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Summary 

Large amounts of nutrient-rich wastewater are produced every day which partly contain salts. 

The use of halophytes to purify saline effluents is a more sustainable solution than direct 

release to the environment and a low cost alternative to conventional treatment plants. Salt-

tolerant plants can also be used as crop plants in saline agriculture which is enforced by soil 

salinization and depletion of freshwater resources. This thesis investigates relevant questions 

on the development of an efficient halophyte biofilter and on the development of halophytic 

crop plants. Special emphasis lays on the combination of both approaches. A promising 

possibility for such a combination is the production of halophytic crop plants using marine 

aquaculture effluents. The thesis includes literature reviews as well as experimental work. 

In chapter 2 current use and performance of halophytes as biofilter for marine aquaculture 

effluents are reviewed. Halophytes are used as biofilter for open and recirculating aquaculture 

systems, in natural or constructed wetlands, in temperate regions as well as in the tropics. 

Salinity, flooding, nutrient level, root characteristics and technical applications influence the 

efficacy of a halophyte biofilter. Another literature review (chapter 3) discusses the diversity, 

application potential and economic feasibility of secondary metabolites found in salt-tolerant 

plants. Several compounds found in halophytes are interesting for various fields such as 

pharmacognosy, functional foods, nutraceutical and technical implementation. The definition 

of appropriate culture conditions and the selection of suitable species are still necessary 

regarding both reviewed fields of research and application.  

The aim of the experimental work of this thesis was to determine optimal culture conditions 

and select suitable species for the applications of halophytes as biofilter and their use as 

valuable co-product (chapter 4). Greenhouse experiments simulating application by the use of 

artificial seawater were conducted with the halophyte species Tripolium pannonicum (Jacq.) 

Dobrocz.. Plant growth, removal of nitrogen and phosphorus, and physiological parameters at 

different culturing conditions were evaluated. Optimal conditions were used to test the utility 

of different halophyte species. Afterwards three halophyte species were integrated into a pilot 

scale marine recirculating aquaculture system to study their applicability as biofilter and 

feasibility as valuable co-product (chapter 5). Results are promising but further optimization 

on culturing conditions and fish feed to plant biomass relation are necessary to enhance the 

efficiency of the halophyte biofilter. 

 

Keywords: biofilter, halophytes, marine aquaculture, nutrient uptake, saline agriculture, 

secondary metabolites. 
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Zusammenfassung 

Täglich werden große Mengen an nährstoffhaltigem Abwasser produziert, ein Teil davon ist 

salzhaltig. Die Nutzung von Halophyten zur Aufbereitung dieser salzhaltigen Abwässer ist 

nachhaltiger als die direkte Abgabe in die Umwelt und eine kostengünstige Alternative zu 

konventionellen Aufbereitungsanlagen. Zusätzlich finden salztolerante Pflanzen als 

landwirtschaftliche Nutzpflanzen in der salinen Landwirtschaft Verwendung. Dieser Bedarf 

wird durch Bodenversalzung und Verknappung von Frischwasserressourcen verschärft. Die 

vorliegende Arbeit untersucht relevante Fragen in Bezug auf die Entwicklung eines 

effizienten Halophyten-Biofilters sowie die Entwicklung salztoleranter Nutzpflanzen. Der 

Schwerpunkt liegt hierbei besonders auf einer Kombination beider Ansätze. Eine 

vielversprechende Möglichkeit für eine solche Kombination ist die Verwendung von 

Prozesswässern aus der marinen Aquakultur für den Anbau von salztoleranten Nutzpflanzen. 

Die vorliegende Arbeit enthält sowohl Literaturauswertungen als auch experimentell 

durchgeführte Arbeiten.  

In Kapitel 2 wird die gegenwärtige Nutzung und Eignung von Halophyten als Biofilter für 

Prozesswässer aus der marinen Aquakultur mit Hilfe aktueller Publikationen ausgewertet. 

Halophyten werden als Biofilter für offene und geschlossene Aquakultursysteme, in 

natürlichen oder künstlichen Feuchtgebieten und sowohl in der gemäßigten Klimazone als 

auch in den Tropen verwendet. Salzgehalt, Überflutung, Nährstoffgehalt, 

Wurzeleigenschaften und technische Aspekte beeinflussen die Effizienz eines Halophyten-

Biofilters. Ein weiterer Literaturüberblick (Kapitel 3) diskutiert die Vielfältigkeit, die Eignung 

für die Anwendung und das wirtschaftliche Potential von sekundären Pflanzenstoffen 

salztoleranter Pflanzen. Viele Verbindungen, die in Halophyten vorkommen, sind interessant 

für Bereiche wie Pharmakognosie, funktionelle Nahrungsmittel, Nahrungsergänzungsmittel 

und technische Anwendungen. Die Auswahl geeigneter Arten und Optimierung ihrer 

Kulturbedingungen ist für beide anhand von Literaturrecherchen untersuchten Bereiche der 

Anwendung von Halophyten notwendig.   

Das Ziel des experimentellen Teils dieser Arbeit war die Bestimmung von optimalen 

Kulturbedingungen und die Auswahl von geeigneten Arten für die Nutzung von Halophyten 

als Biofilter sowie ihre Verwendung als wertvolles Nebenprodukt (Kapitel 4). Mit der 

salztoleranten Art Tripolium pannonicum (Jacq.) Dobrocz. wurden eine Anwendung 

simulierende Gewächshausversuche unter Verwendung von künstlichem Meerwasser 

durchgeführt. Hierbei wurden das Pflanzenwachstum, die Nährstoffaufnahme aus dem Wasser 

und pflanzenphysiologische Parameter bei verschiedenen Kulturbedingungen bewertet. Dann 
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wurden optimale Bedingungen verwendet, um die Eignung verschiedener Halophyten-Arten 

zu untersuchen. Anschließend wurden drei Halophyten-Arten in ein marines rezirkulierendes 

Aquakultursystem in Pilotversuchsgröße integriert und ihre Eignung als Biofilter und 

wertvolles Nebenprodukt untersucht (Kapitel 5). Die Ergebnisse sind vielversprechend. Um 

den Nutzwert des Halophyten-Biofilters zu steigern, ist jedoch eine weitere Optimierung in 

Bezug auf die Kulturbedingungen in der Anwendung und das Verhältnis von 

Fischfutterzugabe zur Pflanzenbiomasseproduktion notwendig. 

 

Schlüsselwörter: Biofilter, Halophyten, marine Aquakultur, Nährstoffaufnahme, saline 

Landwirtschaft, Sekundärmetabolite. 
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Chapter 1 
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General introduction 

 

Salt tolerant plants 

Salt is a stress factor for plants. In many plant species saline soil causes growth reduction, 

affects ontogeny or is even lethal. There are different ways how salinity causes stress in 

plants. Osmotic stress is caused by a low water potential due to a high ion concentration. 

Additionally, salinity can cause ion toxicity in the plant tissue and nutrient deficiencies due to 

ion competition (Flowers et al., 1989; Flowers and Colmer, 2008; Munns and Tester, 2008). 

Glycophytic plant species are very sensitive to salt. Contrarily, salt tolerant plant species, 

called halophytes, are able to grow and develop in a saline environment.  

Halophytes are defined as “plants that complete their life cycle in a salt concentration of at 

least 200 mM NaCl under conditions similar to those that might be encountered in the natural 

environment” in Flowers et al. (1986). They are naturally abundant in coastal ecosystems like 

salt marshes and mangrove forests and also in inland salt-affected sites like salt lakes. 

Additionally, man-made saline areas like potash mines get colonized by certain halophyte 

species (Brock et al., 2007; Prinz et al., 2009). Common adaptation mechanisms of halophytes 

to deal with low water potential and ion toxicity caused by salinity are exclusion of salts from 

the root, accumulation of ions in the vacuole (compartmentalization) and plasmatic 

accumulation of osmolytes. An additional mechanism occurring in some species is the 

excretion of ions by salt glands (Flowers and Colmer, 2008; Munns and Tester, 2008). Figure 

1 summarizes different strategies for salt tolerance in plants.  

Salt tolerance has evolved secondarily and several times independently in angiosperm plants. 

It is not a conserved characteristic from ancestral marine algae but was developed during 

different geologic ages and in different regions of the world (Flowers et al., 2010). Therefore, 

halophytic plant species occur in different plant families and show different kinds of 

adaptations to saline environments. Comparing different halophyte species the degree of salt 

tolerance differs a lot. This is a consequence of the multiple development of salt tolerance and 

the variety of morphological and physiological adaptations to deal with a saline environment 

(Flowers and Colmer, 2008). Generally monocotyledons seem to be less salt-tolerant than 

dicotyledons (Flowers and Colmer, 2008). The most salt-tolerant plant species occur in the 

subfamilies Chenopodioideae, Salicornioidae and Suaedoideae of the plant family 

Amaranthaceae (Rozema and Schat, 2013). Those highly salt-tolerant species not only tolerate 
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salt concentrations up to sea water salinity but growth is even stimulated by certain salt 

concentrations. Figure 2 shows the different effects of salt on different halophyte species. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Adaptive responses of plants to salt stress, from de Oliveira et al. (2013). 

 

 

 

 

 

 

 

 

 

Figure 2. Effect of salinity on growth of different halophyte species (relative to growth under 

absence or low NaCl), solid lines: dicotyledons, broken lines: monocotyledons, blue: Suaeda 

maritima (L.) Durmot., green: Disphyma australe (Sol. ex Aiton) J.M. Black, violet (cycles): 

Distichlis spicata (L.) Greene, violet (stars): Puccinellia peisonis (Beck) Jáv., red: Thellungiella 

halophila (C.A.Mey.) O.E.Schulz; from Flowers and Colmer (2008). 
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Salt tolerance is complex not only from an evolutionary point of view with the different 

parallel trails of development but also when looking at the response to saline conditions of 

one single halophytic plant species. In one species salt tolerance is caused by several different 

morphological and metabolic adaptations. Salt tolerance mechanisms can be induced by saline 

conditions in some plant species; in others they are always active independently from the 

environmental conditions (Rozema and Schat, 2013). Many different genes play a role in the 

successful stress response of a halophytic plant species in a salt-influenced environment 

(Flowers and Colmer, 2008; Munns and Tester, 2008). There has been progress in the 

identification of genes and understanding the mechanisms underlying a successful response to 

salt stress, but still many open questions remain due to the complexity of salt tolerance 

(Flowers and Colmer, 2008; Munns and Tester, 2008). 

 

The need for saline agriculture 

Knowledge about halophytes can help to supply a growing world population with sufficient 

food due to their characteristic of growing in saline conditions compared to most of the 

conventional crop plants. Today and future food production is endangered by soil salinization 

and depletion of freshwater resources in many regions of the world. Salinization is defined as 

an accumulation of salts in the upper part of the soil that causes a negative impact on 

agricultural production, environmental health, and economic welfare (Rengazamy, 2006). 

Szabolcs (1994) published a map showing that salt affected areas already covered 7% of the 

total land area worldwide in the early 90s (Figure 3). Until now this area certainly increased 

exacerbating the agricultural, environmental and economical problems that arise. Soil 

salinization is dramatically accelerated by irrigation, especially in arid areas. Every year 1-2% 

of irrigated agricultural land is lost due to salinization (FAO, 2002). Because irrigated 

agriculture produces 40% of the food worldwide (FAO, 2002) this means a serious threat to 

future alimentation of people.  

Additionally to salinization, global food production is seriously affected by a decrease of 

freshwater resources (Kundzewicz, 2009). Irrigated agriculture is very vulnerable to a decline 

in freshwater availability because it covers 70% of the freshwater withdrawals worldwide 

(FAO, 2013). Global population is growing with about 80 million people a year (UN, 2009) 

increasing rapidly the demand for food. By 2050 world population will need 70 to 100% more 

food than today (Godfrey et al., 2010). Increasing salinization and decreasing availability of 

freshwater strongly reduce agricultural productivity of the affected areas and threaten actual 
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and future food supply. Because salinization as well as freshwater depletion frequently occurs 

in regions of the world with high population growth, already existing problems like hunger 

and poverty are enforced (UN, 2009; FAO, 2011). 

 

 

 

 

 

 

 

 

 

Figure 3. Salt affected areas of the world, from Pessarakli and Szabolcs (1994). 

 

Growth of salt-tolerant crops on saline soils or irrigated with saline water could reduce the 

problems caused by a decrease of agricultural production due to soil salinization and reduced 

freshwater availability. A soil is defined as saline if the electrical conductivity of a saturated 

soil extract is above 4 mS m-1, which equals 3 g NaCl l-1 or 50 mM NaCl (Richards, 1954). A 

NaCl concentration of only 40 mM causes a strong decrease of plant growth in glycophytes, 

higher concentrations are lethal (Munns and Tester, 2008). Some conventional crops like 

wheat or tomato are defined as moderately salt-tolerant and grow at salt concentrations up to 

5-6 g l-1 (Maas and Hoffman, 1977; Fooland, 2004; Munns et al., 2006). Only a few crop 

plants such as barley and cotton can be grown at concentrations up to 10 g l-1 and are defined 

as highly salt tolerant (Maas and Hoffman, 1977). But most of the conventional crops are 

glycophytes and can neither be farmed on salt-affected soils nor be irrigated with saline water 

(Maas and Hoffman, 1977; Munns and Termaat, 1986). In contrast to conventional 

glycophyte crop species, halophytes tolerate salt concentrations up to sea water salinity as 

described above. This beneficial characteristic of halophytes can be used to enhance saline 

agriculture in two ways (Rozema and Schat, 2013). One is the modification of conventional 

crop species by the insertion of genes from halophytes responsible for salt tolerance. Another 



6 

approach is the development of crops from already salt-tolerant plant species. This thesis will 

focus on the second approach. 

 

Halophytes as crop plants 

Attempts to increase salt tolerance for example in tomato, tobacco and wheat have been partly 

successful, but the insertion of salt stress tolerance genes to conventional crop plant species 

remains a laborious and protracted task (Munns et al., 2002; Wang et al., 2004; Xue et al., 

2004; Cuartero et al., 2006). This is probably due to the complex mechanisms and the 

multigenic traits responsible for salt tolerance in different plant species. The development of 

crops from already salt-tolerant plant species might be a less intricate approach. 

Even at higher salinity levels halophytes show growth rates comparable to conventional crop 

plants (Flowers and Colmer, 2008) and domestication of halophytes is suggested to be 

promising (Fowers and Colmer, 2008; Rozema and Schat, 2013). The approach is not new but 

until now the use of halophytes as crop plants has rather a traditional and regional importance 

than a large-scale agricultural and market relevance. For example, Crithmum maritimum L., 

Tripolium pannonicum (Jacq.) Dobrocz. and Plantago coronopus L. are regionally consumed 

as salad or vegetable (Koyro, 2006; Meot-Duros and Magné, 2009; Ventura et al., 2013). 

Halophytic crop species with a broader publicity and agricultural application are Diplotaxis 

tenuifolia L. and species from the genus Salicornia (deVos et al. 2013; Ventura and Sagi, 

2013, Shpigel et al., 2013). Nevertheless, there is still a strong need for research for the 

identification of suitable halophyte species and suitable genotypes for the use as crop plants in 

large-scale agriculture and for the determination of the necessary culturing conditions 

(Rozema and Schat, 2013; de Vos et al., 2013). 

Apart from the use for human consumption various studies also indicate other potential 

products derived from halophyte species. Those potential products comprise forages (e.g. 

Norman et al., 2013), material for industry (Reddy et al., 2008), oil or biomass for energy 

production (Abideen et al., 2011) and plant products with traditional medicinal use (Liebezeit, 

2008; Ksouri et al., 2011). Halophytes are a source of valuable secondary metabolites 

probably due to their variate development of metabolic adaptations to cope with a stressful 

environment (Bouftira et al., 2007, Chung et al., 2005). Research in this field follows several 

different methodological approaches, for example studying the ethnobotanical background of 

a species, bioactivity of a plant extract or chemical structure of a new compound (Zhu and 

Row et al., 2010; Boughalleb et al., 2009; Ksouri et al., 2011; Yu et al., 2012). A more 
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systematic approach to find the active components in plant extracts and determine their 

application potential is needed. To develop an appropriate procedure it is important to draw 

conclusions from research work done so far.  

Common crop plants often have a long history of variety development. Selection regarding 

taste, appearance, structure, productivity, efficient use of nutrients, defence against pathogens 

and herbivores and low sensitivity against several environmental factors resulted in a broad 

spectrum of seed material used for agriculture (Allard, 1999). De Vos et al. (2013) suggest the 

selection of suitable varieties, for example regarding taste and salt tolerance, as important for 

the development of halophytic crops. For halophyte species with high potential for the use as 

crop plants the selection of different ecotypes will build an important base for the breeding of 

suitable varieties for large-scale agriculture and different applications. 

 

Wetlands for the treatment of effluents 

Beside their potential as crop plants halophytes can be used as biofilter to treat different kinds 

of effluents. Worldwide approximately 1,500 km³ of wastewater are produced every day (UN, 

2003). The most important contaminants contained in wastewater are microbial pathogens, 

nutrients, heavy metals, persistent organic matter, as well as suspended sediments, pesticides 

and oxygen-consuming substances (UN, 2009). Eutrophication of water bodies due to high 

phosphorus and nitrogen concentrations in untreated wastewater is the predominant water 

quality problem worldwide (UN, 2009). Over 80% of the wastewater worldwide is not 

collected or treated (UN, 2012). The treatment of wastewater by sewage plants is costly and 

requires advanced technology. The application of wetlands for the treatment of wastewater is 

suggested as a low cost alternative (Hammer, 1989).  

A wetland consists of plants, water and a medium (Kadlec and Wallace, 2009). Plants take up 

nutrients for their growth and development and reduce the amount of nitrogen and phosphorus 

in an effluent. Several plant species accumulate heavy metals and even organic compounds 

can be reduced in an effluent due to plant uptake or degradation by plants (Weis and Weis, 

2004; Reboreda and Cacador, 2007; Carvalho et al., 2010). Macrophytes also provide a trap 

for suspended solids with their root system and shoot standing (Cronk and Fennessy, 2001). 

Settled organic material is rapidly decomposed because the plants enhance bacteria growth by 

providing a large surface area on their roots. The degradation of organic material has a high 

demand of oxygen and is enhanced through oxygenation of the soil by the plant roots, which 

reduces the biological oxygen demand of an effluent (Cronk and Fennessy, 2001). The roots 
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of wetland plants often have an aerenchyma which facilitates the oxygen transport (Cronk and 

Fennessy, 2001). The occurrence of both, anaerobic and aerobic zones in a wetland enhances 

the nitrogen removal by ammonification, nitrification and denitrification (Richardson and 

Vepraskas, 2001). The medium of a wetland also contributes to the filtering effect of a 

wetland depending on its size and structure. For example, suspended solids are trapped, 

anaerobic zones enhance denitrification and certain elements and compounds adsorb to 

substrate particles (Richardson and Vepraskas, 2001). 

Natural as well as constructed wetlands are used for the purification of effluents. All over the 

world natural wetlands such as coastal tidal and salt marshes, riverine marshes and mangrove 

swamps are used as filter for various kinds of effluents (Mitch and Gosselink, 2007). For a 

more controlled treatment the use of constructed wetlands has been developed (Vymazal and 

Kopfelova, 2008). There are different types of constructed wetlands: free water surface 

(FWS), horizontal subsurface flow (HSSF) and vertical flow (VF) wetlands (Kadlec and 

Wallace, 2009). FWS wetlands simulate natural wetlands and are characterized by an open 

water surface, emergent or floating vegetation. Vymazal (2007) classifies an FWS with 

floating vegetation and an FWS with emergent vegetation as two different types of wetland. A 

HSSF wetland consists of gravel or soil planted with wetland vegetation and the water is lead 

horizontally below the surface from an inlet to an outlet side. In a VF the water is led 

vertically along the root zone. Different types of wetlands are shown in Figure 4. They are 

characterized by different removal mechanisms and capacities, for example for nutrients 

(Vymazal, 2007). 

