has been to address some of the challenges in sentiment analysis.

Throughout this work, we have tried to improve the performance of detection of sarcasm in social

media, and perform reliable fine-grained sentiment analysis. The approaches proposed can be used

in real world applications. As a matter of fact, we have demonstrated how to identify sarcasm and

use it to enhance the performance of sentiment analysis. Nevertheless, we have built a tool we

called SENTA which helps, through easy-to-use graphical user interface run the approaches we

have proposed for multi-class sentiment analysis and sentiment quantification.

6.1 Contributions

In Chapter 2, we introduced our method to detect sarcasm in Twitter. The proposed method makes

use of the different components of the tweet. It relies on Part-of-Speech-tags to extract patterns

characterizing the level of sarcasm of tweets. The approach has shown good results, though might

have even better results if we use a bigger training set since the patterns we extracted from the

current one might not cover all possible sarcastic patterns. We also proposed a more efficient way

to enrich our set with more sarcastic patterns using an initial training set of 6000 Tweets, and the

hashtag “#sarcasm”. The overall accuracy obtained reached 83.1% with a precision of detection

of sarcastic statements equal to 91.1% We have also demonstrated how to use this information

(i.e., identifying whether a tweet is sarcastic or not) to enhance the performance of an existence

sentiment analysis method.

In Chapter 3, we have proposed a new approach for sentiment analysis, where a set of tweets

is to be classified into 7 different classes. The obtained results show some potential: the accuracy

obtained for multi-class sentiment analysis in the data set used was 60.2%. However, we be-

lieve that a more optimized training set would present better performances. We demonstrated that

multi-class sentiment analysis can achieve high accuracy level, but it remains a challenging task.

Alongside, we have introduced SENTA, a tool we have built to demonstrate the efficiency of the

proposed method, and to help perform sentiment analysis with no programming skills required,

through an user-friendly interface.

In Chapter 4 we studied more deeply the task of multi-class sentiment analysis. We evalu-

ated the evolution of various KPIs as the number of sentiment classes increased. We analyzed the

difficulties of, and the different challenges involved with, multi-class classification, and proposed

some metrics to measure the distance between sentiments (i.e., how similar they are to one an-

other). We concluded that, even though the task of multi-class analysis is important, it might be

more interesting to perform a sentiment detection task through which all of the sentiments present

within a text are extracted.

In Chapter 5, we addressed the issues mentioned in Chapter 4. We have introduced the task

of sentiment quantification in Twitter: for a given tweet, we tried to identify in a first step its

sentiment polarity (whether it is positive, negative or neutral), and in a second step we tried to

identify all the sentiments conveyed within it. We added several components to our previously

introduced tool SENAT, to make the quantification task feasible and automated. Our proposed

approach has proven to be good in detecting sentiments hidden in tweets with an average F1-

score equal to 45.9% for 11 different sentiment classes. We have also discussed the different
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potential misclassification reasons, and presented some solutions to enhance the performances of

the proposed approach, which we will be dealing with as part of our future work.

6.2 Future Work

Our humble effort made to enhance sentiment analysis systems through the identification of sar-

castic statements led us to believe that sophisticated forms of speech are indeed possible to identify

using patterns. This is because, for most internet users, such sophisticated forms of speech are hard

to come up with. Therefore, users are less creative and original, and tend to copy more creative

ones. Writing patterns seem to have great potential in the field of NLP, and one possible direction

for future work would be to explore this potential and see how far it leads in text classification

tasks. Nevertheless, Natural Language Processing (NLP) has benefited from the advances in the

field of Deep Learning (DL). In the recent years, several works have been proposed to perform

several NLP tasks using DL techniques. However, we believe that finding language patterns can

be done using such Neural Networks. The state-of-the-art works nowadays rely on what is re-

ferred to as Language Models (LM) to perform these tasks. We believe these LM can be further

enhanced if it learns to recognize, not only attention models and relation between words, but also

writing patterns.
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