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Abstract

The objective of this thesis is to develop novel classification and feature learning
techniques for the task of sound event detection (SED) in real-world environments.
Throughout their lives, humans experience a consistent learning process on how
to assign meanings to sounds. Thanks to this, most of the humans can easily
recognize the sound of a thunder, dog bark, door bell, bird singing etc. In this
work, we aim to develop systems that can automatically detect the sound events
commonly present in our daily lives. Such systems can be utilized in e.g. context-
aware devices, acoustic surveillance, bio-acoustical and healthcare monitoring,
and smart-home cities.

In this thesis, we propose to apply the modern machine learning methods called
deep learning for SED. The relationship between the commonly used time-
frequency representations for SED (such as mel spectrogram and magnitude
spectrogram) and the target sound event labels are highly complex. Deep learning
methods such as deep neural networks (DNN) utilize a layered structure of units
to extract features from the given sound representation input with increased
abstraction at each layer. This increases the network’s capacity to efficiently
learn the highly complex relationship between the sound representation and the
target sound event labels. We found that the proposed DNN approach performs
significantly better than the established classifier techniques for SED such as
Gaussian mixture models.

In a time-frequency representation of an audio recording, a sound event can often
be recognized as a distinct pattern that may exhibit shifts in both dimensions.
The intra-class variability of the sound events may cause to small shifts in the
frequency domain content, and the time domain shift results from the fact that a
sound event can occur at any time for a given audio recording. We found that
convolutional neural networks (CNN) are useful to learn shift-invariant filters
that are essential for robust modeling of sound events. In addition, we show that
recurrent neural networks (RNN) are effective in modeling the long-term temporal
characteristics of the sound events. Finally, we combine the convolutional and
recurrent layers in a single classifier called convolutional recurrent neural networks
(CRNN), which emphasizes the benefits of both and provides state-of-the-art
results in multiple SED benchmark datasets.
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Aside from learning the mappings between the time-frequency representations
and the sound event labels, we show that deep learning methods can also be
utilized to learn a direct mapping between the the target labels and a lower level
representation such as the magnitude spectrogram or even the raw audio signals.
In this thesis, the feature learning capabilities of the deep learning methods
and the empirical knowledge on the human auditory perception are proposed
to be integrated through the means of layer weight initialization with filterbank
coefficients. This results with an optimal, ad-hoc filterbank that is obtained
through gradient based optimization of the original coefficients to improve the
SED performance.
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1 Introduction

The world witnessed a rapid development in the consumer electronic devices in
the last few decades. This affected the interaction of humans with the electronic
devices in a major way. For instance, computers are not giant, bulky machines that
are only used by the scientists for specific purposes anymore. They are smaller,
more powerful, easier to use, and the vast amount of the world’s population are
using them daily for leisure or work purposes. The introduction of smartphones,
pocket-size computers with phone capabilities, has led to an even tighter bond
between the humans and the computers.

With the increased familiarity and the bond with the humans and the electronic
devices, the technology industry has been looking to finding ways of integrating
better the computers to the daily lives of the humans. In this direction, one of the
goals is to make devices that can recognize and understand the things and events
happening around them without any user input, and then perform some operations
based on their understanding. Such property is called context awareness [93], and
in fact, it has already been introduced to a certain degree in some of the commonly
used and well-known electronic devices. For instance, certain smartphone apps
provide e.g. restaurant recommendations based on the geographical location of
the users, extracted automatically using the GPS property. Some smartphones
also have the function to adjust the ringtone volume automatically based on the
ambient noise level (low volume in quiet settings such as an office meeting, high
volume in e.g. a noisy street). In addition, certain surveillance cameras alert their
users automatically when there is an unexpected movement detected. Finally,
automatic emergency braking has been introduced in recent cars, which makes
the vehicle stop without the user input when an object/human is automatically
detected as dangerously close.

Designing more advanced context-aware devices is a challenging task. Currently,
most of these devices can understand some aspects of their environment (e.g.
movement detection in surveillance video, or loudness detection in audio), but
they cannot understand what is the actual source of the input, which would have
opened up a whole lot of doors for context-awareness. For instance, a device that
can understand the commonly known sounds such as a doorbell, a baby cry, or
a car horn can be well used by hearing impaired people as a personal assistant
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device. Another example would be the autonomous vehicles, which continuously
recognize the road lanes, other vehicles, road signs, vehicle horns etc. to drive the
vehicle automatically.

In this thesis, we focus on the automatic detection of sound events in real-world
environments. The sound events define a significant portion of the characteristics
of a physical context. Therefore, one of the senses that we use most while
interacting within our physical context is hearing. Humans are very good at
interpreting and assigning meanings to the sounds. On the other hand, computers
still cannot offer reliable accuracy for this task. In this thesis, we propose and
develop methods that can be used for automatic sound event detection (SED).
This task differs from another well-studied audio information retrieval task called
automatic speech recognition (ASR), in that the aim is not to map the speech
audio into words/phonemes, but to map non-speech audio to their corresponding
semantic labels.

1.1 Sound Event Detection

Sound event is defined as "an audio segment that can be labeled as a distinctive
concept in an audio signal" [43][VI]. In our daily lives, we frequently encounter
various sound events such as door bell, car engine, footsteps, keyboard sounds
etc. In addition, music and speech can also be considered broadly as sound
events, independent of their content such as genre, notes, words etc. Sound event
detection (SED) involves determining the start and end times of the sound events
in an audio signal and associating them with their corresponding textual labels.
The main goal of SED is to correctly detect the sound events present in the audio
signal. Estimating the exact start and end time is of secondary importance and
the errors on this regard are often tolerated for around +250 ms [70].

SED can be considered in two main categories as monophonic and polyphonic [68].
Monophonic SED systems can detect maximum one (often the most prominent)
sound event at any time regardless of the actual number of sound events present
at that given time. The limit on the number of detectable sound events is a
disadvantage for the real-life applicability of such systems, because in real-life the
sound events often occur simultaneously. For instance, an audio signal recorded in
a busy street may contain car horn, sirens, humans speaking loudly, all occurring
simultaneously. On the other hand, in polyphonic SED, the goal is to detect
multiple sound events simultaneously present at any given time instance, which
suits better for real-life applications. In this case, the number of sound events to
be detected can be varying between the time instances.

In the literature the terminology on SED varies between authors; with the terms
such as sound event detection, tagging and classification being used interchangeably.
Sound events are defined with pre-determined labels called sound event classes.
In this thesis, sound event classification (SEC) (or sound event tagging) refers
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to labeling the whole audio recording with the sound event class(es) present,
regardless of the start and end time. On the other hand, an SED task includes the
onset /offset detection for each occurrence of the class(es) present in the recording.
This is often done by first dividing the recording into equal-length segments,
then performing classification within each segment and finally combining the
classification outputs for the consecutive segments. The segment length determines
the temporal resolution of the SED system. Since both SED and SEC aim to
solve very similar problems, the methods that are proposed for these tasks are
often motivated from each other. Some of the SEC datasets even consist of 4-10
second chunks of real-life audio recordings, and this task can be considered as
SED with low temporal resolution. For this reason, some of the methods proposed
for SEC are also covered in this thesis. Finally, we use the term machine hearing
to generally refer to the sound related machine learning tasks, such as ASR, SED,
SEC, music transcription etc.

1.2 Objectives of the Thesis

The main objective of this thesis is to study and utilize the recently proposed
advanced machine learning techniques in the context of SED. These techniques
include deep neural networks (DNN), convolutional neural networks (CNN) and
convolutional recurrent neural networks (CRNN). While utilizing these techniques
for various SED tasks, we aim to develop an understanding of the working
principles of the neural networks for a specific SED problem. The wide range of
SED tasks that are tackled in this thesis provide a clear idea on the scalability and
the robustness of these machine learning techniques. Moreover, we aim to propose
novel methods in terms of sound representation for neural networks and the
post-processing of the network outputs for more realistic and smooth estimation
of the onset/offset times. Lastly, we aim to investigate the end-to-end SED and
propose a novel, ad-hoc sound representation method which is obtained through
the hidden layer outputs of a neural network.

In this thesis, the main research questions that we ask can be listed as follows.
We investigate whether the modern machine learning techniques such as deep
learning methods can be used to develop SED systems with robust performance
in real-life conditions. We test the multi-label learning capabilities of the deep
learning methods for SED in various polyphony levels. We investigate on which
deep learning methods perform the best for a given SED task, and how should
the model architecture be adjusted for the optimal performance. We question the
effectiveness of the established sound representation techniques, and we search for
ways to make deep learning methods model the sound events directly from raw
audio signals in a polyphonic setting.
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1.3 Main Results of the Thesis

The main results and the contributions of our publications included in this thesis
are listed as follows.

Publication 1: Polyphonic Sound Event Detection Using Multi Label
Deep Neural Networks

In publication [I], deep neural networks (DNN) with mel band energy input
has been proposed for polyphonic SED. DNN offers a considerable 42% relative
performance improvement over the conventional GMM-HMM classifiers for the
task of polyphonic SED in real-life environments. In addition, median filtering
based post-processing provides an efficient solution to smoothing the noisy, frame
level predictions of the DNNs for SED, where the noise is often the result of the
coarse time resolution of the reference annotations.

Publication 2: Multi-label vs. Combined Single-label Sound Event
Detection with Deep Neural Networks

In publication [II], the validity of the claim that class correlation information is
essential for multi-label classification is investigated for polyphonic SED using
DNNs. The performance drop is very limited with combined single label DNN
classifier versus a multi-label classifier for polyphonic SED. Combined single label
DNNs provide a different option for polyphonic SED with the benefit of usage
case flexibility in exchange for minimal to no decrease in detection performance.

Publication 3: Convolutional Recurrent Neural Networks for
Polyphonic Sound Event Detection

In the proposed convolutional recurrent neural network (CRNN) method in
publication [III], the capability of CNNs to learn spectral and temporal shift
invariant filters and the capability of the RNNs to model long term temporal
dependencies are combined, resulting with a more powerful classifier than both
CNN and RNN for SED. CRNN provides the state-of-the-art results for various
SED datasets, beating the previous DNN state-of-the-art by a considerable margin.

Publication 4: Convolutional Recurrent Neural Networks for Bird
Audio Detection

In publication [IV], CRNN is proposed for bird audio detection as a part of Bird
Audio Detection 2017 challenge. CRNN is especially suitable for the task of bird
audio detection due to the acoustic characteristics of the bird sounds, and this
is also evident in the performance of the method for the Bird Audio Detection
challenge 2017, where the proposed CRNN method came second.
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Publication 5: Convolutional Recurrent Neural Networks for Rare
Sound Event Detection

In publication [V], CRNN is proposed for rare SED as a part of DCASE 2017
challenge. The proposed method suits the rare SED task due to its capability of
learning high level features for the rare sound events and reflecting the sudden
changes between the consecutive frame features. This theoretical advantage is also
supported by the evaluation results, where the proposed CRNN method comes
second in the challenge.

Publication 6: Filterbank Learning for Deep Neural Network Based
Polyphonic Sound Event Detection

The proposed method in [VI] is a first attempt to learn an ad-hoc filterbank for
SED using the feature learning capabilities of deep learning methods and the
empirical knowledge about the human auditory perception. Initializing the first
convolutional layer filter weights of a CNN with the mel filterbank magnitude
response provides a modest increase in performance over a CNN whose weights
are initialized randomly.

Publication 7: End-to-End Polyphonic Sound Event Detection Using
Convolutional Recurrent Neural Networks with Learned
Time-Frequency Representation Input

In publication [VII], polyphonic SED is proposed to be done using directly raw
audio data as input to a single deep learning classifier. The classifier includes
a feature extraction block composed of feed-forward layers whose weights are
initialized to get the spectrogram at the block output, and a convolutional recurrent
layer block. To the author’s knowledge, the proposed method is the first to
integrate the the domain knowledge of the perception based sound representations
into the parameters of a deep learning classifier to conduct end-to-end SED. While
the proposed method does not outperform a CRNN classifier with mel spectrogram
as input, it offers a data-driven alternative to designing audio filterbanks for SED
by learning optimized filterbank parameters with the gradient descent algorithm
to minimize the SED loss.

1.4 Outline and Structure of the Thesis

The organization of the remainder of this thesis is as follows.

The background information about SED, and the topics of machine learning,
feature learning, artificial neural networks, and evaluation methods in the context
of SED are presented in Chapter 2.
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Chapter 3 presents two DNN based approaches for polyphonic SED, multi-label
DNNs and combined single label DNNs. The advantages of both methods in
terms of accuracy, computational cost, and usage case flexibility are investigated.

In Chapter 4, CRNNs have been proposed for three separate SED tasks: polyphonic
SED, bird audio detection, and rare SED. The theoretical explanation and the
empirical evidence for why CRNN suits these tasks are presented.

Filterbank learning approaches for polyphonic SED are studied in Chapter 5 over
two novel methods proposed in [VI] and [VII]. Both these methods aim to combine
the feature learning capabilities of deep learning classifiers with the established
acoustic feature extraction methods in spectral domain.

Conclusions of this thesis and discussions for the current and future research on
SED are provided in Chapter 6.



2 Background

2.1 Problem Formulation

The goal of sound event detection (SED) is to automatically estimate the start and
end times of the sound events present for a given collection of audio recordings,
and then to associate a textual label to each of these sound events. These textual
labels are often called classes. SED can be formulated in two stages: sound
representation and classification. In the sound representation stage, acoustic
features are extracted for each short time frame ¢ in the audio recording to obtain
a feature vector x; € RM, where M is the number of features per frame. In the
classification stage, the task is to learn an acoustic model that would estimate
the event presence probabilities p(y¢|x:,0) € [0, 1]t for each pre-defined sound
event class, where 6 represents the acoustic model parameters of the classifier. In
the usage case, the event presence probabilities are binarized by e.g. constant
thresholding to obtain the event presence predictions y; € [0, 1]*. By combining
the presence predictions for consecutive time frames, one can determine the start
and times of the sound event classes.

In the scope of this thesis, acoustic model parameters 8 are optimized using
supervised learning (Section 2.5). There are also other learning methods to
optimize the model parameters, such as unsupervised learning (often used when
target outputs are unavailable/unused) and semi-supervised learning (used when
the target outputs are available for only a portion of the data). In supervised
learning for SED, the binary target outputs y; for each frame ¢ are obtained
from the reference annotations, which include the start and end time of each
event in the audio recordings. If the recordings are obtained from the real-life
environment, then the reference annotations are often collected manually, i.e. by a
human listening through the recordings and labeling the start and end times of the
sound events that they could notice. Supervised learning for SED is formulated in
such a way that the sound event classes of interest are defined beforehand. This
makes the SED task concrete, and helps the human annotator in omitting the
irrelevant sound events and grouping different sound events under a certain class
(e.g. different kinds of doorbells under a single doorbell class). An audio recording
annotated with the sound events is visualized in Figure 2.1.

7
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frame t

I I

(ye)  (Bfay) (o)

Figure 2.1: A sound recording labeled with the sound event classes in the time
domain. During frame ¢, baby cry and cat meow sound events are present.

2.2 Applications

Human perception of the outside world is mostly driven by the audiovisual cues
collected from the environment. On the audio side, detecting sound events
represent an important part of the auditory human perception. For instance,
the acoustic characteristics of a busy street can be defined by the sound events
such as car engine sound, car horn, footsteps, speech etc. Therefore, automatic
sound event detection can be utilized for the task of creating context-aware
devices [10, 110]. In addition, according to World Health Organization [107],
around 5% of the world’s population suffer from disabling hearing loss. Creating
assistant devices that can perform automatic SED would help the hearing impaired
people significantly in their daily lives. SED can also be utilized in computational
bioacoustics [100], e.g. remote wildlife monitoring of bird species which involves
the detection of bird sounds [95], and in healthcare for automatic detection of e.g.
coughing sounds of patients [31, 80].

Recently, SED systems have been commercialized into smart-home products [58,
105]. Some smart-home systems utilize SED for the purpose of surveillance by
detecting sound events such as glass breaking, gun shot, smoke alarms etc [85].
The benefit of using SED instead of image-based surveillance methods is that
audio signals are not affected by illumination, and microphones can be effectively
used to cover a wider area than the cameras. In addition, SED has been proposed
for urban sound analysis in smart cities, for tasks such as audio surveillance and
noise pollution monitoring [4, 75, 92].

Online multimedia sharing has increased exponentially, which resulted in millions
of hours of multimedia data in content sharing sites such as YouTube. While the
users provide certain descriptors for each video, there is often a large amount of
non-annotated information, which can be extracted with the techniques such as
SED. In order to facilitate SED research on this direction, AudioSet [25] dataset
has been released. It is composed of around 5000 hours of YouTube video material
annotated by human annotators with sound events within 10 second clips. While
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the time resolution of the annotations are rather coarse than what is often expected
from a real-world SED system, AudioSet provides a benchmark dataset for SED
research, and the SED acoustic models learned from this vast amount of data can
be then utilized in real-world SED tasks.

2.3 Challenges

It can be claimed that the research progress on SED has been stagnant until the
recent years. One of the reasons is that there are several challenges for a robust
SED system that can operate in real-life conditions. The challenges for SED
systems can be listed as, but not limited to, intra-class variability, overlapping
sound events, environmental noise, lack of structure, and definitive ambiguity. It
should be noted that some of the mentioned challenges are not specific to SED
and also apply for other machine hearing tasks such as ASR, music transcription
and musical genre classification.

Intra-class Variability

Sound event classes for SED are often defined broadly such as phone ringing,
doorbell etc., and this presents a challenge for SED methods in the form of
intra-class variability. For instance, doorbell class can be used to represent all
types of doorbells, whose acoustic characteristics can vary significantly among
the examples of this class. Therefore, in order to claim that an SED system can
robustly detect doorbells, it should be able to do so on a wide variety of doorbells.
This requires the SED method to be able to detect or extract the acoustic features
that are found in common among different examples of the same class.

Overlapping Events

The earlier research on SED has been focused on the detection of individual sound
events recorded in isolated environments [26]. However, in the real world, sound
events often occur simultaneously. For instance, a recording from a children’s
park may include children shouting, adults speaking, footsteps and birds singing;
all happening at the same time. Since the audio signals are additive, the resulting
audio recording includes a mixture of all of these sound events. Therefore, the
SED system should be able to distinguish the acoustic characteristics of each
individual sound event among this mixture.

Environmental Noise and Recording Conditions

The scope of the SED task is defined by the pre-determined sound event classes.
The sound events that are not in the scope of the given SED task can be essentially
deemed as the background noise in the recording. For instance, the wind is very
commonly present in the real-world recordings, and it can significantly decrease the
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signal-to-noise ratio (SNR). In addition, the variations in the recording conditions
such as the distance of the recording device to the sound source and the type of
the used recording may present an additional challenge for the SED systems.

Lack of Structure

Certain audio signals such as speech and music contain some structure that
can be used to extract informative sound representations from the signal. For
instance, speech can be divided into certain phonemes and the characteristics
of each phoneme can be investigated separately. This makes it easier to find a
mapping between the phonemes and the language representations, then combine
the representations to recognize the whole speech (which is the task of ASR). The
same property can be claimed for music and its subdivision, the notes. On the
other hand, it is not possible to find a common definition of subdivision for the
sound events, which makes the task of SED challenging.

Definitive Ambiguity

It may not always be possible to exactly determine the onset and offset of a sound
event. Certain sound events such as car passing by have relatively long rise and
fall times, and the labeling of onset and offset for this event is often left to the
subjective decision of the annotator, or automated based on a certain signal energy
threshold. Besides, the interpretation of some of the repetitive sound events can
be a source of ambiguity. For instance, while the annotators would most likely
label a 10-second audio segment of human footsteps as a single sound event, a
machine learning system with access to high time resolution features may aim to
label these events individually, since each footstep is distinctively different from
the background. Finally, the annotators often have to make subjective, loudness
perception based decisions on whether a sound event can be recognized as a
distinctive event in the clip or it should be considered as a part of the background.
Factors such as SNR level and distance to the source play an important role on
these subjective decisions. Definitive ambiguity can also be a challenge for tasks
such as ASR (e.g. muttering, whispering) and musical genre classification.

2.4 Sound Representation

Audio signals for SED are obtained by digitally recording the sound events in
a real-life environment or in a studio. The time domain representation of a
sound event is considered as the lowest level representation, since the signal is
not much processed before using it as the representation of a sound event. On
the other hand, this representation is quite redundant for a classifier to learn
which sound event it belongs to. For this reason, audio signals for SED are often
represented by extracting certain acoustic features. The acoustic features are
mostly extracted in the frequency domain, as the signals belonging to the same
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sound event often share components in the frequency domain. Besides, frequency
domain representation is more compact and noise robust than the time domain
representation. The number of processing steps over the time domain signal before
obtaining the acoustic features determine the level of abstraction of the sound
representation. For instance, mel frequency cepstral coefficients (MFCC) and
histogram of gradients (HOG) features, both explained below, are considered
higher level representations, as the calculation of these features require multiple
processing steps in frequency domain, and therefore the representations become
more abstract.

Stages of acoustic feature extraction

There are three main stages of acoustic feature extraction in frequency domain:
frame blocking, windowing, and frequency spectrum calculation. In order to
obtain the frequency spectrum through Short-time Fourier Transform (STFT),
the signal should be assumed to be able to model a sum of stationary sinusoids.
Hence, the frequency spectrum of the audio signals are calculated by first dividing
the signal into short time frames. This process is called frame blocking. There is
a trade-off between frequency resolution and time resolution based on the frame
length. Frequency resolution increases with increased frame length, resulting in
worse time resolution. Therefore the selection of frame length is dependent on
the machine hearing task at hand. For SED, frame length is often selected in
the range of 20 to 50 ms. An overlap of 25% to 50% of the frame length is often
selected between the frames to obtain a smoother representation. Then, each short
time frame signal is multiplied with a window function. This process is called
windowing, and it is done in order to avoid the discontinuities at the borders of
the frame, which would corrupt the frequency spectrum estimation. Hamming,
Hann and Blackman functions are often used for windowing in SED. Finally, the
frequency domain representation of each short time frame signal is obtained by
taking the discrete Fourier transform. The stages of acoustic feature extraction
has been visualized in Figure 2.2.

Spectrogram

The time-frequency domain feature matrix that is obtained by concatenating the
frequency domain feature vectors for the consecutive time frames of a recording is
called the spectrogram. The spectrogram of an audio signal often provides the base
of sound representation for SED. As the Fourier transform is a complex-valued
function, the spectrogram consists of complex values. However, most machine
learning methods are designed to work only with real-valued input. Therefore,
often in machine hearing, the phase information is discarded as it is deemed less
informative [27], and only the magnitude of the spectrogram is used. Fourier

'Reprinted by permission from Springer: Computational Analysis of Sound Scenes and
Events by Virtanen, Plumbley, and Ellis, 2018.
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Figure 2.2: The stages of acoustic feature extraction in frequency domain’.

transform has a linear frequency resolution, and the sound events often have much
higher energy in the lower frequency levels, so these lower frequency components
dominate as the sound features. The dynamic range of the linear magnitude
spectrogram can be compressed by taking the logarithm to obtain log magnitude
spectrograms.

Using spectrograms as the sound representation for SED is beneficial in the
following ways. Compared to raw audio signal in time domain, spectrogram
provides more compact and rich information about the sound events based on the
relative distribution of energy in the frequency domain [44]. In addition, similar
to images, spectrogram is multi-dimensional, which makes the vast research
on machine learning methods developed for image classification based tasks
applicable to SED. It can also be claimed that spectrograms are more robust to
noisy environments than time domain audio signals, because the environmental
noise often tends to be limited to the lower frequencies, and the obtained SED
performance is often better than using the raw audio signals.

Mel spectrogram

There are several spectrogram representation methods that are based on human
auditory perception. Empirical results [2] show that humans do not perceive
sounds through a linear frequency scale, and we are more sensitive to the changes
in the lower frequency range than the higher frequency range. Mel scale (illustrated
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Figure 2.3: Hertz vs. Mel scale.

in Figure 2.3) is a non-linear frequency scale in which the pitches are adjusted by
the human listeners to be perceived as equally spaced [98]. Mel scale based sound
representations include mel spectrogram and mel frequency cepstral coeflicients
(MFCCs). Mel spectrogram is a matrix that consists of mel band energy feature
vectors concatenated for consecutive time frames, and it is obtained by applying the
mel filterbank at each time frame over the magnitude spectrogram. Mel filterbank
utilizes the mel scale and it consists of triangular filters, whose bandwidths widen
with increasing central frequencies for the filters. This results in higher frequency
resolution in the lower frequency range, and vice versa. Mel spectrogram is often
further processed by taking the logarithm to compress the dynamic range, resulting
in the log mel spectrogram. Currently, log mel spectrogram is the most popular
sound representation for SED tasks, and have been used in many state-of-the-art
methods for polyphonic SED [1][III], rare SED [65], and SED using weakly labeled
data [63]. The number of mel filterbanks for SED is often selected in the range of
40 to 80, which is most likely smaller than the number of frequency bins used in
STFT. Therefore, mel spectrogram provides a more compact representation than
the magnitude spectrogram. Several sound representation methods have been
visualized in Figure 2.4.

Mel Frequency Cepstral Coefficients (MFCC)

MFCCs [14] are obtained by applying Discrete Cosine Transform (DCT) over the
log mel spectrogram. Mel filters are overlapping and this results with the correla-
tion between adjacent filterbank outputs, therefore DCT is used to approximately
decorrelate the log mel spectrogram features. The higher MFCC coefficients are
often discarded as they provide little information. The first coefficient is also
typically discarded, as it is simply equal to the average log energy and does not
give information about the spectral characteristics. The first 10-16 coefficients
are used as the acoustic features for each short time frame. MFCCs are often
concatenated with delta-MFCC features, which are calculated from the difference
between the MFCC features for consecutive time frames. MFCCs have been
extensively used for machine hearing tasks, especially for ASR. MFCCs (and
delta-MFCCs) have been combined with a Gaussian Mixture Model (GMM) -
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speaking in a park.

Hidden Markov Model (GMM) based classifier to conduct polyphonic SED in
everyday environments in [68]. In that work, MFCCs for each time frame have
been modeled as samples from mixtures of Gaussians, and the temporal context
has been modeled through a three-state HMM. With recent machine learning
techniques such as deep neural networks, it became clear that the classifiers do
not necessarily require the decorrelation step over the log mel spectrogram, and
they perform better by simply using log mel spectrograms as input. For this
reason, MFCCs have recently dropped out of favour as the sound representation
method for SED. Finally, unlike magnitude spectrogram and mel spectrogram,
the concatenation of MFCC features for consecutive time frames can not be
necessarily deemed as a time-frequency representation, as the MFCC coefficients
are not ordered in frequency axis.

Other acoustic feature extraction methods

Apart from mel scale based representations, there are also other sound repre-
sentation methods that stem from the magnitude spectrograms. For instance,
Gammatone spectrogram (or gammatonegram [21]) is another human auditory
perception based acoustic feature extraction method, which has been commonly
used for machine hearing [104] and recently proposed for rare sound event de-
tection [81]. The central frequencies for Gammatone filters are calculated based
on the equivalent regular bandwidth (ERB) scale [28]. In addition, spectrogram
image feature (SIF) is an image processing inspired method that extracts a visual
cue from the spectrogram of the audio signal, and it has been proposed for SEC
n [15, 16]. It consists of quantizing the magnitude spectrogram into an RGB
image based on the normalized amplitude values of the spectrogram (red channel
represents high amplitude components, and blue low amplitude components, as
in the "jet" colormap for matlab and matplotlib). This is analogous to pseudo-
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coloration in image processing. Another image processing based feature extraction
method is the histogram of oriented gradients (HOG) [13], which utilizes the
change of intensity (amplitude) in the sub-blocks of the spectrogram. HOG has
been proposed for acoustic scene and event classification in [86].

2.5 Machine Learning for Sound Event Detection

Machine learning is a field of computer science that aims to design machines (or
software) that are able to learn directly from the given data. Machine learning
systems are especially useful for certain tasks for whom the solutions are very
challenging to implement as an algorithm by a human engineer. Sound event
detection can be given as an example for such tasks. Due to the challenges
explained in Section 2.3, it is difficult to come up with an engineered algorithm that
could map audio signals with their corresponding sound events with satisfactory
accuracy to be utilized in real-world applications. By studying how machine
learning systems for sound event detection process audio data, it may even be
possible in the future to gain more insight about how humans perceive sound
events.

According to [73], "A computer program is said to learn from experience F with
respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E". In this thesis,
the task T is generally defined as sound event detection, and in some cases more
specifically as polyphonic sound event detection in real-life environments, bird
audio detection, rare sound event detection etc.

In the case of SED, the experience E often corresponds to the acoustic features
and the sound event labels for a collection of audio recordings. Acoustic features
can be represented as an input matrix X € RM*T which includes the M acoustic
features extracted from each frame in each audio recording, where the total
number of time frames is 1. The labels are binary encoded as the target output
matrix Y € 0,19%7 where C is the number of predefined sound event labels
such as doorbell, baby cry, dog barking etc. The target outputs are obtained
from the available reference annotations (Section 2.1). If the i*® sound event is
present in the j% frame, then Y; ; is set to 1, and 0 vice versa. If the reference
annotations for the sound events are available (which is the case in this thesis),
the task of sound event detection is a form of supervised machine learning. For
the performance measure P, various metrics such as F1 score and error rate [70]
are used (Section 2.8.1).

The aim of machine learning for SED is to learn a function (7.e. model) f that
can map the given input data X to the target outputs Y. In the case of SED,
for a given acoustic feature vector x for a single time frame, f(x) outputs the
probability vector § € [0,1]¢ for the sound events being present in the given
frame. During the learning stage, the parameters of f are updated to minimize
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a certain error function between the estimated output Y and the target output
Y. During the usage stage, where the target outputs are either not available or
only available for evaluation, the utilization of the estimated outputs depend on
the type of the SED task. For monophonic SED, the sound feature vector x for a
single frame is mapped to the sound event label with the highest probability (i.e.
arg max(y)) for the given frame. For polyphonic SED, § is often binarized using
a certain threshold (mostly 0.5 as it is an unbiased threshold), and x is mapped
to the label(s) that have the probability above the threshold.

In supervised machine learning for SED, the input and the target output repre-
sentations depend on the selected machine learning method. For some methods
such as Gaussian mixture models (GMM) and feed-forward neural networks
(Section 2.7.1), a pair (x,y) of acoustic feature vector x and the target output
vector y represents a single learning example. Other methods such as RNNs
(Section 2.7.4) and CNNs (Section 2.7.5) utilize the temporal information from a
sequence of frames to calculate the estimated output at each frame. For these
methods, the input X and the target output Y matrices are typically divided
into 7" non-overlapping sequences of N frames, resulting with the input tensor
X e RMXNXT" gnd the target output tensor Y € RE*NXT" where T = N x T".
In this case, a pair (X, Y¢) represents a single learning example.

The earlier work on machine learning for SED mainly involved utilizing the
techniques that were proposed earlier for other machine hearing tasks such as
music transcription and ASR. In [42, 68], MFCCs were used as the acoustic
features and GMM-HMM classifiers for modeling the sound events through these
features. However, the performance of these systems were not satisfactory to be
deployed in a real-world application. In [11], several time and frequency domain
audio features such as zero-crossing rate, short-time energy, MFCCs, band energy
ratio and spectral flux were concatenated in a single acoustic feature vector. The
performance for these features were compared both separately and jointly with
the time-frequency domain features extracted using the matching pursuit (MP)
algorithm [67]. The task involved classifying a combination of sound events and
acoustic scenes in 4-second length segments using the aforementioned features with
K-nearest neighbor (KNN) [23] and GMM classifiers. The experimental results
with joint MP-MFCC features provided close performance to human listeners on
the same task. In [15], linear support vector machine (SVM) [6] classifiers were
proposed to be trained with pseudo-colour quantized SIF features for an SEC
task, which resulted with superior performance compared to an MFCC-HMM
based method.

2.6 Feature Learning for Sound Event Detection

Machine learning for SED is usually performed by using the acoustic features
extracted from the sound recordings as input. The acoustic features used in
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machine hearing often do not utilize any information about the given classification
task, i.e., MFCCs are calculated in the same manner whether the task is e.g.
ASR or SED. Recently, most of the proposed SED methods simply pick one of the
well-known acoustic feature extraction methods for machine hearing, and focus on
developing a novel and better performing acoustic model through machine learning.
Although acoustic features such as log mel spectrograms perform satisfactorily
for SED, it can be argued that sound representations that can adapt better to
the given task would be beneficial. Besides, human auditory perception based
representations such as mel spectrogram inherently assume that the way humans
process the audio signals before mapping them to their corresponding sound events
is similar to the way a machine does the same task. However, it is possible that
the machines would benefit from a very different kind of sound representation
for SED. The problem is that since the relationship with the audio signals and
their corresponding sound events is highly complex (for the reasons mentioned
in Section 2.3), it is hard to come up with an engineered sound representation
method that would be optimal for SED.

Apart from the acoustic feature extraction methods explained in Section 2.4,
machine learning can also be used to learn discriminative features from low-level
representations for SED. Low-level representations may refer to either time domain
signal, or the magnitude spectrogram. The method of using machine learning for
the acoustic feature extraction is often called feature learning (or representation
learning).