Wetlands are applied for the purification of different kinds of wastewaters, comprising 

municipal wastewater, domestic wastewater from single households, animal wastewater, 

minewater, industrial wastewater, urban stormwater, field runoffs and different kinds of 

leachates for example from solid wastes (Kadlec and Wallace, 2009). Some wastewaters such 

as effluents from industry of field runoffs have a high salinity and the plantation of halophytes 

to a constructed wetland applied to treat these effluents becomes mandatory (Almeida et al., 

2009; Jordan et al., 2009; Manousaki and Kalogerakis, 2011; Diaz et al., 2013). Differently 

constituted effluents might have different effects on plants and some halophyte species will be 

more suitable for certain applications than others. More detailed research is needed to answer 

open questions and establish a data base for large-scale application. 
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Figure 4. Different types of constructed wetlands (CWs), from top to bottom: CW with floating 

plants on free water surface, CW with free water surface and emergent plants, CW with horizontal 

subsurface flow, and CW with vertical flow, from Vymazal (2007). 

 

Purification of marine aquaculture effluents by plants 

A promising field for the application of halophyte biofilters is the treatment of effluents from 

marine aquaculture. Global fish supply from capture was at the same quantitative level during 

the last 20 years (Figure 5). At the same time the importance of aquaculture to cover 

worldwide demand for fish increased strongly (Figure 5). Marine fisheries accounted for 64% 

of worldwide fish supply with 78.9 and 19.3 million tonnes coming from capture and 

aquaculture, respectively (FAO, 2012). Effluents from aquaculture are often released 

untreated to the environment. Because they show high concentrations of nitrogen and 

phosphorus due to excess fish feed and excretion serious problems of eutrophication can be 
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caused at affected sites. Additionally, the effluents often contain high amounts of suspended 

solids and show a high biological oxygen demand (Dierberg and Kiattisimkul, 1996; Páez-

Osuna, 2002). The increasing importance of marine aquaculture for the supply with marine 

fish makes the development of adequate solutions for the treatment of its effluents urgent. 

Plants in a (constructed) wetland are suitable for the application as a biofilter for aquaculture 

effluents because they take up nitrogen and phosphorus and also contribute to the reduction of 

suspended solids and biological oxygen demand, as described before. There is a broad range 

of studies conducted on the application of planted wetlands for the treatment effluents from 

freshwater aquaculture since the 1980s (Watten and Busch, 1984; Schwarz and Boyd, 1995; 

Schulz et al., 2003). Regarding the use of halophytes for the treatment of effluents from 

marine aquaculture literature is scarcer, difficult to compare and conclusions for future 

research and application remain unclear. For instance, it has to be clarified which factors 

influence the filter capacity of a halophyte biofilter and which plant species are suitable to 

determine necessary conditions for the setup of a halophyte biofilter. 

 

 

 

 

 

 

 

 

 

Figure 5. World capture fisheries and aquaculture production, from FAO (2012). 

 

Saline water treatment by halophytes combined with saline agriculture 

The potential of halophytes as crop plants and their applicability as plant biofilter for nutrient-

rich saline effluents suggest the possibility to combine both qualities. Then, the nutrients are 

not just removed from the water but a recycling of nitrogen and phosphorus takes place due to 

the incorporation of the nutrients into valuable biomass. A possible combination is the 
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application of a constructed wetland planted with halophytes to treat effluents from saline 

aquaculture before their release to the environment or municipal water treatment and the 

simultaneous production of valuable plant biomass marketable as vegetables (Webb et al., 

2012; Shpigel, et al., 2013). The composition of marine aquaculture effluents seems to be 

very promising for the application of a halophyte biofilter with simultaneous production of a 

valuable co-product due to the presence of plant-available nitrogen and phosphorus as 

described above. Additionally, there is no contamination of the effluents with heavy metals 

and harmful organic compounds, at least in various recirculating aquaculture systems (RAS). 

This is advantageous because substances taken up by the plant as biofilter could possibly be 

harmful for consumption if plant parts are also used as valuable co-product (Rattan et al., 

2005; Muchuweti et al., 2006).  

Beside the treatment of effluents from open aquaculture systems that release effluents after a 

certain time of water retention in the system, there is also the possibility to include a plant 

culture as biofilter and generation of a valuable co-product into RAS. In a RAS water 

circulates between the culture basin and different system-dependent mechanical, physical and 

microbiological filters reducing the amount of suspended solids, nutrients and microbes 

resulting in a low water exchange rate (Orellana et al., , 2013). This low water exchange 

makes an RAS more environmentally friendly than land-based open systems or cage 

aquaculture (Martins et al., 2010). A phototrophic component with algae or higher plants can 

be included into a RAS as additional filter to supplement or even replace other filters in the 

system (Schneider et al., 2005). Hydroponic plant culture is frequently used for the growth of 

crop plants in RAS on the base of a setup described by Watten and Busch (1984). The 

combination of aquaculture with hydroponic crop culture is named aquaponics (Roosta and 

Hamidpour, 2011). Until now, this approach has only been investigated for freshwater 

aquaculture (Watten and Busch, 1984; Seawright et al., 1998; Trang and Brix, 2012). Low 

exchange RAS enhance the sustainability of aquaculture (Martins et al., 2010) and are an 

important future technology for the growing marine aquaculture sector as well. This makes 

research on the reuse of resources such as water and nutrients by aquaponic production of 

halophytic crops in marine RAS important for future sustainable food production. 

Although the constitution of marine aquaculture effluents seems to be promising their 

suitability for halophytic crop production has to be studied in more detail. Additionally, 

research on the efficiency of halophyte biofilters and the simultaneous production of a 

valuable product should be also open to the application of other types of saline wastewater 

apart from marine aquaculture effluents, for example saline field runoffs. In general, for a 
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combination of halophytic crop production and the use of the plants as biofilter it is important 

to investigate, (i) appropriate culture conditions to produce valuable biomass, (ii) appropriate 

culture conditions for an efficient biofilter performance, (iii) the suitability of different 

potential halophytic crop species for the use as biofilter for nutrient-rich saline water and for 

the production of a valuable co-product. 

 

Outline of the thesis  

This thesis includes literature reviews (Chapter 2 and 3) as well as experimental work 

(Chapter 4 and 5). 

Literature review: 

 Identification of factors that influence the capacity of a halophyte biofilter used for the 

purification of marine aquaculture effluents (Chapter 2). 

 Definition of open research questions concerning the use of halophytic plants as 

biofilter for aquaculture effluents (Chapter 2). 

 Outline of actual applications for halophytes as biofilter for aquaculture effluents 

(Chapter 2). 

 Analysis of secondary metabolites found so far in halophytic plants with interest for 

different economic applications (Chapter 3). 

 Determination of different methodological approaches in research on secondary 

metabolites in halophytes to derive conclusions for future work (Chapter 3).  

Experimental work: 

 Identification of species and ecotypes with high potential for the combined use as 

biofilter for nutrient rich saline waters and halophytic crop plants (Chapter 4). 

 Identification of optimal culture conditions for the combined use of halophytes as 

biofilter for nutrient rich saline waters and crop plants (Chapter 4). 

 Determination and comparison of the efficiency of selected halophyte species as 

biofilter for nitrogen and phosphorus in a pilot scale zero exchange marine 

recirculating aquaculture facility (Chapter 5). 

 Evaluation of the potential of selected halophyte species as valuable co-product for 

marine aquaculture (Chapter 5). 
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Abstract 

Salt-tolerant plants can be used as biofilter for nutrient-rich saline waters such as aquaculture 

process water. The efficiency of a plant biofilter is influenced by various factors that need to 

be investigated in order to improve the suitability for different applications. Tripolium 

pannonicum (Jacq.) Dobrocz. was used as one model plant to test different culturing 

conditions and to determine biofilter performance. This performance was evaluated by taking 

different parameters into account, such as biomass production, plant nitrogen and phosphorus 

uptake as well as physiological parameters and decrease of nitrate-N and phosphate-P 

concentrations in the experimental fluid. After optimization of culturing conditions, additional 

plant species known as edible were studied to follow the idea of generating a valuable co-

product beside the use as biofilter. It was shown that a nitrate-N concentration of at least 10 

mg l-1 is necessary for reasonable biomass production. A phosphate-P concentration of 0.3 mg 

l-1 is sufficient, but higher concentrations promote the uptake of phosphate-P. The addition of 

iron in chelated form is inevitable for the growth of healthy plant biomass; the addition of 

manganese is beneficial but not implicitly necessary. Salt concentrations lower than sea water 

salinity such as 15 psu promote biomass production and nutrient uptake. The use of a 

hydroponic culture system is more suitable than sand or expanded clay culture if controlled 

conditions and nutrient recycling are aimed. The comparison of different halophyte species in 

0.24 m² tanks with nine plants each resulted in above ground fresh weight of 185 to 398 g and 

total uptake of nitrogen and phosphorus of 0.6 to 2.1 g and 0.1 to 0.4 g, respectively, during 

five weeks of experiment. All tested species have potential to serve as biofilter and valuable 

co-product. A promising application is the growth of halophytic vegetable plants in marine 

aquaponic systems. 

 

Keywords: Aquaculture; Nutrient deficiency; Nutrient recycling; Salt tolerance; Wetlands. 
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1. Introduction 

Different plant species and types of natural and constructed wetlands are successfully applied 

for phytoremediation and biofiltration of municipal and industrial wastewater or affected soil 

and effluents from agroindustry and aquaculture (Kadlec and Knight, 1996; Verhoeven and 

Meulemann, 1999; Vymazal, 2010). Operating those plant biofilters is a low cost opportunity 

to mitigate the impact of effluents on the environment: the load of nutrients, heavy metals and 

organic substances in wastewater that would otherwise cause hypertrophication and 

toxification of surrounding ecosystems is reduced by the plants. Some of the applied plant 

species have a market value, for example as vegetable and fodder or due to valuable 

metabolites or suitability of the biomass as material for fuel or gas production. Those 

marketable properties represent an added value beside the utility of the plants as biofilter.  

An interesting application of plants as secondary biofilter and valuable co-product appears to 

be aquaculture. Fish and invertebrate animals produced in aquaculture retain only some of the 

carbon, nitrogen, and phosphorus administered with the feed. There are several studies that 

combine fresh water aquaculture with plants grown in hydroponic culture. Watten and Busch 

(1984) published results from experimental trials on fish and tomato culture. The system used 

was composed of a fish tank, a settling tank, a trickling biofilter, and the hydroponic bed for 

the culture of tomatoes. Since then, this basic layout was used in many other investigations. 

The conversion of nitrogenous excretory products is conducted in nitrifying biofilters and the 

remaining nitrate-N and other nutrients in the process water serves as base for plant growth. 

In several studies plants are applied as a secondary biofilter and are concurrently used for the 

production of valuable vegetables, such as lettuce, spinach, tomato, cucumber, and pepper 

(Lennard and Leonard, 2006; Graber and Junge, 2009; Roosta and Mohsenian, 2012; Petrea et 

al., 2013). 

Some industrial, agricultural or municipal waste waters are saline. Plant species often used in 

filter beds are very sensitive to salt and the use of salt-tolerant plant species becomes 

mandatory. Those halophytes tolerate salinities up to above sea water salinity, depending on 

the species. Several studies investigated the use of salt-tolerant plants as biofilter and nutrient 

sink for different nutrient-rich saline effluents (Grieve and Suarez, 1997; Klomjek and 

Nitisoravut, 2005; Wu et al., 2008). Recently, Dias et al. (2013) proofed a good performance 

of Salicornia bigelovii Torr., Atriplex lentiformis (Torr.) S. Watson, Distichlis spicata (L.) 

Greene, Spartina gracilis Trin., Allenrolfea occidentalis (S. Watson) Kuntze and Brassica 

hyssopifolia (Pall.) Kuntze in a saline drainage water reuse system. 
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Marine aquaculture is a novel source of saline effluents with rising importance because of the 

increasing demand of sea food. The FAO (2012) stated: “As production from capture fisheries 

has remained virtually constant, further aquaculture growth will be needed to meet the rising 

global demand for seafood.” Studies on the application of halophytes as biofilter for 

aquaculture process water are summarized by Buhmann and Papenbrock (2013a), including 

the two aspects i) nutrient recycling in recirculating systems and ii) reduction of 

environmental impact in open installations. 

There are several studies describing the potential of halophytes as vegetable or as raw 

material for fodder and to provide secondary metabolites that can be used for 

pharmaceuticals, functional foods, nutraceuticals, and technical implementations (Ksouri et 

al., 2011; Buhmann and Papenbrock, 2013b). The production of salt-tolerant plants with 

market value that serve as secondary biofilter for marine aquaculture process water at once, is 

promising. Recently, species of the edible salt tolerant plant genus Salicornia have been 

studied in constructed wetlands for the purification of marine aquaculture effluents (Webb et 

al., 2012; Shpigel et al., 2013). Both studies showed high yields of marketable biomass and 

effective nitrogen and phosphorus removal. 

An additional challenge for the combination of nutrient-rich saline wastewater purification by 

halophytes with the production of a valuable co-product is the limited knowledge about the 

cultivation of halophytes. For the cultivation of the edible halophyte genera Salicornia and 

Sarcocornia different aspects of cultivation have been described recently (Ventura et al., 

2010, 2011a and b; Katschnig et al., 2013; Ventura and Sagi, 2013). Other halophyte species 

also have potential as saline vegetable crops such as Tripolium pannonicum (Jacq.) Dobrocz., 

Plantago coronopus L. and Crithmum maritimum L. (Ben Amor et al., 2005; Koyro, 2006; 

Koyro et al., 2011, Ventura et al., 2013). Beside the potential as biofilter and valuable co-

product it is highly beneficial to foster the use of saline water for agricultural production 

because freshwater is or becomes a short running resource in many regions of the world 

(FAO, 2008, 2012; Rozema and Schat, 2013). In this context it is also important to establish 

suitable setups to avoid soil salinization and saltwater intrusion into the watershed. 

The efficiency of a plant biofilter is influenced by various factors (Kadlec and Knight, 1996; 

Verhoeven and Meulemann, 1999; Vymazal, 2010; Buhmann and Papenbrock, 2013a), such 

as the influence of salinity on nutrient uptake, light conditions and availability of 

micronutrients. In our opinion those factors remain unclear if plants are studied within an 

aquaponic system with specific properties. Due to the limited  information about the culture of 
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halophytes it is substantial to determine the factors that influence the performance of  

halophytes as biofilter before application. Besides this, it is necessary to investigate different 

halophyte species and their biofilter capacity before integrating them into an aquaponic 

system.  

In this study, the word biofilter is used for the function of the plants to reduce the 

concentration of nitrogen and phosphorus in an effluent by uptake into the plant tissue. We 

conducted greenhouse experiments with artificial sea water as a base for plant nutrient 

solution. Only one factor was investigated in each experiment using T. pannonicum as a 

model plant to determine conditions that are favourable for the performance of a halophyte 

biofilter. The influence of substrate, salinity, and the effect of nitrate-N and phosphate-P 

concentration was tested as well as the beneficial effect of an addition of iron and manganese. 

Finally, the biofilter capacity of different species was compared under optimized conditions. 

 

2. Material and Methods 

2.1 Plant material 

For some of the species seeds were collected at the North Sea, Jade Bay, Germany:, Atriplex 

portulacoides L. (53°29‘13N; 8°03‘16“O) and Salicornia dolichostachya Moss (53°29‘13N; 

8°03‘16“O). Two different seed collections were used in the case of Tripolium pannonicum 

(Jacq.) Dobrocz., one from the coordinates 53°29‘13N; 8°03‘16“O, named as ecotype 1 (et1) 

and one from the coordinates 53°26‘19‘‘N; 8°09‘49‘‘O, named as ecotype 2 (et2) in the 

following. Salicornia plants were identified as S. dolichostachya on the base of ETS sequence 

analysis (Singh, 2013). Seeds of Plantago coronopus L. were ordered at Jelitto Staudensamen 

GmbH (Schwarmstedt, Germany). For the species Lepidium latifolium L. and Atriplex 

halimus L. one specimen was ordered at Rühlemann´s Kräuter & Duftpflanzen (Horstedt, 

Germany). Seeds were produced from the L. latifolium plant and cuttings were obtained from 

the A. halimus plant.  

The plants for the experiment were grown in a greenhouse at a temperature of 22°C. Artificial 

light was given in a 14 h/10 h light/dark rhythm (sodium vapor lamps, SON-T Agro 400, 

Philips, Amsterdam, Netherlands). Seeds were sown on propagation soil (Einheitserde, 

Einheitserdewerk Hameln-Tündern, Germany) and irrigated with tap water according 

demand. When seedlings had a height of 1 to 2 cm they were transplanted to pots filled with 

sand (0 to 2 mm grain size, Hornbach, Hannover, Germany), watered as needed and supplied 

twice a week with a modified Hoagland solution according to Epstein (1972) with the 



54 

following modification: MoNa2O4 instead of MoO3 and NaFe-EDTA instead of NaFe-DTPA. 

The final elemental nutrient concentration in the solution was 160 mg Ca l-1, 237 mg K l-1, 24 

mg Mg l-1, 225 mg N l-1, 62 mg P l-1, 32 mg S l-1 for macronutrients and 4.37 mg B l-1, 0.03 

mg Cu l-1, 1.06 mg Fe l-1, 0.12 mg Mn l-1, 0.05 mg Mo l-1, 0.45 mg Zn l-1 for micronutrients. 

Plants transferred to the experimental setup had approximately the same size. The time 

between sowing and start of the experiment was 3, 4-5, 5, 6 and 7 weeks for P. coronopus, T. 

pannonicum, L. latifolium, S. dolichostachya and A. portulacoides, respectively. The cuttings 

were planted on sand (0 to 2 mm grain size, Hornbach), watered as needed and supplied with 

the modified Hoagland solution described above twice a week. One week before the 

experiment, plants were adapted stepwise to salinity by adding 0.5, 1.0 and 1.5% of NaCl to 

the irrigation water (every second day the next higher salt concentration). 

 

2.2 Experimental setup 

The experiments were conducted in another greenhouse with temperatures of around 20/15°C 

during day/night. From October till May artificial light was provided on at a 12 h light/dark 

rhythm (sodium vapor lamps, SON-T Agro 400, Philips). Light intensity ranged from 65 

µmol m-2 s-1 (only artificial light in the dark in winter) to 850 µmol m-2 s-1 (midday in summer 

without clouds) depending on the time of the year, the time of the day and the cloudiness. For 

S. dolichostachya day length was artificially elongated to 18 h by applying artificial light 

early in the morning (from 4 to 8 a.m.) and at night (from 6 to 10 p.m.) (sodium vapor lamps, 

SON-T Agro 400, Philips) to prevent flowering of the plants (Ventura et al., 2011b). 

Polypropylene tanks (L x W x H, 600 x 400 x 425 mm) (RAKO-Container, Utz-Gruppe, 

Schüttorf, Germany) were used for the experiments. The experimental tanks were designed 

and modified by Erwin Sander Elektroapparatebau GmbH, Uetze-Eltze, Germany to allow 

hydroponic culture as well as culturing on substrate (Buhmann and Papenbrock, 2013a).  

For hydroponic culture the tanks were filled with 70 L of artificial seawater (salt mixture from 

Seequasal GmbH, Münster, Germany) and aerated constantly by small compressors and one 

air stone in the middle of each tank (Eheim, Deizisau, Germany). In each tank a floating 

styrofoam board (15 mm thick) was used to keep the plants 1 to 2 cm above the water surface. 

The hypocotyl was fixed with soft foam in 35 mm holes. Each board provided space for nine 

plants. 

For culture with sand substrate, the experimental tanks were filled with a gravel layer of 10 

cm (8 to 16 mm grain size, Hornbach) at the bottom. A sand layer of 23 cm (0 to 2 mm grain 



55 

size, Hornbach) was filled up which was separated from the gravel by a fleece (Freudenberg 

Vliesstoffe SE & Co.KG, Weinheim, Germany). The tanks were filled with 24 to 26 L of 

artificial sea water (Seequasal GmbH) in order to reach the necessary water level for 

recirculation. The artificial sea water contained Cl-, Na+, SO4-, Mg2+, K+ and Ca2+ in standard 

seawater proportions (Turekian, 1968) and the major elements apart from Cl were measured 

with inductively coupled plasma optical emission spectrometry in a 15 psu solution (ICP-

OES) (iCAP 6000 ICP Spectrometer, Thermo Fisher Scientific Corporation), showing 

concentrations of 600 mg Na l-1, 530 g S l-1, 530 g Mg l-1, 240 g K l-1 and 200 g Ca l-1 

(method for analysis was not accurate jet, data are only an approximation of the composition). 

The water inlet to the pump was a drainage pipe manifold fixed underneath the gravel layer. 

Water circulation was driven by a centrifugal pump (Aquabee UP 300, Aquabee 

Aquarientechnik, Zerbst, Germany) delivering the culturing fluid to a sprinkling system. The 

sprinkling system was combined of two parallel pipes with holes fixed some centimeters 

above the sand layer. The water circulation was automatically activated for 12 h during a day. 

For cultures with expanded clay (8 to 16 mm, Hydrokultur Spezialist, Paderborn, Germany) 

was filled in the experimental tanks. The tanks were filled with 30 to 35 L artificial seawater. 

Water surface leveled at the 70 L-mark used for the hydroponic culture. The substrate surface 

was kept 1 to 2 cm above the water surface. The expanded clay culture was aerated in the 

same way as the hydroponic culture. 

Tanks were refilled with tap water daily up to a marked water level for compensating 

evapotranspiration to keep salinity and nutrient concentration in the solution stable. Salinity 

and nutrient concentration were monitored weekly. In all experiments nine plants were 

planted into each experimental tank. The control group and every treatment group consisted 

of 27 plants distributed in three randomly selected experimental tanks. 

 

2.3 Specific experimental conditions 

A first experiment was conducted to investigate the influence of different culture modes 

(hydroponic culture, substrate culture) and different types of substrate (sand, expanded clay). 

This experiment is abbreviated as ESUBSTRATES. In ESUBSTRATES micronutrients were added to 

artificial sea water with a salinity of around 15 psu (practical salinity unit) as in the modified 

Hoagland solution described above, macronutrients were added as follows: 120 mg MgSO4 l
-

1, 447 mg KCl l-1, 685 mg NaNO3 l
-1, 63 H2NaPO4 mg l-1 (237 mg K l-1, 24 mg Mg l-1, 114 

mg N l-1, 13 mg P l-1, 32 mg S l-1). 
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In a proximate experiment manganese and iron were investigated as possible reason for the 

chlorosis occurring in the hydroponic culture and expanded clay culture of ESUBSTRATES. In 

this experiment (named EMICRONUTRIENTS in the following) a control with no addition of 

micronutrients to the artificial seawater (15 psu) was compared to a treatment with the 

addition of iron as NaFe-EDTA (7.34 mg l-1, 1.10 mg Fe l-1, Fluka, Taufkirchen, Germany), 

one with the addition of iron as Fe-EDDHA (18.31 mg l-1, 1.12 mg Fe l-1, Duchefa 

Biochemie, Haarlem, The Netherlands), one with the addition of manganese (as 0.25 mg 

MnCl2 l
-1, 0.11 mg Mn l-1) and one treatment with the addition of the two micronutrients 

together, iron as Fe-EDDHA (18.31 mg l-1, 1.12 mg Fe l-1) and manganese (as 0.25 mg MnCl2 

l-1, 0.11 mg Mn l-1). Moreover, the performances of the two different seed collections of T. 

pannonicum (et1 and et2) were compared within the treatment with addition of iron as NaFe-

EDTA (7.34 mg l-1, 1.10 mg Fe l-1). In EMICRONUTRIENTS apart from the micronutrients 685 mg 

NaNO3
 l-1 (114 mg N l-1) and 63 mg H2NaPO4 l

-1 (13 mg P l-1) were added.  

Additionally, an experiment to test the impact of different salinities (15.0, 22.5 and 30.0 psu) 

on plant growth, nutrient uptake and photosynthesis was carried out (ESALINITY). As nutrients 

685 mg NaNO3 l
-1 (114 mg N l-1), 63 mg H2NaPO4

 l-1 (13 mg P l-1) and 9.16 mg Fe-EDDHA l-

1 (0.56 mg Fe l-1) were added to the artificial sea water of different salinities. 

In an experiment named ENITRATE we used different nitrate-N concentrations (1, 10, 15, 25, 50 

and 100 mg NO3-N l-1, applied as NaNO3) in the culturing solutions to find out which nitrate-

N concentration in the water might be limiting for the growth of halophytes. Apart from the 

different nitrate-N concentrations, phosphate-P (38 mg H2NaPO4 l
-1, 9 mg P l-1) and iron (9.16 

mg Fe-EDDHA l-1, 0.56 mg Fe l-1) were added to the artificial seawater (15 psu). 

A similar experiment was carried out to identify the influence of phosphate-P concentration 

on the biofilter capacity, using different treatments with phosphate-P concentrations of 0.3, 

1.6, 3.3, 5.0, 9.8, 16.3 mg phosphate-P as H2NaPO4. In this experiment, named EPHOSPHATE, 

nitrate-N (304 mg NaNO3 l
-1, 50 mg N l-1) and iron (9.16 mg Fe-EDDHA l-1, 0.56 mg Fe l-1) 

were added to the artificial seawater (15 psu) as well. In a final experiment named ESPECIES we 

compared the different halophyte species T. pannonicum (et1 and et2), P. coronopus, A. 

portulacoides, A. halimus, L. latifolium and S. dolichostachya under application of those 

conditions which were figured out as best with respect to plant health, nitrate-N and 

phosphate-P uptake and biomass formation in the preceding experiments: hydroponic culture, 

artificial seawater with a salinity of 15 psu, 304 mg NaNO3 l-1 (50 mg NO3-N l-1), 38 mg 

H2NaPO4 l
-1 (9 mg P l-1) and 9.16 mg Fe-EDDHA l-1 (0.56 mg Fe l-1). 
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All experiments were conducted one after another between February and September 2013. 

Only the substrate experiment took place in May till June 2012. Each experiment lasted for 

five weeks (35 days). 

 

2.4 Determination of plant growth 

At the beginning of each experiment a set of nine plants of comparable size were randomly 

selected. The total wet weight of roots and shoots of all nine plants was determined. The dry 

weight of roots and shoots were determined after drying the tissues at 110°C until stable 

weight was reached. At the end of an experiment the fresh weight and the dry weight of total 

shoot and root biomass of each tank was determined as described for the beginning of the 

experiment. 

 

2.5 Water parameters 

Water samples were taken weekly with the first sampling at the day of planting and the last 

sampling at the day of harvesting at the end of the experiment. Water sampling in sand culture 

was done by using a discharge pipe. Water samples in the expanded clay and hydroponic 

culture systems were taken by a pipe released into the water at different places. Water 

samples were filtered (0.22 µm pore size, Carl Roth, Karlsruhe, Germany) and stored at -

60°C. All water samples were taken in triplicates. 

The colorimetric assays for the determination of nutrients in water samples (phosphate-P, 

nitrate-N, nitrite-N and ammonium-N) were conducted in 96-well microplates (Sarstedt AG & 

Co., Nümbrecht, Germany) and measured in a microplate reader (Synergy Mx, BioTek 

Germany, Bad Friedrichshall, Germany). Standard curves were on each microplate by using a 

blank and five calibration standards made from a stock standard (IC-Standards, Carl Roth, 

Karlsruhe, Germany) and treating them like the samples. For the preparation of samples, 

blanks, and standards ultrapure water was used (Purelab Ultra, ELGA LabWater Deutschland 

GmbH, Celle, Germany). 

For the determination of nitrate-N concentrations in water samples the method of Zhang and 

Fischer (2006) was modified for microplate reading. Calibration standards with 

concentrations between 0.5 and 10 mg NO3
- l-1 were prepared. For colorimetric reaction 10 µl 

of 10% sulfaminic acid was added to 80 µl of the water. The plate was incubated in a shaking 

water bath (1083, GFL Gesellschaft für Labortechnik GmbH, Burgwedel, Germany) at 80°C 
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for 30 min to allow nitrite-N to precipitate. Afterwards 10 µl of 2.5% resorcinol solution was 

added to each well and the microplate was again shaken for 1 min at a frequency of 850 min-1 

(Thermomixer compact, Eppendorf, Wesseling-Berzdorf, Germany). Then 150 µl of 36 N 

sulphuric acid was added and again incubated in a shaking water bath at 80°C for 60 min. The 

microplates were cooled to 15°C in a water bath. For all incubation steps the microplate was 

covered with polypropylene sealing foil (HJ-Bioanalytik GmbH, Mönchengladbach, 

Germany). After incubations the microplates were centrifuged at 200 g for 1 min (Jouan 

CB3i, Thermo Electron Cooperation, Waltham, Massachusetts, USA) and wiped dry 

carefully. The absorption was measured at 505 nm. 

Ammonium-N was determined according to DIN 38406-5 modified for the use of 

microplates. To each 250 µl sample 25 µl of a solution containing 0.81 M sodium salicylate, 

0.44 M trisodium citrate dehydrate and 3.25 M sodium nitroprusside dehydrate was added. 

Afterwards a solution containing 9 mM sodium dichloroisocyanurate dissolved in 0.4 M 

NaOH was added and the plate was kept for 1 h at room temperature. The absorption was 

measured at 655 nm. 

Phosphate-P and nitrite-N were determined exactly as described in Hérnandez-López and 

Vargas-Albores (2003). 

The results for the nutrient concentrations are expressed as NO3-N, NO2-N, NH4-N and PO4-P 

in the following text parts, tables and figures. The pH value was determined by a pH meter 

(Multi 350i pH/ISE-/Sauerstoffleitfähigkeits-Messgerät, WTW Technische Werkstätten 

GmbH, Germany). 

 

2.6 Analysis of elements 

For the determination of phosphorous, iron and manganese the samples of dried plant material 

used for the determination of plant growth were homogenized (roots and shoots separately) 

and a subsample taken from each homogenate was grinded to fine powder (MM 400, Retsch 

GmbH, Haan, Germany). About 38 mg of powder from each sample was incinerated for a 

minimum of 8 h in a muffle furnace (M104, Thermo Fisher Scientific Corporation, Waltham, 

Massachusetts, USA). After cooling the samples to room temperature 1.5 ml of 66% nitric 

acid was added. After 10 min 13.5 ml of ultrapure water was added. The solution was filtered 

(0.45 μm pore size, Carl Roth) and stored in vials before final analysis at -60°C. For every 

sample preparation an empty vial was treated parallel to the samples and later used as a blank. 

The samples were analysed by inductively coupled plasma optical emission spectrometry 
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(ICP-OES) (iCAP 6000 ICP Spectrometer, Thermo Fisher Scientific Corporation). For the 

determination of iron and manganese only young leaves were used. In the dry plant powder 

nitrogen was determined using a C-N-S elemental analyser (Vario EL III, Elementar 

Analysensysteme, Hanau, Germany) instructions. 

 

2.7 Determination of chlorophyll and carotenoids 

For the extract 400 µl of ice-cold 80% acetone was added to a sample of frozen and grounded 

leaf material (50 mg). The sample was kept on ice for 10 min, mixed every 2 min and 

centrifuged at 14,000 x g for 5 min. The supernatant was collected and stored on ice in the 

fridge. The pellet was re-extracted three times with 200 µl ice-cold 80% acetone and 

centrifuged as described above. All supernatants were pooled for pigment determination. 

Absorption was measured at 750.0, 663.2, 646.8 nm and 470.0 nm using a spectrophotometer 

(Uvikon XS, Biotech instruments, Germany) and total chlorophyll and carotenoid contents 

were calculated according to Lichtenthaler (1987). 

 

2.8 Chlorophyll fluorescence measurements 

A pulse modulated chlorophyll fluorescence meter (Imaging PAM M, Walz, Effeltrich, 

Germany) was used to measure photosynthetic activity. A fully expanded young leaf was dark 

adapted for 30 min and then cut off from the plant for the measurement. Minimal fluorescence 

(F0) and maximal fluorescence (Fm) were measured after dark adaption. Maximum quantum 

efficiency of photosystem II (PSII) photochemistry (Fv/Fm) was calculated according to Baker 

(2008). Measurements were conducted on three leaves from different plants for every 

treatment and the arithmetic mean was calculated for further evaluation. 

 

2.9 Statistical analysis 

All statistical analyses were conducted using R software version 3.0.2 (www.r-project.org) in 

combination with R Studio (RStudio, Boston, USA). Pairwise comparison between the 

treatments was conducted with a Tukey-type multiple contrast test according to Hothorn et al. 

(2008) with alpha = 0.05. Principal component analysis (PCA) was performed on all the 

parameters of ENITRATE and EPHOSPHATE using the ade4 package (Dray and Dafour, 2007) and 

subsequently of the first two components pairwise comparison was conducted between the 

treatments according to Hothorn et al. (2008).  
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3. Results 

Different experiments were carried out to define optimal culturing conditions for the use of 

halophytes as biofilter for the removal of nitrate-N and phosphate-P from process water by T. 

pannonicum: (i) the influence of substrate types (ESUBSTRATES), (ii) the effectiveness of 

micronutrients in dependence from the kind of chemical combination and concentration 

(EMICRONUTRIENTS), (iii) the influence of process water salinity (ESALINITY), (iv) the influence of 

the nitrate-N concentration in the process water (ENITRATE), and the influence of the 

phosphate-P concentration in the process water (EPHOSPHATE). The results of experiments are 

compiled in Table 1.  

In ESUBSTRATES, plants cultured in expanded clay and hydroponic culture showed a higher gain 

of biomass and uptake of nitrogen than those cultured in sand, but not significantly (Table 1). 

The hydroponic culture treatment displayed a significantly higher uptake of phosphorus than 

the other two treatments (p<0.001, Table 1). Although in terms of growth and nutrient uptake 

plants grown in hydroponic culture and in expanded clay performed better than those cultured 

in sand, they had a much lower chlorophyll and carotenoid content. Plants cultured in 

expanded clay and hydroponic culture had a content of just 525 and 252 µg g-1, whereas 

plants grown in sand contained 812 µg g-1 (Table 1). 

EMICRONUTRIENTS was conducted to find out if prevention of chlorosis is possible by adding 

manganese or iron in form of Fe-EDDHA instead of iron as Fe-EDTA to the solution. The pH 

in the nutrient solution was in the range of 7.9 and 8.5 in all the experiments, due to high 

CaCO3 content in the artificial sea water (data not shown). Fe-EDDHA is more stable at 

higher pH than Fe-EDTA and therefore possibly more suitable. Plants grown with Fe-

EDDHA showed significantly higher chlorophyll and carotenoid contents compared to plants 

grown with Fe-EDTA (p<0.001, Table 1). The lowest chlorophyll and carotenoid content was 

exhibited by plants grown without the addition of iron. The addition of manganese did not 

increase the chlorophyll and carotenoid content. However, manganese content in young leaves 

was higher in the treatments with manganese than in those without (Table 1). On the contrary, 

iron content in young leaves was higher in the treatments without iron than in the treatment 

with addition of iron to the solution (Table 1). Maximum quantum efficiency of PSII 

photochemistry did not show any differences between the two iron sources, but values were 

lower for the treatment without iron and manganese and for the treatment with sole addition 

of manganese (Table 1).  
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Plants grown with Fe-EDDHA showed little gain of biomass compared to the plants in 

ESUBSTRATES (Table 1) and visual rating indicated comparatively dark green leaves. This lead 

to the conclusion that iron was overdosed and half of the concentration of Fe-EDDHA was 

added in the following experiments. In those experiments gain of biomass was higher, the 

colour of the leaves appeared normally green and chlorophyll and carotenoid content was 

comparable to the highest values in EMICRONUTRIENTS (Table 1).  

In EMICRONUTRIENTS plants cultured without addition of iron and manganese and plants cultured 

with sole addition of manganese showed a significantly lower gain of biomass and nitrogen 

and phosphorus uptake than plants cultured with an addition of iron (p<0.001, Table 1). The 

addition of manganese and Fe-EDDHA caused a higher gain of biomass and nitrogen and 

phosphorus uptake than the sole addition of Fe-EDDHA. The highest gain of biomass, 

nitrogen and phosphorus uptake occurred in the treatment with addition of Fe-EDTA and T. 

pannonicum et2 (Table 1). This indicated that T. pannonicum et2 grew better under our 

experimental conditions than et1 and therefore et2 was used for the following experiments 

ESALINITY, ENITRATE and EPHOSPHATE. 

ESALINITY was performed to investigate the influence of salinity on the biofilter capacity and to 

determine a suitable salt concentration between 15 and 30 psu. Results in Table 1 show that 

gain of biomass was significantly higher at the lowest salt concentration (p<0.001). Uptake of 

nitrogen and phosphorus declined with increasing salt concentration, but not significantly. 

There was no difference in maximum quantum efficiency of PSII photochemistry between the 

treatments. 

ENITRATE and EPHOSPHATE were carried out to determine appropriate nitrate-N and phosphate-P 

concentrations in the solution for an effective biofilter performance. ENITRATE did not result in 

big differences among the treatments with 10 to 100 mg NO3-N l-1 in the parameters shown in 

Table 1. Only nitrogen content in leaves declined with decreasing nitrogen concentration in 

the culturing solution and plant uptake of nitrogen exhibited the same tendency, but without 

strong differences. But in the treatment with 1 mg NO3-N l-1 differed significantly from the 

others: gain of biomass was less, plants took up less nitrogen and phosphorus, chlorophyll and 

carotenoid content and also nitrogen content was much lower than in the other treatments 

(p<0.001, Table 1). Contrarily to the other results, maximum quantum efficiency of PSII 

photochemistry was slightly higher at lower nitrate-N concentrations in the culturing solution 

(Table 1). A biplot including all the measured parameters (Figure 1) and a corresponding all 

pair comparison of the principal component analysis (PCA) (Table S1) reveal the significant 
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difference in the biofilter capacity of plants grown at 1 mg NO3-N l-1 and those grown at 

higher NO3-N concentrations (p<0.001). The first two principal components explain 73.23% 

of the differences in the data set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Biplot of the first two components of a principal component analysis (PCA) including 

all measured parameters in ENITRATE. The numbers 1, 10, 15, 25, 50, 100 indicate the NO3-N 

concentrations of the treatments in the experiment. Loops indicate the dispersion of the replicates 

from one treatment. FW: fresh weight, DW: dry weight, N: Nitrogen, P: Phosphorus, Fv/Fm: 

maximum quantum efficiency of PSII photochemistry, et1 and et2: ecotype 1 and 2 of T. 

pannonicum. 

 

In EPHOSPHATE the results for gain of biomass, uptake of nitrogen and maximum quantum 

efficiency of PSII photochemistry did not show any differences between the treatments (Table 

1). But uptake of phosphorus and phosphorus content of the plants declined significantly with 

decreasing phosphate-P concentration in the solution (p<0.001, Table 1). Additionally there 

was a lower chlorophyll and carotenoid content in the treatments with 0.3-3.3 mg l-1 

phosphate-P compared to those with 5.0-16.3 mg l-1 phosphate-P in the solution. An all pair 

comparison of the PCA including all the measured parameters reveals a significant difference 

(p<0.001) between the biofilter capacity of plants grown at 0.3 and 1.6 mg PO4-P l-1 and 

plants grown at 9.8 and 16.3 mg PO4-P l-1 and between plants grown at 3.3 mg PO4-P l-1 and 
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plants grown at 16.3 mg PO4-P l-1 (Table S2). The first two principal components explain 

62.30% of the differences in the data set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fate of nitrogen (A) and phosphorus (B) during the experiment ESPECIES stated as 

nitrogen and phosphorus distribution in the system at the end of the experiment in percent of the 

start concentration (means for the different species). Total nitrogen (between 4.1 and 4.3 g; NO3-

N, NH4-N and NO2-N in the water and N in the plants) and phosphorus (between 0.68 and 0.69 g; 

PO4-P in the water and P in the plants) in the tanks at the beginning of the experiment served as 

hundred percent for the calculations. N: Nitrogen, P: Phosphorus. 