There are several feature learning methods that have been proposed for SED.
In [19], non-negative matrix factorization (NMF) [62] has been proposed for SED.
In this work, coupled NMF is used to decompose the magnitude spectrogram into
an audio dictionary matrix and an excitation matrix. The same excitation matrix
is used to decompose the target output matrix into an annotation dictionary
matrix and an excitation matrix. In the usage case, the learned annotation
dictionary and the excitation matrices are used to obtain the estimated output
matrix for the unseen data. This method effectively uses the reference annotations
of the sound events to learn a better representation through the audio dictionary
matrix, therefore it is an example of supervised learning. In [43], unsupervised
NMEF is proposed to separate the magnitude spectrogram of the overlapping sound
events into different streams containing (ideally) homogeneous spectral content,
i.e. the spectral content of each sound event would be distributed into separate
streams. This would make it easier to overcome the problem of overlapping sound
events in the sound representation for SED. Since the reference annotations are
not utilized in the feature learning stage, it is an example of unsupervised feature
learning. Another example of unsupervised feature learning for SEC has been
proposed in [90]. In this work, an over-complete codebook has been learned based
on the whitened log mel spectrograms using spherical k-means algorithm [12].
The learned codebook of k vectors (means) is then used to encode the log mel
spectrograms into a different feature space. Recently in [113], time-frequency
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domain filterbanks that operate over the magnitude spectrogram and are learned
by neural networks have been proposed for audio source separation.

Feature learning methods for SED often operate over the spectrograms of audio
signals. The benefits of using spectrograms over time domain audio signals have
been listed in Section 2.4. Recently, the idea of combining the acoustic feature
extraction and the acoustic model training stages of SED in a single machine
learning system has been gaining traction. With this method, a machine learning
system is trained to map directly the time domain audio signal to the sound
events that are present in the signal. This method is often called end-to-end
learning for SED. The benefit of end-to-end learning is that, there is no initial
assumptions involved about the optimal sound representation, 7.e. the machine
learning system extracts the relevant and application specific acoustic features
from the time domain signal by using the target output information in SED.
Studies have showed that for some machine hearing tasks such as ASR, the
learned representations of end-to-end systems in fact converge to some well-known
sound representation methods like Gammatone spectrogram [89]. However, in the
case of SED, spectrogram input representations have still been performing better
than the time domain signals as input (more details in Section 5.2). Developing
better machine learning methods to conduct end-to-end learning is an ongoing
area of research.

2.7 Artificial Neural Networks

An artificial neural network (ANN) is a machine learning method that is loosely
based on the information processing inside the human brain. The human brain
is composed of 15-20 billion inter-connected nodes called neurons, which are
stimulated by various electrochemical signals [79]. Different signals (such as
sensory, audio, visual etc.) stimulate different paths of neurons, and the signal
information is processed through a collective set of neuron stimulation inside the
brain. From the birth of the human being, the neurons specialize in processing
certain signals and continuously improve their abilities to create a mapping
between the given input signal and its cognitive representation. For instance,
human speech, a special kind of audio signal essentially used for communication,
is first transformed into electrochemical signals inside the ear and brain. Then,
through neuron stimulations, these signals are mapped to a certain set of phonemes,
which have a shared cognitive representation for human communication. Most
intensively during the infancy, the neurons inside the brain update their structure
to be able to better map these signals into their cognitive representation, which
leads to the human making sense of speech.

The working principles of ANNs are somehow similar to information processing
methods of the brain. ANNs are composed of stacks of inter-connected artificial
neuron blocks (often called layers) that aim to find a mapping between the given
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input signal and the target output signal. Each neuron has certain parameters
(such as the weights and biases) which are iteratively updated, often through
gradient optimization, to minimize a certain error function between the desired
target output and the estimated output. The layer that is receiving the input
signal is called the input layer, the last layer which determines the network
outputs is called the output layer, and the layers in between these layers are
called the hidden layers. Each network has a certain set of hyper-parameters
that determine the network architecture (number of hidden units in each layer,
number of layers etc.) and the network training procedure (optimization method
parameters, regularization parameters etc.).

The ANNs that include more than one hidden layer are often grouped under the
name deep learning, or deep neural network (DNN). In this thesis, we reserve
the term DNN for a feed-forward neural network with multiple hidden layers. In
the case of other neural network techniques such as convolutional and recurrent
neural networks, the deep prefix is often omitted although these networks also
most often utilize multiple hidden layers. In this thesis, we use the term deep
learning to refer to all ANN methods that utilize multiple hidden layers. With
the introduction of advanced training techniques, large datasets and increased
computational power, deep learning has been recently dominating the machine
learning field in many tasks. Consequently, the current state-of-the-art methods
for sound event detection also utilize deep learning [63, 65][I1I].

2.7.1 Feed-forward Neural Networks

Feed-forward neural network (FNN) consists of sequential layers of fully connected
neurons, i.e. the output of each neuron in a single layer is given as input for all
the neurons in the next layer. The layer outputs are calculated through a forward
pass, and there is no feedback connection for the neuron outputs. When the FNNs
are extended to have feedback connections for the neuron outputs, they are called
recurrent neural networks (RNN), which are explained in Section 2.7.4.

For FNNs, the neuron output is calculated in two steps. First, the weighted sum
z of the neuron outputs of the previous layer is calculated, with an additional
neuron bias b as

20 =S Wi (2.1)
k

where z](-l) is the weighted sum for the neuron j in layer i, W represents the
weights between the layers ¢ and 7 — 1, and h,(;_l) is the output for the neuron k in
layer ¢+ — 1. In order to increase the FINN’s capacity to learn the highly nonlinear
relationship of the input and the target output; a continuous, (sub-)differentiable,
non-linear (or piece-wise linear) activation function (covered in Section 2.7.2) is
applied to z; to get the neuron output h; as

@ _ .,
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Figure 2.5: Feed-forward neural network with two hidden layers and a single
output neuron. ©2015 IEEE.

where o is the activation function.

When the FNN is used to learn an acoustic model for SED, the FNN input is
often a feature vector x that includes the acoustic features extracted from a single
time frame. The input layer simply sets x as the output of the first layer, and no
activation function is applied (h(o) = x). Defining such an input layer supports
the notation of Eq. 2.1 since W) represents the weights between the input and
the first hidden layer. The layer outputs are then calculated in a chain form
through the input layer, the hidden layers and finally the output layer to obtain
the network output

where f represents the neural network based acoustic model, and 6 represents
the parameters of the network. The number of the neurons in the output layer is
determined by the number of pre-defined sound events in the given SED task. A
feed-forward neural network with its neuron connections is illustrated in Figure 2.5.
For instance, this illustrated network can be used to learn an acoustic model
which takes four acoustic features per time frame as input, and predicts if any
of the three pre-defined sound events is present for a given frame. If the target
output vector y is binary encoded (which is often the case for SED), then the
weighted sum of each output layer neuron is passed through an activation function
bounded between 0 and 1, so that the output of the network § can be treated as
the estimated probabilities of the sound events being present in the given frame.

The FNNs are often utilized with multiple hidden layers, 7.e. in the form of
DNNs, for machine hearing and detection tasks. DNNs offer superior expression
capability for modeling the complex input - target output relationships by learning
the high level representations in several layers of abstraction. One of the earlier
examples of DNNs proposed for SEC is [26]. In this work, MFCCs and mel
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spectrogram features have been used as input for training an FNN with two to
five hidden layers in different experiments. It has been shown that FNN’s sound
event classification accuracy is superior to a GMM-HMM based classifier model
by 5.5% absolute points. This method also includes the unsupervised pre-training
of the DNN, which is based on minimizing a certain energy function defined by
the output of a layer, and the pre-training is conducted layer by layer [48]. Lastly,
an example of DNNs proposed for SED is [I], where DNNs with maxout activation
functions [33] are proposed for polyphonic SED. This work is explained in more
detail in Section 3.1.

2.7.2 Network training

The output of a neural network is calculated from its input and its parameters such
as weights and biases. In order to get the desired target outputs as the network
output for a given input, the network is trained using a certain optimization
algorithm. Since the input cannot be updated by the network, the network training
involves the optimization of the network parameters. The network optimization
techniques mentioned in this subsection are utilized not only in feed-forward
neural networks, but also in other types of ANNs which are explained later in the
chapter.

The network parameters 6 are often initialized with small, random values sampled
from e.g. normal distribution. The network input x is passed through this initial
network, and the network output § = f(x, ) is obtained. This process is called
forward propagation. In order to estimate the proximity of the estimated output
¥ to the target output y, the scalar loss I(§,y) is calculated using a loss function.
The common choices for the loss function in SED are the mean squared error and
the cross entropy. An important point about the loss function is that it should be
non-negative and differentiable everywhere, since the gradient based optimization
algorithms are used to update the network parameters.

Gradient Descent Based Optimization Algorithms

During the network training, the parameters # are updated based on the gradient
descent algorithm in order to minimize the loss. For the gradient descent, the
gradient VI with respect to the network parameters is defined as

Vi = (gé) (24)

where 6 includes the weights and biases in the network. The gradient VI is
calculated efficiently using the backpropagation algorithm [87], where the gradient
for each parameter is calculated using the chain rule of calculus starting from the
output layer and moving towards the input layer. The change Al in the loss [ can
be approximated as

Al ~ VI-AB (2.5)
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where Al represents the change in [ and A#f represents the change in 6. The idea
of gradient descent is to update d based on A6, so that [ would decrease, which
means Al would be negative. For this reason, we choose

Al = —nVI (2.6)

where 1 > 0 is the learning rate. Equation (2.6) gives Al ~ —n||VI||?, Al <0 and
therefore [ will decrease. The weights and biases are updated as

0 6+A0=0— Vi (2.7)
ol
— N 2.
W e W (2.8)
ol

Stochastic Gradient Descent

There are several different approaches involving the frequency of the network
parameter update. One option is to calculate the loss for each training input
x, and then calculate the average loss and do the network update based on this
average loss. This method is called batch gradient descent, and it requires all
the training inputs to be forward propagated before any change is made on the
network parameters. This is undesirable, especially in the beginning of the network
training, when the acoustic model is very inaccurate on mapping the input to their
target outputs, and the network requires frequent updates. Another (and more
common) option is to use stochastic gradient descent (SGD), where a pre-defined
amount of randomly selected training inputs are used to calculate an average loss,
then the network parameters are updated based on this loss, and this is repeated
until there are no training inputs left that have not been used in the training
earlier. When all the training inputs are used for training, it is defined as an epoch
of network training is complete. In that case, the inputs are again divided into
randomly selected groups and the parameters are updated based on these new
groups. The idea is that the randomly selected group of training inputs would
provide a sufficiently good estimate of the true average loss, and the network
parameters will converge faster through frequent updates.

While the earlier versions of SGD set the pre-defined amount of training inputs
in a group to 1, it has been noticed that it is computationally more efficient to
use multiple training inputs in a group. This method is called mini-batch SGD,
and it is widely used especially the computational efficiency is of importance, for
instance the machine learning tasks that include very large datasets. Besides, in
the case of machine hearing, the input x is extracted from a single short time
frame and updating the network parameters based on the loss and the gradients
from a single frame may cause to noise in the parameter values. On the other
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hand, using mini-batch SGD would lead to more stable parameter updates as the
average loss over multiple time frames is utilized.

With the SGD optimization, the network is trained for several epochs (typically
100 to 500 for SED tasks). As each epoch would result in different network
parameters due to the updates, the network would produce a different loss value
for the same input. After many epochs, the updates on the parameters become
very small, the network parameters converge and the training is stopped.

Momentum

With the introduction of DNNs and large datasets, the efficiency and the speed of
SGD based network training has started to become a problem. DNNs typically
have much more parameters (often in the million range) compared to the earlier
neural networks where SGD has been used. Calculating the gradients and doing
the parameter update therefore takes a significant amount of time. In addition,
for a fixed learning rate 7, the amount of update is considerably smaller for the
parameters in lower layers than the higher layers due to the vanishing gradient
problem [49]. Besides, large datasets, which are beneficial to train a complex
network with many parameters such as deep neural networks, may take a long time
to process. These factors encouraged neural network researchers to come up with
more efficient optimization techniques, i.e., techniques that lead to the network
converging in a shorter amount of time (or smaller amount of epochs). One of
these techniques is called momentum [84], which is actually an older method that
has been resurrected in the deep learning era.

Momentum is a technique for accelerating the gradient descent that accumulates
a velocity vector of parameter updates towards the consistent reduction of the
loss [102]:

Vg < pve—1 — Vi

(2.10)
O < Or—1 + vy

where v is the velocity vector for parameter 0, t is the epoch index, and p is
the momentum coefficient. The advantage of momentum is that it speeds up
the learning process. For instance, if VI; is positive, it suggests that 6; should
be decreased to minimize the loss (Eqn. 2.7). With the momentum technique,
unlike SGD, the update of —nVI; is not directly applied to 6, but accumulated
in a velocity vector. If the gradient for the earlier epochs also have the same
sign as VI; (positive for this example), then the amplitude of the update will
be larger than nVI; due to the accumulated velocity, and this means a bigger
step towards minimizing the loss. The disadvantage of the momentum is that,
it introduces an additional hyper-parameter p which controls the amount of
momentum (x = 0 simply reduces to SGD). This adds the burden of finding an
optimal initial value for this hyper-parameter p (more about hyper-parameter
fine tuning in Section 2.7.2).
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Adam

Learning rate n is one of the most important hyper-parameters for neural network
optimization, since it directly affects the amount of update for every network
parameter. For SGD, the learning rate is fixed throughout the training, which
makes the optimization process highly dependent of the selected value of the
learning rate. On the other hand, it is more desirable to have larger updates in
the first few epochs of the training when the network is not familiar with the task
and often makes large mistakes on the output estimation, and smaller updates
towards the final epochs when the network requires only small fine-tuning of
parameters before the convergence. In this direction, optimization algorithms
with adaptive learning rates have been recently proposed and widely used in deep
learning. One of the most popular among these techniques is Adam [56]. The
algorithm for Adam is given in Algorithm 1. While momentum utilizes only the
first moment of the gradient, Adam utilizes both first and second moments; and
it applies bias correction to avoid relatively high bias early in training, especially
for the second moments [32]. The empirical robustness of Adam algorithm to the
hyper-parameters of the deep networks has recently made it a popular choice for
deep learning researchers.

Algorithm 1 Adam algorithm.

1: Require: learning rate n, exponential decay rates p; and p2, and small
constant € for numerical stability

2. s+ 0 > Initialize first moment
3 r+20 > Initialize second moment
4: t+ 0 > Initialize timesteps
5: while 0 not converged do

6: t<—t+1

7 gt (80627[,1) > update gradient of the loss [ w.r.t. the parameter 6
8: s<p1s+(1—p1)g > update biased first moment estimate
9: r < par + (1 — p2)gi? > update biased second moment estimate
10: §4 7 —Sptl > compute bias-corrected first moment estimate
11: 74— 117,95 > compute bias-corrected first moment estimate
12: 0 +— 0,1 — 17(\/7{16) > Update parameter
13: end while

14: Return 0

Activation Functions

For the neuron j in layer ¢, the hidden unit output A s calculated by applying

J
an activation function over the weighted sum zj(-z) of the neuron outputs for the

layer i —1. Since the activation functions are applied element-wise for the weighted
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sum z for each hidden unit in a layer, the layer and neuron indices are omitted
below.

Logistic sigmoid activation function is evaluated as

1

T 1+ exp(—z) (211)

and it is illustrated in Figure 2.6. It is a continuous and differentiable function
which is desirable for gradient based network optimization algorithms. Logistic
sigmoid function saturates to 1 when the weighted sum z is a large positive value,
and saturates to 0 when z is a large negative value, which limits the speed of
gradient-based learning for those cases. In the case of SED, logistic sigmoid is
often used as the activation function not only for the hidden layer neurons but
also for the output layer neurons, since their outputs (bounded between [0, 1])
can be treated as the event presence probabilities.

Rectified linear units (often shortened as ReLUs) utilize the activation function
h = max{0, z}. (2.12)

RelLU is a piecewise-linear and sub-differentiable function. The gradient of ReLU
is equal to 1 when the weighted sum z is positive, and 0 when z is negative. Even
though theoretically the gradient of ReLU is undefined at z = 0, empirically it
does not create problems. The ReLLU input z is hardly ever equal to exactly 0, and
the software implementations of neural network training often return either 0 or 1
as the gradient if that is the case, and any number between [0,1] is a sub-gradient
of ReLLU at z = 0. The advantage of RelLUs over logistic sigmoid is that ReLLU
provides larger gradients than logistic sigmoid whenever the weighted sum is
positive (ReLU gradient is 1 while logistic sigmoid gradient is bounded between
[0,0.25](see Figure 2.6)). The disadvantage of ReLU is that their parameters do
not get updated when the weighted sum is negative, since the gradient is equal
to 0. In the case of SED, ReLUs are often used as the hidden layer activations,
especially for the convolutional layers.

Mazout units [33] provide a generalized version of ReLUs by applying the max
operation over the groups of k weighted sums:

h; = max z; (2.13)
JEGH

where G is the set of indices into the inputs for group 4, {(i — 1)k + 1, ..., ik}.
The activation function of each group can be treated as a piece-wise linear, convex
function with k pieces, which is learned through the neural network training [32].
In the case of supervised learning for SED, maxout units are used only as the
hidden layer activation functions, since the output layer activations must be
bounded in order to match with the target outputs.
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Figure 2.6: Logistic sigmoid and ReLU activation functions.

Hyper-parameter Fine Tuning

There is a certain degree of mismatch between the network training and evaluation
procedures for SED. The network is trained to minimize a certain, differentiable
loss value, however it is evaluated against a non-differentiable performance metric
which may not be in positive correlation with the loss value for every epoch. This
is often the case for SED, where cross-entropy is mostly used as the loss function
and F1 score is used as the evaluation metric. Besides, the network’s accuracy on
the training set may not always translate to the test set due to overfitting [39].
Therefore, in order to determine the optimal network parameters based on the
training, the network is evaluated on the validation set after each epoch and the
parameters from the epoch with the best validation set performance are used as
the final model parameters. Validation set is often a small portion of the training
set (around 10-20%) that is not used for training the network, but only for the
validation of the network performance during training.

While determining the values for certain hyper-parameters such as the number
of hidden units and the number of layers, grid search is often used. With grid
search, a certain range of values are selected for each hyper-parameter, and
each combination of the values are utilized in different experiments. The best
performing set of hyper-parameters are determined based on the validation set
performance. By not using the test set performance for the hyper-parameter
selection, the possibility of overfitting the hyper-parameters to the given test set
is avoided.

2.7.3 Network Regularization

There are several techniques proposed to improve the accuracy, generalization over
the unseen examples and the speed of convergence for neural network training.
These techniques are grouped under network reqularization techniques. Two of
these techniques that are used for some of the publications in this thesis are
explained below.
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Dropout

With the dropout algorithm [96], the activations of the hidden units are dropped
out (i.e. set to 0) with a certain probability (often around 0.1 to 0.25) and
therefore these units do not have any effect on the output of the network. During
training, the probability of dropping out each hidden unit activation is randomly
sampled for every epoch. This reduces the unit co-adaptation (i.e. the output of
a unit being dominated by a single or a few of its input connections), and training
with dropout efficiently approximates training several networks with different
initial parameters and averaging their outputs to be used as the final output of
the system.

Batch Normalization

Due to shrinking (or, less commonly, exploding) gradients problem, the distribution
of the activations of each hidden layer becomes very diverse for deeper networks,
which slows down the learning as each layer is updated with the same learning
rate. Batch normalization [52] essentially involves the normalization of the hidden
unit activations at each layer to zero mean and unit standard deviation. For mini-
batch SGD, the mean and the standard deviation of each hidden unit activation
is calculated as the average of the activations of the mini-batch examples. During
training, the activation matrix H for a mini-batch examples is normalized to H’

as .
M:E;hi

o= 5+%Z(H—u)? (2.14)

_H-p
- o

H/

where 1 and o are the average mean and standard deviation for the mini-batch
examples for a given hidden unit, and J is a small positive constant to avoid
divide-by-zero errors when ¢ = 0. The normalized H' can be further scaled
as H' = yH' + 3, where v and 8 are the learned network parameters. This
reparametrization can be useful to increase the expressive power of the network
by letting the network learn the optimal mean and the standard deviation for
the hidden unit activations at each layer. While using the trained network, u
and o are replaced with their averages over the whole set of examples instead of
mini-batches.

2.7.4 Recurrent Neural Networks

Recurrent neural networks (RNN) [87] are a specialized family of ANNs that are
beneficial to use with sequential data. While DNNs use only the current input
X; at time frame ¢ and the network parameters 6 to calculate the activation hy,
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RNNs also utilize the activations from the earlier time frames hy, hs,...h;_1. In
the case of SED, the input features from the consecutive time frames are naturally
correlated, as the time frames are on the order of 20-60 ms length and the sound
events are typically present for many consecutive frames. Therefore, being able
to utilize the activations from the earlier frames makes RNNs a more suitable
machine learning algorithm for SED than DNNs.

RNNs are used to map a sequence of input vectors X = [x1,X2,...,X7| to a
sequence of target output vectors Y = [y1,y2,...,y7| with the same sequence
length 7. While there are other types of RNNs that are used to map input -
target output pairs with different sequence length (e.g. in machine translation [8]),
these methods are out of scope of this thesis. In the case of SED, the sequence
length T is often selected in the range of 2 to 10 seconds, and this is based on the
average time a human takes to identify sounds in real life [11, 92].

For RNN, the i hidden layer output h; for the input at timestep ¢ can be written
in vector multiplication form as

z) = WORI™) L wOpl) 41

. . 2.15

b = o(2)") o
where W) is the weight matrix between layers i — 1 and 1, W*( s the feedback
weight matrix and o(-) is the activation function. Comparing Eq. 2.15 with
the DNN hidden layer output calculation in Eq. 2.1 and 2.2 would show that
recurrent layers have an additional weight matrix which is used to determine the
contribution of the output at the previous timestep ¢t — 1 on the output for the
current timestep t.

Bidirectional Recurrent Neural Networks

RNNs process the input sequence in a single direction, i.e. they utilize the
information from the previous timesteps to calculate the output for the current
timestep. On the other hand, in some cases, it may be also beneficial to process
the input sequence in the opposite direction. An example for such a case occurs
in ASR, where the articulation of the current phoneme may be dependent on the
next phonemes as a result of linguistic characteristics of some languages. For SED,
there may be certain sound events that share similar acoustic characteristics with
another sound event class in the beginning of the event. Using the outputs from
the future timesteps as a feedback would be helpful to distinguish these sound
event classes at the beginning of the event.

Bidirectional RNNs [94] are a special type of RNNs whose hidden units are split
into two groups to process the information in both directions. The hidden layer
output of a bidirectional RNN layer thus consists of both the forward output h,
and the backward output g;, which is calculated similarly to Eq. 2.15 with the
feedback from the frame ¢ + 1 instead of ¢ — 1. The forward h; and the backward
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output g; are then combined by simply concatenating to obtain a single output
vector at each timestep t.

The disadvantage of bidirectional RNNs is their non-causality, i.e. the inputs from
the future timesteps are assumed to be available. While this may create problems
in real-time systems, the typical sequence lengths used in most SED methods (a
few seconds) can be tolerated by introducing a short time delay between the input
and the system output.

Gated Recurrent Neural Networks

The most important problem with the RNNs as the way they were initially
introduced is that, although in theory there is no limit to the length of the
temporal context that can be modeled with an RNN layer, in practice it is
challenging to model the long-term dependencies with the RNNs. The reason is
that the contribution of the outputs from the past timesteps decay exponentially
over time due to vanishing gradients problem [49].

As a solution, gated recurrent layer methods such as gated recurrent units (GRU) [7]
and long-short term memory networks (LSTM) [50] were introduced. The units
for both methods are called cells whose output is calculated as a combination of
multiple gate activations. These gates are called external input, forget, and output
gates for LSTM, and update and reset gates for GRU. The gates are composed of
weights and an activation function. Each cell includes a cell state, which consists
of the accumulated information from the previous timesteps. During training,
the gate weights learn by which proportions to combine the cell state and the
input for the current timestep to produce the gated unit output for the current
timestep.

The long term temporal modeling of the sound events can be optionally handled
through the GRU layers. GRU layers control the information flow by the gated
unit structure including the reset gate r; and the update gate u;. For frame ¢,
the total output of the GRU layer is a linear interpolation of the output for the
previous frame h;_1 and the candidate output for the present frame hy as

he = ug - hy—1 + (1 — ’th) . }A'Lt. (216)

Candidate output hy is calculated through h;_1, the layer input x; and the
reset gate r,. When reset gate is closed (r; = 0), the contribution from the
previous frame output h;_; is discarded. This implies that the the higher level
representations for the current (which is used as input z; to GRU layer) are
significantly different from the earlier frames, and the cell state needs to be
updated to reflect this.

When the GRU layer outputs are fed as input to a feed-forward output layer, the
contributions of GRU’s previous and candidate outputs to the network outputs,
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c;—1 and ¢ respectively, can be computed as

ci—1=w O (us - hy_1)

A 2.17

where w is the weight vector that connects GRU layer and the feed-forward
layer, and ® denotes element-wise multiplication. The total output o; of the
feed-forward layer (which is also the output of the whole network) is calculated
as 0 = ¢;—1 + ¢. The output is then dominated by the candidate output at the
beginning and the end of the target sound event, and both candidate and previous
outputs are as small as possible when the target sound event is not present.

The idea behind the LSTM and GRU is very similar, which is to allow the
relevant information from the previous timesteps to be stored in the cell state, and
control the cell state through the gates that learn which information is relevant
for the given task. The main difference is that GRUs combine the forget and
external input gates of the LSTM in a single gate called update gate, hence
has less parameters compared to LSTM. Currently, both methods are widely
used in classification tasks with sequential inputs, such as ASR [34], music onset
detection [22], and machine translation [7]. In [77], bidirectional LSTMs improved
the state-of-the-art DNN method for polyphonic SED by 5.6% and 1.6% absolute
points in frame-wise and one-second block-wise F1 score, respectively.

2.7.5 Convolutional Neural Networks

For the traditional ANN methods such as FNNs, every input feature is con-
nected to every unit of the hidden layer through network weights. This may
be deemed inefficient especially for the cases when the input features contain
a spatial structure, because the features that represent far apart regions in the
spectral domain are treated the same way with this method. Convolutional neural
networks (CNN) [60, 61] address this problem by estimating their outputs from a
local region of the input through convolution with a kernel.

CNNs are a special type of ANNs that are able to exploit the spatial structure
information in the input. CNNs offer to improve the modeling efficiency of the
traditional FNNs through three main properties: local representations, parameter
sharing, and pooling.

Given the input matrix X and a two-dimensional kernel K, the convolution kernel
output H is calculated as

Hivj = G(b(K) + Z Z Xifm,janm,n) (218)

where o is the activation function (often selected as ReLU) and b%) is the bias
for the kernel K. The kernel size is often much smaller than the input size, and
the kernel is slided over the input to extract local representations. Therefore,
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rather than connecting each input feature to a hidden unit in the next layer,
convolutional layer parameters are shared among the input features, and the
kernel parameters are trained to learn local patterns that can be found in any
part of the given input. This is especially favorable in the case of SED, where
a sound event should be detected from e.g. a given spectrogram regardless of
the temporal position of the event in the spectrogram. In addition, even though
convolutional layers typically consist of tens or hundreds of kernels, this parameter
sharing approach is often far more memory-efficient than the fully-connected FNN
method due to less number of weights.

Convolutional layers are often followed by a max-pooling layer, which divides each
convolution kernel output into equal regions of pre-defined size, and outputs the
maximum value in each region. This provides a downsampled representation of the
kernel output, and it is especially useful when the spectral position of a pattern
specific to a class may exhibit small shifts. This is often the case in SED, where
the sound event classes are rather broadly defined. For instance, the examples
of the same class (e.g. dog bark) may have slightly shifted representations in
the frequency domain (chihuahua bark vs. pitbull bark), while the underlying
spectral pattern is similar. If the frame-level detection is required, max-pooling
in the CNNs should be only applied in the frequency axis, because max-pooling
in time domain would reduce the temporal resolution of the network outputs.

The outputs of each convolution kernel (often called feature map) are stacked in a
separate dimension, so the output of a convolutional layer is three dimensional.
Convolutional layers are often used as high-level feature extractors in ANNs,
and the network output is obtained from a different layer that would take the
convolutional layer output as its input. If the convolutional layer output is fed to
a different ANN layer that requires its input to be vectors (such as RNNs), the
features extracted by each feature map are concatenated in the frequency axis, so
that a single feature vector is obtained at each timestep.

In the case of SED, CNNs are suitable as the classifiers since the input repre-
sentation is often two dimensional, e.g. mel spectrogram. On the other hand,
the limited temporal modeling capabilities have been a drawback for CNNs, and
the initial interest on CNNs has quickly switched into methods that combine
CNNs and the algorithms with long term temporal modeling, such as CRNNs
with GRU/LSTM recurrent layers. On the other hand, CNNs are still a useful
method for the tasks that do not require very high temporal resolution, such as
SEC. In [37, 82, 91, 103], CNNs with log mel spectrogram input and dropout
regularization were proposed for single label SEC over 4 to 12 second chunks of
real-life environmental recordings. While the framework is similar for all three
methods (convolutional layers followed by max pooling and feed-forward layers
with ReLU activation on top and softmax output layer), each proposed method
offers various extensions such as delta input features as a separate channel [82],
data augmentation through methods such as time stretching, pitch shifting, dy-
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namic range compression [91] and equalized mixture data augmentation [103], and
multiple instance learning [103]. The methods are evaluated over established SEC
datasets such as ESC [83] and UrbanSound8K [92] and are shown to outperform
methods such as unsupervised feature learning through dictionary learning [90]
and DNN-HMM.

2.8 Evaluation of Sound Event Detection Methods

In order to effectively measure the improvements offered by a proposed scien-
tific method, systematic evaluation is crucial. In the case of SED, systematic
evaluation involves measuring the performance of the proposed method based on
the performance metrics that are selected to reflect the real-life applicability of
such methods. During the evaluation, using a set of commonly used, benchmark
performance metrics makes it easier to interpret and measure the progress that is
offered with the proposed methods.

In addition, the dataset that has been selected to train and evaluate the SED
method should include a diverse set of examples for the given SED task, so that
the performance evaluated on such a dataset would reflect the performance of
the method in real-life conditions. The SED dataset can be either collected in
real-life environments and annotated manually, or it can be synthesized using
individual sound events and mixing them to sufficiently resemble the acoustic
characteristics of a real-life environment. The advantage of creating synthetic
SED datasets instead of recording from real-life environments is that the onset
and offset annotations are much more accurate, which makes the evaluation more
fair and the machine learning method to be trained with more accurate target
outputs. The disadvantage is that it is challenging to create sound event mixtures
in a controlled way that the mixture would resemble a recording from a real-life
environment.

The performance metrics and the datasets used in the publications in this thesis
are explained below.

2.8.1 Performance Metrics

Evaluation of SED methods is done by computing a performance metric based
on the binary detection outputs and the target outputs for the given test (or
evaluation) set. The most commonly used performance metrics for SED can be
listed as precision, recall (also called true positive rate), F1 score, error rate and
the area under receiver operating characteristic (ROC) curve. A more detailed
study on these metrics can be found in [70].

The SED performance metrics utilize a set of common intermediate statistics,
and the final performance is calculated based on the metric and these interme-
diate statistics. These statistics include the count of true positives (TP), true
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Table 2.1: Definitions of TP, TN, FP and FN based on the detection and target
outputs for a given segment or event.

Active in the... TP | TN | FP | FN
Detection output | v v
Target output v v

negatives (TN), false positives (FP) and false negatives (FN), which are obtained
based on Table 2.1. In terms of time resolution, the SED metrics can be calculated
either segment-wise or event-wise. For the segment-wise metrics, the intermediate
statistics are calculated among all the frames inside the given segment. For
instance, if a class is detected as present at any frame in the given one second
segment, and the target output for that class is 1 at any frame inside the segment,
then the detection is counted as TP, regardless of whether the detection and the
target output is active at the same time frame. The intermediate statistics are
accumulated over all the segments and the sound event classes for the given test
set. The performance metric can be then calculated for each class separately from
these statistics, or it can be calculated globally by accumulating the statistics
over the classes.

Precision

Precision shows the ratio of the correctly detected examples among all the detec-
tions made by the system. It is calculated as
TP

P=—" 2.1
TP+ FP (2.19)

Recall

Precision shows the ratio of the correctly detected examples among all the examples.
It is calculated as

TP

R=Fp 1PN

(2.20)

F1 Score

F1 score is the harmonic mean of precision and recall, and it is calculated as

2-P-R
F1l=——.

P+ R

Currently, F'1 score is the most commonly used performance metric for SED, and
it has been used as the official metric for DCASE 2016 [72] and 2017 [71] SED
challenges. The advantages of the F1 score are that it can be applied on both
single label and multi-label classification tasks, and it takes into account equally
the precision and the recall of the system. The disadvantage is that true negatives
are not used in the calculation of the F1 score.