 

In ESPECIES the conditions determined as appropriate in the preceding experiments were 

applied to compare the biofilter capacity of different halophyte species. Figure 2 shows the 

percentage distributions of nitrogen and phosphorus in the system at the end of the 

experiment, indicating differences between the halophyte species. The starting concentrations 

of nitrogen and phosphorus at the beginning of the experiments were nearly the same which 

makes the percentage distributions at the end of the experiment comparable. In the tanks 

planted with A. halimus 47.8% of nitrogen and 56.2% of phosphorus in the system were found 
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in the shoot at the end of the experiment. In the tanks planted with P. coronopus only 12.4% 

of nitrogen and 10.9% of phosphorus were found in the shoot. For all species between 2.0 and 

8.6% of the nitrogen and between 2.6 and 7.8% of the phosphorus was found in the roots. The 

percentage of nitrogen lost as N2 or bound in microorganisms differed between different 

species with the lowest average value in tanks planted with T. pannonicum, et1 (7%) and the 

highest average value in tanks planted with P. coronopus and L. latifolium (23.9%). The 

percentage of phosphorus bound in microorganisms or precipitated was also different between 

different species with the lowest average value in tanks planted with A. halimus (0%) and the 

highest average value in tanks planted with T. pannonicum, et2 (29%). The rest of the 

nitrogen in the tanks remained as nitrate-N (between 35.4% and 61.6%) or to a very low 

percentage as nitrite-N or ammonia-N (<0.2%). Between 36.6 and 61.3 % of the phosphorus 

remained as solved orthophosphate in the solution. 

Figure 3 shows the nitrate-N, phosphate-P, ammonium-N and nitrite-N concentration during 

the species comparison experiment. There was a decrease of nitrate-N and phosphate-P in the 

tanks for all species: the average decrease of nitrate-N was 29 mg l-1 and the average decrease 

of phosphate-P was 5 mg l-1 over 5 weeks. The highest differences in nitrate-N and 

phosphate-P concentrations in tanks planted with different species occurred at the end of the 

experiment with 30 mg l-1 and 4 mg l-1 for nitrate-N and phosphate-P, respectively. 

Ammonium-N concentration remained constant between 0.01 and 0.16 mg l-1 and the nitrite-

N concentration increased over the first 3 weeks and then evened out at values between 0.03 

and 0.12 mg l-1. Both nutrients showed slight differences in concentrations between the 

different plant species. 
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Figure 3. Change of nutrient concentrations (A: nitrate-N, B: phosphate-P, C: nitrite-N and D: 

ammonium-N) during the five weeks (35 days) of the experiment ESPECIES. Values for all three 

replicates of the different treatments (species) are shown.  
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Gain of biomass (fresh and dry weight) and nitrogen and phosphorus uptake by the plants in 

ESPECIES are shown in Figure 4. The total gain of fresh weight differed between the species 

with 233 g per tank planted with P. coronopus and 505 g per tank planted with T. 

pannonicum, et1. However, S. dolicostachya, A. halimus and T. pannonicum, et1, also 

displayed a comparably high biomass production. Only P. coronopus showed a significantly 

lower growth (gain of total dry weight) compared to the other species (p<0.05). Shoot fresh 

weight production of the different species was between of 185 g (P. coronopus) to 398 g (T. 

pannonicum, et1) per tank. Five week plant nitrogen uptake ranged between 0.5 and 2.0 g per 

tank for the different species. Uptake of nitrogen (total and shoot uptake of nitrogen) was also 

significantly less in P. coronopus than in the other species (p<0.05). Five week plant 

phosphorus uptake ranged between 0.07 and 0.37 g per tank for the different species. 

Phosphorus uptake was significantly higher in A. halimus than in the other species (p<0.05). 

Atriplex halimus also displayed a higher shoot to root ratio for gain of biomass and nutrient 

uptake than the other species, followed by A. portulacoides. Atriplex halimus, A. 

portulacoides. and L. latifolium exhibit a smaller difference between gain of fresh weight and 

gain of dry weight indicating a lower water content of the plants of these species. T. 

pannonicum et1 showed a slightly but not significantly higher gain of biomass and nitrogen 

and phosphorus uptake than T. pannoniucm et2. 
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Figure 4. Gain of biomass and nitrogen and phosphorus uptake by the plants of the different species in the 

experiment ESPECIES (arithmetic mean and standard deviation). Each experiment lasted for five weeks (35 days), 

for each species three tanks (0.24 m²) with nine plants each were used as replicates. A: gain of fresh weight 

(FW), B: gain of dry weight (DW), C: Plant nitrogen uptake and D: Plant phosphorus uptake. For each parameter 

values for shoot, root and total plant are shown separately. Mean values with different letters indicate a 

significant difference between treatments (species) in the according parameter (p<0.05). 

 

4. Discussion 

4.1 Salt-tolerant Tripolium pannonicum grows well in hydroponic culture  

The growth and nutrient uptake of T. pannonicum was dependent on culture conditions. 

ESUBSTRATES revealed hydroponic culture as the most suitable mode of culture. Regarding 

growth and nitrogen uptake plant performed similarly well in expanded clay culture and 

hydroponic culture. But phosphate-P uptake was much higher in hydroponic culture than in 

both substrate cultures. The lower phosphate-P uptake in expanded clay and sand culture 

could be due to adsorption of phosphate-P to substrate particles and precipitation. This might 

have caused a lower plant availability of phosphate-P in the substrate cultures even though the 

amount of phosphate-P added to the tanks at the beginning of the experiment was the same for 
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all treatments. Although substrate culture leads to a higher reduction of total phosphate-P in 

the water (results not shown) hydroponic culture should be favoured if the aim is nutrient 

recycling. In terms of nutrient recycling the often declared advantage of using substrate in a 

plant biofilter to provide habitat for nitrate-reducing bacteria that crucially increase the 

reduction of nitrogen in the water is also adverse. True nutrient recycling in a plant biofilter 

can only be achieved by plant uptake of nitrate-N and phosphate-P resulting in valuable 

biomass and not by loosing nitrogen in gaseous form or adsorption and precipitation of 

phosphate-P. Besides, the total loss of nitrate-N was comparable in hydroponic culture and in 

substrate cultures in this study, probably due to constantly aerobic conditions in all 

treatments.  

Additionally to those results, working with hydroponic culture (water culture) has several 

other advantages compared to the use of expanded clay or sand culture: there are no weeds or 

soil pests, harvest is more hygienic, it is possible to easily harvest the root biomass for further 

use (e.g. biogas production) and there is no problem of intricate disposal or reprocessing of 

the used substrate that contains salt and organic material. Contrarily to our results Lennard 

and Leonard (2006) and Sikawa and Yakupitiyage (2010) showed that lettuce grown to filter 

effluents from freshwater aquaculture demonstrates a higher yield grown in sand or gravel 

culture than grown in water culture. This suggests that the suitability of the mode of culture in 

terms of biomass production is species-dependent.  

 

4.2 Chelated iron stable at high pH needs to be added to hydroponic cultures to prevent 

chlorosis 

The advantage of using sea water for the culture of halophytes is that it naturally contains 

most of the nutrients important for plant growth. For example, calcium, potassium, 

magnesium and sulphur are similar or much higher concentrated in seawater than in 

conventional nutrient solutions. However, the composition of seawater is not optimal for the 

culture of land plants. Beside the insufficient amount of nitrogen and phosphorus in seawater, 

iron and some other microelements might be limiting. Another unfavourable characteristic of 

seawater for the culture of plants is a high pH of 7.5 to 8.4 which can reinforce the problem of 

low concentrated micronutrients. The optimal pH for hydroponic plant culture is 5.5 to 6.5 

(Lindl, 2002). A slightly acidic solution prevents important nutrients from precipitating into 

insoluble and plant unavailable salts and facilitates nutrient uptake for plants (Marschner, 

2012).  
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In ESUBSTRATES all nutrients commonly abundant in plant nutrient solutions (micro- and 

macronutrients) were added to the artificial seawater to ensure best conditions for healthy 

plant growth. Nevertheless, plants grown in hydroponic culture and expanded clay culture 

exhibited chlorotic leaves. The high pH in the experimental fluid (7.9-8.5) probably caused 

insufficient iron accessibility for the plants. Iron was sufficiently abundant in the solution: 20 

µg Fe l-1 were contained in the artificial seawater and 1.1 mg Fe l-1 was added in form of Fe-

EDTA. But free iron ions precipitate in the form of Fe(III) and become hardly available for 

plants at high pH. Additionally, Fe-EDTA is not stable at high pH and the EDTA builds 

chelates with other ions abundant in the solution. The chlorosis could be prevented by adding 

Fe-EDDHA to the solution in EMICORNUTRIENTS and all the following experiments. Fe-EDDHA 

is more stable than Fe-EDTA at high pH and can prevent plants from iron deficiency in a 

alkaline soil or culturing solutions with high pH (Lucena and Chaney, 2006). Ventura et al. 

(2013) also demonstrated a successful elimination of chlorosis in T. pannonicum in a saline 

agricultural system on sand dune soils by the application of Fe-EDDHA. 

In ESUBSTRATES plants grown in sand and expanded clay culture showed much higher 

chlorophyll and carotenoid contents than plants grown in hydroponic culture, however, the 

plants in all treatments were grown in the same solution with the same pH and the same iron 

source (Fe-EDTA). A possible reason for the difference could be that in substrate rather than 

in hydroponic culture, plants have the chance to establish an acidified micro-environment 

around the roots to facilitate the iron uptake. 

Manganese deficiency can also cause chlorosis similar to iron deficiency and its uptake is also 

affected by high pH. But solely addition of manganese to the artificial seawater did not 

improve growth, nutrient uptake or physiological status of the plants compared to the control. 

Only the addition of manganese together with Fe-EDDHA to the artificial seawater caused a 

slight increase of growth and nutrient uptake which might indicate a weak manganese 

deficiency in plants not supplied with additional manganese.  

The results suggest that plants grown in seawater need an additional Fe source that is stable at 

a high pH. The addition of manganese is beneficial but not implicitly necessary. Other 

micronutrients might also become limiting if the seawater is used in a batch culture without 

exchange or low exchange rates. This problem might occur when integrating halophytes to a 

recirculating aquaculture system with low water exchange rates if fish food does not contain 

the necessary micronutrients, only in insufficient concentrations or bound to organic material 

in a form unavailable for plants. An alternative to the addition of micronutrients to the culture 



71 

medium is the additional supply of the plants with certain nutrients by foliar spray. This 

approach has already been studied for crops grown on calcareous soil (Fernández and Ebert, 

2005; Fageria et al., 2009) and freshwater aquaponics at high pH (Tyson et al., 2008; Roosta 

and Hamidpourb, 2011; Roosta and Mohsenian, 2012) and should be tested for marine 

aquaponic systems. For large-scale commercial applications foliar application of 

micronutrients might be too labour-intensive.  

The main function and occurrence of iron in the plant is the biosynthesis of chlorophyll and in 

proteins of electron transport chains (Marschner, 2012). In EMICRONUTRIENTS the measurement 

of maximum quantum efficiency of PSII photochemistry (Fv/Fm) in young leaves showed a 

difference between no addition of iron and the addition of iron in general. But a difference in 

Fv/Fm between the iron sources Fe-EDTA and Fe-EDDHA could not be detected. The iron 

content of PSII is much lower than the iron content of PSI. Therefore PSII is less by iron 

deficiency or only in an advanced state (Marschner, 2012). Iron content of leaves neither was 

a good indicator for iron deficiency. The iron content of young leaves was higher in deficient 

than in healthy plants. This is in accordance to the “chlorosis paradoxon” described for plants 

grown on calcareous soils by Römheld (2000). A possible explanation is that iron is less 

diluted in young leaves of iron-deficient plants due to growth depletion (Römheld, 2000). 

 

4.3 Higher salinity up to seawater level decrease performance as biofilter 

The decline of biomass production and uptake of nitrogen and phosphorus with increasing salt 

concentration in ESALINITY shows that aquaponic growth of vegetables at full strength sea 

water may harm biofilter performance and biomass production. The influence of salinity on 

mineral nutrition of plants is complex. Reduction of crop yield, biomass production or crop 

quality due to salinity can be caused by reduced nutrient availability, uptake and transport 

competition of Na+ and Cl- with nutrients or partitioning within the plant (Grattan and Grieve 

1999). For example, the reduction of nitrogen accumulation in plants by salinity has been 

related to Cl- antagonism of NO3
--uptake or reduced water uptake and is dependent on the 

form or nitrogen and concentrations of other constituents in the nutrient or soil solution 

(Grattan and Grieve, 1999; Hu and Schmidhalter, 2005). In general, the impact of salinity on 

mineral nutrition of plants is not only dependent on the strength of the salinity and the plant 

species but also on the composition of the salt (Grattan and Grieve, 1999). Therefore saline 

waters mainly containing NaCl might have a different effect on biomass production and 
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biofilter performance than seawater-based effluents were salinity is also caused by other ions 

such as Ca2+, K+ and Mg2+. 

The impact of salinity is species-dependent because halophyte species differ much in their 

tolerance towards high salt concentrations (Flowers and Colmer, 2008). That a comparatively 

highly salt-tolerant species like T. pannonicum shows a growth reduction of 65% with an 

accompanied decline in nutrient uptake of > 30% underlines the importance of salinity 

influencing the performance of a biofilter implemented with halophytes. That the plants took 

up less nitrogen in the treatments with a higher salinity was partly due to a reduced nitrogen 

and phosphorus content of the plants (data not shown). On the other hand, a decrease in 

biomass production resulted in a reduced amount of plant nitrogen and phosphorus uptake.  

Our results support the outcome of previous studies. In an experimental set up with irrigated 

drainage lysimeters using effluents from intensive tilapia culture salinities of 0.5, 10 and 35 

psu were applied. The nutrient uptake was reduced to about one half at 10 psu and one third at 

35 psu in comparison to 0.5 psu indicating that the removal of NO3-N and PO4-P in the soil-

plant system was more effective at lower salinities (Brown et al., 1999). In a study 

investigating the behaviour of Juncus kraussii Hochst. in a subsurface-flow constructed 

wetland, salinity had a negative effect on the removal of PO4-P but not on the removal of 

NO3-N (Lymbery et al., 2006). However, removal of 62% of total N and 76.5% of PO4-P 

(Lymbery et al., 2006) and 99% of total N and total P (Brown et al., 1999) were still reached 

at salinities of 24 psu and 35 psu, respectively. The results of the studies show that even 

though a halophyte species is tolerant to the salinity level in an effluent, the filter capacity can 

be reduced and also plant growth directly influences nutrient uptake.  

Nutrient-rich saline waters that are to be purified by halophyte biofilters might show salinities 

lower than full strength seawater. This holds the chance to choose appropriate halophyte 

species for different conditions and applications. For example several marine organisms or 

their developmental stages can be cultured at lower salinities than full strength seawater 

(Forsberg and Neill, 1997; Atwood et al., 2003). Hence, the salinity of the culture water and 

the halophyte species should be chosen carefully for a maximum benefit from both, fish and 

plant culture (Buhmann and Papenbrock, 2013a).  
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4.4 Nitrate concentration as low as 10 mg l
-1

 even at high NaCl concentration does not 

limit biofilter capacities 

The concentration of nitrogen and phosphorus is very low in sea water and insufficient for the 

growth of land-plants (Sleimi and Abdelly, 2002). The composition of the artificial seawater 

used in this study was similar to natural sea water and did not contain any nitrogen or 

phosphorus. In the experiments of this study, nitrate-N and phosphate-P were added to the 

artificial sea water to simulate conditions that might occur in the effluents to be treated by 

halophytic plants. In effluents considered as nutrient-rich regarding environmental impact or 

fish health, nitrate-N concentrations might not be that excessive from a crop plant nutritional 

point of view. For example, in marine aquaculture a nitrate-N concentration of 125 mg l-1 can 

already affect the growth of the cultured fish, at higher concentrations health and feed 

efficiency are affected (van Bussel et al., 2012). In modern aquaculture systems that include 

biofilters containing nitrifying and denitrifying bacteria to guarantee health of the fish, nitrate-

N concentrations are often kept below 50 mg l-1 (van Rijn et al., 2006). Those low nitrogen 

concentrations might already be limiting for the growth of certain plant species, but ENITROGEN 

showed that nitrate-N concentrations as low as 10 mg l-1 did not limit biomass production and 

biofilter performance. 

In ENITROGEN plant growth and physiology were not affected at nitrate-N concentrations 

between 10 and 100 mg NO3-N l-1. Therefore for saline agriculture with seawater as suggested 

by Rozema and Schat (2013) or with brackish water (Ventura et al., 2011a) a nitrate-N 

availability in this concentration range has to be ensured. Nitrate-N concentrations normally 

occurring in marine aquaculture facilities (Schneider et al., 2005; Orellana et al., 2013) are 

suitable for normal growth rates and healthy development of the plants and therefore suitable 

for aquaponic vegetable production. As already mentioned, nitrate-N uptake by plants is 

affected by salinity. If nitrogen concentration in the soil or culturing solution is below optimal 

concentrations, negative effects of salinity can often be reduced by the addition of nitrogen 

(Grattan and Grieve, 1999; Hu and Schmidhalter, 2005). In ENITROGEN biomass production 

could not be increased by higher NO3-N concentrations indicating that with 10 mg l-1 already 

an optimal NO3-N level is reached. Results suggest that halophyte crop culture with effluents 

containing 10 mg NO3-N l-1 guarantees maximal growth and nutrient uptake and no further 

increase is expected at higher NO3-N concentrations. However, if the nitrogen concentration 

of an effluent used for the growth of halophytic crop plants is low (around 10 mg l-1) plants 

might use up the nitrogen down to a growth limiting concentration. Therefore high flow rates 
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through the biofilter (short hydraulic retention time) should be applied when nitrate-N 

concentrations in the effluent are low. 

A low concentration of 1 mg NO3-N l-1 affects plant growth, plant nitrogen and phosphorus 

uptake and chlorophyll and carotenoid content and therefore biofilter capacity and production 

of viable plant material, as shown in ENITROGEN. Therefore, limiting nitrogen concentration is 

reached somewhere between 1 and 10 mg NO3-N l-1, indicating those low nitrate-N 

concentrations to be insufficient for the application of a halophyte biofilter. Maximum 

quantum efficiency of PSII photochemistry was not affected at 1 mg NO3-N l-1 (Table 1). This 

suggests that phase two of the plants reaction towards N deficiency was not reached which is 

characterized by a decrease of photosynthetic capacity and leaf senescence. Plants in 

ENITROGEN were still able to react to the low N concentration by morphological and 

physiological adaptations (Marschner, 2012), reflected in low yield and low shoot to root ratio 

(data not shown).  

 

4.5 Low phosphate concentrations do not influence nitrate up-take 

In the same way as for nitrogen it is important to investigate the influence of different 

phosphate-P concentrations that occur in effluents to be purified by halophyte crop plants. 

Phosphate-P concentrations evaluated as high with regard to their negative environmental 

impact or harming effect on a cultured organism in marine aquaculture might be limiting for 

plant growth. In marine aquaculture facilities typical phosphate-P concentrations are between 

1 and 15 mg l-1 (Deviller et al., 2004; Tal et al., 2009; Orellana et al., 2013), depending on 

the system. 

In EPHOPHATE there were no differences in gain of biomass, uptake of nitrogen and 

photosynthesis between plants grown at different phosphate-P concentrations in the culturing 

solution between 0.3 and 16.3 mg l-1. But there was a decline of plant phosphorus uptake and 

phosphorus content with decreasing phosphate-P concentration in the solution and slightly 

lower chlorophyll and carotenoid content in the treatments with 0.3-3.3 mg l-1 phosphate-P 

compared to the other treatments. Additionally PCA revealed a significant difference between 

0.3 and 1.6 mg l-1 treatments and higher phosphate-P concentrations. It results that phosphate-

P concentrations of 1.6-3.3 mg l-l are favourable for phosphate-P uptake but lower phosphate-

P concentrations do not harm biomass production and uptake of nitrogen. This is in 

accordance with Chen et al. (1997) successfully growing lettuce in a hydroponic nutrient film 

technology (NFT) system with a phosphorus concentration of 0.3 mg l-1. Therefore, there 
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should not be any serious limitation of biofilter capacity phosphate-P concentrations as low as 

0.3 mg l-1 in recirculating marine aquaponics. Alder et al. (2003) even managed to reduce 

phosphorus concentrations down to <0.01 mg l-1 exploiting different growth stages of lettuce 

and luxury consumption in a NFT system. This approach would be interesting for the 

reduction of phosphorus concentration of effluents from open aquaculture systems to maximal 

reduce environmental impact.  

 

4.6 Several salt-tolerant plant species can act as biofilter and valuable co-product in 

different applications 

Tripolium pannonicum, P. coronopus, A. halimus, A. portolacoides, L. latifolium and S. 

dolicostachya are halophyte species that are known as edible with at least regional importance 

or show valuable secondary metabolites with market potential (Koyro, 2006; Liebezeit, 2008; 

Koyro et al., 2011; Buhmann and Papenbrock, 2013b; Kaur et al., 2013; Ventura and Sagi, 

2013; Ventura et al., 2013). Therefore all of them have potential to be used as crop plants in 

saline agriculture or valuable co-product of a biofilter for nutrient-rich saline effluents. The 

examination of the species in this study (ESPECIES) suggests that all the tested halophyte 

species are suitable for the production of valuable biomass at a salinity of 15 psu. Ventura and 

Sagi (2013) list the results of various studies for yields obtained from different halophyte 

species. Species from the genera Atriplex, Batis, Salicornia and Sarcocornia grown under 

field conditions showed yields expressed in fresh weight between 14 and 28 kg m-2 year-1 (38 

to 77 g m-2 d-1) and yields expressed in dry weight between 1.5 and 1.8 kg m-2 year-1 (4 to 5 g 

m-2 d-1). These values are well comparable with our results from ESPECIES were the different 

species exhibited a shoot gain of fresh weight between 22 and 47 g m-2 d-1 and shoot gain of 

dry weight between 1.8 and 6.2 g m-2 d-1.  

Results from hydroponic culture experiments in a greenhouse might be better comparable to 

our results than field studies on soil. De Vos et al. (2013) investigated the influence of salinity 

on growth of two potential halophyte crop species in greenhouse hydroponic culture. They 

determined an approximate gain of total fresh weight (root and shoot) of 6 and 3 g per plant in 

20 days for D. tenuifolia at salinities of 200 mM and 300 mM NaCl, respectively (11 and 6 g 

m-2 d-1). Cochlearia officinalis L. showed an approximate gain of total fresh weight of 15 and 

4 g per plant in 35 days at salinities of 200 mM and 400 mM NaCl, respectively (16 and 4 g 

m-2 d-1). The salinity of 15 psu in ESPECIES equals 250 mM NaCl. For easier comparison the 

values from de Vos et al. (2013) were recalculated into values in g m² d-1 assuming the same 
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plantation density as in our study (38 plants per m²). The gain of total fresh weight for both 

species investigated in de Vos et al. (2013) was below the gain of shoot fresh weight for all 

species in our study even at a lower salinity.  

Beside the crop potential of different halophyte species their potential as biofilter for nitrogen 

and phosphorus for nutrient-rich saline waters was determined in ESPECIES. The different 

species showed a plant uptake of nitrogen between 0.06 and 0.23 g m-2 d-1 and plant uptake of 

phosphorus between 0.009 and 0.044 g m-2 d-1. These values for nutrient uptake are well 

comparable with those from two applications of Salicornia planted in constructed wetlands as 

biofilter for marine aquaculture effluents. Using Salicornia europaea to purify effluents for 

the culture of different marine organisms Webb et al. (2012) determined a total plant nitrogen 

and phosphorus uptake of 0.17 and 0.028 g m-2 d-1, respectively. In Shpigel et al. (2013) the 

application of Salicornia persica for the purification of a sea beam resulted in a total plant 

nitrogen uptake of 0.04 and 0.08 g m-2 d-1. Results for plant nutrient uptake in ESPECIES were 

also comparable with results on the potential of fruit production for the recycling of nutrients 

in a fresh water aquaponic system (Graber and Junge, 2009). Nutrient removal by harvesting 

of cucumber, aubergine and tomato was between 0.08 and 0.43 g m-2 d-1 for nitrogen and 

between 0.02 and 0.07 g m-2 d-1 for phosphorus. Therefore, all tested species in ESPECIES 

showed promising biofilter efficiency for nitrogen and phosphorus removal.  

Regarding a recycling of nutrients, it is important to retain high amounts of the nitrogen and 

phosphorus in a biofilter system with halophyte crop plants in harvestable valuable biomass. 

High retention of nitrogen and phosphorus in the roots, loss of nitrogen as N2, precipitation of 

phosphate-P and nitrogen-N and phosphorus adsorbed by microorganisms are adverse. In our 

system around 10 to 60% of the nitrogen and phosphorus of the system were retained in 

harvestable shoot biomass and around 35 to 60% remained as nitrogen and phosphorus in the 

water. Therefore, only small amounts of nitrogen and phosphorus were retained in roots and 

lost due to microorganisms and precipitation. A high shoot to root ratio as for A. halimus 

indicates the favourable high retention of nutrients in the shoots and low retention of nutrients 

in the roots. Plantago coronopus results to be less suitable than other tested species due to 

lower gain of biomass, nutrient uptake and higher loss of nitrogen in the tanks due to 

microorganisms.  

With respect to the application as biofilter in aquaponic systems, the concentrations of nitrite-

N and ammonium-N (Fig. 4) were always below toxic concentrations for fish (Orellana et al., 
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2013). Therefore well aerated hydroponic systems are well suited as biofilter even in a 

recirculating system consisting of primary (fish) and secondary (plants) circulations.  

Seeds of T. pannonicum et1 and et2 were collected at two different sites. The higher growth 

and nutrient uptake of T. pannonicum et2 compared to et1 in EMICRONUTRIENTS under 

insufficient iron supply indicate differences between those two collections. Different factors 

at the two collection sites such as salinity, nutrient availability and flooding probably caused 

different adaptations of the T. pannonicum plants to their environment suggesting that they 

can be classified as different ecotypes of the same species. ESPECIES could not confirm the 

difference between et1 and et2 under optimal growth conditions. However, for the application 

of halophytes as crop plants and as biofilter for nutrient-rich saline waters it is important to 

select suitable ecotypes and to breed varieties with favourable characteristics regarding taste, 

appearance, growth rate, nutrient uptake and salt tolerance, amongst others. De Vos et al. 

(2013) also suggest this approach. 

 

5. Conclusions 

Halophytes have a high potential for their use as new crop plants for saline agriculture and as 

biofilters in different applications. In this study, basic cultivation techniques and identification 

of putative growth limitations have been identified and optimized. Tripolium pannonicum was 

used to conduct experiments on culture conditions and their impact on biomass production 

and biofilter efficiency. Optimal conditions found were applicable to grow different halophyte 

species with crop potential. Therefore general assumptions can be drawn and increase the 

knowledge about successful cultivation of new and salt-tolerant crop plants.  

This study revealed that the use of hydroponic culture is the favourable culture mode in terms 

of nutrient recycling and controlled conditions. Saline effluents used for the culture of 

halophytes should contain nitrate-N concentration of at least 10 mg l-1, a phosphate-P 

concentration of 0.3 mg l-1 is sufficient. In sea water based effluents iron has to be added in a 

pH stable chelated form, the addition of manganese is beneficial but not implicitly necessary. 

Salt concentrations lower than sea water salinity are favourable for biomass production and 

biofilter performance, even for highly salt tolerant species. All tested halophyte species have 

potential to serve as biofilter for nutrient-rich saline effluents and valuable co-product. The 

selection of suitable ecotypes and breeding of varieties is mandatory for future applications.  

Our results form a basis for future breeding activities of valuable, salt-tolerant crops and can 

be transferred to apply halophytes as biofilter for nutrient-rich saline municipal, agricultural 
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and industrial wastewater. An interesting field for future application of our results is the 

aquaponic growth of halophytic crop plants using effluents from marine aquaculture (open 

systems) or integrating the halophyte culture into a recirculating aquaculture facility (closed 

system). 
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Table S1 

Tests of hypothesis for the main component analysis in ENITROGEN. Of the two main components the smaller p-

value for each test of hypothesis was chosen for indication of significant differences between treatments. The 

numbers 1, 10, 15, 25, 50, 100 in the column named “Hypothesis” indicate the NO3-N concentrations of the 

treatments in the experiment. 

 

Hypothesis p-value 

10 - 1 ≠ 0 <0.01 

15 - 1 ≠ 0 <0.01 

25 - 1 ≠ 0 <0.01 

50 - 1 ≠ 0 <0.01 

100 - 1 ≠ 0 <0.01 

15 - 10 ≠ 0 0.28 

25 - 10 ≠ 0 <0.01 

50 - 10 ≠ 0 <0.01 

100 - 10 ≠ 0 <0.01 

25 - 15 ≠ 0 0.04 

50 - 15 ≠ 0 0.48 

100 - 15 ≠ 0 0.12 

50 - 25 ≠ 0 0.87 

100 - 25 ≠ 0 0.11 

100 - 50 ≠ 0 0.91 

 

Table S2 

Tests of hypothesis for the main component analysis in EPHOSPHORUS. Of the two main components the smaller p-

value for each test of hypothesis was chosen for indication of significant differences between treatments. The 

numbers 0.3, 1.6, 3.3, 5.0, 9.8, 16.3 PO4-P in the column named “Hypothesis” indicate the PO4 concentrations of 

the treatments in the experiment. 

 

Hypothesis p-value 

1.6 - 0.3 ≠ 0 0.75 

3.3 - 0.3 ≠ 0 <0.01 

5.0 - 0.3 ≠ 0 0.02 

9.8 - 0.3 ≠ 0 <0.01 

16.3 - 0.3 ≠ 0 <0.01 

3.3 - 1.6 ≠ 0 <0.01 

5.0 - 1.6 ≠ 0 0.79 

9.8 - 1.6 ≠ 0 <0.01 

16.3 - 1.6 ≠ 0 <0.01 

5.0 - 3.3 ≠ 0 0.85 

9.8 - 3.3 ≠ 0 0.98 

16.3 - 3.3 ≠ 0 <0.01 

9.8 - 5.0 ≠ 0 0.67 

16.3 - 5.0 ≠ 0 0.58 

16.3 - 9.8 ≠ 0 0.15 
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marine fish combined with hydroponic halophyte production 
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Wecker, Jaime Orellana, Jutta Papenbrock 

 

Abstract 

Salt tolerant plants can be used as a biofilter for effluents from marine aquaculture. Three salt 

tolerant plant species, Tripolium pannonicum (Jacq.) Dobrocz., Plantago coronopus L. and 

Salicornia dolichostachya Moss have been integrated into a modern 7 m³ pilot scale 

recirculating aquaculture system (RAS). The RAS used for this study is a highly engineered 

system equipped with mechanical and microbiological water treatment resulting in a low 

water exchange rate. The RAS was stocked with juvenile European sea bass (Dicentrarchus 

labrax, L.). The reason for including a halophyte biofilter into the RAS was the recycling of 

nutrients and the production of a valuable co-product in addition to the fish. After 35 days 248 

fishes had gained altogether 5.6 kg of fresh weight. At the same time total plant biomass 

production was 21.8 kg in three hydroponic culture tanks (15 m² surface area per unit). Gain 

of shoot biomass was 17, 25 and 61 g m-2 d-1 for T. pannonicum, P. coronopus and S. 

dolichostachya, respectively. The plants retained 7 g phosphorus and 46 g nitrogen. This 

represents 9% of the nitrogen and 10% of the phosphorus introduced with the fish feed and 

partly dissolved in the water. The micronutrients supplied to the hydroponic culture tanks 

were sufficient for T. pannonicum and P. coronopus, however a higher amount of ferric acid 

is probably necessary for S. dolichostachya. Gain of harvestable biomass and nutrient 

retention in plants are promising. The hydroponic system can be further optimized to increase 

productivity per unit area and water volume. A potential production of 16 to 20 kg of plant 

material for the production of 1 kg of European sea bass was calculated for the system, 

depending on the plant species. Harvested plant material was free from harmful 

microorganisms and is suitable for human consumption. 
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Introduction 

The sustainable expansion of aquaculture worldwide requires the development of 

technologies which allow for the recycling of matter and energy. Presently aquaculture is still 

operating in mono-species systems. The system-immanent loss of nutrients, organic 

compounds and energy are a cause for concern; having a potentially negative ecological effect 

on the environment. Beyond that, the bio-economy of mono-species aquaculture is weak. A 

new approach, integrated multi-trophic aquaculture (Chopin et al., 2008), combines the 

production of fish with filter feeders and plants or algae. This concept is applicable to many 

standard aquaculture installations, such as pond or net cages. Another trend in global 

aquaculture is towards recirculating aquaculture systems (RAS) (Martins et al., 2010; 

Daalsgard et al., 2013) which allows the production of almost every aquaculture species 

regardless of their natural distributional range (Orellana et al., 2013).  

Recirculating aquaculture systems are operating independently from the environment, 

however, within their system borders substantial amounts of organic and inorganic matter (i.e. 

non-retained feed and metabolites) are accumulating. The accumulation of matter needs to be 

thoroughly controlled by means of bio-process technology in order to maintain adequate 

living conditions and to maximize carrying capacity and productivity. Orellana et al. (2013) 

highlighted that a functional RAS for marine fish is highly engineered. The production 

process needs to be accurately controlled by process automation.   

Modern, highly engineered RAS are designed to meet the needs of the cultured species. 

Animal welfare is not solely an ethical aspect but also safeguards production by avoiding the 

limitation of living conditions during the course of production. In order to minimize energy 

consumption and to avoid vectors for the introduction of pathogens or contaminants the 

process water is kept within the RAS. Water losses resulting from evaporation and water 

treatment processes are replenished. A modern RAS can be operated with a water 

consumption rate of 0.01 of the system volume per day or even less (Orellana et al., 2013).  

A central part of water treatment in RAS is the conversion and removal of dissolved nutrients. 

Ammonium is converted to nitrate by a nitrifying biofilter and nitrate is removed from the 

system by a denitrifying biofilter. Low levels of phosphorous are removed during the 

denitrification process because of the large surface area of the granulate material in the filter 

and by sedimentation. The technology of the system is complex but still does not include any 

components for a recycling of matter, especially dissolved nutrients. The removal of nutrients 

through technical components described above is costly and does not improve the 
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environmental balance. Thus, it is desirable to include a component that is capable of using 

and removing dissolved nutrients from the process water and thus, enhance the bio-economy 

and the environmental compatibility of the RAS. 

Accumulated matter in RAS consists as a first approximation of inorganic nitrogenous, 

phosphorous and carbon compounds as well as organic compounds that are mostly not 

identified. The inorganic compounds comply to a large extent with the nutrient requirements 

of plants and algae. Thus, the potential of process water from RAS for plant cultivation is 

obvious. Approaches are dated back to 1978 and 1984, when Lewis et al. (1978) and Watten 

and Busch (1984) combined the production of tilapia and tomatoes. Many other trials have 

been published from freshwater aquaculture in the past decades. More recently Sikawa and 

Yakapitiyage (2010) published results from experiments combining hybrid catfish (Clarias 

macrocephalus × C. gariepinus) and lettuce (Lactuca sativa L.) in a pond/hydroponic system. 

Their results proved the feasibility but also showed constraints. The high particle load in the 

process water of the employed low-tech RAS turned out to be a major drawback for the 

integration. Modern RAS technology includes several process steps for particle removal 

(Orellana et al., 2013) and provides the necessary process water quality for hydroponic plant 

production. For marine aquaculture, examples of integrating the culture of fish and plants are 

less common. Webb et al. (2012) investigated the feasibility of constructed wetlands recycling 

nutrients from a commercial RAS operation. They grew Salicornia europaea successfully 

with water effluents from a shrimp, sole, and turbot farm. The system was able to remove a 

large amount of nutrients before the water was discharged. However, the wastewater flow 

reported by the authors clearly indicates that the commercial RAS was exchanging water 

during the production process. This was likely to maintain water quality. Any water exchange, 

however, is in conflict with the concept of closed RAS aquaculture, an aim of our study. 

The aquaponic production of halophytes as marketable co-product and for the recycling of 

nutrients in an integrated zero-exchange RAS has not yet been investigated. In RAS low 

dissolved phosphorus and nitrogen concentrations in the process water are maintained in order 

to ensure well-being of the cultured organism. Typical concentrations are <100 mg l-1 nitrate-

N and between 1 and 15 mg l-1 for phosphate-P (Deviller et al., 2004; Tal et al., 2009; Bussel 

et al., 2012; Orellana et al., 2013). These are far below usual concentrations for hydroponic 

plant growth (Park et al., 2009). Most plant nutrient solutions contain excess nutrient to 

supply the plants for several days in batch culture. Contrarily, there is a permanent input of 

nutrients by addition of fish feed and excretion to the process water of an RAS which can 

meet the nutrient requirements of the plants. A high flow rate can ensure a sufficient nutrient 
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supply of the plants in the hydroponic culture even at low nitrate and phosphate 

concentrations in the process water of an RAS. Apart from nitrate and phosphate, 

micronutrients may become a limiting factor for halophyte growth in the system due to 

insufficient abundance in the process water or limited plant availability caused by high pH 

and precipitation (Tyson et al., 2008; Buhmann et al., submitted). 

The integration of secondary photoautotrophic production, in the form of a halophyte 

biofilter, into a modern, highly engineered RAS will add value to the system as many 

halophytes have market value. In order to integrate halophytes successfully into a RAS 

production process, it is necessary to synchronize both primary fish and secondary halophyte 

production. The aim of this study was: i) to develop the necessary parameters for the design 

and construction of an integrated marine recirculating aquaculture system (IMRAS) using 

different halophyte species, ii) to investigate the efficiency of different halophyte species and 

nutrient uptake cultured in process water from marine fish production and iii) to evaluate the 

potential of halophyte biomass production as a valuable co-product in the system.  

In this study, a RAS stocked with European sea bass (Dicentrarchus labrax) was operated to 

provide the necessary flow of nutrients to the secondary hydroponic biofilters. Experiments 

were carried out under typical aquaculture conditions to allow an evaluation of the efficiency 

of a secondary biological filtration of process water from marine fish aquaculture. The terms 

secondary biological filtration or halophyte biofilter are used in this study for the function of 

the halophytic plants to reduce the amount of nitrogen (N) and phosphorus (P) in the process 

water of the RAS by uptake into the plant tissue. The feasibility of three halophyte species, 

Tripolium pannonicum (Jacq.) Dobrocz., Plantago coronopus L. and Salicornia 

dolichostachya Moss, was investigated. For this purpose, process water from the RAS was 

passed onto three hydroponic culture tanks that were maintained in a greenhouse aside the 

RAS. The production of valuable biomass and the uptake and recycling of N and P by the 

plants was evaluated. Finally, results were used to calculate the necessary plant biomass 

production for retention of the N and P in the process water. 
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Material and Methods 

Experimental fluid circuits 

The experimental circuit consisted of a 10 m3 experimental indoor recirculating aquaculture 

system (RAS), a sand bed as seedling nursery and three 1.7 m³ hydroponic culture tanks for 

experimental plant production. Seedling nursery and hydroponic culture tanks were setup in 

two separate greenhouses of 12 and 40 m² base areas, respectively (Figure 1).  

 

 

Figure 1. Experimental set up of the RAS (primary circuit) and hydroponics (secondary circuit). 