(2.21)
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ROC Curve Based Metrics

Unlike the previously mentioned metrics, ROC curve is not obtained by using a
single detection threshold value for binarizing the detection probabilities, but it is
obtained by calculating the true positive rate (TPR) against the false positive rate
(TPR) at various threshold values. TPR is equal to recall, and FPR is calculated
as

FP

FPR= ———
r FP+TN

(2.22)
The area under ROC curve is indicative of the system performance, since a high
performance method should have greater TPR than FPR at each threshold value.

Another metric based on the ROC curve is the equal error rate (EER). EER
simply has the value of the curve where TPR is equal to 1-FPR. Therefore, unlike
the area under ROC curve, it is dependent on only a single point of the curve.

Error Rate

Error rate (E'R) is calculated through three values of intermediate statistics that
measures the mistakes made with the detections: insertions (I), deletions (D), and
substitutions (S). While I and D simply correspond to F'P and F' N, respectively,
S is an inter-class measure that occurs when the wrong class is detected instead
of another class for a given segment. Therefore the mistake is not counted twice
(as I for one class and D for another class), and it is counted as a single S. The
error rate is then calculated as

_S+I1+D

E
R N

(2.23)

where N is the number of positively labeled examples.

ER can be calculated both segment-wise and event-wise. For segment-wise ER,
the intermediate statistics are accumulated over each segment and the ER is
calculated over these accumulated values. For event-wise ER, the statistics are
obtained for each event separately, and then accumulated over all the events.
While calculating the event-wise ER, the time alignment at the onset and the
offset between the detection and the target output is often tolerated within a
collar, which is often selected around 100-500 ms depending on the desired time
resolution for the given event-based metric and considering the inexact labeling
of the data [70].

2.8.2 Datasets

The datasets used in the experiments for this thesis are explained below in detail
and summarized in Table 2.2.
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Table 2.2: SED datasets used for experiments in this thesis.

Dataset Environment Annotation level Total length (mins) #classes
TUT-SED 2009 real-life frame 1133 61
TUT-SED synthetic 2016 synthetic frame 566 16
TUT-SED 2016 real-life frame 78 18
CHiME-Home real-life clip (4 s) 186 7
BAD 2017 real-life clip (10 s) 4052 1
DCASE 2017 rare SED synthetic frame user-defined 3

TUT-SED 2009

TUT-SED 2009 dataset includes 8-14 recordings per 10 real-life acoustic scenes,
with a total of 1133 minutes. The recorded real-life environments are: basketball
game, beach, inside a bus, inside a car, hallway, office, restaurant, shop, street
and stadium with track and field events. A total of 61 classes (cat meowing,
applause, traffic, yelling etc., full list of classes can be found in [I]) were defined,
and one extra class is reserved for unknown (or very rare) events. The average
polyphony in a given time frame is 2.53. The sound events in TUT-SED 2009
were annotated manually. TUT-SED 2009 dataset was first introduced in [41].
Currently, the dataset is not publicly available due to copyright issues. A demo
using the samples from the dataset and the predicted outputs with various SED
methods are available at 2.

TUT-SED synthetic 2016

TUT-SED synthetic 2016 dataset includes synthetic, polyphonic sound event
mixtures created by mixing isolated sound event samples from 16 everyday classes.
994 individual sound event samples are used to create 100 mixtures, each with
length around 5-7 minutes, and a total of 566 minutes. Mixtures were created by
randomly selecting a segment of length 3-15 seconds from an individual sample,
pre-processing the segment by start-end silence trimming and peak normalization,
and mixing the sound event segment with the mixture at a randomly selected
onset. The average polyphony level in one-second blocks is above 1 for over 48%
of the dataset. TUT-SED synthetic 2016 dataset was first introduced in [III]. A
more detailed explanation on the dataset creation procedure can be found in the
supporting website of this article 3. The dataset is publicly available through the
supporting website.

TUT-SED 2016

TUT-SED 2016 is a real-life SED dataset with recordings from residential area and
home environments [69]. Each recording is captured in a different location (i.e.,

http://arg.cs.tut.fi/demo/CASAbrowser/
Shttp://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed /tut-sed-synthetic-2016
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different streets, different homes) to increase the variability of the sound event
classes present between the recordings. A 3-5 minute audio recording is provided
for each location, and the total amount of audio is around 78 minutes. The
number of annotated sound event classes are seven for residential area recordings
and 11 for home recordings. TUT-SED 2016 dataset is publicly available online 4.

CHiME-Home

CHiME-Home dataset [24] consists of 4-second chunks of recordings from home
environments. The pre-determined sound event classes are child speech, adult
male speech, adult female speech, video game / TV, percussive sounds, broadband
noise and other identifiable sounds. The annotations for CHiME-Home include
which sound events are present at any point in each four second chunk. This differs
from other SED datasets, where the annotations include the onset and offset
time for each sound event in a given audio recordings. However, since the audio
chunks in CHiME-Home are the non-overlapping parts of continuous recordings,
it can be regarded as an SED dataset where the maximum time resolution of the
detections is implicitly set as four seconds. CHiME-Home has been used as the
official dataset for the audio tagging task in DCASE2016 challenge [72], and it is
publicly available online °.

Bird Audio Detection 2017

The Bird Audio Detection (BAD) challenge 2017 dataset [101] consists of 10
second-long audio recordings collected from real-life environments by e.g. crowd-
sourcing from a mobile app for bird audio classification, and individual recordings
that are freely available online through content sharing websites. The recordings
are collected from a wide range of indoor and outdoor locations with varying
environmental conditions. The recordings are annotated for whether a bird sound
is present at any given time during the 10-second recording. While the challenge is
specified as "detection", it can be regarded as "classification" within the terminology
of this thesis, since the task is to label the whole 10-second recording instead of
detecting the onset and offset. The total length of recordings is around 68 hours.
The dataset is publicly available online ©.

DCASE 2017 challenge, rare SED

DCASE 2017 challenge rare SED dataset consists of 30-second recordings of
real-life acoustic scenes as the background, and each recording may or may not
include one of the three target sound events (baby cry, glass break, gun shot).
The target sound events are mixed with the background at random onset times

*https://zenodo.org/record /45759
®https:/ /archive.org/details/chime-home
Shttp://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/#downloads
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at various SNR levels such as -6, 0 and 6 dB. The onset and offset times for each
target sound event is labeled. Each recording can include maximum one target
sound event, and the mean duration for target sound events is 2.25 seconds. The
dataset is publicly available online 7.

"https://zenodo.org/record /401395






3 Deep Neural Networks for
Polyphonic Sound Event
Detection

In [I] and [II], deep neural networks (DNN) have been proposed for polyphonic
sound event detection on realistic everyday environments. Sound events often
occur simultaneously in real-world environments. Therefore, polyphonic detection
is essential to get a robust SED system that would provide high performance in
complex auditory scenes such as real-world environments.

3.1 Polyphonic Sound Event Detection Using
Multi-label Deep Neural Networks

Since the introduction of Deep Belief Networks [48] in 2006, deep learning based
methods have provided state-of-the-art results in many classification tasks such as
image recognition [40, 57], speech recognition [34, 88] and machine translation [8].
However, at the time of writing [I], DNNs had still not been fully explored for
SED tasks.

The main motivation of [I] has been the findings of [26], where DNNs with
unsupervised pre-training have outperformed a conventional GMM-HMM based
classifier for single label SEC on isolated sound events. Encouraged by this
result, we experimented with DNNs for polyphonic SED on realistic everyday
environments. The capability of DNNs to utilize their neurons in separate groups
to distinguish different sound events make them a viable option as a classifier for
polyphonic SED [46].

3.1.1 Method

The proposed method is composed of two stages: sound representation and multi-
label classification. In the sound representation stage, the audio recordings from
everyday environments are divided into 50 ms time frames that overlap 50%, and
log mel spectrogram features are calculated. Mel spectrogram is a matrix that
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Figure 3.1: Context window X; of x; with its 2 adjacent frames on both sides.

consists of log mel band energy feature vectors for consecutive time frames. Since
DNNs can take only single dimensional features as input, log mel spectrogram
cannot be directly utilized as the network input. Instead, the log mel band energies
x; for the time frame ¢ can be used as a single training instance for the network,
however this would mean that the temporal information that can be utilized by
the network is limited to a single frame.

In order to extract the time dynamic property information of the signal, context
windowing method is used. The log mel band energies for the consecutive time
frames are concatenated in single dimension. The resulting feature vector X has a
dimension of (2 x N,qj + 1) x N where 2 x N,q; is the total number of adjacent
(past and future) frames concatenated with x; and Nt is the number of features
extracted from the short time frame. Context windowing has also been used in
other studies on sound classification [26, 51] and it is visualized in Figure 3.1.

The target output y; for each frame t is a binary vector whose entries encode the
presence of the sound event classes. Each class present in the frame is labeled
with 1 and 0 otherwise. The input - target output pair [X;, y;| represents a single
training instance for the DNN.

In order to learn a complex function f that can map the input features x; and
the target output y;, a DNN is trained. Due to their hierarchical layer structure
and high expression power, DNNs can model highly nonlinear relationships by
learning a higher level representation at each layer. This is especially useful for
the cases when the input-output relationship is hard to express algorithmically,
such as for polyphonic SED.
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A DNN with two hidden layers of 800 units is utilized in [I]. Each hidden unit
has maxout activation (see Section 2.7.2). The output layer neurons have logistic
sigmoid activation (bounded between 0 and 1), and the number of the neurons in
the output layer is equal to the number of sound event classes. The network output
¥ is regarded as the class presence probability vector. The network is trained
using mini-batch stochastic gradient descent (SGD) to minimize the cross-entropy
loss (yt,y+¢) between the estimated output §; and the target output y;, which is
formulated as

Wy, ¥¢) = —lye - logy: + (1 —y¢) - log (1 — ¥4)]. (3.1)

The network is trained iteratively until the loss value for the validation set
converges.

In the usage stage, the class presence probabilities are binarized using the unbiased,
constant threshold of 0.5 to get the binary prediction vector z;. Sound events
typically take minimum 1-2 seconds, which corresponds to 40-80 time frames
with the given frame length and the overlap settings. By combining the binary
predictions for the consecutive time frames, the onset and the offset for each
sound event can be determined.

The initial experiments in [I] have shown that there can be some abrupt changes
between predictions for consecutive time frames. The reason for this can be
explained with the difference between the time resolution for the feature extraction
(high) and the manual annotation of the sound event labels (low). This causes
some of the frames to be labeled with sound events that are not present. In order
to smooth the network predictions in the usage stage, a median filtering based
post-processing method is proposed in [I]. For each frame, the post-processed
predictions Z; are obtained by taking the median of the binary predictions in a
10-frame window as

z; = median(z;_g).)- (3.2)

The sliding window is applied continuously over the binary predictions for each
frame with step 1. This post-processing approach is illustrated in Figure 3.2.

3.1.2 Evaluation

The method in [I] is evaluated using TUT-SED 2009, a dataset with around 20
hours of real-life audio recordings collected from 10 different everyday contexts
(see Section 2.8.2 for more detail). The sheer size of the dataset makes it a valuable
resource the investigate the robustness of the proposed method in the real-life
environments. There are 61 pre-determined sound event classes. The proposed
method is evaluated using five-fold cross-validation.

The evaluation metric is average F1 score for non-overlapping one second blocks.
The proposed method is compared with [43], where the audio recordings are
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Figure 3.2: Post-processing with a sliding window of median filter. ©2015 IEEE.
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Figure 3.3: Context-wise detection accuracies for proposed system with a compar-
ison to the baseline system. ©2015 IEEE.

first decomposed into four different streams by non-negative matrix factoriza-
tion (NMF). For each audio stream, SED is performed with an HMM classifier
trained using MFCC features.

The F1 score values over ten different contexts are presented in Figure 3.3. The
proposed DNN method provides 64% F1 score, which is 19% points higher than
the baseline GMM-HMM classifier. This large improvement over the state-of-the-
art method at the time can be attributed to the modeling capabilities of DNNs
on highly complex relationships. In addition, it is shown that there is a clear
positive correlation between the amount of audio data available for a class, and
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the F1 score for that class. This can be explained with the following. DNNs
have a large number of parameters, so they can model a wide range of functions
due to the high degree of freedom. The DNN parameters need to be updated
using gradient descent over a large number of training instances that provides a
diverse representation of the given sound event class, so that the DNN model can
generalize over the unseen instances in the test set. This is especially crucial in
SED where the sound event classes are often broadly defined, and sound events
with very different acoustic characteristics may end up in the same class.

The performance of DNNs with various sound representations is also investigated
in [I]. It is shown that log mel band energies (61.7% F1 score) perform superior to
mel band energies (60.4%) and MFCCs (56.8%). This confirms the findings of [26],
where this experiment was conducted for single label SEC. It is also shown that
median filtering based post-processing provides a valuable boost in performance,
especially for lower polyphony levels (10% points increase for polyphony level 1
and 5% for level 2).

3.1.3 Contributions and Limitations

To the author’s knowledge, [I] is the first work that proposes utilizing DNNs
for polyphonic SED. The huge performance improvement of DNNs over the
conventional HMM classifiers in this work has contributed to a widespread use of
deep learning based methods for SED. The effect of deep learning for SED is very
evident in the recent SED challenges such as DCASE2016 [72] and DCASE2017 [71],
where over half of the submissions have utilized deep learning methods as classifiers.
In addition, the median filtering based post-processing provides an efficient solution
to smoothing the noisy predictions of the DNNs for SED, where the noise is often
the result of the coarse time resolution of the reference annotations.

The superior performance of DNNs over established GMM-HMM methods were
already proven on other machine hearing tasks such as ASR [46] before the
publication of [I]. On the other hand, this work also addresses the multi-label
multi-class classification capabilities of DNNs, which are harder or often ill-defined
for e.g. ASR or NLP tasks. In [I] it is shown that the performance of DNN
does not decrease even though the polyphony level increases upto 5, which is
a challenging case even for human listeners. This makes a strong case for the
utilization of these models in rea-life environments.

The main limitation of the DNNs for SED is the inability to model the long
term temporal context information. The problem can be remedied to some
degree by utilizing a context window as done in [I], however a long input vector
makes the number of parameters become quickly very large to train a network
in a reasonable amount of time. Besides, context windowing ignores the fact
that the same features from consecutive frames carry similar information, and
therefore should be connected to the same, shared weights. Besides, the fixed
connections between the input and the hidden units of DNNs are not robust for
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the small variations in the spectral content of the sound events. For instance,
it is common that different dogs would bark at a slightly different frequency.
While the spectral shapes for these two sound events are similar, a small offset
in the magnitude spectrum would result with DNNs extracting a significantly
different representation from these events belonging to the same class. These
limitations of the DNNs for polyphonic SED are addressed in the more advanced
deep learning methods such as convolutional neural networks (CNN) and recurrent
neural networks (RNN).

3.2 Multi-label vs. Combined Single Label Sound
Event Detection with Deep Neural Networks

3.2.1 Context and Motivation

The state-of-the-art results obtained with DNNs for polyphonic SED in [I] has
shown that it is worth investigating deep learning methods in various ways for
polyphonic SED. Following this idea, two different approaches to utilize DNNS,
namely multi-label (ML-DNN) and combined single label DNNs (CSL-DNN),

have been compared in [II].

In [111, 112], it is claimed that utilizing the correlation information between the
labels is crucial for a classifier to cope with the challenge of the exponential-sized
output space due to multi-label target output. This supports the idea that using
a multi-label classifier is the optimal choice to exploit the correlation information
over the sound events for polyphonic SED. The article [II] tests the validity of
these claims for polyphonic SED using DNNs, while considering the practical
advantages of using a combined single label classifier over a multi-label classifier.
These advantages can be listed as the flexibility of gathering relevant group
of sound event classes with various combinations depending on the real-world
application, and the ability of dynamical inclusion of new sound event classes
without re-training the whole classifier framework.

3.2.2 Method

In the sound representation stage, following the improved performance of mel band
energies compared to conventional MFCCs for polyphonic SED with DNNs [I],
mel band energies have been calculated for each short time frame of length 50 ms
with 50% overlap (see Section 3.1.1). The number of filters selected in the mel
filterbank is 40, resulting with a 40 dimensional feature vector x; for each frame
t. Similar to [I], context windowing is used to utilize the short term temporal
information by concatenating the feature vector with two preceding and two
succeeding frame features.

The features extracted from the audio recordings and the target outputs based
on the reference annotations are utilized in two separate classifier methods. In



3.2. Multi-label vs. Combined Single Label SED with DNNs 45

Audio Feature Input
extraction Multi label
wnrtpeitpiipenie | —— P DNN classification
Multi label
output
Annotation Multi label

encodlng Smgle Iabel ) I!IIllIILlIIEIn
E cIaSS|f|cat|on I!Illlmrl“
Target output Comblned single

label output
Figure 3.4: Overall framework for multi-label and combined single label classifica-
tion methods. ©2015 IEEE.

the CSL-DNN method, for each sound event class, a DNN with two hidden layers
of 400 units each and an output layer with single unit is trained. The training
input is multi-label in content, 7.e., it consists of the features extracted from the
real-world recordings which may include overlapping sound events. However, each
trained network is given the target output of only a single event class. Thus, the
network should not only learn the mapping between the features and the given
sound event class, but it should also be able to avoid mispredictions when only
other sound events are present. The ML-DNN method uses the same classifier
as in [I] (see Section 3.1.1), where a DNN is trained in the multi-label setting to
predict one or more sound event classes at a given time. The overall framework
for both methods is illustrated in Figure 3.4.

The network architecture and the training procedure for both methods is the
same, except the number of units in the hidden layers (400 for CSL-DNN vs. 800
ML-DNN) and the output layer (1 vs. ¢, where ¢ is the number of sound event
classes). Both networks have two hidden layers with maxout activation functions,
and they are optimized using mini-batch SGD to minimize the cross-entropy loss.
In the usage stage, the network outputs for both methods are binarized with
thresholds 0.2 to 0.9 with 0.1 steps to obtain the presence predictions, which are
then post-processed using a median filter based sliding window.

3.2.3 Evaluation

The same database of real-life audio recordings with 61 sound event classes used
n [I] have also been used for the evaluation of [II] (more details in Section 3.1.2).
Average F1 score over one second blocks is used as the evaluation metric.

The test set F1 scores for CSL-DNN and ML-DNN for various binarizing threshold
values are presented in Figure 3.5. For the unbiased threshold of 0.5, ML-DNN
and CSL-DNN reach to very similar performance (64% vs. 63%), and for other
threshold values, the performance difference between the two methods is in the
range of £2% points. This result shows that contrary to the claim made in [111],
DNNs can reach to similar performances for polyphonic SED with or without
the correlation information between the sound event classes. In addition, the
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highest F1 score for both methods are obtained around the threshold 0.5, which
indicates that the class presence probability distribution over a large number of
classes is balanced between 0 and 1 for DNNs. Finally, it can be observed from
the Figure 3.5 that ML-DNN performs better than CSL-DNN for lower threshold
values, while the opposite happens for higher threshold values.

The effect of the polyphony levels on the performance for CSL-DNN and ML-DNN
is presented in Figure 3.6. Unbiased binarizing threshold of 0.5 has been used for
these experiments. Considering that the average polyphony level is 2.55 for this
dataset, the performance for CSL-DNN and ML-DNN is quite similar over the
large portion of the dataset, while ML-DNN gains an edge of 3 —4% points for very
high polyphony levels mainly due to the class correlation information available.
The performance for both methods consistently increase from polyphony levels 2
to 6, which indicates that both methods are robust for polyphonic SED.
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3.2.4 Contributions and Limitations

In [II], we investigate whether the claim that class correlation information is
essential for multi-label classification is also valid for polyphonic SED using DNNs.
We observe that the performance drop is very limited in the absence of class
correlation information provided to the DNN. We provide a different option in
CSL-DNN to utilize DNNs with the benefit of usage case flexibility in exchange to
minimal to no decrease in detection performance. The CSL-DNN is most suitable
when the sound event classes of interest change frequently for the application.

Similar to [I], the main limitation of CSL-DNN proposed in [II] is the inability
to model the long term temporal context information using DNNs. The other
limitation is the necessity of training (and storing) a separate model for each
of the sound event classes, which can be computationally inefficient when the
number of classes is large. Finally, it may have been interesting to experiment
the case where the total number of parameters for CSL-DNNs for each class are
close or equal to ML-DNN. At the time of writing, this was omitted because there
are a total of 61 classes and the aforementioned approach would result with a
substantially small CSL-DNN architecture, however the author believes this is
worth investigating on a dataset with smaller number of classes.






4 Convolutional Recurrent
Neural Networks for Sound
Event Detection

The methods that are proposed in [III, IV, V] are convolutional recurrent neural
networks (CRNN) for various SED tasks such as real-life SED, rare SED, and
bird audio detection. While the framework for the methods in these works is the
same, there are several variations between the methods mainly due to the task at
hand. In this chapter, the motivation for utilizing CRNNs for the given tasks is
presented, the main CRNN framework and the differences between the methods
are explained, and the findings based on the experiments for each task has been
listed.

4.1 Convolutional Recurrent Neural Networks for
Polyphonic Sound Event Detection

Despite the significant performance increase that they offered for SED over the
conventional methods, DNNs have been relatively swiftly replaced with more
advanced deep learning methods. At the time of writing [III], CRNNs have been
starting to replace DNNs as the state-of-the-art methods in a variety of audio
classification tasks such as automatic speech recognition [3, 88] and music genre
classification [9].

Convolutional recurrent neural networks (CRNN) are one of the more advanced
deep learning methods that address the two major shortcomings of DNNs for
SED. As also briefly mentioned in Section 3.1.3, these shortcomings are the fixed
connections between the input and the hidden units (which prevent modeling
small variations among the examples of a sound event class), and the limited
ability to model the long term temporal context, which is especially problematic
for the typically longer sound events (e.g. rain, baby crying, crowd cheering etc.).

Convolutional layers can be used to address the fixed connection limitation by
learning filters (i.e. weight kernels) that are shared among the input and shifted

49



50 Chapter 4. CRNNs for SED

in both time and frequency. On the other hand, the temporal context that can be
modeled using a convolutional layer is limited. Recurrent layers, especially the
ones with a gated structure such as LSTMs and GRUs, can be used to extract
long term temporal information among the consecutive time frames by utilizing
information from the earlier time frames as a feedback for the calculation of the
higher level representation for the current frame. However, RNNs suffer from the
same problem with DNNs in terms of fixed connections between the input and
the hidden units. Combining convolutional and recurrent layers in a single deep
learning architecture helps to combine and emphasize the benefits of both in a
single SED method with high performance.

4.1.1 Method

The sound representation used as the input for the CRNN is the log mel spectro-
gram, computed with 40 mel filterbanks in 40 ms time frames with 50% overlap.
Therefore, unlike the DNN methods proposed in [I, II], the input of the network
is a 2-D representation. Once the log mel spectrogram is calculated, the log
energies for each mel band are normalized to zero mean and unit variance. The
log mel spectrogram extracted for each recording is then split into sequences of
1024 frames (20.48 seconds), and each sequence represents a single input for the
network. The CRNN for SED proposed in [III] consists of four stages: (1) The
first stage is composed of stacked convolutional layers with non-overlapping max
pooling over the frequency axis; (2) the feature maps for each frame are stacked
over the frequency axis and fed to the GRU layers; (3) the output layer is a
feed-forward layer with sigmoid activation, and it applies the same set of weights
over the higher level representations for each frame; (4) in the usage case, the
class presence probabilities obtained from the network output are binarized with
a constant threshold 0.5. The overall framework for the proposed CRNN method
has been illustrated in Figure 4.1.

Besides the overall framework, there are several regularization techniques employed
in order to reduce the overfitting during the training. Dropout [96], a technique
that approximates model averaging (see Section 2.7.3 for more details), has been
utilized in the convolutional and the recurrent layers. The dropped neurons for
the recurrent layers are kept fixed for the entire sequence. In addition to dropout,
batch normalization [52], a technique to normalize the layer outputs to remedy the
magnitude difference of the gradient updates for different layers (see Section 2.7.3),
has been utilized in [ITI].

4.1.2 Evaluation

The CRNN for SED has been evaluated using four different polyphonic SED
datasets: TUT-SED synthetic 2016, TUT-SED 2009, TUT-SED 2016 and CHiME-
Home (see Section 2.8.2). While the first three mentioned datasets include multiple
minute long recordings of polyphonic sound events, CHiIME-Home is composed of
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Figure 4.1: Overall framework of CRNN for SED. ©2017 IEEE.

four-second chunks of recordings, and the annotations are available for every four
seconds instead of every time frame. Therefore, in [III], a temporal max-pooling
layer is added before the output layer of CRNN to get a single presence probability
vector for each chunk.

The baseline methods for the evaluation of the proposed CRNN method are GMM,
DNN with temporal context input [I], CNN and RNN. The evaluation metrics
used in [III] are the F1 score and the segment-based error rate (see Section 2.8.1).
Both metrics are calculated both as the average over the time frames (F1¢,,, and
ER ;) and over the one-second blocks (Flige. and ERjgec). In accordance with
DCASE2016 challenge, equal error rate (EER) was used as the evaluation metric
for CHiME-Home dataset.

The performances of the methods for the datasets except CHiME-Home is given
in Table 4.1. For all the metrics in all the datasets, CRNN perform either the best
or within the variance of the best method (variance is based on the average of the
experiment results with different random weight initialization schemes, explained
in more detail in [III]). Besides, supporting the findings of [I], all deep learning
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Table 4.1: Frame-wise and one-second segment-wise F1 score and error rate
performance for three datasets. he best performing method for each metric is
marked with bold face. ©2017 IEEE.

TUT-SED Synthetic 2016 TUT-SED 2009 TUT-SED 2016
Method  Flgrm ERprm  Flisee ERisec | Flprm  ERgrm  Flisee ERisee | Flgrm  ERprm Flisee ERisec

GMM 40.5 0.78 45.3 0.72 33.0 1.34 34.1 1.60 14.1 1.12 17.9 1.13

FNN 49.2 0.68 50.2 1.1 60.9 0.56 57.1 1.1 26.7 0.99 32.5 1.32
CNN 59.8 0.56 59.9 0.78 64.8 0.50 63.2 0.75 23.0 1.02 26.4 1.09
RNN 52.8 0.6 57.1 0.64 62.4 0.52 61.8 0.55 27.6 1.04 29.7 1.10

CRNN 66.4 0.48 68.7 0.47 69.7 0.45 69.3 0.48 27.5 0.98 30.3 0.95

methods outperform the conventional GMM approach by a significant margin.

In order to find the optimal hyper-parameters for the deep learning methods, a grid
search is performed including the combinations of some of the hyper-parameters
such as the number of layers, number of units in each layer etc. Hence the
networks that are used for the results in Table 4.1 do not have the same number of
parameters, since each network has different optimal hyper-parameters. The effect
of the number of network parameters on the accuracy is visualized in Figure 4.2.
The figure is based on the grid search experiment results on TUT-SED synthetic
2016. For the same number of parameters, CRNN outperforms CNN and RNN
methods in most cases when the number of parameters is the same between the
methods. This supports the idea that combining the CNNs and RNNs into a
CRNN classifier is a more efficient and powerful way of utilizing the network
parameters compared to CNN and RNN. In addition, the variance of the accuracy
for each method indicates that larger and deeper networks do not necessarily
perform better, and a grid search should be conducted to find the optimal network
architecture. Further experiments on TUT-SED synthetic 2016 on the class-wise
performance, the effect of convolutional filter shape and frequency shift invariance
can be found in [III].

The effect of sequence length, i.e., the number of frames per input example, is
investigated for RNN and CRNN methods on TUT-SED Synthetic 2016 dataset.
For these experiments, the number of frames per mini-batch in training is kept
fixed, so that the network is trained over the same number of frames in a single
update of the parameters. The results are presented in Figure 4.3. Both RNN
and CRNN benefit from sequence lengths up to 2.5 seconds. While CRNN mostly
benefit from the longer sequence length and gives the best performance at around
20 seconds, the RNN’s performance start to decrease for lengths longer than 2.5
seconds.

For TUT-SED Synthetic 2016 dataset, the average duration for the vast majority
of the classes are above 5 seconds. This means that the longest temporal context
that RNN can model is not sufficient to model the events as a whole in a single
sequence. CRNNs can model the whole event in a single sequence, which results
in improved performance. This can be explained with the convolutional layer’s
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role in a CRNN architecture. Convolutional layers learn filters that are invariant
to short term temporal variations and they effectively pre-process the features to
be used in a longer temporal context in the following recurrent layers.

The equal error rate (EER) results for CNN, RNN and CRNN on CHiME-Home
dataset are reported in Table 4.2. This dataset has been used for one of the
DCASE 2016 challenge subtasks, and therefore we also present the results for
the winner [64] of the challenge, which represented the state-of-the-art at the
time of writing [IIT]. For this task, CNN slightly outperforms CRNN while CRNN
results are within the variance of CNN results. The difference between the CRNN
and CNN architectures is that the GRU layer in the CRNN is replaced by a
feed-forward layer followed by batch normalization. To investigate whether CNN
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Table 4.2: EER performance for CHIME-Home development and evaluation sets.
The best performing method for each metric is marked with bold face. ©2017
IEEE.

Method Development EER  Evaluation EER
Lidy et al. [64] 17.8 16.6
CNN 12.6 10.7
RNN 16.0 13.8
CRNN 13.0 11.3
CNN (no batch norm) 15.1 11.9

results being better than CRNN was due to the absence of the recurrent layer or
to the presence of batch normalization, the experiments for the CNN baseline are
repeated after removing the batch normalization after the feed-forward layer. As
presented in the last row of Table 4.2, CRNN performs better than CNN when
the batch normalization after the feed-forward layer is not involved.

4.1.3 Contributions and Limitations

The CRNN method proposed in [III] provided state-of-the-art results for various
SED datasets, beating the previous state-of-the-art by a considerable margin. In
CRNN, the capability of CNNs to learn spectral and temporal invariant filters and
the capability of RNN’s to model long term temporal dependencies are combined,
resulting in a more powerful classifier than both CNN and RNN for SED. The
article [III] conducts a wide-scale investigation on the performance difference
between the methods over various angles, while providing a closer look on the
network outputs and the learned convolutional filters. After the publication of [III],
variants of CRNNs have been widely used for SED tasks, including the winner
methods for two of the three SED tasks in the latest SED challenge, DCASE
2017 [71]. Moreover, this article includes experiments on the effects of number of
parameters and the sequence length, which are insightful and often a rare sight in
the field of SED.

The main limitation of the CRNN is a shared limitation among the deep learning
techniques, which is the requirement of large amount of labeled data for training.
This becomes the most evident for TUT-SED 2016 results on Table 4.1. The total
amount of data for this dataset is only 78 minutes, and there are 18 total sound
events, so the total amount of data per class is very limited. This results with
low F1 score for all of the deep learning methods. In fact, a similar challenge on
this task, 7.e. real-life multilabel SED, has been introduced in DCASE 2017 [71],
where the total amount of data is around two hours while the number of classes is
reduced to six. For this task, a CRNN method with log mel-band energy input [1]
produces the best results of the challenge, outperforming several CNN and RNN
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based methods without utilizing any of the data augmentation and post-processing
methods utilized by the latter. The performance improvement in terms of F1
score compared to DCASE 2016 task for the proposed deep learning methods is
around 20% points, which highlights the importance of data amount (especially
per class) for a real-life multilabel SED task.

4.2 Convolutional Recurrent Neural Networks for
Bird Audio Detection

4.2.1 Context and Motivation

The main motivation for [IV] is to apply the successful CRNN method proposed
in [IIT] on the bird audio detection, as a part of the Bird Audio Detection (BAD)
challenge 2017 [101]. The proposed CRNN method is suitable for bird audio
detection for the following reasons. Bird audio detection is conducted based on
the vocal bird sound such as bird calls and bird songs. Bird calls are often short
and serve a particular function such as alarming (high pitch, rapid modulations)
or keeping the flock in contact. Bird songs, e.g. mating calls, are typically longer
and more complex than bird calls, and they often sound melodious to human
ears [20]. Vocal bird sounds include distinctive spectral content often including
harmonics. Both bird calls and bird songs have distinctive spectral and temporal
characteristics, which may be subject to certain shift variations depending on both
the bird species and the environmental conditions [17]. Therefore, a bird audio
detection method should both be able to capture melodic cues in time domain,
and also should be robust to small shifts in spectral content [IV]. In addition,
since the BAD challenge is a tagging task, one can argue that there is no benefit
on using CRNNs over CNNs because the onset and offset times of the events
are not required. On the other hand, bird sounds possess long term temporal
characteristics that can be beneficial to model to correctly discriminate them,
while the CNN’s temporal modeling capabilities are limited in a shorter time
context. Finally, the improved performance of CRNNs over CNNs on CHiME-
Home dataset (also a tagging problem) in [III] also motivated the authors to
choose CRNN as their proposed method for this task.

4.2.2 Method

The audio recordings for the challenge [101] are given in 10-second chunks, and the
available annotation is file-wise, labeling whether any bird sound is present or not
in any portion of a given audio chunk. For sound representation, each 10-second
chunk is split into 500 overlapping frames, and log mel spectrogram is obtained
with 40 mel filterbanks. The CRNN method utilized in [IV] is composed of three
convolutional layers with 96 filters each (followed by max pooling in frequency
axis), two GRU layers with 96 hidden units each, a temporal max pooling layer
that pools the high level representations over time, and a feed-forward output layer
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with a single neuron and logistic sigmoid activation. For network regularization,
each convolutional layer is followed by a batch normalization layer and dropout is
applied after each convolutional and recurrent layer. The optimal values for the
hyper-parameters such as the number of convolutional and recurrent layers, the
number of units in each layer and the max pool size after each convolutional layer
are obtained based on the grid search over the validation data.