 

The nutrients used in the hydroponic experiment came from a European sea bass culture 

which was maintained in a 7 m3 fish tank having an approximate length, width, and depth of 

4.9, 1.9, and 0.8 m, respectively. Water level was kept at 0.7 m. The process water was passed 

over to the water treatment through a centre drain. An auxiliary surface skimmer controlling 

water level in the fish tank was installed for safety reasons. The water treatment of the 

experimental RAS included a two step solid separation. Large particles were removed by 

drum filtration (Hydrotech 501, 0.35 m² filter area, 40 µm screen, Veolia, France) before the 

process water entered into the collecting sump. In immediate proximity to the inlet pipe, 

Ca(OH)2 was dosed by a metering pump to adjust the pH. Fine solids were subjected to a 

flotation process in a protein skimmer. The protein skimmer was a standard device 

(Helgoland 500, 0.27 m³ reaction space, Erwin Sander Elektroapparatebau GmbH) operated at 
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a process water flow rate of around 3 m³·h-1, and an air flow rate of around 5 m³·h-1. The 

degradation of dissolved organic matter, which forms the separating layer of the foam bubbles 

in the flotation process, was enhanced by oxidation through ozone generated in a 2 g· h-1 

device (Schroeder et al., 2011) (Erwin Sander Elektroapparatebau GmbH). The dosing of 

ozone was carefully controlled by Redox sensors and kept in safe limits below 0.05 mg·l-1 

residual oxidant concentration or 400 mV (Sander, 1998; Reiser et al., 2010). Dissolved 

organic matter was removed along with particles and microorganisms during the flotation 

process. Dissolved ammonia/ammonium excreted by fish and dissolved nitrite was removed 

by a nitrifying biofilter. The biofilter outlet was the hydraulic pressure head (2.2 m) of the 

RAS from which the process water was passively flowing back to the fish tank. A small 

volume of water (0.2 m³·h-1) was continuously passed on to a sand bed filter used as a 

seedling nursery in a small greenhouse. Denitrifying microbial processes as well as plant 

biomass production in the sand bed filter kept the total N and P concentration of the process 

water within desired limits for the fish under culture. 

Process water quality was continuously monitored by sensors. Nutrient concentrations as well 

as total N and carbon concentrations were determined in discrete process water samples taken 

daily in fish tank and in each of the hydroponic culture basins. The concentrations of total 

ammonium-N, nitrite-N, nitrate-N, and P were measured with an autoanalyzer (AA3, Seal 

Analytical GmbH, Norderstedt, Germany). Carbon and N were determined using an 

automated CN analyzer (multi N/C 3100, Analytik Jena, Jena, Germany). Ammonium-N and 

nitrite-N remained below detectable concentrations of 0.8 and 0.2 mg l-1, respectively. More 

sensitive manual photometric tests were used to detect the ammonium-N and nitrite-N 

concentration. Total inorganic carbon concentration in the process water was mainly 

determined by the concentration of hydrogen carbonate.  

 

System control 

System control was by a programmable logical controller (Siemens SPC 200). The 

programmable controller was mainly used in a three-step controller mode. Data acquisition 

was by means of probes which were, in most cases, installed in the collecting sump (pH, 

redox, conductivity, temperature). An oxygen sensor in the fish tank was used to verify the 

necessary oxygen flow (aeration) into the process water. The redox potential was read within 

the reaction space of the protein skimmer. Crosschecking of Redox readings was achieved 

through secondary Redox sensors in the collecting sump. The control of ozone concentration 
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in the protein skimmer and receiving components was safeguarded by an additional time 

control. The control of pH through calcium hydroxide dosing was based on empirical 

algorithms to improve the steady-state control accuracy and protected against overdosing by 

time control. Calcium was supplied as hydroxide to stabilize the pH (8.1 ± 0.1) in the process 

water. The salinity of the process water was maintained at approximately 15.8 psu. 

Flow rate towards the fish tank was maintained at around 17 m3·h-1. The average retention 

time (tr) of the process water in the fish tank was around 0.4 h (tr = Vt Fw
-1, tr = average 

retention time [h], Vt = fish tank volume [m3], Fw = process water flow [m3 h-1]). A total 

exchange of process water in the fish tank was computed to be completed every 3 h (EIFAC, 

1986). This comparably high flow rate was necessary to maintain appropriate living 

conditions for the fish species under culture, European sea bass. 

 

RAS fish production 

The RAS was stocked with juveniles of European sea bass obtained from a commercial 

marine inland RAS (Meeresfischzucht Völklingen GmbH, Völklingen, Germany). At the 

beginning of the experiment, 248 fish having an average individual weight of 31.8 g were 

stocked. Fish were fed to satiation with a commercial pellet feed (1.2 to 1.5 mm pellet size, 

Coppens international Marico Apex, Helmond, The Netherlands). The amount of N and P in 

the given feed was calculated from the specification of the manufacturer (N: 9.3%, P: 1.3%).  

 

Plant material 

Seeds of Tripolium pannonicum (Jacq.) Dobrocz. and Salicornia dolichostachya Moss were 

collected at the North Sea, Jade Bay, Germany (53°29‘13N; 8°03‘16“O). Plantago coronopus 

L. seeds were obtained from Jelitto Staudensamen GmbH (Schwarmstedt, Germany). Seeds 

were sown in propagation soil (Einheitserde, Einheitserdewerk Hameln-Tündern, Germany). 

Prior to the experiment, plants were grown to seedling size in a greenhouse at the University 

of Hannover (Germany). The greenhouse was maintained at a temperature of 22°C. During 

daytime the natural light was supplemented for 14 hours with artificial light (sodium vapor 

lamps, SONT Agro 400, Philips, Amsterdam, The Netherlands). Tap water was used for 

irrigation. When a shoot length of 1 to 2 cm was reached the seedlings were transplanted 

individually to pots filled with sand of 2 mm grain size (Hornbach, Hannover, Germany). 

Twice a week a modified Hoagland solution was supplied to the plants (Epstein, 1972). 
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Nursery periods were 3, 4, and 7 weeks for P. coronopus, T. pannonicum and S. 

dolichostachya, respectively. One week before the start of the experiment the plants were 

adapted to the experimental salinity by adding sodium chloride to the irrigation water. Salinity 

was increased by 5 psu every second day.  

 

Hydroponic setup 

The hydroponic culture tanks were located in a greenhouse. The ambient weather conditions 

determined the process water temperature within the hydroponic culture tanks, which was 

recorded during the course of the experiment. Plants under culture were illuminated by solar 

radiation. The daily light period followed the seasonal astronomical sunshine duration for T. 

pannonicum and P. coronopus. The hydroponic culture tank used for the cultivation of 

S. dolichostachya was separated from the other two tanks by a non-transparent curtain and 

was illuminated for 18 h by two high pressure sodium lamps to suppress flowering under 

short-day conditions (Ventura et al., 2011b).  

The hydroponic culture tanks were constructed as longitudinal raceways having an 

approximate length, width, and depth of 6.0 x 0.8 x 0.5 m, respectively. Water level within 

the hydroponic culture tanks was maintained at 0.4 m. Every hydroponic culture tank was 

supplied with process water from the primary RAS at a flow rate of 0.2 m3·h-1. Average 

retention time was 8.3 h (see above). A total exchange of the water within every hydroponic 

culture tank was computed to be completed every 72 h. During the experiment a trace element 

solution was added to every hydroponic culture tank three times a week (7 ml per tank); 

including ferric citrate (1.79·10-1 g·d-1, Lebosol®-Dünger GmbH, Elmstein, Germany), zinc 

(ZnSO4·7xH2O, 2.05·10-5 g·d-1), molybdenum ((NH4)6Mo7O24·4xH2O, 7.54·10-7 g·d-1), cobalt 

(CoCl2·6 x H2O, 4.48·10-6 g·d-1), copper (CuSO4·5xH2O, 4.73·10-8 g·d-1), and manganese 

(MnSO4·7xH2O, 3.45·10-5 g·d-1). The hydroponic culture tanks were aerated to equilibrate 

dissolved gas concentrations. An air compressor and diffuser were used. The ascending air 

bubbles were simultaneously circulating the process water. 

 

Halophytic biomass production 

The three different species of halophyte plants were investigated in separate hydroponic 

culture tanks. At the beginning of the experiment, for each species 185 plants of similar size 

were distributed equal distant over the surface plane of one hydroponic culture tank. Start 
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biomass was determined in a pooled sample of 15 randomly selected plants. During the 

experiment typical horticultural maintenance was carried out. Non-vital plants were removed 

and counted. Plants were treated with beneficial organisms to minimize pest infestation.  

At the end of the experiment a second set of data was obtained for every halophyte species 

from three groups of 15 plants. The three samples of plants were harvested in 1, 3, and 5 m 

distance from the head end of the hydroponic culture tank. Biomass gain was determined as 

fresh and dry weight. Fresh weight and dry weight of the plants were determined separately 

for shoots and roots. Afterwards the samples were dried at 110°C until constant weight was 

reached and dry weight was determined. Gain of biomass was calculated by subtracting the 

biomass at the beginning of the experiment from the biomass at the end of the experiment.  

Of each sample, a subsample of fresh material was used for the determination of chlorophyll 

and carotenoids and a subsample of died material was used for the determination of N and P 

content.  

 

Nutrient uptake of the plants 

Each subsample of dried material of 15 pooled plants (roots and shoots separately) was 

homogenized and a subsample was grinded to a fine powder (MM 400, Retsch GmbH, Haan, 

Germany). The dried powder was used for N determination with a CNS elemental analyser 

(Vario EL III, Elementar Analysensysteme, Hanau, Germany). Phosphorous determination 

required a further preparation of samples. Approximately 38 mg of powder was incinerated 

for at least 8 h in a muffle furnace (M104, Thermo Fisher Scientific Corporation, Waltham, 

Massachusetts, USA). The incinerated samples were cooled to room temperature and 1.5 ml 

of 66% nitric acid was added. After 10 min incubation, 13.5 ml of ultrapure water was added 

and the solution was filtered (0.45 μm pore size, Carl Roth) and stored at -60°C. A blank was 

prepared for each incineration process by treating an empty vial like the samples. Phosphorus 

was analysed in the filtrate by inductively coupled plasma optical emission spectrometry 

(ICP-OES) (iCAP 6000 ICP Spectrometer, Thermo Fisher Scientific Corporation). Plant 

uptake of N and P during the experiment was calculated with the help of the data for dry 

weight gain of biomass and the determined N and P content.  
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Chlorophyll and carotenoids 

For the extraction of chlorophyll and carotenoids, ice-cold 80% acetone (400µl) was added to 

a sample of frozen and grounded fresh leaf material (50 mg). First, the sample was kept on ice 

for 10 min, mixed every 2 min and centrifuged at 14,000 x g for 5 min. Afterwards the 

supernatant was collected and stored on ice in the fridge. Repeating this procedure the pellet 

was re-extracted three times with 200 µl ice-cold 80% acetone. All supernatants were pooled 

for pigment determination and absorption was measured at 750.0, 663.2, 646.8 nm and 470.0 

nm using a spectrophotometer (Uvikon XS, Biotech instruments, Germany). Total chlorophyll 

and carotenoid contents were calculated according to Lichtenthaler (1987). 

 

Plant data calculation 

All data for biomass and nutrient uptake of the plants was first calculated for the pooled 

sample and then expressed as values per plant for each of the three replicates per species by 

dividing the values by 15, because the pooled samples consisted of 15 plants. Arithmetic 

mean and standard deviations were calculated from the subsequent three values for each 

parameter. All data referring to the total plant are calculated from shoot and root data and 

discrepancies can occur due to rounding of numbers from the original data. 

 

Quality of harvested plant material 

At the end of the experiment three shoots of every halophyte species was randomly harvested 

and pooled. The fresh material was analysed in an accredited microbiological laboratory 

(MikroBiologie Krämer, Dillingen, Germany). The samples were analysed for microbial 

counts of pathogens relevant for the marketability of vegetables and fish (Escherichia coli, 

Salmonella spp., Lysteria monocytogenes, Enterobacteriaceae, Pseudomonas spp., Vibrio 

spp.).The total counts of mesophilic bacteria were also determined. The values were 

compared to guidance and critical values from literature. 

 

 

 

 

 

 



96 

18

20

22

24

26

28

30

g g g g p p p

P
ro

c
e
s
s
 w

a
te

r 
te

m
p

e
ra

tu
re

 [
°C

]

10

20

30

40

50

A
ir

 t
e

m
p

e
ra

tu
re

 [
°C

]

Results 

Environmental conditions during the experiments in the primary and secondary circuit 

Several parameters were monitored during the course of the experiment, such as temperature, 

light conditions and nutrient concentrations. The air temperature in the greenhouse dropped 

below 20°C during the night and increased to nearly 50°C during the day (Figure 2, upper 

graph). Due to the large water volume in the hydroponics process water temperature never 

exceeded 28°C (Figure 2, lower graph). The temperature differed from 2 to 4°C between day 

and night. During the course of the experiment, process water temperature slowly decreased 

from 24 to 26°C in August and from 20 to 22°C in September.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Air and process water temperature in the greenhouse and hydroponics during the course 

of the experiment (upper line maximal and lower line minimal value for each day). 

 

The photosynthetic active radiation (PAR) was measured in the middle of the greenhouse 1 m 

above the surface of the hydroponic culture tanks (Figure 3). During the day, PAR reached 

approximately 900 µmol·m²·s-1 at the beginning of the experiment (August) and dropped to 

about 500 µmol·m²·s-1 at the end of the experiment (September). When precipitation 

occurred, for example at 26th of August 2013, the PAR dropped to 250 µmol·m²·s-1. To 

obtain a constant PAR in a greenhouse during different seasons, additional light sources need 

to be installed. 

16.08.      21.08.     26.08.    31.08.      05.09.     10.09.     15.09.     20.09. 

Date 
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Figure 3. The photosynthetic active radiation in µmol·m-2·s-1 in the middle of the greenhouse 1 m 

above the surface of the hydroponic culture tanks during the course of the experiments. 

 

The intensity of the additional light received by the S. dolichostachya plants was dependent 

upon the position within the hydroponic culture tank. Photosynthetic active radiation varied 

considerably at the surface plane (Figure 4). Maximum PAR reached 250 µmol·m²·s-1 below 

the two high pressure sodium lamps and dropped to less than 20 µmol·m²·s-1 in the space 

between.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Photosynthetic active radiation in µmol·m-2·s-1 above the hydroponic culture tank 

planted with S. dolichostachya; determined at the surface plane of the hydroponic culture, at the 

level of the hypocotyl of the plants at various points along the 6 m length of the hydroponic culture 

tank (horizontal position). 

20.08.             24.09.             28.09.            01.09.            05.09.              09.09.            13.09.             17.09. 

Date 



98 

Regular monitoring of the nutrients 

Due to aeration of the hydroponic process water a mixed water column was assumed. 

Therefore, water samples for nutrient determination taken at the outlet are representing the 

nutrient regime within hydroponics Total ammonium-N and nitrite-N concentration were 

below the detection level of 0.07 and 0.007 mg·l-1 throughout the experiment. The nitrate-N 

concentration of 18.73 mg·l-1 in the process water was in accord with the total N 

concentration of 19.42 mg·l-1, phosphate-P concentration was 2.79 mg l-1 (Table 1). Most of 

the dissolved inorganic carbon (IC) in the process water was hydrogen carbonate because of 

the carbon dioxide released by fish that were maintained in the RAS. The organic carbon 

fraction, which is the difference between total carbon and IC, was below detectable limits. 

This indicates an immediate removal of particles from the process water. Otherwise, the 

leaching of particles would lead to much higher concentrations. The ozone enhanced 

floatation process contributed to the decay of organic molecules and removal through an 

internal microbial loop.  

 

Table 1. Nutrients determined in the RAS process water and in the hydroponic culture tanks. TN, total nitrogen; 

TC, total carbon; IC, inorganic carbon. 

  

Process water in the hydroponics 

Parameter RAS process water T. pannonicum P. coronopus S. dolichostachya 

 

Average Stdev Average Stdev Average Stdev Average Stdev 

TN [mg l
-1

] 19.42 1.44 21.02 2.43 21.57 1.84 16.24 2.17 

NO3
-
-N [mg l

-1
] 18.73 3.01 22.04 2.91 21.29 3.46 16.03 1.91 

PO4
3-

-P [mg l
-1

] 2.78 0.59 3.00 0.50 2.77 0.79 2.85 0.72 

TC [mg l
-1

] 19.20 3.22 19.01 4.67 20.18 5.09 19.03 2.59 

IC [mg l
-1

] 18.73 3.01 19.77 3.27 19.59 4.26 19.10 2.27 

 

Growth of fish and nutrients available from fish feed 

At the beginning of the experiment 248 stocked fish had an average individual weight of 

31.8 g. After 35 days the fish had gained 5605 g (Table 2). Individual weight at the end of the 

experiment averaged 54.4 g. Growth of fish is exponential (Ricker, 1975) and can be 
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expressed as            where w0 and wt are the individual weights of animals at the 

beginning and the end of the growth period (t). G denotes the instantaneous growth rate which 

can be calculated from                                 An instantaneous growth rate 

of 0.015 corresponds to a specific growth rate of 1.5% body weight per day (commonly 

computed in aquaculture production research). The feed conversion rate (FCR) was calculated 

as a quotient of the feed given and the weight gained. During the 35 days experiment the 

overall FCR amounted to 0.93 (Table 2). 

 

Table 2. Summary of all fish culture parameters. 
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Start of the 
experiment 

5200 484 68 248 

7886 31.8 

5605 0.0153 0.93 
End of the 
experiment 

13491 54.4 

 

During the experiment 484 g N and 68 g P was fed to the fish. The amounts of N and P 

available for plant growth can be estimated: Lemarie et al. (1998) report a N and P content in 

adult European sea bass of 11.7 and 6.4 mg·g-1 body weight, respectively. In consideration of 

the total gained weight of 5605 g, the amounts of N and P retained in the body mass 

(biomass) equal 65.6 and 35.9 g, respectively. Thus, 14% of the feed N and 53% of the feed P 

was deposited in body tissues. It can be assumed that the remaining 86% of the feed N and 

46% of the feed P were released into the process water as dissolved or particulate matter. 

Particulate matter was subjected to drum filtration and flotation and quickly removed. 

However, leaching is a significant process in aquaculture (Lupatsch and Kissil, 1998). In view 

of the tank retention time, it can be assumed that most of the N and P got dissolved in the 

process water (Table 1) and was available for halophytic plant growth. 
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Growth and nutrient uptake of plants 

Biomass production was based on nutrients from the marine RAS. Table 3 shows the number 

of plants that survived the 35 days of experiment, plant biomass, nutrient content in plants and 

chlorophyll and carotenoid content in the leaves for the beginning and the end of the 

experiment for all three species. The plants of T. pannonicum and P. coronopus planted into 

the hydroponic culture tanks at the beginning of the experiments had similar weights; the 

plants of S. dolichostachya were much bigger, being nearly 4 times heavier than the other two 

species (Table 3). At the end of the experiment 170, 181 and 181 of the 185 plants at the 

beginning of the experiment survived in the hydroponic culture tanks for S. dolichostachya, T. 

pannonicum and P. coronopus, respectively. As Figure 5 indicates, the three halophyte 

species showed a different quantity of growth and nutrient uptake during the five weeks of 

experiment. The fresh weight gain for S. dolichostachya was much higher (74 g) than for T. 

pannonicum and P. coronopus with 30 and 20 g per plant, respectively (Figure 5). Gain of 

shoot biomass was 25, 16 and 60 g per plant for T. pannonicum, P. coronopus and S. 

dolicostachya, respectively (Figure 5). For all species shoot biomass production accounted for 

about 80% (Figure 5). For all species dry weight was about 6% of fresh weight. Only the 

percentage of root dry weight related to root fresh weight was higher (8%) for S. 

dolichostachya and lower (5%) for P. coronopus, indicating a higher water content in roots of 

P. coronopus and a lower content in S. dolichostachya than in the other two species.  
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Table 3. Number (No.) of plants in one hydroponic culture tank, plant biomass per plant (fresh weight and dry weight in g), nutrient content in plants (N and P in mg g-1dry 

weight), chlorophyll and carotenoid content in leaves (in µg g-1 fresh weight) for the three halophyte species T. pannonicum, P. coronopus and S. dolichostachya at the start 

and end (after five weeks) of the experiment. Standard deviation is only shown for the values at the end of the experiment because for the start of the experiment 

measurements were performed with only one sample per species. 
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Figure 5. Gain of biomass (fresh weight and dry weight) and nitrogen and phosphorus per plant 

for the three halophyte species T. pannoniucum, P. coronopus and S. dolichostachya. For each 

parameter values for shoot, root and total plant are shown separately. 