4.2.3 Evaluation

The Bird Audio Detection challenge [101] is composed of 68 hours of crowd-sourced
field recordings, presented in 10-second chunks (see Section 2.8.2 for more details).
Five-fold cross-validation is performed on the development subset, and the optimal
neural network configuration is selected based on the average performance over the
folds. The proposed method is evaluated with the optimal network configuration
on the evaluation subset. The evaluation metric used in [IV] is receiver operating
characteristics (ROC) using the area under curve (AUC) measurements (see
Section 2.8.1).

As the baseline, a CNN method is utilized where the only difference between the
proposed method is that the recurrent layers of CRNN are replaced by the feed-
forward layers. The proposed method is also compared against the submissions
from two of the top three submitted methods for the challenge (labeled CNN2 [37]
and CNN3 [78]), which also utilizes CNNs as classifiers. The difference between the
baseline CNN method and the other CNN methods are that they use several data
augmentation techniques such as frequency and time shifting and pseudo-labeling,
and they further apply model ensemble over the networks. These techniques
undoubtedly boost the performance of CNNs for the challenge, at the expense of
more computational complexity and time consumption for training.

The AUC scores on development and evaluation datasets for the Bird Audio
Detection challenge is presented in Table 4.3. The proposed CRNN method
ranks second among the submissions for the evaluation dataset of the challenge,
behind CNN2 by only 0.2% points. A noteworthy point is that the baseline CNN
and the proposed CRNN methods perform similar for the development dataset,
while the performance decreases for CNN. However the performance drop for the
CRNN is more limited, which indicates CRNN is better at generalizing over the
unseen samples in the evaluation dataset, which includes recordings from different
environmental and recording conditions than the development dataset.

4.2.4 Contributions and Limitations

In the article [IV], we utilize CRNN for bird audio detection. The CRNN classifier
is especially suitable for this task due to the acoustic characteristics of the bird
sounds, and this is also evident in the performance of the method for the Bird
Audio Detection challenge 2017, where the proposed method came second.
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Table 4.3: AUC scores on development and evaluation sets.

Dataset Method

CNN CRNN CNN2 [37] CNNS3 [78]
Development | 95.3 95.7 - -
Evaluation 85.5 88.5 88.7 88.2

While the performance of the proposed CRNN method is quite good on the evalu-
ation dataset (88.5% AUC), it is still considerably lower than the development
dataset performance (95.7% AUC). This means that CRNN can still be improved
for better generalization using e.g. regularization and data augmentation tech-
niques. In addition, the performance gap between CNNs and CRNNSs in this task
is smaller compared to the SED tasks in [III]. This can be attributed to the fact
that onset and offset estimation of the sound events, for which the CRNNs excel
over CNNs due to temporal modeling capabilities, is not required in this tagging
task.

4.3 Convolutional Recurrent Neural Networks for
Rare Sound Event Detection

4.3.1 Context and Motivation

In the article [V], the CRNN method proposed in [III] is applied with minor
modifications on a rare sound event detection task, as part of the DCASE 2017
challenge task 2 [71]. The aim of a rare SED system is to detect the presence of a
certain sound event that appears only for a small portion of an audio recording,
and also to estimate the start and end times for this sound event. Therefore,
the proposed method should be able to cope with the data imbalance, and learn
the mapping between the acoustic features and the target events from the small
amount of data where the sound event is present. Consequently, it is crucial
to have robust temporal modeling to detect the sudden changes of the features
from consecutive frames, as it may indicate the presence of the rare sound event.
The convolutional layers of the CRNN can be used to learn high level, local shift
invariant representations from the acoustic features. The gated recurrent layers
of the CRNN are useful in long term temporal modeling for detecting rare sound
events, as they can reset and update their cell state to reflect the sudden change
of features among the consecutive frames due to the presence of a rare sound
event.

4.3.2 Method

The proposed CRNN method in [III] is utilized in a combined single label setting
in [V], where separate CRNNs are trained for each target sound event class. This
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combined single label classification approach is similar to [II], where a combined
single label DNN that is trained using the polyphonic audio recordings has
provided comparable results with a multi-label DNN. Other than the utilized
classifier (DNN vs. CRNN), the difference between the experiments in [II] and [V]
lies in the polyphony of the audio recordings. For the DCASE 2017 challenge
dataset, there can be at most one target sound event present in a recording,
and the information of which sound event is possibly present in the recording
is provided to the challenge participants. Therefore, it is more logical to utilize
this information by training separate CRNN classifiers for each class, rather than
training one multi-label classifier.

The acoustic features used in [V] are the log mel spectrogram calculated with 40
mel filters in 40 ms frames and 50% overlap. Each acoustic feature is normalized
to zero mean and unit variance based on the mean and the variance calculated for
the training set features. The log mel spectrogram is fed as input to convolutional
layer block which consists of convolutional layers with linear activations, followed
by batch normalization, ReLU activation, and max-pooling in frequency axis.
The convolutional block outputs are stacked along the frequency axis and fed to
GRU layers, which learn high level representations for each frame. The output of
the GRU layer block is fed to a feed-forward layer with a single unit and logistic
sigmoid activation. This feed-forward layer applies the same set of weights over
the GRU block outputs at each frame, and the outputs of the feed-forward layer
is treated as the frame-level class presence probabilities.

4.3.3 Evaluation

DCASE 2017 challenge rare SED dataset is used for the evaluation in [V] (see
Section 2.8.2 for more details). For the DCASE 2017 challenge, the participants
were allowed to generate as many mixtures as they wish for the development
dataset, and the challenge results were then computed from the evaluation dataset
with fixed size, whose annotations are only available for the challenge organizers.
For [V], the same procedure is followed and 4500 development set recordings are
generated.

The evaluation metric for rare SED differs from other SED tasks where the frame-
or segment-level performance metrics such as F1 score is commonly used. The
reason is that the amount of true negatives in the frame labels would be dominant
over the true positives, so the classifier would be biased to predict true negatives
for all the frames to boost the performance. Therefore, the evaluation metric for
the challenge is selected as the event based error rate with onset tolerance of 500
ms [70]. The evaluation is based on the 1500 separate recordings given as a part
of the challenge.

CNN is used as the baseline method in [V]. In order to find the optimal hyper-
parameters for the CNN and CRNN methods, grid search is conducted. Since
a separate classifier is trained for each target class, the optimal network hyper-
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Table 4.4: Event-based error rate for the proposed CRNN and the baseline CRNN
on the development test set and the evaluation dataset.

Development Evaluation
Method | Baby cry Glass break Gun shot ‘ Average | Baby cry Glass break Gun shot | Average
CNN-1 0.42 0.14 0.39 0.32 0.46 0.13 0.58 0.39
CNN-2 0.27 0.11 0.42 0.27 0.38 0.15 0.53 0.35
CNN-3 0.35 0.10 0.39 0.28 0.46 0.14 0.55 0.39
CNN-4 0.30 0.08 0.38 0.25 0.42 0.14 0.53 0.36
CRNN-1 0.22 0.03 0.23 0.16 0.27 0.07 0.20 0.18
CRNN-2 0.19 0.03 0.19 0.14 0.18 0.10 0.23 0.17
CRNN-3 0.22 0.01 0.19 0.14 0.27 0.14 0.47 0.29
CRNN-4 0.17 0.01 0.18 0.12 0.21 0.11 0.24 0.19

parameters may differ between the sound event classes. In [5], both using optimal
hyper-parameters for each class and using the hyper-parameters that produce the
lowest average error rate among the three classes have been experimented. In
addition, model ensemble has also been used in [V] in order to filter the outlier
predictions among the top seven networks which produce the lowest error rate
results. Therefore, four different CRNN methods have been evaluated in [V] and
they are labeled as the following:

e« CRNN-1: the architecture with the lowest error rate on average over three
classes,

e CRNN-2: the ensemble of the seven best architectures with the lowest error
rate on average over three classes,

e CRNN-3: the architecture with the lowest error rate for each of the three
classes,

e CRNN-4: the ensemble of seven best architectures with the lowest error
rate for each class.

e CNN methods have been obtained in the same fashion to CRNN methods
as explained above.

The event based error rate results on the evaluation dataset are given in Table 4.4.
The proposed CRNN methods outperform CNNs for rare SED. Considering the
only difference between the CNN and the CRNN utilized in [V] is that the
recurrent layers of CRNN are replaced by the feed-forward layers in CNN, the
performance difference can be attributed to the recurrent layers. In addition, the
model ensemble techniques provide a modest boost in the performance (CRNN-1
vs. CRNN-2 and CRNN-3 vs. CRNN-4). Finally, while CRNN-3 and CRNN-4
perform the best on the development test set, CRNN-1 and CRNN-2 give better
results on the evaluation set, and the performance difference for some of the
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classes between the development set and the evaluation set is noteworthy for
CRNN-3 and CRNN-4. This may indicate that the network architectures whose
hyper-parameters are selected based on the individual performance for each class
overfit to the specific target sound event samples in the development set and
struggle to generalize over the unseen samples in the evaluation set.

An insight on how the GRU layer activations contribute to the final network
output is provided in Figure 4.4. In panel (a), it can be seen that multiple GRU
units trigger the contribution of the candidate output (see Eq. 2.17) at the time
when the sound event starts. For the rest of the time when the sound event is
present, the network output is controlled by the previous frame outputs of the
GRU layer, which is given in panel (b). As a result, the onset and offset times for
this event is predicted almost perfectly, as visualized in panel (d).

4.3.4 Contributions and Limitations

In [V], CRNN is proposed for rare SED as a part of DCASE 2017 challenge. The
proposed method suits the rare SED task due to its capability of learning high
level features for the rare sound events and reflecting the sudden changes between
the consecutive frame features. This theoretical advantage is also supported
by the evaluation results, where the proposed CRNN method comes second in
the challenge (the winner also uses a modified version of CRNN [65]). The
article [V] also provides a rare, visualized case-study on how the GRU’s previous
and candidate outputs contribute to the network output.
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Figure 4.4: (a): contribution of candidate output &, (b): previous output ¢;—1,
(c): total contribution of GRU layer to the model output (sum of the candidate
and previous outputs); (d): class presence probability vs. time for a portion of a
sample including baby cry in the development test set.






5 Feature Learning for
Polyphonic Sound Event
Detection

Machine learning for SED is often performed using perception based sound
representations as the input to a machine learning classifier. Advanced machine
learning methods such as deep learning classifiers have reduced the need to convert
the raw data into a higher level representation before feeding it into the classifier,
due to their ability to learn the complex input-target output relationships directly
from raw data. In [VI] and [VII], the hand-crafted high level sound representations
are replaced with lower level representations such as magnitude spectrograms
and even raw audio signals, while integrating the human auditory perception
knowledge to the classifier through the network weight initialization.

5.1 Filterbank Learning for Deep Neural Network
Based Polyphonic Sound Event Detection

Human perception based sound representations utilize empirically obtained knowl-
edge about how humans hear differently the lower and higher frequency components
of an audio signal. Most machine learning systems for SED first convert the audio
signal into a perception based sound representation such as mel spectrogram,
and then train a classifier to find a mapping between this representation and
the target outputs. However, it is not a certainty that a sound representation
that reflects the human sound perception is the optimal representation for a
machine learning classifier for SED. Besides, it is claimed that the experiments
leading to most commonly used perception scales today such as mel scale are
subject to errors. For instance, hysteresis effect (i.e. the phenomenon that human
auditory perception for sounds with incremental pitch difference is different vs.
decremental) is ignored which causes bias in the experiments [35]. Besides, the
claim that equal number of mels agree with equal cochlear distances [98] has been
long disproven by Greenwod et al. [36], which implies the relationship between
human auditory perception and mel scale may be rather weak. In addition, the

63
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empirical, listener-specific nature of the experiments has led to several different
hand-crafted formulas for the scales [66, 76, 97, 98]. Nevertheless, perception
based representations can be beneficial for an SED system as a starting point
for the acoustic features, as they often provide a compact representation of the
spectral content of the audio signals. Finally, using modern machine learning
algorithms such as deep learning to express the highly nonlinear relationship
between the raw data and the target output has been an ongoing area of research
for SED. The capability of deep learning classifiers such as DNNs and CNNs to
learn high level representations directly from raw data has eliminated the need
for extracting hand-crafted features e.g. for image recognition [5] and automatic
speech recognition [46].

Motivated by these factors, the feature learning capabilities of CNNs and the
empirical knowledge of human perception is proposed to be combined in [VI]. This
combination is conducted by initializing the first convolutional layer filter weights
of a CNN with e.g. mel filterbank magnitude response. During the network
training, mel filterbank coefficients will be updated to minimize a certain loss
function for the SED, thus resulting with an ad-hoc filterbank more optimal for
the given SED task than the original mel filterbank.

5.1.1 Method

For the sound representation in [VI], the magnitude spectrogram X € RM*T is
used by calculating STFT over the raw audio signals, where M is the number of
STFT bins and T is the number of time frames. CNN is used as the machine
learning classifier. In order to incorporate temporal information at the input, the
input to the CNN is the context window X € RM*C for the magnitude spectrum
vector x at each frame, where C' is the number of frames in the context window.
Based on the magnitude spectrum x; at frame ¢, the context window matrix X, is
obtained by concatenating the magnitude spectrum vectors from % preceding
and succeeding consecutive frames as

K= T 6.)

The input - target output pair of (Xt, y¢) represents a single training example for
the network, where y; is the binary target output vector for the frame ¢ obtained
from the reference annotations.

For SED, the input to the machine learning classifier is often a perception based
sound representation, such as mel band energies. Mel band energies are calculated
by applying a mel filterbank over the magnitude spectrum. In [VI], the filter
weights for the first layer of the CNN are initialized with the mel filterbank



5.1. Filterbank Learning for DNN Based Polyphonic SED 65

|

I

Amplitude

|
.“
Hh

50 100 150 200 250 300 350 400 450 500
Frequency bins

Figure 5.1: Mel filterbank magnitude response.

magnitude response, which effectively results with the mel band energies at the
output of the first layer before the training.

Mel filterbank magnitude response

Mel scale is a perceptually motivated frequency scale whose intervals correspond
to equal perceptual pitch increments. The reference point is often chosen as
setting 1000 mels to 1 kHz. Although there are several formulas on how to convert
f hertz to I mels, in [VI], the commonly used formula in [76] is utilized as:

/
+ ﬁ) (5.2)

[ = 2595log (1
Mel filterbank magnitude response F € REPXM is composed of the coefficients for
B triangular band-pass filters whose central frequencies are equally spaced in mel
scale. This leads to more narrowly spaced filters in the lower frequency levels,
and widely spaced filters in the higher frequency levels. The coefficients of the
triangular filters are selected in the range [0, 1] and they are scaled so that the
area under each triangle for magnitude response is approximately the same over
the mel bands. Mel filterbank magnitude response is visualized in Figure 5.1.

CNN with mel filterbank weight initialization

The classifier used for SED in [VI] is the CNN whose first layer filter weights are
initialized with mel filterbank magnitude response. The weight sharing property
of CNNs is utilized to apply the same filterbank over the magnitude spectrum for
each time frame.

The CNN used in [VI] consists of a single convolutional layer followed by two
feed-forward hidden layers and a feed-forward output layer. The convolutional
layer consists of B filters with shape [M,1]. Given the context window input
matrix X, the output Z of the convolutional layer is calculated as

Zye=0(Y WomnXme)  (b=12,..,B, c=1,2,..,0) (5.3)
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Figure 5.2: CNN topology with convolutional layer weights initialized using mel
filterbank coefficients. The feature map outputs for B band are shown in separate
channels. ©2016 IEEE.

where o is the activation function and W, is the m* filter weight for b** filter.

The convolutional layer filter weights W are initially set as the mel filterbank
magnitude response F. In addition, the activation function 0 is selected as ReLU,
thus before training the network, the convolutional layer output Z is equal to the
mel band energies for the given context window. In order to initially set W as
F and get the mel band energies as the layer output, the filter length must be
equal to the number of STFT bins, and the time dimension of the filter shape
must be set to 1, so that the same filterbank is utilized at each frame. This differs
from the usual way of utilizing the convolutional layers, where the filter shape is
often smaller than the input shape and the filter is two dimensional, so that the
convolution operation can be performed in both dimensions. For this reason, this
network is called appropriately constrained CNN in [VI]. The network architecture
is visualized in Figure 5.2.

The initial weights for feed-forward layers are small values that are randomly
sampled from a uniform distribution U(—A, A), where A is calculated from the
randomized initialization method proposed in [29]. Thus the random weights
for each layer have zero mean and their variance is calculated as o2 = 1—12(—A -
A)?2. This creates a mismatch between the mean and the variance of the initial
convolutional layer weights W, which can be detrimental to the network learning.
Therefore, the mean and the variance of the convolutional layer weights are
matched with the rest of the network layers before the network training. Finally,
the initial zero weights of W are replaced with small random values drawn from
a uniform distribution with zero mean and unit variance.

5.1.2 Evaluation

The dataset used in [VI] can be deemed as an early version of TUT-SED synthetic
2016 (explained in Section 2.8.2). There are nine sound event classes: alarm
clock, baby crying, cat meowing, dog barking, door bell, footsteps, glass break,
music and speech. From the isolated audio recordings for these classes, polyphonic
mixtures are created by mixing the recordings from different classes with random
onset. The mixing procedure is explained in more detail in [VI]. Around 9% of
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Table 5.1: F1 score as a function of the acoustic feature, classifier method and
context window length C.

Feature Architecture C=1]C=3|C=5|C=7|C=9|C=11|C=13
MEL DNN random init 69.3 | 75.3 | 77.1 | 779 | 779 | 789 78.9
FFT CNN random init 714 | 76.1 | 782 | 79.4 | 80.6 | 81.2 80.7
FFT CNN mel init 71.5 | 75.8 | 78.5 | 80.2 | 81.2 | 80.8 80.8
FFT | CNN mel init (@ and o match) | 71.3 | 76.2 | 78.4 | 79.7 | 80.9 | 81.8 | 81.3

the dataset is polyphonic, i.e. two or more sound events are present at the same
time.

The evaluation metric is frame-wise F1 score. For the baseline, a DNN with two
hidden layers and mel band energies with context window input is implemented.
This makes a direct comparison possible between the author’s earlier work with
DNNs [I, IT] and the proposed method. The second baseline is a CNN with the
exact same architecture with the proposed CNN, but the convolutional layer filter
weights are initialized randomly. For both baseline and the proposed methods,
each experiment has been repeated ten times with different random seed (to
compensate the effect of random weight initialization on the performance) and
the average F1 score has been presented.

The frame-wise F1 score results for the baseline and the proposed methods are
given in Table 5.1. Among the whole experiment, the best performance is obtained
by CNN with mel weight initialization and magnitude spectrum input with a
context window of 11 frames. For almost all cases, the performance for the baseline
and the proposed methods increase with the increased context window length
C up to C' = 11, which reflects the importance of the temporal context for the
learning.

5.1.3 Contributions and Limitations

The proposed method in [VI] is a first attempt to learn an ad-hoc filterbank for
SED using the feature learning capabilities of deep learning methods and the
empirical knowledge about the human auditory perception. Initializing the first
convolutional layer filter weights of a CNN with the mel filterbank magnitude
response provides a modest increase in performance over a CNN whose weights
are initialized randomly.

The main limitation is the restriction on the convolutional layer filter shape with
the mel weight initialization. The method makes the filter length tied to the
number of STEF'T bins, although the filter length is usually selected as smaller than
the input for convolutional layers. Besides, the method does not allow convolution
in time domain, because the filterbank output obtained through the convolutional
layer must be limited to a single frame so that the same filterbank is applied
over each frame. This certainly reduces the modeling capabilities of the CNN.
Another limitation is the limited temporal context modeling capabilities of the
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CNNs. The best performance obtained by the CNN is with the context window
input of C' = 11 that is approximately 240 ms, which is quite short considering
the average duration of the events. The performance of the CNN decreases with
longer context window. An overall limitation of this work is the presentation of
the results. Since the corresponding F1 scores for proposed and baseline methods
are quite close, confidence intervals should have been calculated, which deemed
to be rather challenging retroactively during the publication of this thesis due
to missing experimental documentation. This weakens the paper’s credibility on
the recommendation of utilizing mel weight initialized networks. In hindsight, if
the performance difference between the proposed and baseline methods are this
close, then statistical significance tests have to be conducted. On the other hand,
confidence interval experiments were in fact done for the evaluation of [VII], which
investigates a similar approach (feature learning through mel weight initialization),
and these experiments also show with more certainty that the performance gain
for this approach is rather limited, if not none.

5.2 End-to-End Polyphonic Sound Event Detection
Using Convolutional Recurrent Neural Networks
with Learned Time-Frequency Representation
Input

SED is often conducted in two stages: sound representation and classification. In
the sound representation stage, hand-crafted acoustic features are extracted from
the raw audio signal, and in the classification stage, a machine learning method
is used to learn a mapping between the extracted features and the target sound
event classes. These two stages are often implemented exclusively, i.e. they do not
utilize any information from each other. Besides, while the sound representation
methods offer a compact representation of the time-frequency domain content of
the audio signal, they also discard some information that could have been useful
for the machine learning classifier.

Recently, there were a few attempts that proposed using directly raw audio data as
input in several sound classification tasks [18, 89], but the obtained performance
was either below or on-par with the methods using hand-crafted acoustic features.
For the case of SED, the research on using lower level representations as input
is even more limited, while the main research direction is to use an established
human perception based sound representation such as mel spectrogram as the
input and focus on developing novel and effective machine learning methods.

5.2.1 Method

In [VII], the sound representation and classification stages of a typical SED system
are proposed to be combined in a single deep learning classifier. The input to the
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Figure 5.3: Method framework. The method output shape in various stages of
the framework is given in brackets. ©2018 IEEE.

classifier is the raw audio signal in short time frames, and the sound representation
stage is implemented as a feature extraction block of neural network layers, which
has trainable parameters. This block is appended with a CRNN classifier which
completes the network. Since the mapping between the raw audio signal and the
target sound event is learned through a single classifier, the proposed method is
an example of end-to-end SED system.

The method proposed in [VII] consists of a feature extraction block of feed-
forward layers, and a convolutional recurrent layer block. The output of the
feature extraction block is initially (i.e. before the network training starts)
either the mel spectrogram, log mel spectrogram or the max pooled magnitude
spectrogram. The extracted features from this block are fed to the convolutional
recurrent block, which then maps these features onto target sound events. The
two layer blocks are trained jointly, i.e. they update their weights iteratively to
minimize the same SED loss function.

Feature Extraction Block

The input X € R¥XT to the feature extraction block is the raw audio signals in
T short time frames with N samples, and Hamming window is applied to each
frame. In order to initially obtain the magnitude spectrogram from the raw audio
signals, X is fed into two feed-forward layers with weights W™ and W™ and
no bias, which are initialized with the sine and cosine filter weights used in the
Discrete Fourier Transform (DFT):

N—-1
Fi. = Z X tlcos(2mkn/N) — i - sin(2wkn/N)]
n=0
ffn + cos(2mkn/N), }Cmn + sin(2kn/N) (5.4)

N-1 N-1
re __ re im __ im
= Wi X, Zi =) Wil X,
n=0 n=0

for k=0,1,..., % —land n =0,..., N — 1, where Z is the weighted output for
each feed-forward layer. The magnitude spectrogram S is obtained through the
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root of the squared sum of the layer outputs:

Sku = [Fral =/(Z55)2 + (Z4)? (5:5)

where the square and root operations are also implemented as neural network
layers. The obtained magnitude spectrogram is then either max pooled into M
features per frame, or it is fed to a feed-forward layer with weights W™¢! initialized
to get the mel spectrogram:

N/2—1
Zmel — max(0, Z W S.) (5.6)

mt*

for m=0,1,...M — 1. In the former case, the purpose of max-pooling is to obtain
features of same length for magnitude and mel spectrogram. The weights W™e!
are initialized with the mel filterbank magnitude response in a similar manner
as [VI]. ReLU activation function is used to avoid possible negative values in the
mel spectrogram once the network starts training. For the experiments where this
mel spectrogram layer is utilized, the parameters W™ and W™ are kept fixed so
that the effect of making the mel filterbank coefficients learnable can be observed.

Convolutional Recurrent Block

The convolutional recurrent block follows the same method proposed in [I1I]. It
consists of convolutional layers with ReLU activations and max-pooling only in
frequency axis, GRU layers, and a feed-forward output layer with logistic sigmoid
activation function. The same set of feed-forward layer weights is applied to
GRU outputs at each frame. In the usage case, the frame-level class presence
probabilities are converted into binary presence predictions by using a constant
threshold of 0.5.

5.2.2 Evaluation

The dataset used for evaluation in [VII] is TUT-SED synthetic 2016 (see Sec-
tion 2.8.2). While the original sampling rate is 44.1 kHZ for this dataset, the
recordings are resampled to 8, 16, and 24 kHz in [VII] to reduce the computational
complexity of the end-to-end training. The evaluation metrics are selected as
frame-wise F1 score and error rate (see Section 2.8.1). Each experiment in run ten
times with different random seeds and the mean and the standard deviation (given
as +) are presented.

The F1 score and error rate results are given in Table 5.2. The experiments
with fixed feature extraction parameters often outperform the ones with learned
parameters with the same sampling rate. On the other hand, the performance at
8 kHz is the same with 60.8% F1 score 0.55 error rate for both fixed and learned
feature extraction block. Considering that the original sampling rate is 44.1 kHz,
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Table 5.2: Frame-level F1 score F'lg.,, and error rate ERg,y, results for differ-
ent time-frequency representation methods and sampling rates. "DFT" stands
for magnitude spectrogram using linear frequency scale, "mel" stands for mel
spectrogram, "fixed" and "learned" stands for whether the weights of the feature
extraction block are kept fixed or updated during training.

Method Flfrm ERfrm

DFT 8 kHz fixed 60.8+£0.8 0.55+0.01
DFT 8 kHz learned 60.8+0.8 0.55+0.01
Mel 8 kHz fixed 60.8£0.9 0.55+0.01
Mel 8 kHz learned 61.0£0.8 0.56+0.01
Log mel 8 kHz fixed 63.1£0.6 0.52+0.01
Log mel 8 kHz learned 58.6£1.6 0.56+0.01
DFT 16 kHz fixed 61.9+£0.9 0.54+0.01
DFT 16 kHz learned 60.1£1.7 0.5840.03
Mel 16 kHz fixed 62.3+£0.7 0.54+0.01
Mel 16 kHz learned 60.6£0.9 0.574+0.02
Log mel 16 kHz fixed 65.8+1.4 0.50+0.01
Log mel 16 kHz learned 59.9+£1.3 0.56+0.01
DFT 24 kHz learned 58.1£1.6 0.5940.03

Log mel 44.1 kHz fixed [III] 66.4+0.6 0.48+0.01

downsampling to 8 kHz effectively means not utilizing any knowledge about the
signal energy between 8-44.1 kHz, however the performance drop of 5.6% points
in F1 score is quite limited. It can be considered to resample the audio recordings
with lower sampling rates to lower the computational load without losing much
performance for end-to-end SED systems.

While the feature extraction block with learned parameters could not outperform
the fixed one, the advantage of using such a method is the insight that it provides
based on the modifications of the parameters during training. The magnitude
response peaks for the parameters W™ and W™ after training are visualized in
Figure 5.4. For some context, since W*® and W'™ are initialized with sine and
cosine filter weights, the magnitude response before training equals to a single
impulse at the center frequency of the filter. During training, the weights are
updated and the sinusoidal property of the weights is distorted. Therefore the
magnitude response of each filter is no longer only an impulse, but a nonlinear
curve with positive values at various frequency bins and a peak value still at
the center frequency of the filter. In Figure 5.2, these peaks are visualized for
each filter, and the experiment is repeated for several sampling rates. It can be
observed that although the systems using different sampling rates have different
CRNN hyper-parameters (based on the grid search), there is a clear pattern for
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Figure 5.4: Magnitude spectrum peaks for the real (W*®) and imaginary (W™)
DFT layer filters after the training. The amplitude of the peak for each filter is
positioned at the center frequency of the corresponding filter, resulting in a line
plot covering the whole frequency range for the experiment with given sampling
rate. ©2018 IEEE.

how the magnitude spectrum peak changes for each filter after the training. In
addition, the peak changes are not monotonic in the frequency axis and the peaks
fluctuate considerable in certain frequency regions. This implies that, based on
the network training to minimize the SED loss, the sound representation obtained
through the network is very different than magnitude and mel spectrogram.

5.2.3 Contributions and Limitations

The proposed method in [VII] aims to conduct SED using directly raw audio data
as input. To the author’s knowledge, the proposed method is the first to integrate
the domain knowledge of the perception based sound representations into the
parameters of a deep learning classifier to conduct end-to-end SED. Unlike the
established way of initializing the network weights with small random values, a
block of neural network layer parameters are initialized to extract the hand-crafted
features at the beginning of the training. By observing how these parameters
are updated during training, an insight can be gained on the optimal sound
representation for the classifier to conduct SED. The proposed method also offers
a data-driven approach on designing audio filterbanks for SED by optimizing the
filterbank parameters with the gradient descent algorithm to minimize the SED
loss.
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The main limitation of the proposed method is that it does not offer a performance
increase over using established acoustic features as input. In addition, the com-
putational cost of using raw audio as input is higher than using a more compact
representation such as mel spectrogram, due to the significant dimensionality
reduction while obtaining mel spectrogram from the raw audio signal (represent-
ing one second of 16 kHz audio as 40 mel band energies extracted from 40 ms
windows and 50% overlap corresponds to around 87% dimensionality reduction).
Finally, even though the proposed method has the rare benefit of not simply using
mel spectrogram as the acoustic feature and discarding the phase information
completely, however the analysis of how the learned filters change the estimated
phase of the raw audio signals is missing from the analysis.






6 Conclusions and Discussions

6.1 Conclusions

In this thesis, we investigate the effectiveness of several deep learning methods
for various SED tasks. These tasks can be listed as polyphonic SED in real-life
indoor and outdoor environments, polyphonic SED on the synthetic mixtures of
individual sound events, rare SED, and bird audio detection.

In [I], we show that a DNN using mel band energy input with a context window
can significantly outperform a traditional GMM-HMM classifier based method by
42% relative performance increase in F1 score. The performance can be further
increased with the proposed median filtering based post-processing approach,
which involves smoothing the frame-wise DNN outputs that are treated as class
presence probabilities. While the context windowing is used to somehow introduce
the temporal modeling for the DNN, we show that this temporal post-processing
approach can further increase the performance up to 10% at various polyphony
levels. Finally, we observe that the system performance is robust to increased
polyphony levels, as the frame-level F1 score increases from 62.5% at polyphony
level 1 to 64.5% at level 2.

In [II], we compare two different approaches to polyphonic SED: a multi-label
DNN and a combined single label DNN. While the multi-label is trained to model
multiple sound events simultaneously, the combined single label DNN approach
is based on training a separate network for each sound event. We show that the
performance for these two methods is similar, which refutes the earlier claims on
the necessity of class correlation information for multi-label classification.

In [III], [IV] and [V], we show that using a CRNN with mel spectrogram as
input provides superior performance to both conventional classifier methods
such as GMM-HMM and NMF-HMM, and also other deep learning methods
such as DNN, CNN, and RNN. CRNN combines the shift-invariant filters of
convolutional layers and the long term temporal modeling capabilities of GRUs,
resulting with a classifier that suits various SED tasks. We note that for bird audio
detection [IV] and rare SED [V], it is beneficial to adjust the originally proposed
CRNN architecture in [III] to include a temporal max pooling layer before the
output layer. Lastly, using model ensemble boosts the system performance by

75
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filtering the outliers in the outputs of the networks with different initial random
weights.

In [VI] and [VII], we investigate the feature learning capabilities of deep learning
methods. We show that it is possible to obtain comparable SED performance
with deep learning methods using lower level sound representation inputs such
as magnitude spectrogram or even raw audio signals, when the weights of the
first layer are initialized with the filterbank coefficients of the commonly used
sound representation techniques. Moreover, by comparing the initial weights and
the final weights after the training, we are able to observe how the filterbank
coefficients for calculating e.g. magnitude or mel spectrogram are updated using
gradient descent optimization for the given SED task.

6.2 Discussions

Research on SED has been gaining a lot of interest in the recent years. There
are certain factors that facilitate this interest. Some of them can be listed as the
introduction of large-scale benchmark datasets, more standardized performance
metrics and evaluation protocols. DCASE challenges, organized in 2013 [99] and
annually since 2016 [71, 72], have been a major contributor for all these three
factors.

In terms of machine learning algorithms, what increased the interest on SED
research is the introduction and remarkable success of deep learning methods for
SED. Similar to many other machine learning tasks such as image recognition,
ASR, natural language processing (NLP) etc., deep learning methods such as
DNNs, CNNs and CRNNSs significantly outperformed the conventional classifier
methods such as GMM-HMM for the task of SED.

This thesis covers some of the very early examples of deep learning methods
applied to SED, such as DNNs [I] and CRNNs [III,IV,V]. It should be noted that
the research on deep learning is currently very active, and novel, more powerful
algorithms are proposed in a rapid fashion. While the DNN algorithm for SED
in [I] was proposed in 2015 and it significantly outperformed the non-deep learning
state-of-the-art method for SED at the time (42% relative performance increase
on F1 score), it quickly became obsolete against the more efficient deep learning
techniques such as bidirectional RNNs [77], CNNs [91] and CRNNs [III]. To our
knowledge, the current state-of-the-art on different SED benchmark datasets are
certain variants of CRNNs [1, 65],[II1]. This is also supported by the fact that the
winners of four out of seven total sound event detection tasks For DCASE 2017
and 2018 challenges use CRNNs as their machine learning classifier [1, 53, 65, 109].
On the other hand, considering the speed of progress in the deep learning methods,
the readers should be aware that these methods may also become obsolete in due
time.
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It can be claimed that the recent progress on SED research, including the findings
in this thesis, follow suit with other machine hearing tasks, and also contribute
on specific cases which have not been widely experimented for other tasks. The
early applications of deep learning methods (such as DNNs with unsupervised
training [47]) on ASR [46] has shown substantial improvements over established
GMM-HMM method. Consequently, this has been shown to be applicable for
SED [26]. In [I}, DNN’s performance benefits over GMM-HMM were once again
proven for SED, and in addition, the multi-label classification capabilities of
DNNs were emphasized. While it was shown in [II] that the class correlation
information is not essential for DNNs for SED, to the author’s knowledge, similar
experiments for other machine learning tasks are currently missing from the
literature. Besides, this is worth re-visiting with the recent, more advanced deep
learning methods before drawing more conclusions on the importance of class
correlations for SED, and other machine hearing tasks. Variants of the CRNN
method, whose successful application on SED is one of the key contributions in
this thesis, are still being extensively utilized with high performance in many other
machine hearing tasks such as audio chord estimation [54](MIREX2018 challenge
winner) and ASR [38, 108](current top methods on Switchboard dataset [30]). To
the author’s knowledge, weight initialization based feature learning techniques
similar to the ones proposed in [VI] and [VII] are currently only experimented
on SED, while it is conceivable that these techniques would perform better and
lead to more intuitive learned filterbanks for more structured data such as chord
estimation and music transcription.

While the current state-of-the-art techniques have a quite similar framework for
SED and other machine hearing tasks, the author sees that SED is currently a
few steps behind in terms of productization, especially compared to ASR. Home-
assistant devices such as Google Home and Amazon Alexa, and smartphone
devices are readily providing robust ASR products. The author believes that
SED fits very well in the consumer-product space, especially considering the fact
that no user input is required for action (vs. ASR where a user speech input is
required). It is always a challenge to know exactly which techniques are utilized
in the proprietary products, but recent publications from these companies imply
that the methods considered to be used for SED in these devices are in fact based
on CNNs [45], RNNs [106] and CRNNs [55], that are very similar to the methods
presented in this thesis. For curious readers, I recommend reading S. Krstulovié¢’s
views on audio event recognition in smart home [58].

Currently, there is a considerable amount of deep learning research focused on the
generative modeling algorithms such as Generative adversarial networks (GAN)
and variational autoencoders (VAE). These algorithms are often used to model
the underlying characteristics of the given dataset, and to produce more examples
that are similar to the ones in the given dataset. A recent application of GANs
on a machine hearing task was proposed in [74], which utilized GANs as a
way of data augmentation (creating additional training examples) and won the
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acoustic scene detection subtask for DCASE2017. I believe that in the future
we will be very likely to encounter these recent deep learning methods for SED
as well, considering the fact that deep learning methods often benefit from large
datasets and data augmentation almost always increases the performance of
these systems for SED. In addition, the recent introduction of very large-scale
SEC datasets such as AudioSet [25] accelerated the research on SED systems
that can detect the onset/offset of the sound events when the annotations are
available only per recording. Such systems are said to learn strong labels from
weak labels [59, 63, 109] and they can significantly reduce the cost of labor for
the annotation of SED datasets in the future.

It is evident from the findings of [III, IV, V] that CRNNs provide a considerable
numerical advantage in terms of SED performance over other deep learning based
methods such as DNNs, CNNs and RNNs. While the theoretical and empirical
benefits of CRNNs are listed in detail in this thesis, in the future, it may be
wise to spend more effort for finding answers to questions such as: how does the
long-term temporal modeling differ over the sound event classes with CRNNs,
what is the effect of sequence length, how does a single CRNN incorporate the
temporal modeling for the sound events that are very different in terms of temporal
characteristics etc. The analysis of the contributions of candidate and present
activations of the GRU to the network’s output (please see Section 4.3.3) is a step
towards understanding more of the recurrent layer’s contribution in the context
of SED. The author believes that the possible findings in these directions would
be crucial for developing better, more robust SED methods in the future.
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Polyphonic Sound Event Detection Using Multi Label Deep Neural
Networks

Emre Cakir, Toni Heittola, Heikki Huttunen and Tuomas Virtanen

Abstract—In this paper, the use of multi label neural net-
works are proposed for detection of temporally overlapping
sound events in realistic environments. Real-life sound record-
ings typically have many overlapping sound events, making it
hard to recognize each event with the standard sound event
detection methods. Frame-wise spectral-domain features are
used as inputs to train a deep neural network for multi label
classification in this work. The model is evaluated with record-
ings from realistic everyday environments and the obtained
overall accuracy is 63.8%. The method is compared against a
state-of-the-art method using non-negative matrix factorization
as a pre-processing stage and hidden Markov models as a
classifier. The proposed method improves the accuracy by 19%
percentage points overall.

I. INTRODUCTION

Sound event is the audio segment that humans would label
as a distinctive concept in an acoustic signal [1]. The aim
of automatic sound event detection is to recognize the sound
events present in a continuous acoustic signal. Monophonic
sound event detection deals with the most prominent event
at a time instance and polyphonic detection tackles the situ-
ations where multiple sound events happen simultaneously.
The applications of sound event detection include multimedia
indexing [2], scene recognition for mobile robots [3] and
surveillance in living environments [4].

The additive nature of sound sources makes it difficult
to find the robust features to detect them in polyphonic
audio. Conventional classifiers that have been used in speech
recognition and monophonic detection are not as successful
in polyphonic detection. Monophonic sound event detec-
tion systems handle the polyphonic data by detecting only
the prominent event, resulting with a loss of information
in realistic environments [5]. Polyphonic detection is es-
sential to get high accuracy in complex auditory scenes.
State-of-the-art polyphonic detection systems are using Mel-
Frequency Cepstral Coefficients (MFCC) to characterize the
audio signals and using Hidden Markov Models (HMMs) as
classifiers with consecutive passes of the Viterbi algorithm
[6]. Recently, non-negative matrix factorization (NMF) was
used as a pre-processing step to decompose the audio into
streams and detect the most prominent event in each stream
at a time [1]. However, the fixed constraint of the NMF on the
number of overlapping events reduces its practicality when
this number is not known a priori. The estimation of the
number of overlapping events can be bypassed when using
coupled NMF, as shown in [7]. In [8], local spectrogram

*This work was done with the support of Audio Research Group
in Department of Signal Processing, Tampere University of Technology,
Finland.

features were combined with Generalized Hough Transform
(GHT) voting system to detect the overlapping sound events.
This offers a different path than traditional frame-based
features and achieves high accuracy, being evaluated on five
different sound events and their combinations.

Polyphonic detection can be formulated as a multi label
classification problem. Multi label problem can be addressed
by applying single label classification for each of the classes
and combining the results. However, the single label en-
coding of the problem discards the correlation structure
between the classes resulting in a weak expressive power [9].
Therefore, multi label classification is necessary to obtain
the most of the available information from the real-world
data. Some of the applications of multi label classification
are used in overlapping sound event recognition [8], scene
classification [10] and text categorization [11].

In this paper, we propose to use multi label feed-forward
deep neural networks (DNN) for polyphonic sound event
detection. In our earlier paper, we have shown that with
sufficient numbers of hidden layers, hidden units and training
data, DNNs can outperform HMM methods in sound event
classification tasks [12]. However, in this paper we extend
the work of [12] by encoding the problem as a multi
label learning task with no limitations to the number of
simultaneous events. the motivation of our work is that DNN
can use different sets of its hidden units to model multiple
simultaneous events in a given time instance, benefiting
from a different nature of nonlinearity than the conventional
mixture models [13]. We use spectral domain features to
characterize the audio signals and DNNs to learn a mapping
between features and sound events. The contribution of this
paper is to extend the use of DNNs to the multi label
analysis of realistic recordings from everyday environments
and model overlapping sound events in a natural way. We
also propose a post-processing method to filter the noise
in the DNN outputs. The highly realistic and diverse audio
material used in this work offers a firm insight on the
usability of the method in real-world applications.

The structure of the paper is as follows: the task of the
polyphonic sound event detection and the feature extraction
process are explained in Section 2. The input-output structure
and the architecture of the DNN is described in Section 3.
A post-processing method to smoothen the DNN output is
explained in Section 4. Section 5 contains the experimental
results on the highly realistic material and comparison with
the baseline results. In the end, our conclusions on the topic
are given in Section 6.
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Fig. 1: Framework of the training and testing procedure for the proposed system.

II. SOUND EVENT DETECTION

The main objective of the proposed method is to tempo-
rally locate the sound events in a recording collected from a
realistic auditory scene and give each event a label from a
set of possible labels. The framework of the proposed sound
event detection method is shown in Figure 1.

Auditory scenes are composed of multiple sound events
occurring at the same time. Detecting the events separately
from a realistic auditory scene leads to a multi label classi-
fication problem. Figure 2 illustrates the polyphonic nature
of sound events in realistic environments.

As a pre-processing step for the feature extraction, the
recordings are amplitude normalized, divided into frames and
Hamming window with 50 ms duration and 50% overlap is
applied. The spectral domain features (e.g. Mel-band and
log Mel-band energies) and cepstral domain features (e.g.
MFCCs) are extracted from the short time frames of the
audio signal. For each time frame, a feature vector x; is
obtained, where ¢ is the frame index. Each feature vector
corresponds to a learning instance for the neural network.

In order to extract the dynamic property information
of the signal, a frame concatenation method is used. The
feature vectors that are extracted from the adjacent time
frames are concatenated together to form a single training
instance. The resulting feature vector has a dimension of
[X| = (2 x Ny + 1) x Ny where N,q is the number of
adjacent frames concatenated with the original frame and N¢
is the number of features extracted from the short time frame.
This method is often called context windowing and has been
used in many other studies as well [12], [14], [15].

For each frame, target output vector y, includes the multi
label encoding of the audio events present in the frame. Each
sound event is assigned to a class which is encoded as a
single binary variable. The events present in a frame are
annotated with 1 and the rest is 0. An illustrative example of

frame ¢
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Fig. 2: Overlapping sound events in a recording from a
realistic environment. Frame ¢ represents the short time
frame from the recording where only car and dog barking
events are present.

annotation can be found in Figure 2, where the target output
vector y for frame ¢ is y, = [1 0 1]. The number of possible
classes is known in advance and therefore the length of the
output vector is fixed, but the number of active events in a
frame is not known a priori.

III. MULTI LABEL NEURAL NETWORK

Feed-forward neural networks with multiple hidden layers,
i.e., deep neural networks (DNN) are used for multi label
classification. Deep architectures build a hierarchy among
the features. In each layer, higher level features are extracted
implicitly by the composition of lower level features. This
automatic structure eases the work of learning highly non-
linear functions mapping the input to the output directly
from data, therefore reducing the need to find human-crafted
intermediate representations [16].

DNNs are composed of an input layer, multiple layers of
hidden units with nonlinear activation functions and an out-
put layer. The input vector x; consists of the spectral features
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extracted from frame ¢. For simplicity, frame index ¢ will be
omitted during the feed-forward algorithm description.

The output vector h* e RM for layer k with M units
is calculated from the weighted sum of the outputs for the
previous layer ! e RP. Starting with h® = x and

gh=WrnF Tl bk 1<k <L 1)
h* = f(g") @
where W € RP*M s the weight matrix between (k — 1)

layer with D units and k" layer with M units, b* e RM is
the bias vector for the k™ layer, L is the number of layers
and f(-) is the nonlinear activation function applied element-
wise. Output h” € RY is used as the source presence
prediction vector § = h”, where §(i) is the source presence
prediction for the event i € [1,2,..N] and N is the number
of sound events. During the training stage, y is involved
in calculating the cost function, explained below in detail.
During the testing stage, y is binarized with a threshold to
get the binary detection vector z;. An illustration of a small-
scale DNN with binarized output is presented in Figure 3.
Maxout function [17] for hidden layers and logistic
sigmoid function (bounded between O and 1) for output
layer are used as activation functions in DNN structure.
Maxout is a piecewise linear activation function which
can be seen as a generalization of rectified linear units
[18]. Maxout calculates the maximum of a set of R affine
projections of the input. In mathematical terms, given
g" = [¢"(0),*(1), ..., g"(4),...¢"(M x R —1)], for non-
overlapping pools of size R, maxout function implements

b (4) =I’fla§(g’“(j+r) where j=i-R (3
where h* € RM, gk € RM*R for layer k with M units
and R is the number of affine feature mappings. Hidden
units with maxout functions at each layer are divided into
non-overlapping pieces and each piece generates a single
activation via the max pooling operation, as illustrated in
Figure 4. Unlike conventional optimization functions, max-
out is not bounded, it is easier to optimize and does not
suffer from vanishing gradients problem by sparsifying the
gradients [14].

Stochastic gradient descent (SGD) algorithm is used as
the learning algorithm for the DNN. Training cost function
for the neural network is selected as Kullback-Leibler (KL)

Max
pooling
Hidden
layer
k-1

Hidden

Slayer k
\ ?

Fig. 4: Maxout activation function with R =
mappings.

3 feature

divergence, as it is able to characterize the general accuracy
of the class membership probabilities [19]. KL divergence is
calculated as

ZYt

—yt( )log ¥, (i)
+ (1 —y,(9)log (1 —y,(i))
= (1 =y, (i) log (1 - ¥,(3)) “

where y, (i) is the target output for the i*" event, §,(i) is the
source presence prediction obtained from the output layer for
the it" event and N is the total number of event classes. For
binary y,, as in our case, some terms in (4) drop out and the
resulting KL divergence is

L(ylly.) = )logy, (i

N
Liy,|ly¢) = Z =, (i) log ¥, ()
1

-y og (- 5,)

The DNN parameters such as number of hidden units,
learning rate, initial weight bias etc. are selected by a grid
search over the parameter values. The instances are processed
over mini batches of size 50. The most successful topology
for this task is found to be DNN with 2 hidden layers with
800 units each.

®

IV. POST-PROCESSING

Environmental sound events naturally take at least a few
seconds, once they are initiated. When we experimented
with environmental audio, we noticed some abrupt changes
between consecutive frames in the detection probabilities for
some of the events. Our reasoning to this is as follows. The
audio is processed in very short time frames and the events
may contain intermittent periods. The annotation of the audio
material is done with a rather coarse time resolution, since
a human annotator would miss these less (if any) active
frames in the events and do the annotation for larger chunks
of frames. Although these frames are erroneously annotated
with some of the labels, they do not have the spectral
characteristics of the labels associated with them. Moreover,
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a greater problem occurs if the DNN learns these instances as
belonging to a specific class with rather noise-like spectrum,
such as the sound of rain or the wind on trees.

This causes some undesired intermittent behavior and
noise in the DNN detection probabilities.

In order to filter this noise and smoothen the outputs in
the testing stage, a median filtering based post-processing
approach is implemented. The source presence predictions
y, are obtained from the output layer of the DNN and then
binarized by using a certain threshold value to give the binary
estimation vector Z;. For each frame, the post-processed
output Z; is obtained by taking the median of the binary
outputs in a 10-frame window as

3 — {1,m€dldll.(Z(tg>:t) =1 ©)
0, otherwise
The method is continued by sliding this 10-frame window
by 1 when every new frame is processed through the DNN.
The effect of the median filtering on the detection outputs is
illustrated in Figure 5.

V. EVALUATION

The proposed method is evaluated on realistic recordings
from everyday contexts and compared with the baseline
system. In addition, three different features are experimented
individually: Mel-band energies, log Mel-band energies and
MEFCCs. The accuracy for various polyphony levels and the
effect of post-processing is also investigated.

A. Acoustic Data

The evaluation sound database contains recordings from
various everyday environments. The same database has been
previously used in different experiments on sound event
detection [1], [5], [6]. It consists of a total of 103 recordings
and each of them are 10 to 30 minutes long. The total
duration of the recordings is 1133 minutes. Recordings were
done using 44.1 kHz sampling rate and 24-bit resolution.

Data amount percentage

Polyphony Level

Fig. 6: The percentage of the amount of the sound material
as a function of the polyphony level.

The recordings are collected from 10 different contexts:
basketball match, beach, public bus, car, hallway, office,
restaurant, shop, street and stadium. For each context, 8 to
14 recordings are present.

There are 61 different event classes categorized in this
database. The start and end times of the events are manually
annotated from the recordings. Some of the events included
in the database are “brakes squeaking”, “cheering”, “referee
whistle” etc. In each context, 9 to 16 events are present.
Some of the events can be found in multiple contexts (e.g.
”speech”) and some of the events are context specific (e.g.
”ball hitting the floor”). The total duration of each event
in the database can be found in Figure 7. This database is a
valuable source considering the lack of publicly available en-
vironmental polyphonic sound databases in the field. Figure
6 illustrates the amount of frames with different polyphony
levels in the whole database.

B. Evaluation Procedure

As the evaluation metric, F1 score is calculated inside non-

overlapping one-second blocks. If an event

o is detected in one of the instances inside a block and it
is also present in the same block of the annotated data,
that event is regarded as correctly detected.

o is not detected in any of the instances inside a block but
it is present in the same block of the annotated data, that
event is regarded as missed.

« is detected in one of the instances inside a block but it
is not present in the same block of the annotated data,
that event is regarded as false alarm.

For each one-second block, the number of correct, missed
and false alarm events are accumulated. Precision and recall
are calculated according to these variables as

L. correct
precision = — 7
correct + false alarm
correct
recall = ———— ®)
correct + missed

For each block, these two metrics are combined as their
harmonic mean, FI score, which can be formulated as

2 X precision X recall

®

FI score = —
precision + recall

The results are presented by taking the average F1 scores
of the one second blocks which correspond to the specific



. T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I T T T T T T T T T T T TT]1
)
o 6000 _
7]
<
<
S 4000 b
g
©
2000 |-
Y
a | 1 H 1 1 [l
0—| |_|r‘-|_L|_|; N N N Ll A = W0 I AT 8 A T 5 R rﬁ|_||_|._L L
0 o e e e e e e B
<
>
<
3
©c 50
o
=
Q
Q
<
VTEQOTXNNE =0k O HEXVDC TS NOSENDES0VDOEVOSTENFTELSC S O OX DO DD N DOC
m:omagmosomotﬁcmggg’m_9>~:m=“Jogo“éo.‘-gmxg"agnggmxggcnhoco‘:OCmgmqjcc;
23283080 8° 3805 e 50500 IG5 280205005 3L 82TWoLE 60w 28 805288208
= Q [=] n >0 Q- O5 >0l CLADCFOEGRLED T3B — o 0FEXaca=390C
052 & FE 2 Fo0 0 g= 93 B8 =553.259%03 © 30 TO0 2" O x_—cc 2 @>=
c (7] S B8o®®8 £ S5 £2323293°0 oorm o >2>0 £ cen ==2p< R
Bg5 T gz 3 S2.8 © °P §853c 5 28808E8 s.af %%os 5557 533558 S
E £ = £ 22
8< < 8- s © °53 8 E @ _-355 Q8o ©a c5s £9
= % oO® [} S pas £ ac o2 20
© 5 o o o Q%o »ow » (%}
8 890 = £ o= < °
= © o c3
a o foXoR 2] = £
2 2

Fig. 7: The amount of annotated data (in seconds) and the accuracy for each sound event.

concept (context, polyphony level etc.) F1 score is referred
as the accuracy throughout the rest of the paper.

Calculating the accuracy in one-second blocks is plausible
for three different reasons. Firstly, the aim of the sound event
detection is to detect an event with certainty when it happens,
rather than finding the exact start and end time of the event
with very high precision. Secondly, monitoring the outputs in
every second and calculating the accuracy gives a reasonable
time resolution without losing crucial information. Lastly,
as noted in Section IV, the annotations have rather coarse
time resolution. Therefore, in some cases they do not exactly
match the time frames that they are annotated with, but
they are nevertheless found in a one-second range. One-
second block evaluation helps to compensate these minor
mismatches in the annotations.

C. Results

The proposed system is evaluated with stratified five-fold
cross-validation. Once the features are extracted from all the
recordings in the database, the feature data set is divided
into five non-overlapping folds and one fold is used in the
development stage for determining parameters of the DNN.
The results from the other folds are averaged and presented.
The grid search range and the final selected value for some
essential DNN parameters during the development stage are
presented in Table 1. Log Mel-band energies are used as
features in all the experiments, except the varying feature
experiment given in Table II.

Our system, DNN with 2 hidden layers of 800 units
each, log Mel-band energy features with 5-frame context
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Fig. 8: Context-wise detection accuracies for proposed sys-
tem with a comparison to the baseline system.

TABLE I: Grid search range for essential DNN parameters
and the final values used in the experiments.

Parameter Range Final
Learning rate 0.001 - 1.0 0.02
# hidden layers 2-5 2

# hidden units (in each layer) 100 -1000 800
Initial weight range £0.001 - £0.05 | £0.001
Context window length 1-13 5



TABLE II: Overall detection accuracies with different input
features before and after post-processing (PP).

Feature | Before PP | After PP
MFCCs 535 56.8
Mel-band energies 56.0 60.4
Log Mel-band energies 57.2 61.7

window, is evaluated against the baseline system [1], which
is the state-of-the-art method for the polyphonic detection.
The baseline method consists of decomposing the audio
into different streams by non-negative matrix factorization.
For each audio stream, sound event detection is done using
MFCCs as features and HMM as a classifier. In our exper-
iments, we observed that DNNs do not necessarily require
this kind of sound source separation based pre-processing to
determine how many events are active in a time instance.
As illustrated in Figure 8, the proposed system outperforms
the baseline method by a huge margin. Depending of the
context, proposed method offers an increase in accuracy
between 9-39% among different contexts and 19% units
average increase. Due to the natural diversity of each context,
the variance of the accuracy between contexts is quite high.

The relationship between the amount of annotated data and
the accuracy for each sound event is illustrated in Figure 7.
Differing from other experiments, the accuracy is calculated
for each single sound event and therefore represents the
single label accuracy. There is a clear correlation between the
amount of data and the accuracy for each event. This brings
the fact that DNNs require large training databases to learn
the mappings between the features and the sound events.
This also shows that there is still room for improvement in
accuracy once the audio database is expanded. On a related
note, we also investigated using shorter frame lengths and/or
higher overlap in order to create more instances for the DNN
learning. However, this increased the detrimental effect of the
erroneous annotations without providing a significant boost
on the accuracy. Nevertheless, the effect of the frame length
is not investigated exhaustively in this work and therefore
out of the scope of this paper.

The overall accuracy of the model trained with different
features are presented in Table II. Mel-band energies and log
Mel-band energies are calculated in 40 Mel-bands and the
number of static MFCC coefficients are chosen to be 16,
a standard value in event detection methods. The topology
of DNN is kept fixed (except the number of inputs) while
using different features in order to make a valid comparison.
There is a slight increase in accuracy for Mel-band and log
Mel-band energies over MFCCs. This can be explained with
the loss of information caused by selecting the first few
coefficients after the Discrete Cosine Transform (DCT) [13].
Another point would be that the sum of the MFCCs of
different sound sources are not equal to the MFCCs of the
mixture of these sources.

The detection predictions y, are binarized with various
thresholds and the accuracy for each polyphony level (i.e.,

TABLE III: F1 scores for various binarizing thresholds
and polyphony levels for the proposed system after post-
processing.

| 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1|446 518 576 625 660 669 645 563
2| 518 568 597 61.1 61.1 589 542 444
3| 557 593 609 613 598 566 504 39.1
4| 603 633 645 645 632 60.1 546 428
5| 645 655 652 645 625 593 533 407

the number of simultaneously active sound events) is given
in Table III. For the majority of the levels, the accuracy takes
its highest value around the threshold 0.5, which suits with
the default guessing of a threshold for a prediction between
0 and 1. The accuracy is higher for high threshold values in
the low polyphony levels. This can be explained by the fact
that the prominent sound events have very high prediction
value, i.e., probability in lower polyphony levels and using
high threshold effectively clears the non-present sound events
with lower probability. On the other hand, the accuracy is
higher for low threshold values in the high polyphony levels.
Since the activation function for the output layer of the DNN
is logistic sigmoid, the detection probabilities are bounded
between 0 and 1. However, the sum of the predictions for
each sound event is not bounded at all and this sum increases
when the polyphony level is increased. When two events
with similar spectra are simultaneously active, they share a
lower probability compared to the case that only one of them
is active. The detection probabilities are distributed over a
higher number of sound events in high polyphony levels.
Therefore, a lower threshold is required in order to detect
multiple sound events.

The detection accuracy as a function of the polyphony
level is given in Figure 9. Binarizing threshold value is fixed
at 0.5 for all polyphony levels. The effect of median filtering-
based post-processing is clearly visible, especially for lower
polyphony levels. Post-processing offers a great boost on the
accuracy for lower polyphony levels, i.e., when less events
are simultaneously active. As explained in Section IV, post-
processing compensates the DNN’s tendency to map the
frames with low activity, which are found in low polyphony
levels, to the non-present sound events. These frames hardly
ever appear in very high polyphony levels, hence the ef-
fectiveness of the post-processing diminishes. The mapping
of low activity frames with non-present events also explains
the decreased accuracy in lower polyphony levels before the
post-processing.

VI. CONCLUSIONS

In this paper, using multi label DNNs for polyphonic
sound event detection in realistic environments was pro-
posed. Multi label DNN classification with median filtering-
based post-processing was observed to be able to detect
overlapping sound events with high accuracy. The proposed
method outperforms the baseline method by 19%. Spectral
domain features from short time frames of audio material
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Fig. 9: Detection accuracy vs. polyphony level for the
proposed system before and after the post-processing.

were extracted and used as input for the DNN. A post-
processing method is proposed which increases the detection
accuracy, especially when the number of simultaneously
active events in a frame is lower than 4. It is also observed
that using a higher binarizing threshold for low polyphony
levels provide a better detection accuracy and vice versa. For
future work, implementing better post-processing methods
to handle the noise in the DNN output is planned. Training
method extensions such as momentum and weight decay can
also be implemented. Investigating more informative features
for higher accuracy and robustness is also possible. Another
future work direction would be to do the multi label DNN
classification for each context separately, which requires a
significant amount of data for each context and the reason
why we choose the context independent approach in the first
place.

REFERENCES

[1] T. Heittola, A. Mesaros, T. Virtanen, and M. Gabbouj, “Supervised
model training for overlapping sound events based on unsupervised
source separation,” in Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP), Vancouver, Canada, 2013, pp. 8677-8681.

[2] D. Zhang and D. Ellis, “Detecting sound events in basketball video
archive,” Dept. Electronic Eng., Columbia Univ., New York, 2001.

[3] S. Chu, S. Narayanan, C. Kuo, and M.J. Mataric, “Where am 1? scene
recognition for mobile robots using audio features,” in JEEE Int. Conf.
Multimedia and Expo (ICME). IEEE, 2006, pp. 885-888.

[4] A.Harma, M.F. McKinney, and J. Skowronek, “Automatic surveillance
of the acoustic activity in our living environment,” in /EEE Int. Conf.
Multimedia and Expo (ICME). IEEE, 2005, pp. 4-pp.

[5] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event

detection in real life recordings,” in Proc. European Signal Processing

Conference (EUSIPCO), 2010, pp. 1267-1271.

T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-

dependent sound event detection,” EURASIP Journal on Audio,

Speech, and Music Processing, vol. 2013, no. 1, pp. 1, 2013.

[7] O. Dikmen and A. Mesaros, “Sound event detection using non-
negative dictionaries learned from annotated overlapping events,” in
IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA). 1IEEE, 2013, pp. 1-4.

[8] J. Dennis, H.D. Tran, and E.S. Chng, “Overlapping sound event
recognition using local spectrogram features and the generalised hough
transform,” Pattern Recognition Letters, vol. 34, no. 9, pp. 1085-1093,
2013.

[6

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Zhang and Z. Zhou, “Multilabel neural networks with applica-
tions to functional genomics and text categorization,” IEEE Trans.
Knowledge and Data Engineering, vol. 18, no. 10, pp. 1338-1351,
2006.

M.R. Boutell, J. Luo, X. Shen, and C.M. Brown, “Learning multi-
label scene classification,” Pattern recognition, vol. 37, no. 9, pp.
1757-1771, 2004.

A. McCallum, “Multi-label text classification with a mixture model
trained by EM,” in Workshop on Text Learning, 1999, pp. 1-7.

O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of acoustic
events using deep neural networks,” in Proc. European Signal
Processing Conference (EUSIPCO), 2014.

G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, and T.N. Sainath, “Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups,” Signal Processing Magazine, IEEE,
vol. 29, no. 6, pp. 82-97, 2012.

Pawel Swietojanski, Jinyu Li, and Jui-Ting Huang, “Investigation of
maxout networks for speech recognition,” in Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), 2014, pp. 7649-7653.
P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Deep
learning for monaural speech separation,” in Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), 2014, pp. 1562—1566.

Y. Bengio, “Learning deep architectures for Al,” Foundations and
trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

1.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” in Proc. Int. Conf. Machine Learning
(ICML), 2013, pp. 1319-1327.

G.E. Dahl, T.N. Sainath, and G.E. Hinton, “Improving deep neural
networks for LVCSR using rectified linear units and dropout,” in
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP). IEEE,
2013, pp. 8609-8613.

S. Kullback and R.A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, pp. 79-86, 1951.



Publication 11

Emre Cakir, Toni Heittola, Heikki Huttunen, Tuomas Virtanen. "Multi-label vs.
Combined Single-label Sound Event Detection with Deep Neural Networks", in

Proceedings of the 23rd European Signal Processing Conference (EUSIPCO). Nice,
France, September 2015, pp. 2551-2555.

©2015 IEEE. Reprinted, with permission, from E. Cakir, T. Heittola, H. Huttunen,
and T. Virtanen, Multi-label vs. Combined Single-label Sound Event Detection

with Deep Neural Networks, Proceedings of the 23rd European Signal Processing
Conference, September 2015.



MULTI-LABEL VS. COMBINED SINGLE-LABEL SOUND EVENT DETECTION WITH DEEP
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ABSTRACT

In real-life audio scenes, many sound events from differ-
ent sources are simultaneously active, which makes the au-
tomatic sound event detection challenging. In this paper, we
compare two different deep learning methods for the detec-
tion of environmental sound events: combined single-label
classification and multi-label classification. We investigate
the accuracy of both methods on the audio with different lev-
els of polyphony. Multi-label classification achieves an over-
all 62.8% accuracy, whereas combined single-label classifi-
cation achieves a very close 61.9% accuracy. The latter ap-
proach offers more flexibility on real-world applications by
gathering the relevant group of sound events in a single clas-
sifier with various combinations.

Index Terms— Sound event detection, deep neural net-
works, multi-label classification, binary classification, audio
analysis

1. INTRODUCTION

Sound event detection (SED) systems aim to recognize and
distinguish particular events related to human, nature or ma-
chine presence. In realistic environments, there are often mul-
tiple sound sources and the sound events originating from
them can overlap in time. Birds singing, footsteps, motorbike
engine etc. can be given as examples for the sound events
in realistic environments. SED systems tackle the problem
for two different cases: monophonic and polyphonic detec-
tion. In monophonic detection, the aim is to find the promi-
nent event in the sound data. It is used in video keyword
tagging [1] and real-life event and context detection [2,3].
Polyphonic SED is capable of detecting multiple sound
events in the same time instance of the sound data. Each in-
stance is associated with a set of labels, i.e., the labels of the
sound events that are active in the given instance. The aim is
to map each instance with its associated label set. The num-
ber of sound events active in an instance is not known a priori,
which introduces a different level of complexity in detection.
Polyphonic SED systems require multi-label classifica-
tion, which is not widely experimented in audio information
retrieval tasks. Generalized Hough transform (GHT) voting
system has been used to recognize overlapping sound events
by summing up the local spectrogram keypoint information
to produce onset hypotheses [4]. In [5], non-negative matrix

factorization (NMF) has been used to first decompose the au-
dio into streams and then recognize a single event from each
stream by using prominent stream selection or stream elimi-
nation. In our previous work we proposed to use multi-label
deep neural networks (DNN) for polyphonic SED and showed
that it exceeds the state-of-the-art NMF + hidden Markov
model (HMM) based approach [5] in accuracy [6].

DNNss are classifiers that are capable of extracting high
level representations of their inputs through the multiple hid-
den layers. This has been found to provide better discrimi-
nation capability in certain pattern recognition tasks. Deep
learning methods have recently given state-of-the-art results
for many applications in environmental SED [2,6] and speech
recognition [7].