 

The higher biomass production of S. dolichostachya compared to the other two species 

(approximately three times higher) and the slightly lower biomass production of P. coronopus 

compared to T. pannonicum is also reflected in the nutrient uptake by the plant species. 

Salicornia dolichostachya took up 168 mg of N and 23 mg of P per plant during the 35 days 

of experiment. Total plant nutrient uptake of T. pannonicum and P. coronopus was lower with 

61 and 34 mg for N and 9 and 7 mg for P, respectively (Figure 5). Shoots accounted for about 

60 to 70% of total plant P uptake and for about 80% of total plant uptake of N. 

Nutrient content of the plants or plant parts differed partially between the beginning and end 

of the experiment. For T. pannonicum and P. coronopus P content in the shoot was lower at 

the end of the experiment, whereas both values were similar for S. dolichostachya (Table 3). 

Phosphorus content in the root of P. coronopus was much higher at the end of the experiment. 

There was also a difference in chlorophyll and carotenoid content of the leaves for all plant 

species at the beginning and the end of the experiment. For T. pannonicum the chlorophyll 



103 

content was 76% lower at the end of the experiment (Table 3). Chlorophyll content at the end 

of the experiment was also lower for T. pannonicum and P. coronopus with 38% and 18% 

(Table 3). The carotenoid contents were lower at the end of the experiment with equal 

percentages of difference than the chlorophyll content (Table 3). Only leaves of S. 

dolichostachya showed the same carotenoid content at the start and the end of the experiment 

(Table 3). 

 

Microorganisms harmful for human consumption on the leaves 

Table 4 summarizes the results from the microbial counts of pathogens on the shoot material 

of the three species harvested at the end of the experiment and also shows guidelines and 

critical values for salads and marine fish (DGHM, 2004 and 2007). Microbial counts show 

that none of the pathogens were abundant in a quantity harmful for human consumption. 

 

Table 4. Microbial counts for different pathogens relevant for marketability of vegetables and fish in colony-

forming units per g of fresh plant material (CFU g-1) on the freshly harvested shoot material of the three 

halophyte species; T. pannonicum, P. coronopus and S. dolichostachya. GV: guideline value, CV: critical value. 

*According to DGHM (2004, 2007). 

 

Tested    

pathogen 

Tripolium 

pannonicum 

Plantago 

coronopus 

Salicornia 

dolichostachya 

Guideline and 

critical values* 

Aerobic 

mesophilic 

bacteria 

1.5 x 104 4.7 x 105 2.0 x 104 GV: 5 x 107 

Echerichia coli < 10 < 10 < 10 
GV: 1 x 102 

CV: 1 x 103 

Salmonella spp. 
no detection in 25 

g plant material 

no detection in 25 

g plant material 

no detection in 25 

g plant material 

CV: no detection in 

25 g plant material 

Listeria 

monocytogenes 
< 10 < 10 < 10 CV: 1 x 102 

Enterobacteriaceae 2.1 x 103 2.3 x 103 6.0 x 102 
GV: 1 x 104 

CV: 1 x 105 

Pseudomonas spp. < 1.0 x 105 < 1.0 x 105 < 1.0 x 105 GV: 1 x 106 

Vibrio spp. 
no detection in 25 

g plant material 

no detection in 25 

g plant material 

no detection in 25 

g plant material 

CV: no detection in 

25 g plant material 
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Discussion 

Performance of the RAS in terms of controlled and steady conditions 

Compared to various open aquaculture systems that release the water after a certain time, the 

nutrient levels in this system were kept fairly low. This is desired in modern RAS production. 

Marine fish aquaculture strives for dissolved nitrate-N concentrations far below 100 mg l-1. 

Van Bussel et al.(2012) showed a steady decline of specific growth rate in turbot (Psetta 

maxima) along with increasing nitrate-N concentrations (0 to 500 mg l-1). The feed conversion 

rate was affected above 200 mg l-1. Operating companies keep nitrate-N concentrations even 

lower. Maximum concentration is usually maintained below 50 mg l-1, which is usually 

attained by means of denitrification (van Rijn et al., 2006). Dissolved N concentrations in this 

study were kept at around 20 mg l-1 during the course of the experiment. The N sink in the 

experimental RAS was the sand bed nursery, which was operated parallel to the hydroponic 

culture tanks. The hydroponic plant area would have been too small to keep nutrients at the 

required low concentrations. Concentration of phosphate-P was constantly around 3 mg l-1. 

This is typical for RAS, where system dependent concentrations between 1 and 15 mg l-1 are 

found (Deviller et al., 2004; Tal et al., 2009; Orellana et al., 2013). Ammonium-N and nitrite-

N concentrations remained below the detection levels of 0.07 and 0.007 mg l-1 throughout the 

experiments and therefore in a range that can be considered not to be harmful for the fish 

(Orellana et al., 2013). 

 

Performance of fish culture 

The experimental conditions for the fish were favourable for growth, health 

and survival. Fish grew at an average instantaneous growth rate of 0.015 or 

a specific growth rate of 1.5 % d-1, which appears to be moderate in view of the growth 

reported in other experimental investigations. Thetmeyer et al. (1999) and Eroldogan et al. 

(2004) reported slightly lower specific growth rates (1.0% d-1, 0.8% d-1). Papoutsoglou et al. 

(1998) found growth rates between 1.7 and 3.2% d-1, depending on feeding levels. The feed 

conversion ratio (0.9) found in this experiment was higher compared to reports (0.6) from 

Thetmeyer et al. (1999). Eroldogan et al. (2004) confirm this high feed conversion ratio (0.64) 

in fish fed to satiation but found a lower feed conversion (0.9) at restricted feeding rates. It 

can be concluded that growth and feed conversion was average in the experiment but 

reproduced the situation in real aquaculture operations. 
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Performance of plant culture 

The experimental setup allowed for investigation of halophytic plant growth under steady 

conditions. The nitrate-N concentration of the modern RAS used in this study was levelling 

around 20 mg l-1. It was therefore far below concentrations of approximately 300 mg l-1 

commonly used for tomato and cucumber hydroponic culture (Park et al., 2009). 

Investigations by Buhmann et al. (submitted) proved unlimited growth of halophytes at 

nitrate-N levels of 10 mg l-1 and phosphate-P levels of 1.6-3.3 mg l-1 in a controlled 

hydroponic culture experiment simulating aquaponic conditions. Of seedlings planted at the 

beginning of the experiment, 92 to 98% survived and did not show any obvious signs of N or 

P deficiency. The 35 days of experiment resulted in a total gain of plant biomass of 21.8 kg 

for all three species together. Therefore, the dissolved nutrient concentrations of 

approximately 20 mg l-1 nitrate-N and 3 mg l-1 phosphate-P were sufficient to sustain growth 

of the halophytes. Only leaves of T. pannonicum became chlorotic during the 35 days of the 

experiment. The chlorophyll and carotenoid content at the end of the experiment were 76% 

and 68% less than at the beginning, respectively. The chlorophyll and carotenoid contents 

were also lower than that reported for healthy plants at the same age in previous experiments 

(Buhmann et al., 2014, submitted). The chlorosis was probably caused by iron deficiency due 

to a high pH as described in Ventura et al. (2013) and confirmed by Buhmann et al. 

(submitted). Ferric citrate was added to the plant culture to prevent iron chlorosis. The water 

was transported through the tank at a flow rate of 0.2 m² h-1 and therefore the ferric citrate 

added to the hydroponic culture tanks was slowly but constantly removed after addition. The 

ozone treatment of the water in the RAS leads to a destruction of the iron citrate and therefore 

a removal from the system. The chlorosis in T. pannonicum could probably be prevented by a 

higher concentration of iron citrate or a more frequent application. For P. coronopus and S. 

dolichostachya the iron concentration seemed to be sufficient, even though the chlorophyll 

and carotenoid concentrations at the end of the experiment were also below concentration at 

the beginning. 

 

Plant performance in terms of valuable biomass and nutrient removal 

Several studies describe the use of halophytes as a biofilter for marine aquaculture effluents 

(reviewed in Buhmann and Papenbrock, 2013), but the combination of a marine RAS with the 

aquaponic growth of halophytic crops is new. Therefore, we compare our results with 

freshwater aquaponics with conventional crops to evaluate the biomass production and 
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nutrient uptake. In our study, salt-tolerant plant species with potential to be used as leafy 

vegetables were investigated. Therefore, only studies with leafy vegetable species, like lettuce 

and spinach, were chosen for comparison. Additionally, we compare the results of this study 

to results from two studies that use a sand culture of Salicornia to produce vegetable biomass 

and to treat effluents from open marine aquaculture systems. 

In terms of the production of a valuable co-product it is important to evaluate the harvestable 

shoot biomass production as it is marketable as vegetable. In this study, gain of shoot fresh 

weight was 17, 25 and 61 g m-2 d-1 for P. coronopus, T. pannonicum and S. dolichostachya, 

respectively (35 days of experiment, 36 plants per m² at the beginning of the experiment). 

Some freshwater aquaponic systems are much more productive, some show a similar 

productivity. Lennard and Leonard (2006) grew Lactuca sativa at a plant density of 38 plants 

per m² in a freshwater aquaponic system culturing Murray Cod (Maccullochella peelii). They 

reached 197 to 240 g m-2 d-1, a much higher gain of shoot fresh weight compared to our study. 

Licamele (2009) had, with 134 g m-² d-1, also a higher productivity of L. sativa in freshwater 

aquaponic systems culturing Nile tilapia (plant density of 32 plants per m²). But, other 

combinations of freshwater aquaculture with the different leafy vegetable species (Ipomoea 

aquatica, L. sativa, Brassica rapa at a plant density of 30 plants per m²) resulted in a much 

lower shoot fresh weight gain of between 1 and 41 g m-2 d-1 (Endut et al., 2010; Trang et al., 

2010). Compared to those values, productivity was partly higher in this study. The large 

differences between the studies in crop biomass production, although using comparable plant 

densities, are probably due to different systems, different duration of the culturing period and 

different culturing conditions. 

For the application as biofilter it is also important to evaluate nutrient uptake of the plants in 

this study. Plant N uptake was 35, 63 and 172 mg m-2 d-1 and plant P uptake was 7, 9 and 24 g 

m-2 d-1 for P. coronopus, T. pannonicum and S. dolichostachya, respectively (35 days of 

experiment, 36 plants per m² at the beginning of the experiment). The species in the 

freshwater aquaponic system described in Trang et al. (2010) exhibited a plant uptake of N 

between 35 and 93 mg m-2 d-1 and plant uptake of P between 7 and 30 mg m-2 d-1. Therefore, 

similar to biomass production, the nutrient uptake values in our study were comparable to 

those in a fresh water aquaponic system.  

Recently, results of two applications of Salicornia planted in constructed wetlands as biofilter 

for different marine organisms cultured at full strength seawater salinity were published. 

Webb et al. (2012) grew Salicornia europaea at a plant density of 90 plants per m² and 
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harvested 8.85 g m-2 d-1 total plant dry weight. The gain of total dry weight for S. 

dolichostachya in this study was only 3.8 g m-2 d-1 and therefore only half as high. But the 

shoot fresh weight gain of 72 g m-2 d-1 for S. dolichostachya in our study was similar to the 

gain seen in the study by Shpigel et al. (2013). They planted 100 plants of S. persica per m² 

and harvested 48 to 71 g m-2 d-1 fresh shoot material. In Webb et al. (2012) nutrient uptake per 

plant was 170 and 28 mg m-2 d-1 for N and P, respectively. Shpigel et al. (2013) found an N 

uptake of 40 to 80 mg m-2 d-1. Compared to those values, the plant nutrient uptake of this 

study was similar for N uptake and P uptake of S. dolichostachya, but lower for P uptake of T. 

pannonicum and P. coronopus. The partly higher productivity and nutrient removal efficiency 

of Webb et al. (2012) and Shpigel et al. (2013) can probably be explained by the 2 to 3 fold 

higher planting density.  

Recycling of nutrients from a marine aquaculture system implies the conversion of the 

nutrients abundant in the system to a valuable product. This is implemented in this study by 

the aquaponic production of valuable halophyte shoot biomass marketable as vegetable or 

salad. For the evaluation of the species-specific nutrient recycling not only the total plant 

uptake of N and P but also shoot to root ratio of nutrient uptake is of interest. Shoots produced 

four times more biomass than roots and took up 2 to 3 times more P and 4 to 5 times more N. 

Plantago coronopus seems to be less suitable than the other two species in terms of biomass 

production and N uptake. Nevertheless, results for all species are promising in terms of 

nutrient recycling. A future task is to find a utilization of the remaining 20-30% root biomass. 

A possible application is the use of the root biomass for biogas production in a fermentation 

process.  

The interpretation of the higher biomass production and nutrient uptake of S. dolichostachya 

in this study compared to the other two species has to be done carefully. The hydroponic 

culture tanks of S. dolichostachya were illuminated for 18 h to prevent plants from flowering. 

This elongation of day length probably caused the higher biomass production of this species. 

In future experiments other illumination regimes to prevent flowering should be tested; such 

as elongation of day length by giving just 4 h additional light in the morning and in the 

evening (Buhmann et al., submitted) or interrupting the dark period by a short period of 

artificial illumination. This would improve the comparability to the culture of other species 

without artificial illumination and save energy costs in a commercial large-scale application. 
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The harvested leaves are free from microorganisms harmful for human consumption 

It is important to examine the potential food safety concerns associated with the applied 

process water used to produce the vegetable product (Blidariu and Grozea, 2011). Although in 

modern RAS the outbreak of diseases and parasites are successfully avoided (Orellana et al., 

2013), the halophytes grown in the aquaponic culture tanks could potentially be contaminated 

with bacteria and viruses that may be present in the fish culture; such as species from the 

genera Salmonella, Vibrio and Escherichia. The harvested plant material of this study did not 

show any of the tested pathogens in concentrations classified as harmful for human 

consumption. The RAS system is generally low in bacterial counts due to the ozone treatment 

of the process water and the fact that the shoots of the plants do not have any contact with the 

process water. These conditions probably accounted for the positive result and can be stated 

as appropriate for the aquaponic production of valuable plant biomass. 

 

Relation of fish to plant biomass and future implications 

In this study the total weight gain of the fish was 5.6 kg and of plants 5.5, 3.7 and 12.6 for T. 

pannonicum, P. coronopus and S. dolichostachya, respectively. Therefore, plant weight gain 

is similar to fish weight gain or only about 2 times higher for S. dolichostachya. The amount 

of feed applied to the system per m² was 347 g. Endut et al. (2010) suggest an amount of 15 to 

42 g fish feed per m² of plant growing area. In our study, the amount of cultured fish, here 

expressed as amount of fish feed used, was far too high for the small plantation area if the aim 

is the total removal of the excess nutrients from the feed. But the aim of this study was to 

investigate the possibility of nutrient recycling by aquaponic production of halophytes and not 

the total replacement of other filters in the RAS. Nevertheless, it is favourable for the valuable 

plant biomass to retain as much of the nutrients generated in the RAS as possible. 

For future application and optimization, the plant biomass production necessary to retain all 

the nutrients generated by the weight gain of 1 kg fish, was calculated. The calculations are 

relevant for the culture of sea bass in a juvenile state in a modern marine RAS. The 

calculation has been done on the basis of total weight gain of fish in the system, N and P that 

were not retained in the fish, and N and P content of the plants. To retain the abundance of N 

in the process water at 1 kg fish production, 37, 45, 33 kg fresh plant material (total plant) is 

necessary for T. pannonicum, P. coronopus and S. dolichostachya, respectively. On the basis 

of total P in the system, calculations result in a lower plant to fish biomass ratio. To retain the  
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abundance of P in the process water at 1 kg fish production, 20, 16 and 18 kg fresh plant 

material (total plant) is necessary for T. pannonicum, P. coronopus and S. dolichostachya, 

respectively. Therefore, the total amount of possible plant biomass production should be 

calculated based on total P in the system. Plantago coronopus is less effective in terms of N 

removal and more effective in terms of P removal than the other two species. Tripolium 

pannonicum and S. dolichostachya show similar values. 

In the process water of the system, 418 g N and the 32 g P were abundant due to excess fish 

feed and excretion during the 35 days of experiment (calculated on the basis of total N and P 

in the fish feed and retention by the fish). Nutrient retention in plant material was 46 g N and 

7 g P for all three plant species together (532 plants on a planting area of 15 m²). This means 

that 11 % of the N in the water (9% of total feed N) and 22% of the P in the water (10% of 

total feed P) was retained in the plants. Macrophytes, as described in Schneider et al. (2005), 

retained 57% of the feed N and 17% of the feed P. Further optimization to increase the 

nutrient retention of plants in the system, described in this study, is necessary. A higher 

planting density and a bigger plantation area would lead to a higher nutrient retention in the 

plants in relation to the nutrient abundance in the water due to fish production. 

Suitable plant density in a hydroponic culture system depends very much on the species in 

culture and on the size of the plant at the time of harvest. For example, comparatively low 

plant densities of 2 to 3 plants per m² are applied for fruit vegetables such as tomato and 

zucchini (Auerswald et al., 1999; Rouphael and Colla, 2005; Incrocci et al., 2006). Plant 

densities for baby leaf vegetables, harvested early for the production and sell of mixed salads, 

are much higher (e.g. 1857 plants per m²) (Fallovo et al., 2009). Vegetables of an intermediate 

size, like radish, spinach and lettuce, are planted at densities of about 30 to 100 plant per m² 

(de Pinheiro Henrique and Marcellis, 2000; Yorio et al., 2001; Frantz et al., 2004). The plant 

species used for this study can be accounted to vegetables of intermediate size, therefore, a 

plantation density of 36 plants per m² seemed appropriate. However, plants still had space 

between them at the time of the harvest, especially P. coronopus. This suggests that a higher 

plantation density is possible. Webb et al. (2012) and Shpigel et al. (2013) successfully 

applied a plantation density of 90 to 100 plants per m² for species from the genus Salicornia 

in sand culture. A higher plantation density is probably possible for all three species used in 

this study. Investigation on the optimal plantation density of the halophyte species suitable for 

application in aquaponics should be performed. 
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This study demonstrated that an integrated halophyte culture for the recycling of nutrients in a 

modern zero-exchange RAS is possible. Nutrient recycling by halophyte culture is 

characterized by: i) the plant uptake of N and P from the process water resulting in the 

production of plant biomass and ii) the generation of valuable halophytic crop biomass in an 

aquaponic system. Also, the laborious and expensive denitrification process usually applied in 

RAS can likely be replaced by the aquaponic production of halophytes installed into a 

secondary loop of the RAS. For better nutrient recycling, the efficiency of the plant culture 

and the production of healthy plant material can be further optimized. Halophytic plant 

production needs to be adjusted in terms of culture conditions (i.e. the ratio of plant and fish 

weight gain to plant biomass production).For commercial applications, an economic and 

ecologic balance calculation is necessary, including the use of recourses such as energy and 

water and the added value of valuable plant biomass production and a reduction in the 

environmental impact of aquaculture production. 
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General discussion 

 

Salt-tolerant crops for the future 

Glycophytic crop species have a long history of variety breeding. Based on wild types of the 

respective species a lot of effort resulted in a broad spectrum of crop plants with high yield 

and economic value. In contrast, for halophytic crop species domestication, selection of 

suitable ecotypes and variety breeding is a relatively new approach (Yensen, 2008). 

Halophytes have a long history of traditional and regional use of various wild-grown 

halophytes or small-scale cultivation for nutritional or medicinal purposes (Liebezeit, 2008; 

Ksouri et al., 2011). But they still lack importance in large-scale agriculture worldwide (de 

Vos et al., 2013). One possible reason is that during the history of conventional crop 

development freshwater was sufficiently abundant in most regions of the world and arable 

land and the range of conventional crops could cover the demand. But depletion of freshwater 

and loss of arable land due to salinization endangers future food supply worldwide and the 

research on and application of new agricultural approaches become necessary. This might 

enhance the development and importance of halophytic crop plants in the future. 

An important reason for the slow development of halophytic crop plants is that their economic 

potential is widely unknown to farmers and consumers (de Vos et al., 2013). But the long 

history of traditional and regional use of halophytes builds a base of knowledge about many 

edible species beside those with use in traditional medicine or with utility as forage plants. 