In this paper, we explore the use of DNNs in environmen-
tal SED with two different approaches: multi-label (ML) and
combined single-label (CSL) methods. The proposed meth-
ods are illustrated in Figure 1. First, we train DNNs with
multi-label outputs with polyphonic material in a supervised
setting. Then, we train several DNNs with single-label out-
puts again with the same polyphonic material in a supervised
setting. We combine the outputs of the single-label DNNs to
obtain a multi-label output for each time instance. In [8], it
is claimed that decomposing a multi-label classification into
several binary classification problems will lose the correla-
tion information between different labels in a single instance.
However, the flexibility of making different sets of labels for
different applications can be valuable and useful at the ex-
pense of slightly decreased accuracy for some applications,
especially in SED systems. Moreover, using a set of single-
label classifiers allows dynamic inclusion of new labels by
training classifiers only for the new sound events instead of
re-training the complete framework. To the best of our knowl-
edge, this is the first work that compares these two deep learn-
ing approaches on polyphonic SED. Both methods are exper-
imented on realistic sound material with single element.

The organization of this paper is as follows. The problem
is stated and the DNN input and target output is explained in
Section 2. The methodology, including ML and CSL DNN
classification methods, are explained in detail in Section 3.
The experiment material, evaluation procedure and experi-
mental results are given in Section 4. Finally, comments and
conclusions are given in Section 5.



Audio Extacton  Input - -
-' o > — MO —’m
Multi Label
Annotation Multi Label —> -
encoding _-
e —> Single Label i.-_-:

Target output

DNNs Combined Single Label
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2. PROBLEM STATEMENT

The goal of polyphonic SED is to estimate the start and end
times of sound events in an audio signal, and classify the
events into their predefined classes. When the audio is pro-
cessed in short frames, this can be viewed as a multi-label
classification problem. Multi-label learning tackles the prob-
lems where each instance in the training set can be associated
with multiple labels. When it comes to multi-label environ-
mental SED, the sound data typically contains overlapping
events, e.g, a sound recording taken from a street may contain
traffic noise, speech and the rain sound all at the same time.

2.1. Audio Representation

In order to do robust classification on the polyphonic material,
one should choose the features that makes a good discrimina-
tion over the possible outcomes. Mel band energies are used
as audio features in this work, since they have been proved to
obtain better performance over the traditional Mel frequency
cepstral cofficients (MFCC) in polyphonic SED and speech
recognition [6,7]. The reasoning for this can be that DNNs
do not especially require their inputs to be uncorrelated and
by applying discrete cosine transform (DCT), MFCCs discard
some information from the audio material [9]. The recordings
are first amplitude normalized, divided into frames and then
short-time Fourier transform (STFT) is applied on 50 ms time
frames with 50% overlap. Mel filterbank with 40 Mel bands
is used to extract the feature vector u; in each time frame,
where t denotes the position in the domain.

In order to make use of the dynamic properties of the au-
dio, the feature vectors are concatenated with their two pre-
ceding and two succeeding feature vectors. This method is
known as context windowing. Concatenated feature vector x;
is obtained as x; = [u}_, ul_; u] ul ; uf,,]", where u, de-
notes the extracted feature vector. The concatenated feature
vector X; is used as a single training instance for the DNN.

2.2. DNN Target Output

The training of the network is performed in a supervised set-
ting. The start and end times for each sound event in a record-
ing are manually annotated each time they occur in the record-

ing. For each time frame, a target output vector y, of length
N is obtained, where NN is the total number of possible sound
events. The elements of the target vector y, are binary and
determined as

1, if " event is active in frame ¢

Z/t(l) = {0

where y; (1) is the I' entry of target output vector y, and 1 <
[ <N.

@

if I*" event is not active in frame ¢

3. METHODOLOGY

We consider two methods for encoding the presence of si-
multaneous events in an audio recording. One method is to
train a single-label classifier for each label [ and then combine
the outputs from each classifier to obtain a multi-label output.
Second method is to train a multi-label classifier, which pro-
duces a multi-label detection output vector.

3.1. Combined Single-Label DNN classification

For the CSL DNN classification, each label [ is trained and
tested with a different DNN, independent from other labels.
The input features are extracted from polyphonic sound sig-
nals. The reasons for using polyphonic signals is as follows.
Firstly, even for single-label classification, the sound events
are hardly ever isolated in a realistic environment and it is dif-
ficult to separate signals produced by individual sources. Sec-
ondly, using polyphonic data makes the comparison between
the CSL DNN and the ML DNN methods easier to interpret
and analyze.

CSL DNN provides significant flexibility on real-world
applications. To illustrate, if the number of sound events in
a database is NV, then IV different models can be trained and
grouped together in various combinations depending which
of the classes are of interest in a certain application. Besides,
new classes can be easily added to the overall CSL DNN sys-
tem by training a single-label DNN for the new class with the
additional database.

The single-label DNN architecture is composed of an in-
put layer, two or more hidden layers and output layer with a



single output unit. Fully-connected feed-forward DNNs are
used in this work. Starting from h! = x, the outputs h* of the
units for layer k are calculated as

gf =WrnFl pbF 2 <k <M )

h* = f(g") 3)

where W € RP*5 is the weight matrix between layers k — 1
and k, D and S are the number of units for layers & — 1
and k, respectively, b € RS is the bias vector for layer k,
f(-) is the activation function applied element-wise on the
output of each unit in layer k£, and M is the total number
of layers in the DNN. For the hidden layer activation func-
tions, maxout [10] function is used. Instead of applying a
conventional non-linearity on the weighted sum g*, maxout
function groups the weighted sums and passes the maximum
to h*, increasing the sparsity of the gradients and preventing
the network suffering from the vanishing gradients since the
activation outputs are unbounded [11]. For the output layer
activation function, the more conventional logistic sigmoid
function is chosen. Since the sigmoid activation function out-
put hM is bounded between 0 and 1, it is possible and logical
to interpret the DNN output as the detection probability. For
each training instance x;, the CSL DNN output with single
element hM is used as the source-presence prediction ;.

Each single-label DNN is trained with the corresponding
target output y; (1) for label [. In order to estimate the dis-
tance between the source-presence prediction and the target
output for label /, cross-entropy cost function C; (4, y:(1)) is
calculated as

Ci(9e, ye (1) = —ye(1) log(9:) — (1 =y (1)) log(1 — ) (4)

where y; (1) is either 0 or 1 and ¢, € [0,1]. Ci(9¢,ye(1))
is guaranteed to be non-negative and when y; () and g are
closer to each other, it goes closer to zero. Therefore, cross-
entropy cost function is to be minimized by updating the
weight W and bias b vectors. For this purpose, stochastic
gradient descent algorithm (SGD) is used. The gradients in
each layer are computed using the backpropagation algo-
rithm [12].

When the separate training for each label is finished, the
test instances are evaluated by the single-label DNNs and
the source-presence predictions ¢, are obtained. The source
presence-predictions from each single-label DNN are com-
bined in the multi-label vector ¥, = [§:(1) §:(2)...5:(N)].
Then, y, is binarized by thresholding with a certain constant,
leading to a binary estimation vector z; of length N. The
effects of the binarizing threshold is examined in Section 4.

3.2. Multi-Label DNN classification

ML DNN training differs from the CSL DNN training only in
the way that the number of units in the output layer is equal to
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Fig. 2: The percentage of the amount of the test material as a
function of the polyphony level.

the number of sound events [V, therefore we get the source-
presence prediction vector y, of length N for each frame ¢.
This leads to another information to be learned: the correla-
tion structure between the events. Some of the events may
appear together in a large number of training instances and it
can be a valuable information for the DNN.

Instead of calculating the cross-entropy cost function for
a single-label, ML DNN computes the cost function as

C(¥4:¥:) = =y, - log(¥y,) — (1 —y,) -log(1 =§;) (5

where the operator (-) denotes the dot product and the loga-
rithm operator is applied element-wise. The cost value is the
sum of the costs over each label and therefore depends on the
source-presence predictions for each label [.

3.3. Post-processing

Our experiments with realistic audio material showed that en-
vironmental sound events typically have some short bursts of
less active periods. To illustrate, a dog gives a small break to
breathe before each bark, or the footsteps make sounds peri-
odically. Since the annotation of the audio material is done
with a rather coarse time resolution, these less active bursts
are mapped to a sound event of which they do not possess
the spectral characteristics. This results with a rather noisy
behaviour in DNN outputs.

A median filtering based post-processing approach is im-
plemented to filter this noise and smoothen the outputs in
the testing stage for both CSL DNN and ML DNN. For each
frame, the post-processed output Z; is obtained by taking the
median of the binary outputs z; in a 10-frame window (corre-
sponds to 250 ms of audio) as

©)

Z —

. ) 1,if median(z_g).) = 1
0, otherwise

The method is applied on each label separately and continued
by sliding this 10-frame window when every new frame is
processed through the DNN.
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binarizing threshold for ML

4. EXPERIMENTS AND RESULTS

4.1. Sound Material and Setting

The evaluation of both CSL and ML DNN methods are per-
formed on a sound database collected from highly realistic
everyday environments. Recordings from 10 different envi-
ronments, such as beach, bus, street etc. are used to gather
a database of 1133 minutes. From the recordings, 61 most
prominent events, such as clapping, dogs barking, cash regis-
ter beep etc. are selected to be evaluated. The recordings have
varying number of active sound events in each instance, i.e.,
the frames have varying polyphony levels. The amount of test
material according to their polyphony levels are illustrated in
Figure 2. The label cardinality, i.e., the average number of
active events in each frame is 2.55. The database is divided
into non-overlapping groups as 60% training, 20% test and
20% validation sets. Validation set is not used in training and
it is required to determine the optimum parameters without
overfitting the network on the training set. More detailed in-
formation on the sound database can be found in [13].

DNN hyper-parameters such as learning rate, hidden unit
number, initial weight and bias range etc. are selected by do-
ing a grid search over possible values to get the best accuracy
on the validation set. The best performance is obtained with
two hidden layers of 800 units for ML DNN and two hidden
layers of 400 units for CSL DNN. The learning rates for both
methods are 0.02.

4.2. Evaluation Metric

The methods are evaluated by using two different metrics that
are commonly used in multi-label evaluation. First one is the
block-wise F1 score evaluation metric. A sound event is re-
garded as correctly detected if it is marked as present in any
instance of the time block and if it is also present in the an-
notations of the time block. Missed and wrongly detected
events are calculated in the same manner. This approach fits
well with the goal of environmental SED, since it is rather in-
terested in detecting the event rather than the exact start and
end times. Precision and recall are calculated according to the
number of correctly detected, missed and wrongly detected

—e— CSL DNN
—=— ML DNN

Hamming Loss

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

Fig. 41 Hamming loss vs. threshold for CSL DNN and ML
DNN classification.

events. F1 score, the harmonic mean of the precision and re-
call, is calculated in non-overlapping one second blocks. The
final F1 score is calculated by averaging the F1 scores in the
one second time blocks of the test dataset and presented as the
accuracy percentage.

The second multi-label evaluation metric is Hamming
loss [14]. It evaluates how many times a frame is misclas-
sified. It implements exclusive-or (xor) operation between
binary estimation vector Z, and target output vector y, as

T
1 1
T2 N@AY) (D

t:l

Hamming loss(z,y)

where T is the number of time frames, IV is the number of
sound events and the operator A gives the symmetric differ-
ence between Z; and y, as

0, ifz.(I) =y,()
1, otherwise

w(l) Ay, (1) = { ®)

4.3. Results

While converting the DNN outputs ¥, into binary form as z;,
several threshold values have been experimented. For various
thresholds, the average F1 score is presented as the accuracy
percentage for ML DNN and CSL DNN in Figure 3. Both
methods provide a huge improvement over the state-of-the-art
NMF+HMM-based method in [5], which provides 44.9% ac-
curacy on the same database. For both methods, the accuracy
takes its maximum value around threshold 0.5, which indi-
cates that DNN outputs make a balanced probability distribu-
tion estimation between 0 and 1. Hamming loss results from
Figure 4 also supports this theory. Hamming losses for both
methods reach to their minimum around threshold 0.6 (note
that they are very close for thresholds above 0.7). ML DNN
classification provides a 2-3% better accuracy compared to
CSL DNN for low threshold values, but the situation reverses
for higher threshold values. This can be explained with the
fact that the whole activity of a single frame is bundled in
one single DNN output for CSL DNN, whereas in ML DNN,
it is distributed in all the events. Therefore, in a polyphonic
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frame, for each active event, the source-presence predictions
are higher for CSL DNN than ML DNN and better discrimi-
nation is obtained with high threshold values.

The detection accuracy is calculated separately for differ-
ent levels of polyphony and examined in Figure 5. The bina-
rizing threshold is set to 0.5. When the accuracy is averaged
among the polyphony levels according to the data amount for
each polyphony level, CSL DNN achieves an overall 61.9%
accuracy, while ML DNN achieves 62.8% accuracy. CSL
DNN classification provides very similar accuracy compared
to ML DNN, regardless of the polyphony level. The results
show that decomposing a multi-label sound event classifica-
tion problem into multiple single-label problems do not suffer
from losing the correlation structure between the labels.

5. CONCLUSIONS AND COMMENTS

In this paper, two different deep learning methods are pro-
posed and compared for polyphonic SED in real-life environ-
ments. The first method consists of using a multi-label DNN
for classification of all possible sound events, whereas the
second method uses a single-label DNN for each single sound
event and combines the outputs of each DNN for a single time
frame. Although the hypothesis was that CSL DNN would be
affected from losing the correlation information, it provides
very similar accuracy compared to ML DNN. CSL DNN also
presents multiple implementation options by grouping differ-
ent event models together. For the future work, it would be
interesting to apply CSL DNN on other multi-label classifica-
tion problems. Also, context dependent CSL DNN methods
can be experimented by grouping the CSL DNN models for
the events that are likely to occur together, thus creating a
single classifier for a certain context. Finally, an interesting
path would be to apply other multi-label learning methods on
sound event detection and see if our conclusion for multi-label
DNN learning is extensible for other approaches.
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Convolutional Recurrent Neural Networks for
Polyphonic Sound Event Detection

Emre Cakir, Giambattista Parascandolo, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen

Abstract—Sound events often occur in unstructured environ-
ments where they exhibit wide variations in their frequency
content and temporal structure. Convolutional neural networks
(CNN) are able to extract higher level features that are invariant
to local spectral and temporal variations. Recurrent neural net-
works (RNNs) are powerful in learning the longer term temporal
context in the audio signals. CNNs and RNNs as classifiers
have recently shown improved performances over established
methods in various sound recognition tasks. We combine these
two approaches in a Convolutional Recurrent Neural Network
(CRNN) and apply it on a polyphonic sound event detection task.
We compare the performance of the proposed CRNN method
with CNN, RNN, and other established methods, and observe a
considerable improvement for four different datasets consisting
of everyday sound events.

Index Terms—sound event detection, deep neural networks,
convolutional neural networks, recurrent neural networks

I. INTRODUCTION

N our daily lives, we encounter a rich variety of sound

events such as dog bark, footsteps, glass smash and thunder.
Sound event detection (SED), or acoustic event detection, deals
with the automatic identification of these sound events. The
aim of SED is to detect the onset and offset times for each
sound event in an audio recording and associate a textual
descriptor, i.e., a label for each of these events. SED has
been drawing a surging amount of interest in recent years
with applications including audio surveillance [1], healthcare
monitoring [2], urban sound analysis [3], multimedia event
detection [4] and bird call detection [5].

In the literature the terminology varies between authors;
common terms being sound event detection, recognition, tag-
ging and classification. Sound events are defined with pre-
determined labels called sound event classes. In our work,
sound event classification, sound event recognition, or sound
event tagging, all refer to labeling an audio recording with
the sound event classes present, regardless of the onset/offset
times. On the other hand, an SED task includes both on-
set/offset detection for the classes present in the recording
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and classification within the estimated onset/offset, which is
typically the requirement in a real-life scenario.

Sound events often occur in unstructured environments in
real-life. Factors such as environmental noise and overlapping
sources are present in the unstructured environments and they
may introduce a high degree of variation among the sound
events from the same sound event class [6]. Moreover, there
can be multiple sound sources that produce sound events
belonging to the same class, e.g., a dog bark sound event
can be produced from several breeds of dogs with different
acoustic characteristics. These factors mainly represent the
challenges over SED in real-life situations.

SED where at most one simultaneous sound event is de-
tected at a given time instance is called monophonic SED.
Monophonic SED systems can only detect at most one sound
event for any time instance regardless of the number of sound
events present. If the aim of the system is to detect all the
events happening at a time, this is a drawback concerning
the real-life applicability of such systems, because in such
a scenario, multiple sound events are very likely to overlap
in time. For instance, an audio recording from a busy street
may contain footsteps, speech and car horn, all appearing as
a mixture of events. An illustration of a similar situation is
given in Figure 1, where as many as three different sound
events appear at the same time in a mixture. A more suitable
method for such a real-life scenario is polyphonic SED, where
multiple overlapping sound events can be detected at any given
time instance.

SED can be approached either as scene-dependent or scene-
independent. In the former, the information about the acoustic
scene is provided to the system both at training and test time,
and a different model can therefore be trained for each scene.
In the latter, there is no information about the acoustic scene
given to the system.

Previous work on sound events has been mostly focused
on sound event classification, where audio clips consist-
ing of sound events are classified. Apart from established
classifiers—such as support vector machines [1], [3]—deep
learning methods such as deep belief networks [7], convo-
lutional neural networks (CNN) [8], [9], [10] and recurrent
neural networks (RNN) [4], [11] have been recently proposed.
Initially, the interest on SED was more focused on monophonic
SED. Gaussian mixture model (GMM) - Hidden Markov
model (HMM) based modeling—an established method that
has been widely used in automatic speech recognition—has
been proposed to model individual sound events with Gaussian
mixtures and detect each event through HMM states using
Viterbi algorithm [12], [13]. With the emergence of more
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Fig. 1: Sound events in a polyphonic recording synthesized
with isolated sound event samples. Upper panel: audio wave-
form, lower panel: sound event class activity annotations.

advanced deep learning techniques and publicly available real-
life databases that are suitable for the task, polyphonic SED
has attracted more interest in recent years. Non-negative matrix
factorization (NMF) based source separation [14] and deep
learning based methods (such as feedforward neural networks
(FNN) [15], CNN [16] and RNN [11]) have been shown to
perform significantly better compared to established methods
such as GMM-HMM for polyphonic SED.

Deep neural networks [17] have recently achieved remark-
able success in several domains such as image recogni-
tion [18], [19], speech recognition [20], [21], machine trans-
lation [22], even integrating multiple data modalities such as
image and text in image captioning [23]. In most of these
domains, deep learning represents the state-of-the-art.

Feedforward neural networks have been used in mono-
phonic [7] and polyphonic SED in real-life environments [15]
by processing concatenated input frames from a small time
window of the spectrogram. This simple architecture—while
vastly improving over established approaches such as GMM-
HMMs [24] and NMF source separation based SED [25],
[26]—presents two major shortcomings: (1) it lacks both
time and frequency invariance—due to the fixed connections
between the input and the hidden units—which would allow
to model small variations in the events; (2) temporal context is
restricted to short time windows, preventing effective modeling
of typically longer events (e.g., rain) and events correlations.

CNNs [27] can address the former limitation by learning
filters that are shifted in both time and frequency [8], lacking
however longer temporal context information. Recurrent neu-
ral networks (RNNs), which have been successfully applied to
automatic speech recognition (ASR) [20] and polyphonic SED
[11], solve the latter shortcoming by integrating information
from the earlier time windows, presenting a theoretically
unlimited context information. However, RNNs do not easily
capture the invariance in the frequency domain, rendering a
high-level modeling of the data more difficult. In order to
benefit from both approaches, the two architectures can be
combined into a single network with convolutional layers
followed by recurrent layers, often referred to as convolutional
recurrent neural network (CRNN). Similar approaches com-
bining CNNs and RNNs have been presented recently in ASR
[21], [28], [29] and music classification [30].

In this paper we propose the use of multi-label convolutional

recurrent neural network for polyphonic, scene-independent
sound event detection in real-life recordings. This approach
integrates the strengths of both CNNs and RNNs, which have
shown excellent performance in acoustic pattern recognition
applications [4], [8], [9], [10], while overcoming their indi-
vidual weaknesses. We evaluate the proposed method on three
datasets of real-life recordings and compare its performance
to FNN, CNN, RNN and GMM baselines. The proposed
method is shown to outperform previous sound event detection
approaches.

The rest of the paper is organized as follows. In Section II
the problem of polyphonic SED in real-life environments is
described formally and the CRNN architecture proposed for
the task is presented. In Section III we present the evaluation
framework used to measure the performance of the different
neural networks architectures. In Section IV experimental
results, discussions over the results and comparisons with
baseline methods are reported. In Section V we summarize
our conclusions from this work.

II. METHOD
A. Problem formulation

The aim of polyphonic SED is to temporally locate and label
the sound event classes present in a polyphonic audio signal.
Polyphonic SED can be formulated in two stages: sound
representation and classification. In sound representation stage,
frame-level sound features (such as mel band energies and
mel frequency cepstral coefficients (MFCC)) are extracted for
each time frame ¢ in the audio signal to obtain a feature vector
x; € RF, where F' € N is the number of features per frame. In
the classification stage, the task is to estimate the probabilities
p(ye(k) | x4, 0) for event classes k = 1,2,..., K in frame ¢,
where @ denotes the parameters of the classifier. The event
activity probabilities are then binarized by thresholding, e.g.
over a constant, to obtain event activity predictions ¥, € R¥.

The classifier parameters 6 are trained by supervised learn-
ing, and the target outputs y, for each frame are obtained
from the onset/offset annotations of the sound event classes.
If class k is present during frame ¢, y; (k) will be set to 1, and
0 otherwise. The trained model will then be used to predict
the activity of the sound event classes when the onset/offset
annotations are unavailable, as in real-life situations.

For polyphonic SED, the target binary output vector y; can
have multiple non-zero elements since several classes can be
present in the same frame ¢. Therefore, polyphonic SED can
be formulated as a multi-label classification problem in which
the sound event classes are located by multi-label classification
over consecutive time frames. By combining the classification
results over consecutive time frames, the onset/offset times for
each class can be determined.

Sound events possess temporal characteristics that can be
beneficial for SED. Certain sound events can be easily distin-
guished by their impulsive characteristics (e.g., glass smash),
while some sound events typically continue for a long time
period (e.g. rain). Therefore, classification methods that can
preserve the temporal context along the sequential feature
vectors are very suitable for SED. For these methods, the input



features are presented as a context window matrix Xy.;47—1,
where T' € N is the number of frames that defines the sequence
length of the temporal context, and the target output matrix
Y:.1+7—1 is composed of the target outputs y; from frames ¢
to t + 71 — 1. For the sake of simplicity and ease of notation,
X will be used to denote X;.;y7r—1—and similarly Y for
Y ..+ 7—1— throughout the rest of the paper.

B. Proposed Method

The CRNN proposed in this work, depicted in Fig. 2,
consists of four parts: (1) at the top of the architecture, a time-
frequency representation of the data (a context window of F'
log mel band energies over 1" frames) is fed to L. € N con-
volutional layers with non-overlapping pooling over frequency
axis; (2) the feature maps of the last convolutional layer are
stacked over the frequency axis and fed to L, € N recurrent
layers; (3) a single feedforward layer with sigmoid activation
reads the final recurrent layer outputs and estimates event
activity probabilities for each frame and (4) event activity
probabilities are binarized by thresholding over a constant to
obtain event activity predictions.

In this structure the convolutional layers act as feature
extractors, the recurrent layers integrate the extracted features
over time thus providing the context information, and finally
the feedforward layer produce the activity probabilities for
each class. The stack of convolutional, recurrent and feedfor-
ward layers is trained jointly through backpropagation. Next,
we present the general network architecture in detail for each
of the four parts in the proposed method.

1) Convolutional layers: Context window of log mel band
energies X € R”*7 is fed as input to the CNN layers with
two-dimensional convolutional filters. For each CNN layer,
after passing the feature map outputs through an activation
function (rectified linear unit (ReLU) used in this work), non-
overlapping max pooling is used to reduce the dimensionality
of the data and to provide more frequency invariance. As
depicted in Fig. 2, the time dimension is maintained intact
(i.e. does not shrink) by computing the max pooling operation
in the frequency dimension only—as done in [21], [31]—and
by zero-padding the inputs to the convolutional layers (also
known as same convolution). This is done in order to preserve
alignment between each target output vector y; and hidden
activations hy.

After L. convolutional layers, the output of the CNN is a
tensor H € RMXF'XT \where M is the number of feature
maps for the last CNN layer, and F’ is the number of
frequency bands remaining after several pooling operations
through CNN layers.

2) Recurrent layers: After stacking the feature map out-
puts over the frequency axis, the CNN output H € R(MF DxT
for layer L, is fed to the RNN as a sequence of frames hle.
The RNN part consists of L, stacked recurrent layers each
computing and outputting a hidden vector h; for each frame
as

Input
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Frequency
max pooling

Convolution

Frequency
max pooling

Stacking

Recurrent
layer
activations

Feed forward
layer
activations

Event activity
predictions

Fig. 2: Overview of the proposed CRNN method. (1): Multiple
convolutional layers with max pooling in frequency axis,
(2): The outputs of the last convolutional layer stacked over
frequency axis and fed to multiple stacked recurrent layers,
(3): feedforward layer as output layer and (4): binarization of
event activity probabilities.
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The function F, which can represent a long short term memory
(LSTM) unit [32] or gated recurrent unit (GRU) [33], has two
inputs: The output of the current frame of the previous layer
(e.g., htL“), and the output of the previous frame of the current

layer (e.g., hf_”;'l).



3) Feedforward layer: recurrent layers are followed by a
single feedforward layer which will be used as the output layer
of the network. The feedforward layer outputs are obtained
from the last recurrent layer activations hX=*Zr as

hth+L7~+1 _ g(htl/c+LT)7 ?)

where G represents a feedforward layer with sigmoid activa-
tion. Feedforward layer applies the same set of weights for
the features extracted from each frame.

4) Binarization: The outputs hZ=TL 1 of the feedfor-
ward layer are used as the event activity probabilities for each
class k=1,2,..K as

p(yi(k) | Xg:t,0) = hFetErtl )

where K is the number of classes and 6 represents the
parameters of all the layers of the network combined. Finally,
event activity predictions y; are obtained by thresholding the
probabilities over a constant C' € (0,1) as

N 1,  (k 4,0) > C
ym_{ p(ye(k) | x01,6) @
0, otherwise

Regularization: In order to reduce overfitting, we ex-
perimented with dropout [34] regularization in the network,
which has proven to be extremely effective in several deep
learning applications [18]. The basic idea behind dropout is to
temporarily remove at training time a certain portion of hidden
units from the network, with the dropped units being randomly
chosen at each iteration. This reduces units co-adaptation,
approximates model averaging [34], and can be seen as a
form of data augmentation without domain knowledge. For
the recurrent layers we adopted the dropout proposed in [35],
where the choice of dropped units is kept constant along a
sequence.

To speed up the training phase we train our networks with
batch normalization layers [36] after every convolutional or
fully connected layer. Batch normalization reduces the internal
covariate shift—i.e., the distribution of network activations
during training—by normalizing a layer output to zero mean
and unit variance, using approximate statistics computed on
the training mini-batch.

Comparison to other CRNN architectures: The CRNN
configuration used in this work has several points of similarity
with the network presented in [21] for speech recognition. The
main differences are the following: (i) We do not use any linear
projection layer, neither at the end of the CNN part of the
CRNN, nor after each recurrent layer. (ii) We use 5x5 kernels
in all of our convolutional layers, compared to the 9x9 and
4x3 filters for the first and second layer respectively. (iii) Our
architecture has also more convolutional layers (up to 4 instead
of 2) and recurrent layers (up to 3 instead of 2). (iv) We use
GRU instead of LSTM. (v) We use much longer sequences, up
to thousands of steps, compared to 20 steps in [21]. While very
long term context is not helpful in speech processing, since
words and utterances are quite short in time, in SED there
are several events that span over several seconds. (vi) For the
experiments on CHiME-Home dataset we incorporate a new
max pooling layer (only on time domain) before the output

layer. Therefore, if we have N mid-level features for 7" frames
of a context window, we end up with IV features for the whole
context window to be fed to the output layer.

CNNs and RNN : 1t is possible to see CNNs and RNNs as
specific instances of the CRNN architecture presented in this
section: a CNN is a CRNN with zero recurrent layers, and
an RNN is a CRNN with zero convolutional layers. In order
to assess the benefits of using CRNNs compared to CNNs
or RNNs alone, in Section III we directly compare the three
architectures by removing the recurrent or convolutional layer,
i.e., CNNs and RNNs respectively.

III. EVALUATION

In order to test the proposed method, we run a series of
experiments on four different datasets. We evaluate the results
by comparing the system outputs to the annotated references.
Since we are approaching the task as scene-independent, on
each dataset we train a single model regardless of the presence
of different acoustic scenes.

A. Datasets and Settings

We evaluate the proposed method on four datasets, one of
which is artificially generated as mixtures of isolated sound
events, and three are recorded from real-life environments.

While an evaluation performed on real audio data would
be ideal, human annotations tend to be somewhat subjective,
especially when precise onset and offset are required for over-
lapping events. For this reason we create our own synthetic
dataset—from here onwards referred to as TUT Sound Events
Synthetic 2016 — where we use frame energy based automatic
annotation of sound events.

In order to evaluate the proposed method in real-life con-
ditions, we use TUT Sound Events 2009. This proprietary
dataset contains real-life recordings from 10 different scenes
and has been used in many previous works. We also compute
and show results on the TUT Sound Events 2016 develop-
ment and CHiME-Home dataset, which were used as part of
DCASE2016 challenge '.

a) TUT Sound Events Synthetic 2016 (TUT-SED Syn-
thetic 2016): The primary evaluation dataset consists of
synthetic mixtures created by mixing isolated sound events
from 16 sound event classes. Polyphonic mixture were created
by mixing 994 sound event samples. From the 100 mixtures
created, 60% are used for training, 20% for testing and 20%
for validation. The total length of the data is 566 minutes.
Different instances of the sound events are used to synthesize
the training, validation and test partitions. Mixtures were
created by randomly selecting event instance and from it,
randomly, a segment of length 3-15 seconds. Mixtures do
not contain any additional background noise. Dataset creation
procedure explanation and metadata can be found in the
supporting website for the paper?.

Thitp://www.cs.tut.fi/sgn/arg/dcase2016/
Zhttp://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016



b) TUT Sound Events 2009 (TUT-SED 2009): This
dataset, first presented in [37], consists of 8 to 14 binaural
recordings from 10 real-life scenes. Each recording is 10 to
30 minutes long, for a total of 1133 minutes. The 10 scenes
are: basketball game, beach, inside a bus, inside a car, hallway,
office, restaurant, shop, street and stadium with track and
field events. A total of 61 classes were defined, including
(wind, yelling, car, shoe squeaks, etc.) and one extra class
for unknown or rare events. The average number of events
active at the same time is 2.53. Event activity annotations were
done manually, which introduces a degree of subjectivity. The
database has a five-fold cross-validation setup with training,
validation and test set split, each consisting of about 60%,
20% and 20% of the data respectively from each scene. The
dataset unfortunately can not be made public due to licensing
issues, however three ~ 10 minutes samples from the dataset
are available at 3.

¢) TUT Sound Events 2016 development (TUT-SED
2016): This dataset consists of recordings from two real-life
scenes: residential area and home [38]. The recordings are
captured each in a different location (i.e., different streets,
different homes) leading to a large variability on active sound
event classes between recordings. For each location, a 3-5
minute long binaural audio recording is provided, adding up
to 78 minutes of audio. The recordings have been manually
annotated. In total, there are seven annotated sound event
classes for residential area recordings and 11 annotated sound
event classes for home recordings. The dataset and metadata
is available through  and 3.

The four-fold cross-validation setup published along with
the dataset [38] is used in the evaluations. Twenty percent of
the training set recordings are assigned for validation in the
training stage of the neural networks. Since in this work we in-
vestigate scene-independent SED, we discard the information
about the scene, contrary to the DCASE2016 challenge setup.
Therefore, instead of training a separate classifier for each
scene, we train a single classifier to be used in all scenes. In
TUT-SED 2009 all audio material for a scene was recorded in
a single location, whereas TUT-SED 2016 contains multiple
locations per scene.

d) CHIiME-Home: CHiME-Home dataset [39] consists
of 4-second audio chunks from home environments. The anno-
tations are based on seven sound classes, namely child speech,
adult male speech, adult female speech, video game / TV, per-
cussive sounds, broadband noise and other identifiable sounds.
In this work, we use the same, refined setup of CHiME-
Home as it is used in audio tagging task in DCASE2016
challenge [40], namely 1946 chunks for development (in four
folds) and 846 chunks for evaluation.

The main difference between this dataset and the previous
three is that the annotations are made per chunk instead of per
frame. Each chunk is annotated with one or multiple labels.
In order to adapt our architecture to the lack of frame-level
annotations, we simply add a temporal max-pooling layer—
that pools the predictions over time—before the output layer

3http://arg.cs.tut.fi/demo/CAS Abrowser/
“http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/#tut-sed-2016
Shttps://zenodo.org/record/45759#. WBoUGrPIbRY

for FNN, CNN, RNN and CRNN. CHiME-Home dataset is
available at ©.