Species with broader market acceptance are from the genus Salicornia. There is a wider 

spectrum of studies on species from the genus Salicornia than for other halophyte species. 

There are studies on germination (Khan et al., 2000), cultivation (Rueda-Puente et al., 2003; 

Ventura and Sagi, 2013), influence of salt (Aghaleh et al., 2009; Ventura et al., 2011a) and 

valuable metabolites (Chung et al., 2005; Kim et al., 2012), beside others. The results from 

these investigations and making them public might have led to a higher degree of recognition 

of species from the genus Salicornia as crop plants worldwide. This leads to a higher 

acceptance regarding farmers and consumers and to a higher market value of species from this 

genus and the derived products (de Vos et al., 2013). Therefore, research on halophytes and 

different aspects regarding their utility as crop plants is an eminent prerequisite for their 

application in large-scale agriculture.  

  



117 

Culture conditions for the production of halophytic crops 

One important reason for the slow development of halophytic crop plants might be a lack of 

knowledge on appropriate culturing conditions and techniques. Only recently more detailed 

studies on promising cash crop halophyte species shed some light on important factors for 

cultivation. Factors which influence the successful culture of halophytic crop plants, such as 

light regimen and addition of micronutrients, for example molybdenum and iron, have been 

studied (Ventura et al., 2010, 2011b, 2013). Results in this thesis (chapter 4) also showed that 

the addition of iron in an appropriate form is an important factor for the production of healthy 

biomass of salt-tolerant species. Also the type of culture and substrate and the nitrate 

concentration in the culturing solution could be determined as important factors influencing 

the biomass production.  

Several studies focus on the influence of salinity. The effect of different NaCl or seawater 

concentrations on biomass production, physiology and nutritional value were studied for 

different potential halophyte crop species (Koyro et al., 2006; Geissler et al., 2009; de Vos et 

al., 2010; Ventura et al., 2011a; de Vos et al., 2013). An experiment described in this thesis 

(chapter 4) revealed that growth of Tripolium pannonicum (Jacq.) Dobrocz. is reduced 

drastically between salinities of 15 and 30 psu (43 and 86% seawater salinity, if seawater 

salinity is defined as equal to 599 mM NaCl like in chapter 2). This is in concordance with 

Koyro et al. (2006) and Geissler et al. (2009) who found an eminent growth reduction at 

salinities above 50% seawater salinity, for Plantago coronopus L. as well as for T. 

pannonicum (the authors defined seawater salinity as equal to 500 mM NaCl). De Vos et al. 

(2013) showed that salinity also caused growth reduction for Diplotaxis tenuifolia (L.) DC. 

and Cochlearia officinalis L. with a reduction of maximum yield at around 150 mM NaCl and 

100 mM NaCl, respectively (25% and 17% seawater salinity, respectively, if seawater salinity 

is defined as equal to 599 mM NaCl like in chapter 2). In a field experiment conducted by 

Ventura et al. (2011a) with Salicornia and Sarcocornia species growth only started to decline 

at 50% seawater salinity (33 g l-1 of a commercial sea salt was defined as 100% sea water 

salinity), which shows the higher salt tolerance of the species from these genera.  

The extensive work on the effect of salinity on growth and physiology of potential halophytic 

crop species reflects the interest in understanding the mechanisms of salt tolerance of the 

different species. Beside the gain of basic knowledge on the physiology of halophytes these 

studies also contribute to a base for application (Huchzermeyer and Flowers, 2013). But for a 

successful development of halophytic crop plants in the future and the optimization of 
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culturing conditions an understanding of the physiological response of halophytes to various 

factors is necessary.  

 

Breeding of halophytic crop plants 

Another important point for the successful introduction of halophytic crop plants to large-

scale agriculture is to catch up with the breeding process that is already in an advanced state 

regarding conventional crop plants. De Vos et al. (2013) found a variety of C. officinalis with 

a less bitter taste than usually known for this species. They suggest taste as one future 

breeding criterion, beside a higher tolerance towards salinity. However, Yensen (2008) 

describes the difficult and costly breeding and patenting process for a variety of the cereal 

grain halophyte Distichlis palmeri (Vasey) Fasset ex. I.M.Johnst. and for a variety of 

Salicornia bigelovii Torr., which is also described in Zerai et al. (2010). 

In this thesis it was shown that different individuals of T. pannonicum behaved differently 

towards iron-deficient culture conditions. In the experiment described in chapter 5 various 

plants exhibited chlorotic leaves probably due to low iron availability at a high pH. But other 

individuals cultured under the same conditions exhibited normal green leaves. Additionally, 

plants from seed material collected at one location showed a higher chlorophyll content and 

therefore performed better under iron-deficient conditions than plants from seed material 

collected at a different location in an experiment described in chapter 4 (EMICRONUTRIENTS). 

These observations suggest that the conditions in the natural habitat of T. pannonicum are 

highly variable and different populations are adapted to specific environmental conditions. 

Another example for differences within the same species was shown in experiments with 

Salicornia dolichostachya Moss described in chapter 4 (ESPECIES) and chapter 5, where 

phenotypic differences between individual plants were observed. Due to their long, slim as 

well as succulent internodes the S. dolichostachya plants generally had an attractive 

appearance regarding their market potential as vegetable. But some individuals developed 

short and thick internodes making them less attractive as marketable product. Both types of 

plants were identified to belong to the same species on the base of ETS sequence analysis 

(data not shown). Either the marker system is not suitable to reveal different Salicornia taxa 

or the two phenotypes belong to different ecotypes of the species S. dolichostachya. 

The results suggest that future research should include the identification of different ecotypes 

of a potential halophytic crop species and the selection of certain ecotypes suitable for a 

specific application. This selected ecotypes could build the base for further breeding activity. 
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Market potential of halophytes due to their valuable secondary metabolites 

Apart from their utility as food crop plants, various halophytes have a high market potential 

because they contain valuable compounds. Contrary to glycophytes many halophyte species 

show a high amount of different secondary metabolites, for example phenolic acids, 

flavonoids and saponins with high antioxidative capacity (Chung et al., 2005; Benhammou et 

al., 2009; Meot-Duros et al., 2009; Kim et al., 2012). The development of diverse secondary 

metabolites is probably due to a necessity to develop a strong response against salt stress. For 

example, saline condition can cause the formation of free radicals due to oxidative stress and 

antioxidative compounds help the plant to defend itself against them (Flowers and Colmer, 

2008). 

It is important to close the gap between research on secondary metabolites in halophytes and 

introduction to successful application. Chapter 3 reveals pharmacognosy, functional foods, 

nutraceuticals and technical implementations as promising fields for application. Lubbe and 

Verpoorte (2011) state important prerequisites buyers of medical, aromatic and cosmetic plant 

material usually expect. Those comprise a reproducible effect of the compound or extract 

outside the laboratory, safety of the material for the consumer and/or environment, 

traceability of the production process of the plant material, sufficient and constant supply, and 

given demand for the product. These aspects are consistent with important future research 

tasks that are determined in chapter 3. Here, the provision of genetically defined plant 

material, determination of culture conditions that are most suitable for the production of a 

certain compound, and defined culture conditions and extraction methods for the provision of 

the desired metabolite in reproducible quality and quantity are determined as important 

aspects for implementation.  

Today, research on secondary metabolites screens many different halophyte species for 

example from the genera Salicornia, Atriplex, Mesembryanthemum and Crithmum and results 

in a huge bunch of potentially interesting compounds (Kim et al., 2000; Benhammou et al., 

2009; Meot-Duros et al., 2009; Falleh et al., 2011; Kim et al., 2012). As stated in chapter 3 

future research has to proceed in a more strategic way and focus on the examination of 

interesting metabolites of a few promising species to establish a sound base of knowledge. 

This makes application of the scientific knowledge more likely. Only after gaining this basic 

knowledge and experience the screening for interesting compounds in a large number of 

halophyte species that are still unexplored should be performed step by step. Salicornia 

herbacea L. would be a promising species for enforced research to reveal interesting 
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secondary compounds and establish methodology because a lot of investigation has already 

been done (Chung et al., 2005 and 2006; Hwang et al., 2009; Kong et al., 2009; Rhee et al., 

2009; Ryu et al., 2009; Kang et al., 2011; Kim et al., 2012; Kong et al., 2012; Yu et al., 2012). 

However, in the case of Salicornia it is important to clarify taxonomic difficulties (Kadereit et 

al., 2007). Research on interesting secondary compounds found in halophytes helps to 

generate a better knowledge on the utility and value of potential halophytic crop plants.  

 

Efficacy of halophytes as biofilter for nutrients 

The identification of optimal culture conditions is not only important for the growth of 

halophytes as crop plants but also for their utility as biofilter. The efficacy of halophytes as 

biofilter for nutrients depends on various factors. In chapter 2 several of those factors are 

determined for the use of halophytes as biofilter for marine aquaculture effluents. 

Accordingly, salinity, flooding, nutrient level, root characteristics and technical applications 

can influence the nitrogen and phosphorus removal by a wetland planted with halophytes. As 

shown in chapter 4, nutrient uptake capacity of T. pannonicum declined with increasing 

salinity. Also a low nitrogen concentration of 1 mg l-1 nitrate-N drastically reduced plant 

growth and uptake of nitrogen and phosphorus. Different phosphorus concentrations had a 

less obvious influence on plant growth and nitrogen uptake, thus phosphate uptake was 

reduced at phosphate-P concentrations as low as 0.3 and 1.6 mg l-1. Results on irrigation time 

in sand culture showed that preferred conditions are species-specific (data not shown). These 

results on appropriate culture conditions for halophyte species in terms of efficient nitrogen 

and phosphorus uptake under simulated conditions build a base to assess the important 

parameters for application. 

Results gained under simulated conditions might not always be compliant with reality. An 

experiment described in chapter 4 (EMICRONUTRIENTS) and experiments described in Ventura et 

al. (2013) revealed that the addition of iron in form of a highly stable complex such as Fe-

EDDHA is necessary to prevent iron chlorosis in leaves of T. pannonicum caused by the high 

pH of (artificial) seawater. Chlorosis was also observed in S. dolichostachya when cultured in 

artificial seawater without the addition of iron as Fe-EDDHA (data not shown). For the 

application of T. pannonicum, S. dolichostachya and P. coronopus as biofilter for nutrients in 

a marine RAS the use of Fe-EDDHA was not possible (chapter 5). Unknown effects due to 

accumulation of EDDHA in the process water and possible harmful effects on the cultured 

fish should be prevented. Therefore, ferric citrate was added to the aquaponic culture of the 



121 

plants which is degradable in the ozone treatment of the RAS but less stable at high pH 

(Lucena, 2003). But due to the carbon dioxide of the fish respiration the pH of the system 

decreases and ferric citrate was a useful iron source in the experiment, at least for two of the 

three applied halophyte species. The optimal pH for the nitrification process important in a 

RAS to prevent fish from ammonia toxication is a high pH, such as 8.5 (Tyson et al., 2004). 

Therefore a pH balance for the optimal culture of plants, fish and bacteria in the filters as well 

as the problem of iron deficiency in plants is also a problem in freshwater aquaponic systems 

(Tyson et al., 2008a and b). One promising approach to solve the problem is foliar application 

of micronutrients (Tyson et al., 2008a, Roosta and Mohesian, 2012). Beside iron other 

essential micronutrients such as manganese, copper and zinc are also less available at high pH 

and according deficiency in plants can also become a problem (Rackoy et al, 2006; Roosta 

and Hamidpour, 2011). 

In the case of iron, simulated conditions gave a suitable hint to a problem that might occur in 

application. But the specific solution to the problem had to be adjusted to the specific 

conditions of the application. Differences in results under simulated and applied conditions 

can also occur if salinity is due to different constituents. For a halophytic plant species the 

osmotic stress caused by a nutrient solution containing NaCl and a solution containing the 

constituents of seawater is the same if the conductivity of the culturing solution is the same. 

But in terms of ionic stress plants react differently to different elements that cause the salinity 

of a culturing solution (Rozema and Schat, 2013). Therefore, the tolerance level of a 

halophyte species determined under environmental conditions or by experiments using NaCl 

might be different from the salt tolerance level of the same halophyte species grown in 

seawater or a specific effluent. This is important for application because the salt tolerance 

level of a halophyte species possibly has to be determined for the specific composition of the 

effluent to be treated by the halophyte biofilter, for example agricultural runoffs, industrial 

effluents or effluents from marine aquaculture. 

 

Beneficial combination of halophyte and marine fish culture 

Marine fish can only be cultured in salty water similar to the constitution of the seawater that 

forms their natural environment. Therefore, the characteristic of halophytes of being tolerant 

to saline conditions is an important prerequisite for the combined marine fish and plant 

culture. But several marine aquaculture species or their developmental stages can be cultured 

at salinity levels far below seawater salinity (Forsberg and Neill, 1997; Atwood et al., 2003). 
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This is an advantage for the integrated culture of marine fish and halophytes because most 

halophyte species grow better at salinity levels below seawater salinity which also enhances 

nutrient uptake. 

The combination of halophytic crop culture and marine fish culture described in this study has 

two advantages. On the one hand, the halophytes can be used as biofilter by exploiting plant 

uptake of the nitrogen and phosphorus abundant in the effluent of the fish culture due to 

excess feed and excretion. The second benefit of combining marine fish culture and halophyte 

culture is the added-value due to the production of a valuable co-product.  

Operating a RAS is costly (Gutierrez-Wing and Malone, 2006). An integrated halophyte 

biofilter applied for the removal of nutrients can save costs by partly replacing more 

expensive technical filters (Schneider et al., 2005). It can also contribute to the economy of an 

aquaculture system due to the generation of a marketable product beside the produced fish 

(Blidariu and Grozea, 2011). The results of chapter 5 show that a modern marine RAS is 

suitable for the integrated culture of halophytic crops with a high market potential and that 

they take part in the nutrient removal process within the system. Therefore, both concepts, 

partly replacement of costly technical filters in their function as biofilter and generation of a 

marketable product, are valid for the integration of halophytic crop culture in a marine RAS. 

An additional advantage of the combination of fish and plant culture and the sustainable use 

of resources in integrated marine RAS is that it might enhance the acceptance of the 

consumer. In public, intensive aquaculture production partly has a bad image due to frequent 

reports on its unpleasant effects on the environment and on the cultured organisms. Controlled 

marine RAS is an environmental friendly technology and with beneficial conditions for the 

cultured organisms and the sustainable use of resources due to a recycling of nutrients in an 

integrated culture of halophytic crop plants could possibly change the impression of the 

consumer. This reassessment of aquaculture could enhance the progress of sustainable food 

production for the future. 

On the base of the data of chapter 5, 18 kg plant biomass of S. dolichostachya can be 

produced from the nutrients in the process water from 1 kg fish production. If shoot accounts 

for 80% of the plant biomass, 14.3 kg harvestable plant biomass can be produced. Menterra 

(2007) reported a price of 10 £ kg-1 fresh Salicornia from wild harvest which equals 12€ kg-1. 

Therefore the estimated value for the marketable biomass of S. dolichostachya potentially 

producible from the nutrients of the production of 1 kg fish in the system described in chapter 

5 would be 172 €. The plants applied in the experimental design investigated in chapter 5 
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covered an area of 15 m² and only retained 11% of the nitrogen and 22% of the phosphorus 

potentially plant available in the process water of the fish culture. To use all the phosphorus of 

the fish culture for the production of the crop halophytes a plantation area of 68 m² instead of 

15 m² would have been necessary. For the use of all the nitrogen in the system a plantation 

area of 136 m² would have been necessary and also the addition of phosphorus, because in 

relation to the abundance in the water a higher percentage of phosphorus than nitrogen is used 

by the plants making it the limiting factor for crop production. Further optimization for 

example a higher planting density as suggested in chapter 5 can reduce the plantation area 

needed. If the halophyte culture is used only partly to replace technical filters in a RAS and 

mainly to produce a valuable co-product a smaller plantation area can be used.  

In the integrated culture of marine fish and halophytes both cultures can possibly have 

negative effects on each other. None of those effects could be observed in the experiment 

described in chapter 5. There was no contamination of the harvested plant material with 

pathogens possibly derived from the fish culture. But substances possibly abundant in the 

effluent due to the fish feed or medication could harm plant growth and could have a negative 

effect on the biomass quality for consumption. The other way round, plant exudates could 

harm the cultured fish. Investigation is needed regarding these questions. Another challenge is 

crop protection without the use of chemicals that are harmful for the fish, only using 

beneficial organisms and natural products (Dayan et al., 2009; Blidariu and Grozea, 2011). 

 

Sustainable utilization of resources 

Sustainable development was defined as “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs” (WCED, 

1987). Many common production processes are not sustainable. They release substances such 

as nutrients and heavy metals with negative impact on water resources and environment and 

even if conventional water treatment is applied many valuable substances are wasted instead 

of recycling them in another production process. But depletion of freshwater resources leads 

to an upward trend in the reuse of water (WHO, 2014). 

Several practices in marine aquaculture have a high environmental impact due to the release 

of effluents that can contain various substances such as nutrients, organic material and 

medication (Read and Fernandes, 2003). Also transfer of diseases, mixing of domesticated 

and wild stocks as well as capture of wild fish for feed and wild seedstock collection have a 

negative impact on the environment (Naylor et al., 2000). The development of RAS is stated 
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as a perspective on environmental sustainability of aquaculture, covering the following 

aspects: reduced water consumption, opportunities for waste management and nutrient 

recycling, better hygiene and disease management, and biological pollution control (Martins 

et al., 2010).  

The sustainability of a RAS can be increased by the aquaponic production of vegetables 

(Blidariu and Grozea, 2011). The sustainability is increased because resources abundant due 

to a production process are used for another production process. In this study this is reflected 

by the re-use of nitrogen and phosphorus in the process water due to the production of marine 

fish by the production of valuable plant biomass in the aquaponic halophyte culture. As stated 

in chapter 2 and chapter 4 hydroponic culture is more suitable than substrate culture in terms 

of nutrient recycling because in this system plants are the important components of the 

biofilter. In hydroponic culture plant nutrient uptake is the most important process causing 

nutrient removal instead of microbial nutrient uptake, bacterial conversion, precipitation and 

adsorption abundant in substrate containing culture systems. A depletion of phosphate 

availability for fertilizer production is predicted within the next 50 to 100 years (Cordelli et 

al., 2009). Therefore, the reuse of phosphorus abundant as waste in a production system such 

as marine aquaculture for the growth of crops can become quite an important recycling 

process in the future. 

The approach of integrated multi-trophic aquaculture combines the production of fed 

aquaculture species (e.g. shrimp or fish) with the production of inorganic extractive species 

(e.g. algae or higher plants) and the production of organic extractive species (e.g. bivalve 

molluscs) (Neori et al., 2004; Schneider et al., 2005; Troell et al., 2009). In addition to an 

integrated halophyte culture applied as biofilter for nutrients and to generate a valuable co- 

product, several different organisms as filter components and also as different valuable co-

products can probably enhance the sustainability of an aquaponic system. Beside halophytes 

there are other potential biotic components with market potential that are applicable in an 

integrated multi-trophic aquaculture, for example several macro- and micro-algae species as 

well as mollusks and also bacteria that can be produced by using the bio-floc technology 

(Neori et al., 2004; Schneider et al., 2005; de Schryver et al., 2008; Sará et al., 2009). 

 

Future implications 

The combined use of halophytes as biofilter for nutrient-rich saline waters and halophytic 

crop plants is promising. Regarding the development of halophytic crop plants important 
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tasks for research in the near future are ecotype selection and breeding of suitable varieties, 

determination of the nutritive value of potential halophytic food crop plants and detailed 

research on valuable secondary compounds contained in a few promising halophyte species. 

Regarding the application of halophytic crop plants as biofilter for nutrient-rich saline waters 

the determination of species-specific requirements for a few promising halophyte species and 

the improvement of the productivity of the halophyte culture in a marine aquaculture system 

are future research tasks. Additionally, the applicability of results from marine aquaponics to 

the treatment of other saline effluents such as agricultural runoffs and industrial effluents 

should be investigated.  
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