B. Evaluation Metrics

In this work, segment-based evaluation metrics are used.
The segment lengths used in this work are (1): a single time
frame (40 ms in this work) and (2): a one-second segment. The
segment length for each metric is annotated with the subscript
(e.g., Flgm and F'1jgec).

Segment-based F1 score calculated in a single time frame
(F'lfmy) is used as the primary evaluation metric [41]. For each
segment in the test set, intermediate statistics, i.e., the number
of true positive (7P), false positive (FP) and false negative
(FN) entries, are calculated as follows. If an event

« is detected in one of the frames inside a segment and it is

also present in the same segment of the annotated data,
that event is regarded as TP.

o is not detected in any of the frames inside a segment but
it is present in the same segment of the annotated data,
that event is regarded as FN.
is detected in one of the frames inside a segment but it
is not present in the same segment of the annotated data,
that event is regarded as FP.

These intermediate statistics are accumulated over the test data
and then over the folds. This way, each active instance per
evaluated segment has equal influence on the evaluation score.
This calculation method is referred to as micro-averaging,
and is the recommended method for evaluation of classifier
[42]. Precision (P) and recall (R) are calculated from the
accumulated intermediate statistics as
TP R TP
~ TP+FP ~ TP+FN
These two metrics are finally combined as their harmonic
mean, F1I score, which can be formulated as
Fl— 2-P-R

P+ R
More detailed and visualized explanation of segment-based F1
score in multi label setting can be found in [41].

The second evaluation metric is segment-based error rate
as proposed in [41]. For error rate, intermediate statistics, i.e.,
the number of substitutions (s), insertions (i), deletions (d) and
active classes from annotations (a) are calculated per segment
as explained in detail in [41]. Then, the total error rate is
calculated as

P

(6))

Q)

N N N
Z St + Z it + Z dt
ER = t=1 t;l t=1 (7
a,

where subscript ¢ represents segment index and N is the total
number of segments.

Both evaluation metrics are calculated from the accumulated
sum for their corresponding intermediate statistics over the
segments of the whole test set. If there are multiple scenes in

Shttps://archive.org/details/chime-home



TABLE I: Final hyperparameters used for the evaluation based on the validation results from the hyperparameter grid search.

TUT-SED Synthetic 2016 TUT-SED 2009 TUT-SED 2016 CHiME-Home
CNN RNN CRNN CNN RNN CRNN | CNN RNN CRNN | CNN RNN CRNN
# CNN layers 3 - 3 3 3 3 - 3 3 - 4
pool size (2.2.2) - (542 | (542 (54.2) | (542 - (2.2,2) | 542 - (2.2,2,1)
# RNN layers - 3 1 - 1 - 3 3 - 2 1
# FNN layers 3 2 - 1 - 1 4 - 1 1 -
# feature maps/hidden units 256 512 256 256 256 256 256 256 96 256 256 256
sequence length (s) 256 512 20.48 256 2048 2048 256 2048 256 4 4 4
# Parameters 37M  45M 3.6M 34M  13M  37M 34M  13M 743K | 3.6M 690K 6.1M

the dataset, evaluation metrics are calculated for each scene
separately and then the results are presented as the average
across the scenes.

The main metric used in previous works [11], [14], [15] on
TUT-SED 2009 dataset differs from the F1 score calculation
used in this paper. In previous works, F1 score was computed
in each segment, then averaged along segments for each scene,
and finally averaged across scene scores, instead of accu-
mulating intermediate statistics. This leads to measurement
bias under high class imbalance between the classes and also
between folds. However, in order to give a comprehensive
comparison of our proposed method with previous works on
this dataset, we also report the results with this legacy F1 score
in Section IV-B.

For CHiME-Home dataset, equal error rate (EER) has been
used as the evaluation metric in order to compare the results
with DCASE2016 challenge submissions, where EER has been
the main evaluation metric.

C. Baselines

For this work, we compare the proposed method with
two recent approaches: the Gaussian mixture model (GMM)
of [38] and the feedforward neural network model (FNN)
from [15]. GMM has been chosen as a baseline method
since it is an established generative modeling method used
in many sound recognition tasks [12], [13], [43]. In parallel
with the recent surge of deep learning techniques in pattern
recognition, FNNs have been shown to vastly outperform
GMM based methods in SED [15]. Moreover, this FNN
architecture represents a straightforward deep learning method
that can be used as a baseline for more complex architectures
such as CNN, RNN and the proposed CRNN.

GMM: The first baseline system is based on a binary
frame-classification approach, where for each sound event
class a binary classifier is set up [38]. Each binary classifier
consists of a positive class model and a negative class model.
The positive class model is trained using the audio segments
annotated as belonging to the modeled event class, and a
negative class model is trained using the rest of the audio. The
system uses MFCCs as features and a GMM-based classifier.
MEFCCs are calculated using 40 ms frames with Hamming
window and 50% overlap and 40 mel bands. The first 20 static
coefficients are kept, and delta and acceleration coefficients
are calculated using a window length of 9 frames. The Oth
order static coefficient is excluded, resulting in a frame-based

feature vector of dimension 59. For each sound event, a
positive model and a negative model are trained. The models
are trained using expectation-maximization algorithm, using k-
means algorithm to initialize the training process and diagonal
covariance matrices. The number of parameters for GMM
baseline is 3808« K, where K is the number of classes. In the
detection stage, the decision is based on the likelihood ratio
between the positive and negative models for each individual
sound class event, with a sliding window of one second. The
system is used as a baseline in the DCASE2016 challenge [44],
however, in this study the system is used as scene-independent
to match the setting of the other methods presented.

FNN: The second baseline system is a deep multi-label
FNN with temporal context [15]. As the sound features, 40 log
mel band energy features are extracted for each 40 ms time
frame with 50% overlap. For the input, consecutive feature
vectors are stacked in five vector blocks, resulting in a 100 ms
context window. As the hidden layers, two feedforward layers
of 1600 hidden units with maxout activation [45] with pool
size of 2 units are used. For the output layer, a feedforward
layer of K units with sigmoid activation is used to obtain
event activity probabilities per context window, where K is the
number of classes. The sliding window post-processing of the
event activity probabilities in [15] has not been implemented
for the baseline experiments in order to make a fair comparison
based on classifier architecture for different deep learning
methods. The number of parameters in the baseline FNN
model is around 1.6 million.

D. Experiments set-up

Preprocessing: For all neural networks (FNN, CNN,
RNN and CRNN) we use log mel band energies as acous-
tic features. We first compute short-time Fourier transform
(STFT) of the recordings in 40 ms frames with 50% overlap,
then compute mel band energies through mel filterbank with
40 bands spanning O to 22050 Hz, which is the Nyquist
rate. After computing the logarithm of the mel band energies,
each energy band is normalized by subtracting its mean and
dividing by its standard deviation computed over the training
set. The normalized log mel band energies are finally split
into sequences. During training we use overlapped sequences,
i.e. we sample the sub-sequences with a different starting
point at every epoch, by moving the starting index by a fixed
amount that is not a factor of the sequence length (73 in our
experiments). The stride is not equal to 1 in order to have



TABLE II: F1 score and error rate results for single frame segments (F'1gy, and E'Rypy) and one second segments (F'14c and
FER)c)- Bold face indicates the best performing method for the given metric.

TUT-SED Synthetic 2016 TUT-SED 2009 TUT-SED 2016
Method Flpm E R Fligee ERjec Flm E Rfim Fligee ERigec Flfm E Riim Flisee ERjec
GMM [38]  40.5 0.78 453 0.72 33.0 1.34 34.1 1.60 14.1 112 17.9 1.13
FNN [15] 492408 0.6840.02 502414  L1£0.1 | 609404 056+0.01 57.1402 114001 | 26.7+1.4 0.99+0.03 32.5+12 1.3240.06
CNN 59.8+0.9 0.56+£0.01 59.9+1.2 0.78+0.08 | 648402 0.50£0.0 63.2+0.5 0.75+0.02 | 23.0£2.6 1.02£0.06 26.4+1.9 1.09+0.06
RNN 528+15  0.6£0.02 57.1£0.9 0.64+£0.01 | 624£1.0 0.52£0.01 61.8+£0.8 0.55+0.01 | 27.6£1.8 1.04£0.02 29.7+14 1.10£0.04
CRNN 66.4£0.6 0.48+0.01 68.7£0.7 0.47+0.01 | 69.7£0.4 0.45+£0.0 69.3+£0.2 0.48+£0.0 | 27.5£2.6 0.98+0.04 30317 0.95+0.02
function. In convolutional layers we use filters with shape
(5,5); in recurrent layers we opted for GRU, since preliminary
experiments using LSTM yielded similar results and GRU
alarms . .
units have a smaller number of parameters. The weights are
crowd cheering 3 = initialized according to the scheme proposed in [46]. Binary
footsteps i - g cross-entropy is set as the loss function, and all networks are
‘ - — — w e trained with Adam [47] as gradient descent optimizer, with
rain Sl mm . _ the default parameters proposed in the original paper.
thunder ' | | b To evaluate the effect of having both convolutional and re-
0 40 80 120 160 sec

[l Annotation [T] CNN [] RNN [l CRNN

Fig. 3: Annotations and event activity predictions for CNN,
RNN and CRNN over a mixture from TUT-SED Synthetic
2016. For clarity, the classes that are not present in the mixture
are omitted.

effectively different sub-sequences from one training epoch to
the next one. For validation and test data we do not use any
overlap.

While finer frequency resolution or different representations
could improve the accuracy, our main goal is to compare the
architectures. We opted for this setting as it was recently used
with very good performance in several works on SED [11],
[15].

Neural network configurations: Since the size of the
dataset usually affects the optimal network architecture, we
do a hyperparameter search by running a series of experi-
ments over predetermined ranges. We select for each network
architecture the hyperparameter configuration that leads to the
best results on the validation set, and use this architecture to
compute the results on the test set.

For TUT-SED Synthetic 2016 and CHiME-Home datasets,
we run a hyperparameter grid search on the number of CNN
feature maps and RNN hidden units {96, 256} (set to the
same value); the number of recurrent layers {1, 2, 3}; and
the number of CNN layers {1, 2, 3 ,4} with the following
frequency max pooling arrangements after each convolutional
layer {(4), (2,2), (4,2),(8,5),(2,2,2),(5,4,2),(2,2,2,1), (5,
2, 2, 2)}. Here, the numbers denote the number of frequency
bands at each max pooling step; e.g., the configuration (5, 4,
2) pools the original 40 bands to one band in three stages: 40
bands — 8 bands — 2 bands — 1 band.

All networks have batch normalization layers after convo-
lutional layers and dropout rate 0.25, which were found to be
helpful in preliminary experiments. The output layer consists
of a node for each class and has the sigmoid as activation

current layers in the same architecture, we compare the CRNN
with CNNs and RNNs alone. For both CNN and RNN we run
the same hyperparameter optimization procedure described for
CRNN, replacing recurrent layers with feedforward layers for
CNNs, and removing convolutional layers for RNNs while
adding feedforward layers before the output layer. This allows
for a fair comparison, providing the possibility of having
equally deep networks for all three architectures.

After this first optimization process, we use the best
CRNNs, CNNs and RNNSs to separately test the effect of vary-
ing other hyperparameters. More specifically we investigate
how performance is affected by variation of the CNN filter
shapes and the sequence length. For the CRNN we test filter
shapes in the set {(3,3), (5,5), (11,11), (1,5), (5,1), (3,11),
(11,3)}, where (x, %) represents the filter lengths in frequency
and time axes, respectively. For CRNN and RNN, we test
shorter and longer sequences than the initial value of 128
frames, experimenting in the range {8, 32, 128, 256, 512,
1024, 2048} frames, which correspond to {0.16, 0.64, 2.56,
5.12,10.24, 20.48, 40.96} seconds respectively. We finally use
the hyperparameters that provide the highest validation scores
as our final CRNN, CNN and RNN models.

For the other two datasets (TUT-SED 2009 and TUT-
SED 2016) we select a group of best performing model
configurations on validation data from TUT-SED Synthetic
2016 experiments and to account for the different amount of
data we run another smaller hyperparameter search, varying
the amount of dropout and the sequence length. Again, we
then select the best performing networks on the validation
score to compute the test results. The hyperparameters used
in the evaluation for all three datasets is presented in Table I.

The event activity probabilities are thresholded at C' = 0.5,
in order to obtain the binary activity matrix used to compute
the reference metrics based on the ground truth. All networks
are trained until overfitting starts to arise: as a criterion we use
early stopping on the validation metric, halting the training
if the score is not improving for more than 100 epochs and
reverting the weights to the values that best performed on



TABLE III: F'lgy, for CNN, RNN and CRNN for each class

in TUT-SED Synthetic 2016.

Class avg. (secs) total (secs) CNN RNN CRNN
glass smash 1.2 621 5748.6 48+2.0 54+6.7
gun shot 1.7 534 53+59 64423 73+1.8
cat meowing 2.1 941 37+4.6 29+45 42439
dog barking 5.0 716 69+3.3 51+25 73+3.1
thunder 59 3007 55433 46+22 63+1.9
bird singing 6.1 2298 44+1.2 4143.1 53+23
horse walk 6.4 1614 46+2.1 39+2.7 45+2.4
baby crying 6.9 2007 46+5.7 46+1.1 59+3.0
motorcycle 7.0 3691 4743.1 44122 47+2.7
footsteps 7.1 1173 414£2.0 34+1.2 47+1.7
crowd applause 73 3278 68+1.8 57+1.5 71+0.6
bus 7.8 3464 60+2.0 55+2.5 66+2.4
mixer 79 4020 62+5.6 57464 82427
crowd cheering 8.1 4825 72429 64+2.7 77+1.1
alarms 8.2 4405 64+2.2 50+53 66+2.9
rain 8.2 3975 71+£2.0 59+2.6 72+1.9
validation.

For feature extraction, the Python library Librosa [48]
has been used in this work. For classifier implementations,
deep learning package Keras (version 1.1.0) [49] is used with
Theano (version 0.8.2) as backend [50]. The networks are
trained on NVIDIA Tesla K40t and K80 GPUs.

IV. RESULTS

In this section, we present results for all the datasets
and experiments described in Section III. The evaluation of
CNN, RNN and CRNN methods are conducted using the
hyperparameters given in Table 1. All the reported results are
computed on the test sets. Unless otherwise stated, we run
each neural network based experiment ten times with different
random seeds (five times for TUT-SED 2009) to reflect the
effect of random weight initialization. We provide the mean
and the standard deviation of these experiments in this section.
Best performing method is highlighted with bold face in the
tables of this section. The methods whose best performance
among the ten runs is within one standard deviation of the
best performing method is also highlighted with bold face.

The main results with the best performing (based on the
validation data) CRNN, CNN, RNN, and the GMM and FNN
baselines are reported in Table II. Results are calculated
according to the description in Section III-B where each
event instance irrespective of the class is taken into account in
equal manner. As shown in the table, the CRNNs consistently
outperforms CNNs, RNNs and the two baseline methods on
all three datasets for the main metric.

A. TUT Sound Events Synthetic 2016

As presented in Table II, CRNN improved by absolute 6.6%
and 13.6% on frame-based F1 compared to CNN and RNN
respectively for TUT-SED synthetic 2016 dataset. Considering
the number of parameters used for each method (see Table I),
the performance of CRNN indicates an architectural advantage
compared to CNN and RNN methods. All the four deep learn-
ing based methods outperform the baseline GMM method.

TABLE 1V: Flg, for accuracy vs. convolution filter shape
for TUT-SED Synthetic 2016 dataset. (x,*) represents filter
lengths in frequency and time axis, respectively.

Filter shape  (3.3) (5.5 (IL11) (L5 5.1) @11 (11,3)
Flm 672 68.3 62.6 285 60.6 674 61.2
70 T T T T T T
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Fig. 4: Number of parameters vs. accuracy for CNN, RNN
and CRNN.

As claimed in [51], this may be due to the capability of
deep learning methods to use different subsets of hidden units
to model different sound events simultaneously. An example
mixture from TUT-SED Synthetic 2016 test set is presented in
Figure 3 with annotations and event activity predictions from
CNN, RNN and CRNN.

1) Class-wise performance: The class-wise performance
with F'lgy, metric for CNN, RNN and CRNN methods along
with the average and total duration of the classes are presented
in Table III. CRNN outperforms both CNN and RNN on
almost all classes. It should be kept in mind that each class is
likely to appear together with different classes rather than iso-
lated. Therefore the results in Table III present the performance
of the methods for each class in a polyphonic setting, as would
be the case in a real-life environment. The worst performing
class for all three networks is cat meowing, which consists
of short, harmonic sounds. We observed that cat meowing
samples are mostly confused by baby crying, which has similar
acoustic characteristics. Besides, short, non-impulsive sound
events are more likely to be masked by another overlapping
sound event, which makes their detection more challenging.
CRNN performance is considerably better compared to CNN
and RNN for gun shot, thunder, bird singing, baby crying
and mixer sound events. However, it is hard to make any
generalizations on the acoustic characteristics of these events
that can explain the superior performance.

2) Effects of filter shape: The effect of the convolutional
filter shape is presented in Table IV. Since these experiments
were part of the hyperparameter grid search, each experiment
is conducted only once. Small kernels, such as (5,5) and (3,3),
were found to perform the best in the experiments run on this
dataset. This is consistent with the results presented in [31] on
a similar task. The very low performance given for the filter
shape (1,5) highlights the importance of including multiple
frequency bands in the convolution when spectrogram based
features are used as input for the CRNN.
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Fig. 5: Absolute accuracy change vs. pitch-shifting over £2
quartertones for CNN, RNN and CRNN.

3) Number of parameters vs. accuracy: The effect of num-
ber of parameters on the accuracy is investigated in Figure 4.
The points in the figure represent the test accuracy with F'lgp,
metric for the hyperparameter grid search experiments. Each
experiment is conducted one time only. Two observations can
be made from the figure. For the same number of parameters,
CRNN has a clear performance advantage over CNN and
RNN. This indicates that the high performance of CRNN can
be explained with the architectural advantage rather than the
model size. In addition, there can be a significant performance
shift for the same type of networks with the same number
of parameters, which means that a careful grid search on
hyperparameters (e.g. shallow with more hidden units per layer
vs. deep with less hidden units per layer) is crucial in finding
the optimal network structure.

4) Frequency shift invariance: Sound events may exhibit
small variations in their frequency content. In order to in-
vestigate the robustness of the networks to small frequency
variations, pitch shift experiments are conducted and the
absolute changes in frame-based F1 score are presented in
Figure 5. For these experiments, each network is first trained
with the original training data. Then, using Librosa’s pitch-
shift function, the pitch for the mixtures in the test set is
shifted by +2 quartertones. The test results show a significant
absolute drop in accuracy for RNNs when the frequency
content is shifted slightly. As expected, CNN and CRNN
are more robust to small changes in frequency content due
to the convolution and max-pooling operations. However,
accuracy decrease difference between the methods diminishes
for negative pitch shift, for which the reasons should be further
investigated. It should be also noted that RNN has the lowest
base accuracy, so it is relatively more affected for the same
amount of absolute accuracy decrease (see Table II).

5) Closer look on network outputs: A comparative study
on the neural network outputs, which are regarded as event
activity probabilities, for a 13-second sequence of the test set
is presented in Figure 6. For the parts of the sequence where
dog barking and baby crying appear alone, all three networks
successfully detect these events. However, when a gun shot
appears overlapping with baby crying, only CRNN can detect
the gun shot although there is a significant change in the input

Input features

Log mel energy bins

Ground truth

baby crying

bird singing
crowd applause
crowd cheering

dog barking
qun shot
mixer

rain

Event activity probabilities for CNN
baby crying

Event activity probabilities for CRNN
baby crying
bird singing

crowd applause

crowd cheering
dog barking
gun shot
mixer

rain
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Fig. 6: Input features, ground truth and event activity prob-
abilities for CNN, RNN and CRNN from a sequence of test
examples from TUT-SED synthetic 2016.

feature content. This indicates the efficient modeling of the gun
shot by CRNN which improves the detection accuracy even
in polyphonic conditions. Moreover, when crowd applause
begins to appear in the signal, it almost completely masks
baby crying, as it is evident from the input features. CNN
correctly detects crowd applause, but misses the masked baby
crying in this case, and RNN ignores the significant change in
features and keeps detecting baby crying. RNN’s insensitivity
to the input feature change can be explained with its input
gate not passing through new inputs to recurrent layers. On
the other hand, CRNN correctly detects both events and almost
perfectly matches the ground truth along the whole sequence.

B. TUT-SED 2009

For a comprehensive comparison, results with different
methods applied to the same cross-validation setup and pub-
lished over the years are shown in Table V. The main metric
used in these previous works is averaged over folds, and
may be influenced by distribution of events in the folds (see
Section III-B). In order to allow a direct comparison, we have
computed all metrics in the table the same way.

First published systems were scene-dependent, where in-
formation about the scene is provided to the system and
separate event models are trained for each scene [14], [24],
[25]. More recent work [11], [15], as well as the current study,
consist of scene-independent systems. Methods [24], [25] are



TABLE V: Results for TUT-SED 2009 based on the legacy
F1. Methods marked with * are trained in scene-dependent
setting.

Method Legacy F'1jgec
HMM multiple Viterbi decoding* [24] 20.4
NMF-HMM* [25] 36.7
NME-HMM + stream elimination* [25] 44.9
GMM* [38] 34.6
Coupled NMF* [14] 57.8
FNN [15] 63.0
BLSTM [11] 64.6
CNN 63.9+0.4
RNN 62.21+0.8
CRNN 69.1+0.4

HMM based, using either multiple Viterbi decoding stages
or NMF pre-processing to do polyphonic SED. In contrast,
the use of NMF in [14] does not build explicit class models,
but performs coupled NMF of spectral representation and
event activity annotations to build dictionaries. This method
performs polyphonic SED through direct estimation of event
activities using learned dictionaries.

The results on the dataset show significant improvement
with the introduction of deep learning methods. CRNN has
significantly higher performance than previous methods [14],
[24], [25], [38], and it still shows considerable improvement
over other neural network approaches.

C. TUT-SED 2016

The CRNN and RNN architectures obtain the best results in
terms of framewise F/. The CRNN outperforms all the other
architectures for ER framewise and on 1-second blocks. While
the FNN obtains better results on the 1-second block F1, this
happens at the expense of a very large 1-second block ER.

For all the analyzed architectures, the overall results on this
dataset are quite low compared to the other datasets. This is
most likely due the fact that TUT-SED 2016 is very small
and the sounds events occur sparsely (i.e. a large portion
of the data is silent). In fact, when we look at class-wise
results (unfortunately not available due to space restrictions),
we noticed a significant performance difference between the
classes that are represented the most in the dataset (e.g. bird
singing and car passing by, F'lgy, around 50%) and the least
represented classes (e.g. cupboard and object snapping, F'lm,
close to 0%). Some other techniques might be applied to im-
prove the accuracy of systems trained on such small datasets,
e.g. training a network on a larger dataset and then retraining
the output layer on the smaller dataset (transfer learning), or
incorporating unlabeled data to the learning process (semi-
supervised learning).

D. CHIiME-Home

The results obtained on CHiME-Home are reported in Table
VI. For all of our three architectures there is a significant

TABLE VI: Equal error rate (EER) results for CHIME-Home
development and evaluation datasets.

Method Development EER  Evaluation EER
Lidy et al. [52] 17.8 16.6
Cakir et al. [53] 17.1 16.8

Yun et al. [54] 17.6 17.4
CNN 12.6+0.5 10.7+£0.6
RNN 16.0+0.3 13.8+0.4
CRNN 13.0+£0.3 11.3+£0.6
CNN (no batch norm) 15.1+£1.7 11.9+1.0

improvement over the previous results reported on the same
dataset on the DCASE2016 challenge, setting new state-of-
the-art results.

After the first series of experiments the CNN obtained
slightly better results compared to the CRNN. The CRNN
and CNN architecture used are almost identical, with the only
exception of the last recurrent (GRU) layer in the CRNN
being replaced by a fully connected layer followed by batch
normalization. In order to test if the improvement in the results
was due to the absence of recurrent connections or to the
presence of batch normalization, we run again the same CNN
experiments removing the normalization layer. As shown in
the last row of VI, over 10 different random initializations the
average EER increased to values above those obtained by the
CRNN.

E. Visualization of convolutional layers

Here we take a peek at the representation learned by the
networks. More specifically, we use the technique described
in [55] to visualize what kind of patterns in the input data
different neurons in the convolutional layers are looking for.
We feed the network a random input whose entries are inde-
pendently drawn from a Gaussian distribution with zero mean
and unit variance. We choose one neuron in a convolutional
layer, compute the gradient of its activation with respect to
the input, and iteratively update the input through gradient
ascent in order to increase the activation of the neuron. If
the gradient ascent optimization does not get stuck into a
weak local maximum, after several updates the resulting input
will strongly activate the neuron. We run the experiment for
several convolutional neurons in the CRNN networks trained
on TUT-SED Synthetic 2016 and TUT-SED 2009, halting the
optimization after 100 updates. In Figure 7 we present a few
of these inputs for several neurons at different depth. The
figure confirms that the convolutional filters have specialized
into finding specific patterns in the input. In addition, the
complexity of the patterns looked for by the filters seems to
increase as the layers become deeper.

V. CONCLUSIONS
In this work, we proposed to apply a CRNN—a combi-
nation of CNN and RNN, two complementary classification
methods—on a polyphonic SED task. The proposed method



Fig. 7: Two columns of crops from input patterns that would
strongly activate certain neurons from different layers of the
CRNN. On the horizontal axis is time, on the vertical axis mel
bands. On both columns the rows 1 and 2 are from neurons
in the first convolutional layer, rows 3 to 5 from the second,
and rows from 6 to 8 from the third.

first extracts higher level features through multiple convo-
lutional layers (with small filters spanning both time and
frequency) and pooling in frequency domain; these features are
then fed to recurrent layers, whose features in turn are used to
obtain event activity probabilities through a feedforward fully
connected layer. In CRNN, CNN’s capability to learn local
translation invariant filters and RNN’s capability to model
short and long term temporal dependencies are gathered in
a single classifier. The evaluation results over four datasets
show a clear performance improvement for the proposed
CRNN method compared to CNN, RNN, and other established
methods in polyphonic SED.

Despite the improvement in performance, we identify a
limitation to this method. As presented in TUT-SED 2016
results in Table II, the performance of the proposed CRNN
(and of the other deep learning based methods) strongly
depends on the amount of available annotated data. TUT-
SED 2016 dataset consists of 78 minutes of audio of which
only about 49 minutes are annotated with at least one of the
classes. When the performance of CRNN for TUT-SED 2016
is compared to the performance on TUT-SED 2009 (1133
minutes) and TUT-SED Synthetic 2016 (566 minutes), there
is a clear performance drop both in the absolute performance
and in the relative improvement with respect to other methods.
Dependency on large amounts of data is a common limitation
of current deep learning methods.

The results we observed in this work, and in many other
classification tasks in various domains, prove that deep learn-
ing is definitely worth further investigation on polyphonic
SED. As a future work, semi-supervised training methods
can be investigated to overcome the limitation imposed by
small datasets. Transfer learning [56], [57] could be potentially
applied with success in this setting: by first training a CRNN
on a large dataset (such as TUT-SED Synthetic 2016), the last
feedforward layer can then be replaced with random weights
and the network fine-tuned on the smaller dataset.

Another issue worth investigating would be a detailed study
over the activations from different stages of the proposed

CRNN method. For instance, a class-wise study over the
higher level features extracted from the convolutional layers
might give an insight on the common features of different
sound events. Finally, recurrent layer activations may be
informative on the degree of relevance of the temporal context
information for various sound events.
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CONVOLUTIONAL RECURRENT NEURAL NETWORKS
FOR BIRD AUDIO DETECTION

Emre Cakir, Sharath Adavanne, Giambattista Parascandolo, Konstantinos Drossos, Tuomas Virtanen

Department of Signal Processing, Tampere University of Technology

ABSTRACT

Bird sounds possess distinctive spectral structure which may
exhibit small shifts in spectrum depending on the bird species
and environmental conditions. In this paper, we propose using
convolutional recurrent neural networks on the task of auto-
mated bird audio detection in real-life environments. In the
proposed method, convolutional layers extract high dimen-
sional, local frequency shift invariant features, while recur-
rent layers capture longer term dependencies between the fea-
tures extracted from short time frames. This method achieves
88.5% Area Under ROC Curve (AUC) score on the unseen
evaluation data and obtains the second place in the Bird Au-
dio Detection challenge.

Index Terms— Bird audio detection, convolutional recur-
rent neural network

1. INTRODUCTION

Bird audio detection (BAD) is defined as identifying the pres-
ence of bird sounds in a given audio recording. In many
conventional, remote wildlife-monitoring projects, the mon-
itoring/detection process is not fully automated and requires
heavy manual labor to label the obtained data (e.g. by em-
ploying video or audio) [1, 2]. In certain cases such as dense
forests and low illumination, automated detection of birds
in wildlife can be more effective through their sounds com-
pared to visual cues. Besides, acoustic monitoring devices
can be easily deployed to cover wide ranges of land. This
indicates the need for automated BAD systems in various as-
pects of biological monitoring. For instance, it can be applied
in the automatic monitoring of biodiversity, migration pat-
terns, and bird population densities [2, 3]. BAD systems can
be augmented with another classifier to determine the species
of the detected birds [4]. Using an automated BAD system
as preprocessing/filtering step to determine the bird species
would be beneficial especially for remote acoustic monitor-
ing projects, where large amount of audio data is employed.

The research leading to these results has received funding from the Euro-
pean Research Council under the European Unions H2020 Framework Pro-
gramme through ERC Grant Agreement 637422 EVERYSOUND. The au-
thors wish to acknowledge CSC-IT Center for Science, Finland, for compu-
tational resources.

In this regard, the Bird Audio Detection challenge [5]
is organized with an objective to stimulate the research on
BAD systems which can work on real life bioacoustics mon-
itoring projects. The challenge provides three bird audio
datasets recorded in different acoustic environments. Two of
the datasets are provided with bird call annotations to be used
as development data. The final dataset consists of recordings
from a different physical environment and it is employed as
the evaluation data. An extensive review on the recent work
on BAD can also be found in [5].

Bird sounds can be broadly categorized as vocal and non-
vocal sounds (such as bill clattering, and drumming of wood-
peckers) [6]. Since non-vocal bird sounds are harder to be
associated with birds without any visual cues, the research
on BAD has been mostly focused on vocal sounds, as in this
work. Vocal sounds can be further categorized as bird calls
and bird songs. Bird calls are often short and serve a partic-
ular function such as alarming or keeping the flock in con-
tact. Bird songs are typically longer and more complex than
bird calls, and they often possess temporal structure which
are melodious to human ears [7]. Mating calls can be given
as example to bird songs. Vocal bird sounds include distinc-
tive spectral content often including harmonics. Alarm calls
tend to be high-pitched with rapid modulations (to get max-
imum attention), whereas lower frequency calls are common
in densely vegetated areas to avoid signal degradation due to
reverberation [8]. Furthermore, depending on the environ-
mental conditions (e.g. ambient noise level, vegetation den-
sity) and the bird species, bird sounds may exhibit certain lo-
cal frequency shift variations [8]. Therefore, a BAD system
should be able to capture melodic cues in time domain, and
also should be robust to local frequency shifts.

Convolutional neural networks (CNN) are able to extract
higher level features that are invariant to local spectral and
temporal shifts. Recurrent neural networks (RNNs) are pow-
erful in learning the longer term temporal context in the au-
dio signals. In this work, we combine these two approaches
in a convolutional recurrent neural network (CRNN) and ap-
ply it over spectral acoustic features for the BAD challenge.
This method consists of slight modification (temporal max-
pooling to obtain file-level estimation instead of frame-level
estimation) and hyperparameter fine-tuning for the challenge
over the CRNN proposed in [9], where it has provided state-
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of-the-art results on various polyphonic sound event detec-
tion and audio tagging tasks. Similar approaches combining
CNNs and RNNs have been presented recently in ASR [10]
and music classification [11].

The rest of the paper is organized as follows. The em-
ployed acoustic features and the proposed CRNN for the BAD
are presented in Section 2. Dataset settings, metrics, and
method configuration are reported in Section 3. In Section 4
are the results and their discussion, followed by the conclu-
sions in Section 5.

2. METHOD

The proposed method consists of two stages. In the first stage,
spectro-temporal features (spectrogram) are extracted from
the raw audio recordings to be used as the sound representa-
tion. In the second stage, a CRNN is used to map the acoustic
features to a binary estimate of bird song presence. CRNN
parameters are obtained by supervised learning using mate-
rial that consists of acoustic features extracted from a training
database and the annotations of bird song activity.

2.1. Features

The utilized spectro-temporal features are log mel-band en-
ergies, extracted from short frames. These features has been
shown to perform well in various audio tagging and sound
event detection tasks [12, 13, 9]. First, we obtained the
magnitude spectrum of the audio signals by using short-time
Fourier transform (STFT) over 40 ms audio frames of 50%
overlap, windowed with Hamming window. Duration of each
audio file in the challenge dataset is 10 seconds, resulting to
500 frames for each file. Then, 40 log mel-band energy fea-
tures were extracted from the magnitude spectrum. Librosa
library [14] was used in the feature extraction process.

Keeping in mind that bird sounds are often contained in a
relatively small portion of the frequency range (mostly around
2-8 kHz), extracting features from that range seems like a
good approach. However, experiments with features from
the whole frequency range (from 0 Hz to Nyquist frequency)
provided better results, and were therefore utilized in the pro-
posed method.

2.2. Convolutional recurrent neural networks

The CRNN proposed in this work, depicted in Figure 1, con-
sists of four parts:

1. convolutional layers with rectified linear unit (ReLU)
activations and non-overlapping pooling over fre-
quency axis

2. gated recurrent unit (GRU) [15] layers

3. atemporal max-pooling layer, and



4. a single feedforward layer with a single unit and sig-
moid activation, as the classification layer.

A time-frequency representation of the data is fed to the
convolutional layers and the activations from the filters of the
last convolutional layer are stacked over the frequency axis
and fed to the first GRU layer. The extracted representations
over each time frame (from the last GRU layer) are used as
input to the temporal max-pooling layer. Output of the max-
pooling layer is employed as input to the classification layer.
Output of the classification layer is treated as the bird audio
probability for the audio file. The aim of the network learning
is to get the estimated bird audio probabilities as close as to
their binary target outputs, where target output is 1 if any bird
sound is present in a given recording, and 0 vice versa.

The network is trained with back-propagation through
time using Adam optimizer [16] and binary cross-entropy
as the loss function. In order to reduce overfitting of the
model, early stopping was used to stop training if the vali-
dation data AUC score did not improve for 50 epochs. For
regularization, batch normalization [17] was employed in
convolutional layers and dropout [18] with rate 0.25 was
employed in convolutional and recurrent layers. Keras deep
learning library [19] has been used to implement the network.

The proposed method differs from our other submis-
sion [20] for the challenge (which came in fifth place) in
the following ways: we use a single set of acoustic features,
smaller max pool size in frequency domain and no max pool-
ing in time domain, no maxout for the output layer, and the
whole method consists of a single branch with unidirectional
GRU. In addition, considering the auxiliary data augmenta-
tion and domain adaptation techniques applied in [20], the
proposed method is less complex and still performs better in
the given BAD challenge.

3. EVALUATION

3.1. Datasets

The Bird Audio Detection challenge [5] consists of a devel-
opment and an evaluation set. The development set consists
of freefield1010 (field recordings gathered by the 'FreeSound
project) and warblr (crowd-sourced recordings collected
through smartphone app) datasets, and the evaluation set
consists of chernobyl (collected by unattended recorders in
Chernobyl exclusion zone) dataset. Recordings in all the
datasets are around 10 seconds long, single channel, and
sampled at 44.1 kHz. The annotations for the recordings are
binary - bird calls present or absent. The total duration of
the available recordings is approximately 68 hours, which
makes the dataset a valuable source for detection methods
that require large amount of material. The statistics of the
datasets are presented in Table 1.

Uhitp://freesound.org/

Table 1. Bird audio detection challenge [5] dataset statistics

Dataset Bird call

Present Absent Total
freefield1010 | 5755 1935 7690
warblr 1955 6045 8000
chernobyl ? ? 8620
Total 7710+ ? 7980+ ? 24310

Table 2. Final hyperparameters used for the evaluation based
on the validation results from the hyperparameter grid search.

Hyperparameters
# convolutional layers 4
Filter shape 5-by-5
pool size (5,2,2,2)
# recurrent layers 2
# feature maps/hidden units 96
# Parameters 806K

From the development set, we create five different splits
with 60% training, 20% validation, and 20% testing set dis-
tribution. Each split has an equal distribution of birds call
present and absent, i.e. 60% of all the development data with
present bird call annotation is included in training data, and
the same is valid for absent bird call annotations. Different
splits are obtained by randomly shuffling the recordings list
and re-partitioning the data in given proportions. All devel-
opment set results are the average performance over the splits.
For the challenge submission, the CRNN is trained on single
split of 80% training and 20% validation done on develop-
ment set, with equal distribution of classes.

3.2. Evaluation Metric and Configuration

The BAD system output is evaluated from the receiver oper-
ating characteristic (ROC) using the AUC measurement.

In order to obtain the optimal hyperparameters for the
given task, we run a hyperparameter grid search over the val-
idation set. The grid search covers each of the combinations
of the following hyperparameter values: the number of CNN
feature maps/RNN hidden units (the same amount for both)
{96, 256}; the number of recurrent layers {1, 2, 3}; and the
number of convolutional layers {1, 2, 3 ,4} with the follow-
ing frequency max pooling arrangements after each convolu-
tional layer {(4), (2, 2), (4, 2), (8, 5), (2,2, 2), (5,4, 2), (2,
2,2,1),(5,2,2, 2)}. Here, the numbers denote the number
of frequency bands at each max pooling step; e.g., the con-
figuration (5, 4, 2) pools the original 40 bands to one band in
three stages: 40 bands — 8 bands — 2 bands — 1 band. The
final network configuration is given in Table 2.
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3.3. Baseline

In this work, we trained a CNN to be used as a baseline and
also to understand the benefit of using recurrent layers after
the convolutional layers. Based on the information given after
the challenge, most of the submissions also use CNN as their
classifier, and therefore it can be deemed as an appropriate
baseline for the proposed method. The optimal parameters
for CNN is found with a similar grid search as explained in
Section 3.2, the only difference is that we replace the recur-
rent layers with feedforward layers. Each feedforward layer
had shared weights between timesteps.

For comparison, we also provide the scores from the top
three submissions for the challenge. Both methods use CNN
as classifier (therefore labeled as CNN2 [21] and CNN3 [22]),
they use mel spectrogram as input features, and they apply
frequency and time shift as data augmentation techniques.
Both methods apply pseudo-labeling (i.e. including the very
confident detections from the test set into training set) and
they further apply model ensembling over the networks.

4. RESULTS AND DISCUSSION

AUC scores for the baseline CNN and the proposed CRNN
methods on development and evaluation sets are presented
in Table 3. AUC for development set is obtained from the
mean test AUC of the five splits. Although the performance
difference between CNN and CRNN is minimal for the de-
velopment data, CRNN performs significantly better for the
evaluation data. Considering that the evaluation data includes
recordings from different environmental and recording con-
ditions than the development data, one can say that CRNN
does a better job of generalizing over bird sounds in differ-
ent conditions. For both methods, the validation data AUC
score reaches to about 92% in the very first epoch and reaches

Table 3. AUC scores on development and evaluation sets

Dataset Method
CNN CRNN

Development | 95.3 95.7

Evaluation 85.5 88.5

its peak in about 20 epochs. To compare with the other top
submissions, CNN2 reaches 88.7% AUC and CNN3 obtains
88.2% on the evaluation data.

In order to provide some insight on the features and net-
work outputs, one of the recordings from the evaluation set
(namely 000a3cad-ef99-4e5e-9845.wav) has been specifi-
cally investigated. The top panel represents the magnitude
spectrum (in log scale) for the recording, the middle panel
shows the normalized log mel band energies which are used
as input for the network, and the bottom panel represents the
output from one of the filters in the first convolutional layer
before max-pooling. When we compare the top two panels,
we notice that with log mel band energies, the frequency
components due to speech and bird sounds become very dis-
tinguishable. In addition, by looking at the filter outputs in
the bottom panel, one can say that this filter has learned to
react to the bird sound components and mostly ignore the rest
for the given audio recording. The trained CRNN outputs a
probability of 94.7% for a bird sound in this recording.

Since the amount of available material is quite large
(about 68 hours), we did not further experiment on various
data augmentation techniques. For the challenge submission,
we experimented with a model ensemble method: 11 net-
works with the same architecture and different initial random
weights (obtained by sampling from different random seeds)
were trained and the estimated probabilities from each net-
work were averaged to obtain the ensemble output. Although



this method improved the prior AUC results (calculated from
a small portion of the evaluation data) from 88.3 to 89.4, it
performed worse in the final results (88.2 vs. 88.5). The
authors do not have a clear reasoning for this contradiction.

5. CONCLUSION

In this work, we propose using convolutional recurrent neu-
ral networks for bird audio detection as a part of a research
challenge. The proposed method shows robustness for the lo-
cal frequency shifts and is able to utilize longer term temporal
information. Both of these features are essential for a general-
ized, context independent BAD system. The method achieves
88.5% AUC score and obtains the second place in Bird Audio
Detection challenge.
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ABSTRACT

Sound events possess certain temporal and spectral structure in their
time-frequency representations. The spectral content for the sam-
ples of the same sound event class may exhibit small shifts due to
intra-class acoustic variability. Convolutional layers can be used to
learn high-level, shift invariant features from time-frequency repre-
sentations of acoustic samples, while recurrent layers can be used to
learn the longer term temporal context from the extracted high-level
features. In this paper, we propose combining these two in a con-
volutional recurrent neural network (CRNN) for rare sound event
detection. The proposed method is evaluated over DCASE 2017
challenge dataset of individual sound event samples mixed with ev-
eryday acoustic scene samples. CRNN provides significant perfor-
mance improvement over two other deep learning based methods
mainly due to its capability of longer term temporal modeling.

Index Terms— Sound Event Detection, Convolutional Neural
Network, Recurrent Neural Network, Machine learning

1. INTRODUCTION

The aim of sound event detection (SED) is to temporally locate and
label the sound event class(es) present in an acoustic signal. For an
SED task, a set of target sound event classes should be determined.
For instance, an SED task can be defined as the detection of dog
barking, door bell, and baby crying sounds for any given acoustic
signal. Recently, SED has been utilized in application areas such
as wildlife bird audio monitoring [1, 2], audio surveillance [3], and
multimedia event detection [4].

Recently, the research on SED has been mainly shifted from
traditional classifier approaches such as Gaussian mixture mod-
els (GMM) - hidden Markov models (HMM) to deep learning
based methods such as feed-forward neural networks (FNN) [5, 6],
convolutional neural networks (CNN) [7], recurrent neural net-
works (RNN) [8], and convolutional recurrent neural networks
(CRNN) [2, 9]. Feed-forward neural networks have the benefit of
higher expressional capability over nonlinear functions compared
to GMM-HMMs. However, their drawback is the fixed connections
(each weight is connected to a fixed pair of neurons) which makes
them less robust to slight spectral shifts in the acoustic features of
the same sound event class. These slight shifts are a major factor in
the inherent acoustic variability of sound event classes. This prob-
lem has mainly been overcome with the introduction of CNNs for
SED, however the temporal context that can be modeled with CNNs
is rather short. CRNN combines the long-term modeling capabili-
ties of gated recurrent unit (GRU) [10] layers and the robustness of
CNN to small spectral shift variations.

There are several difficulties on developing SED systems to be
utilized in real-life environments. Some of these can be listed as the
inherent acoustic variability of the sounds belonging to the same
event class, overlapping (simultaneously occurring) sound events,
environmental noise, variability in the acoustic characteristics of the
background acoustic scene, and rarely occurring sound events.

The main problem encountered with the detection of the rare
sound events using neural networks is the data imbalance. To elab-
orate, in an SED task, the classifier is trained to learn the relation-
ship between the target class and its input representation, which is
composed of acoustic features extracted in short time frames of an
acoustic signal. During training, the classifier makes an estimation
for the class presence probabilities for each frame, and calculates
the error in the estimation through a loss function (which will be
used to update the classifier parameters). In a rare SED task, the
target class is not present in a significantly higher portion of time
frames of each signal. Unless the training procedure of the clas-
sifier is adjusted correspondingly, the classifier will be biased on
predicting “non-present” for all the frames, because it will reach
low error even if it fails to detect the frames where the target class
is present. Data imbalance is a very common problem in machine
learning and methods such as data augmentation using time stretch-
ing and block mixing [8], oversampling [11] and synthesizing new
samples through generative methods [12] have been previously pro-
posed to limit the negative effect of data imbalance.

In this work, we propose to utilize CRNNs for combined single-
class, rare SED in the presence of a real-life acoustic scene in the
background. The convolutional layers of CRNN are used to ex-
tract shift invariant features from the input time-frequency repre-
sentation. The gated recurrent layers are especially effective in de-
tecting rare sound events, because they can reset and update their
hidden/cell state to distinguish the features from a small number
of consecutive time frames (corresponding to a rare target event)
which are noticeably different from the features from the rest of the
acoustic signal (corresponding to the background). The proposed
CRNN method has been previously shown to provide state-of-the-
art accuracy in both real-life and synthetic SED datasets [9] and
QMUL bird audio detection challenge 2017 [2]. We follow the sim-
ilar CRNN architecture and procedure as in [9], with the exception
that we train separate CRNNs for each class due to the combined
single-class approach. In addition, we slightly adjust the training
procedure according to the evaluation metric of the given SED task
(see Section 3.2). This work has a companion website at I

The rest of the paper is organized as follows. The acoustic fea-
tures and the proposed CRNN method is explained in Section 2.
In Section 3, the acoustic material, evaluation metric and the eval-

Ywww.cs.tut.fi/~cakir/DCASE2017
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Figure 1: Overview of the proposed CRNN. (1): Multiple convo-
lutional layers with max pooling in frequency axis, and stacking of
the features over frequency axis (2): Gated recurrent layers, (3):
feed-forward layer produces the event activity probabilities which
are then binarized in evaluation/usage case.

uation results of the proposed method compared with the baseline
methods is presented. Finally, our conclusions on this work are pre-
sented in Section 4.

2. METHOD

2.1. System Overview

The used SED approach consists of sound representation and frame-
wise classification stages. In the sound representation stage, frame-
level acoustic features are extracted for each time frame in the
acoustic signal to obtain a feature matrix X € RF*T where F € N
is the number of features per frame and 7' € N is the number of
frames in the acoustic signal. In the classification stage, the task
is to estimate the probabilities p(y | X, 8) for target output vec-
tor y € R”, where y denotes the probability of the target event in
each frame and 0 denotes the parameters of the classifier. Once the
method is to be evaluated or utilized in a usage case, the event ac-
tivity probabilities are typically binarized by thresholding, e.g. over
a constant, to obtain binary event activity predictions y € R”",

The classifier parameters @ are trained by supervised learning,
and the target outputs y are obtained from the onset-offset annota-
tions of the sound event class. If the sound event class is present
during frame ¢, then y; will be set to 1, and O otherwise.

In this work, SED is conducted in combined single-class man-
ner, so the stages below are repeated separately for each class.
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2.2. Acoustic Features

The acoustic features used in this work are log mel-band energies,
as they have been shown to provide good performance on SED with
deep neural networks [2, 6, 9]. Each audio sample is divided into 40
ms frames with 50% overlap and 40 log mel-band energy features
are extracted from the magnitude spectrum of each frame. Each fea-
ture is then normalized independently to zero mean and unit stan-
dard deviation by using statistics calculated from the training data.

2.3. CRNN Architecture

The CRNN architecture used in this work consists of three main
blocks: (1) convolution block, (2) recurrent block, and (3) classi-
fication block. The illustration of the architecture is given in Fig-
ure 1. The input for the CRNN are the acoustic features (log mel-
band energies). In the convolution block, the input is fed to L.
consecutive convolutional layers with linear activation functions.
Each convolutional layer is followed by batch normalization per
feature map [13], a rectified linear unit (ReLU) activation function,
adropout layer [14], and a frequency domain max-pooling layer. At
the end of the convolutional block, the extracted features over the
CNN feature maps are stacked along the frequency axis.

Convolutional layers provide robustness to frequency shifts
in the input features due to shared weight connections and max-
pooling operation, and this is crucial to overcome the problem of
intra-class acoustic variability for SED. However, as it has been
shown previously in other works [9, 15], convolutional layers per-
form the the best when the filter size is small, and this means the
temporal context used in these layers is very short (typically less
than two hundred miliseconds).

In the recurrent block, these stacked features are fed to L, GRU
layers where tanh and hard sigmoid activation functions are used for
update and reset gates, respectively. Each recurrent layer produces
outputs for each frame by using both the features extracted by the
convolutional layers (or the previous recurrent layers) and the pre-
vious frame activations as input. Dropout is applied on both the
inputs and the hidden state outputs of the recurrent layer [16].

GRU layers control the information flow through a gated unit
structure. For frame ¢, the total activation of GRU layer is a linear
interpolation of previous activation h,—1 and the candidate activa-
tion iL,, as .

he =g - he—1 + (1 —ue) - he (1)
where u; denotes the update gate. Candidate activation hy is a func-
tion of hy_1, the GRU layer’s input z; and the reset gate ;. GRU
activation is mainly controlled by reset gate when the GRU layer’s
input x; is significantly different than in previous frames. When
reset gate is closed (r; = 0), the candidate activation does not in-
clude any contribution from h;—1. Fast response to the changes in
the input and the previous activation information is crucial for high
performance in rare SED, where the task is to detect a small of con-
secutive time frames where target event is present.

In the classification block, a feed-forward layer of single unit
with sigmoid activation function is used as the classification layer.
While computing the output of the classification layer, the same
weight and bias values are used over the recurrent layer outputs for
each frame. The contributions of GRU’s previous and candidate
activations to the classification output, namely c¢;—1 and ¢, can be
computed as

-1 =wO (ut - he—1)

N 2
G=w® ((1—ut)-hy) @
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Table 1: CRNN hyper-parameters for each target class.

Hyper-parameters ‘ Baby cry ‘ Glass break ‘ Gun shot

L. 3 3 3
pool size 5.4.2) (5.4.2) (5.4.2)
L, 1 3 1

# filters/units 96 160 32

# Parameters | 520K | 1750k | 59K

where w is the weight vector that connects GRU layer and the clas-
sification layer, and ® denotes element-wise multiplication. The
outputs of the classification layer are regarded as the presence prob-
abilities of the target class in each frame of the audio sample.

If the model is to be evaluated or utilized in a usage case, the
presence probabilities are binarized with a constant threshold of 0.5
to get the binary presence predictions. These predictions are further
post-processed with a median filter of length 540 ms.

3. EVALUATION

3.1. Acoustic Material

For the acoustic material, DCASE2017 challenge dataset has been
used and detailed information on the dataset can be found in Sec-
tion 4 of [17]. The dataset consists of samples from 15 different
everyday acoustic scenes (park, home, street, cafe, train etc.), some
of which are mixed with isolated recordings from at most one of the
three different target sound event classes: baby crying, glass break-
ing and gun shot. The isolated recordings are divided into segments
based on the signal energy levels, and the segments relevant to the
target class are selected by a human annotator. Mixing is done by
adding a segment to the 30-second long background acoustic scene
sample with a random time offset. The mean duration of the iso-
lated target sound event recordings is below 2.25 seconds for all
three classes and each isolated event is present at most once for
each mixed sample, making them active for only a short period of
time (hence the task name rare sound event detection).

For the development set, 2973 training, 298 validation and 1496
test samples (4767 total) are generated through the code repository
provided as a part of the DCASE challenge [18]. Although the prob-
ability of including isolated recordings in each mixed sample is set
to 0.5 as default in the code provided by the challenge, we increase
the probability of including target events from default 0.5 to 0.99
for training and validation samples. This change increases the per-
centage of the frames labeled as including a target event from 5%
to 8% in the training data, which helps to ease the problem of data
imbalance. This probability is kept at 0.5 for the test samples, as
suggested by the challenge organizers, to be able to compare the
development set results over the same conditions with other partic-
ipants. In the evaluation set, the training and validation samples
of the development set are combined into a single training set, test
samples are used as the validation set, and the system is evaluated
against an unseen set of 1500 samples (500 for each target class).

3.2. Procedure and Final Configuration

The CRNN is trained using Adam method for gradient based opti-
mization [19]. Cross-entropy is used as the loss function. The net-
work is trained for a maximum of 200 epochs. After each epoch
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of training, validation set is evaluated for the event-based error
rate (see Section 3.4) and the model at the epoch with the lowest
error rate is saved in the memory. This way, we aim to align the
training procedure with the evaluation metric of this work. If the
error rate does not decrease for 25 consecutive epochs, the training
is stopped and the last saved model is selected as the final model.
In order to decide the architecture to be used in the evaluation,
we run a hyper-parameter grid search and pick the architecture with
the lowest event-based error rate on the test set of the development
data. The fixed hyper-parameters for each experiment is as fol-
lows. We use 5-by-5 size feature maps in convolutional layers, and
dropout with probability 0.25 for both convolutional and recurrent
layers. The grid search covers the number of convolutional feature
maps (filters) / RNN hidden units (both are set to the same value)
{32, 96, 160}; the number of recurrent layers {1, 2, 3, 4}; and the
number of CNN layers {1, 2, 3 ,4} with the following frequency
max-pool sizes after each convolutional layer {(8), (4, 2), (2, 2, 2),
(5,2,2),(5.4,2), (52,2, 1), (5,2, 2, 2)}. The best performing
CRNN hyper-parameters for each target class are listed in Table 1.

3.3. Baseline

In this work, we compare the performance of CRNN with two base-
line methods using deep learning with the same input features. The
first baseline method is a deep FNN with two hidden layers of 50
units, which is also the official baseline method for the challenge.
The input features differ slightly in the sense that the extracted 40
log mel-band energy features are concatenated for five consecutive
frames to gather temporal context, creating a feature vector with
200 entries. The second baseline method is the CNN. While select-
ing the CNN architectures to be used in evaluation, a very similar
grid search procedure has been applied as explained in Section 3.2,
the only difference being that the recurrent layers of the CRNN are
replaced with the feed-forward layers to obtain CNN architecture.

3.4. Evaluation Metric

The official evaluation metric used in DCASE2017 challenge task
2 is the event-based error rate (ER) with onset tolerance of 500 ms.
ER is the sum of insertion, deletion and substitution rates. ER is
calculated as explained in detail in [20].

3.5. Results

The models used in the evaluation (hence the challenge submission)
have been selected as the following. As a part of hyper-parameter
grid search, 84 experiments have been run on development data for
CNN and CRNN each. The evaluation models are then selected
based on ER on test set of development data. We present four dif-
ferent CRNN methods for the rare SED challenge which are labeled
as:

o CRNN-1: the architecture with the lowest ER on average
over three classes. This model also happens to have the low-
est ER on the "baby cry” class, and its parameters are given
in the corresponding column of Table 1.

CRNN-2: the ensemble of the seven best architectures with
the lowest ER on average over three classes.

e CRNN-3: the architecture with the lowest ER for each of the
three classes. The parameters for each of the architectures
are given in Table 1.
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Table 2: Event-based error rate for the baseline FNN and CNN
methods and the proposed CRNN on the test set of evaluation data.
Method indices are explained in Section 3.5.

Evaluation
Method Baby cry  Glass break  Gun shot ‘ Average
FNN 0.80 0.38 0.73 0.64
CNN-1 0.46 0.13 0.58 0.39
CNN-2 0.38 0.15 0.53 0.35
CNN-3 0.46 0.14 0.55 0.39
CNN-4 0.42 0.14 0.53 0.36
CRNN-1 0.27 0.07 0.20 0.18
CRNN-2 0.18 0.10 0.23 0.17
CRNN-3 0.27 0.14 0.47 0.29
CRNN-4 0.21 0.11 0.24 0.19

e CRNN-4: the ensemble of seven best architectures with the
lowest ER for each class.

e CNN methods have been obtained in the same fashion to
CRNN methods as explained above.

The ensemble method is conducted as follows. Among the
seven selected architectures, if four or more predict that the target
class is not present in a given sample, then the final decision on the
sample is that the target class is not present. Otherwise, the onset
and offset values of the target class are selected as the median of
the predicted onset and offset values for the sample. This ensemble
method is used in order to get more reliable predictions over the on-
set and offset values and to filter the outlier predictions among the
architectures with lowest ER.

The event-based ER results for the proposed and baseline meth-
ods have been presented in Table 2. CRNNs clearly provide bet-
ter performance compared to both baseline methods for all target
classes. In addition, by utilizing ensemble methods for both CNN
and CRNN, the performance can be further improved, however this
comes with an increased computational cost due to running sev-
eral architectures in parallel. With the experiments for CRNN-1
method, we aimed to show if it is possible to find a single architec-
ture that performs well for all three classes. For the development
data, CRNN-1 provides comparable performance (0.16 vs 0.14 ER)
with CRNN-3, where the best architecture is selected for each tar-
get class. For the evaluation data, as presented in Table 2, CRNN-1
performs even better than CRNN-3.

Regardless of the method, highest performance is obtained for
glass break. Although the best performing architectures for each
class differ significantly in the number of parameters (see Table 1),
the median number of parameters among the seven best architec-
tures are 687K, 806K and 774K for baby cry, glass break and gun
shot, respectively. Therefore it is not possible to draw any direct
conclusions on the relationship between the target class and the best
performing architecture size.

3.6. An insight on GRU layer of CRNN

A case-study demonstration of the effect of GRU layers on the
CRNN outputs is given in Figure 2. The CRNN architecture used
to create this illustration consists of three convolutional layers and
one GRU layer with 32 filters/units each, followed by a single unit
classification layer. In panel (a), we can see that multiple GRU
units respond to the change of input features around 4.5 second
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Figure 2: (a): contribution of current (candidate) activation ¢,
(b): contribution of previous activation ¢;—1, (c): total contribu-
tion of GRU layer to the classification activation; (d): event ac-
tivity probabilities vs. time for the first eight seconds of sample
devtest_babycry_001_1128b63726¢9ed59ddc1bb944b3f22ce.wav.
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mark and trigger the candidate activation, as the target event starts
to appear in the audio signal. After that, the GRU contribution is
mainly controlled by the previous activations while the target event
is still present, as shown in panels (b) and (c). Finally, the CRNN
produces almost perfect detection of onset and offset for the given
target event, as shown in panel (d).

4. CONCLUSIONS

In this paper, CRNN has been proposed for rare SED. CRNN
has provided significantly improved performance over FNNs and
CNNss for every target sound event class in DCASE 2017 challenge
dataset. It is shown that the performance can further be improved
using ensemble methods. For future work, improved ways to in-
corporate the evaluation metric into training procedure as the objec-
tive function can be considered. For instance, instead of aiming to
directly match the target output and the predicted output for each
frame, the objective function can be calculated over a window of
frames, especially for the case when the onset and offset times can
be tolerated to a certain degree.
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Filterbank Learning for Deep Neural Network Based Polyphonic Sound
Event Detection

Emre Cakir, Ezgi Can Ozan, Tuomas Virtanen

Abstract— Deep learning techniques such as deep feedfor-
ward neural networks and deep convolutional neural networks
have recently been shown to improve the performance in
sound event detection compared to traditional methods such
as Gaussian mixture models. One of the key factors of this
improvement is the capability of deep architectures to auto-
matically learn higher levels of acoustic features in each layer.
In this work, we aim to combine the feature learning capabilities
of deep architectures with the empirical knowledge of human
perception. We use the first layer of a deep neural network to
learn a mapping from a high-resolution magnitude spectrum
to smaller amount of frequency bands, which effectively learns
a filterbank for the sound event detection task. We initialize
the first hidden layer weights to match with the perceptually
motivated mel filterbank magnitude response. We also integrate
this initialization scheme with context windowing by using an
appropriately constrained deep convolutional neural network.
The proposed method does not only result with better detection
accuracy, but also provides insight on the frequencies deemed
essential for better discrimination of given sound events.

I. INTRODUCTION

A sound event is an audio segment that can be labeled as
a distinctive concept in an audio signal. Some examples of
sound events can be given as dog bark, car horn, footsteps
etc. Automatic detection of sound events has recently drawn
a surging interest especially in accordance with the invention
of modern machine learning techniques. Sound event detec-
tion has applications in smart homes [1], scene recognition
for mobile robots [2] and surveillance in living environments
(31, [4].

An audio analysis system can be divided into two stages
as sound representation and classification of consecutive
time frames. In order to extract the relevant information, the
audio signals are often transformed into a higher level rep-
resentation. This representation is obtained by the acoustic
features. In audio related classification and detection tasks
such as speech recognition, music classification, acoustic
scene classification and sound event detection, there are
certain conventional, hand-crafted acoustic features that have
proved to perform in a satisfactory level. These features are
commonly extracted from the time-frequency representations
of the audio signals, i.e., spectrograms. Some of the con-
ventional acoustic features can be listed as spectral energy,
zero-crossing rate [5], (log) mel band energy [6] and mel-
frequency cepstral coefficients (MFCC) [7]. The spectrogram

*The research leading to these results has received funding from the
European Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND. Com-
puting resources of Taito supercluster from Finnish Grid Infrastructure has
been used in this work.

of an audio signal can also be regarded as an image,
which makes it possible to apply and extend hand-crafted
image feature extraction methods on sound event detection.
Consequently, local spectrogram features [8], histogram of
gradients [9], [10] and Gabor filterbank features [4] have
been proposed recently for sound event detection.

The evidence from auditory psychophysics proves that
humans perceive sound signals along a nonlinear scale in
frequency domain [11]. Human ear is more sensitive to
the changes in the lower frequencies than in the higher
frequencies. Consequently, acoustic features are often chosen
by using nonlinear scales (log frequency scale, mel scale,
bark scale etc.) to give better correspondence with human
perception. Mel scale is a perceptual scale in which the
pitches are adjusted by the listeners so that the successive
pitches are perceived to have equal distance among the
scale [12]. In sound related classification tasks, acoustic
features that utilize the mel scale have been found to pro-
vide robust sound representation and have become standard
features. Mel band energy and especially MFCCs can be
given as examples for such features [6], [7]. On the other
hand, the empirical nature of mel scale leads to several hand-
crafted mel formulas [12], [13], [14], [15], [16], all of which
provide only an approximation to the real human perception.
There are also certain views that mel scale needs to be
readdressed due to biased experiments, namely the original
experiments did not take into account the hysteresis, i.e.,
human perception varying when the frequencies are listened
in the ascending order than in descending order [17]. To
sum up, mel scale does not provide a perfect fit for human
perception. On the other hand, the goal in polyphonic sound
event detection is not modeling perfectly the human per-
ception, but to obtain high detection accuracy. Nevertheless
these two goals are closely related to each other, and mel
scale representation can be a good starting point for acoustic
features in a sound event detection task.

For the classification stage, the traditional approaches in
sound event detection and other audio related classification
tasks have been Gaussian mixture modeling (GMM) [4],
Hidden Markov modeling (HMM) [18] and Support Vec-
tor Machines (SVM) [19]. Recently, deep neural networks
(DNN), which are neural networks with multiple hidden
layers, have been shown to give better results in sound event
detection [6], [20], [21], [22], [23].

Deep learning architectures have opened an alternative
path to hand-crafted data representation methods. In a deep
architecture, with each hidden layer, the input is transformed
to a higher level representation which is to be classified at the



output layer. The layer parameters such as weights and biases
are generally initialized with small random values. While
backpropagating the error derivatives during the training
stage, these weights and biases are updated and higher level
features are obtained to present a better model for the target
output, i.e., features are learned through the input data. Due
to their high expressional capability, deep classifiers do not
rely on the high level hand-crafted representations of the raw
data as their input and they are able to express the highly
nonlinear relationship between the raw data and the target
output. This led to a trend of using raw data (pixel values for
an image [24] or magnitude/power spectrum for audio [25],
[26], [27] or even raw audio [28]) as input and deep learning
methods as the classifier in machine learning tasks.

In our recent work [6], we found that for the given
polyphonic environmental sound recordings, the optimal
multi-label detection method was using mel band energies as
acoustic features and DNN with two hidden layers. DNNs
with mel band energy features outperformed the traditional
MEFCC feature with GMM-HMM classifier method by a huge
margin. The ability of DNNs to use subsets of their hidden
units to detect several events simultaneously makes them a
suitable choice for polyphonic sound event detection tasks,
where multiple events are occuring simultaneously [6], [25].
DNNss also tend to perform better with lower level acoustic
features (such as mel band energies) compared to traditional
higher level features (such as MFCCs) [29]. This can be
explained with the fact that MFCCs are obtained by applying
discrete cosine transform (DCT) on mel band energy features
to decorrelate these features, but DNNs are already very
powerful in modeling data correlation and do not necessarily
require a DCT step [30].

In this work, we propose to integrate the empirically
obtained human perception information with feature learn-
ing capabilities of the deep architectures to learn a new
filterbank. This ad-hoc filterbank is initialized with a human
perception based method and tuned with deep learning
techniques. We use the high-resolution magnitude spectrum
of an audio signal (which can be regarded as low level
representation) as the input for deep feedforward and deep
convolutional neural networks (CNN). Instead of initializing
all the weights and biases with small random values, we
initialize the first hidden layer weights of the network
as the coefficients of a human-perception based filterbank
magnitude response, namely mel filterbank. During training,
the first hidden layer weights, i.e., the filterbank magnitude
response is updated to provide better discrimination over
the target sound events. The trained network does not only
provide better detection accuracy over completely randomly
initialized networks, but also, depending on the updates made
on the first hidden layer weights during training, it gives an
idea of which frequency bins are deemed more essential for
discrimination in a given sound event detection task.

The organization of this paper is as follows. Polyphonic
sound event detection task is explained in detail in Section II.
The proposed mel scale filterbank and mel scale weight
initialization technique for deep neural networks is proposed
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Fig. 1: Overlapping sound events in a recording from a

realistic environment. Frame ¢ represents the short time
frame from the part of the audio signal where only car horn
and dog bark events are present.

in Section III. Acoustic data and network settings used in the
work is explained and an evaluation of the proposed methods
is presented in Section IV. Finally, our conclusions on the
subject is presented in Section V.

II. SOUND EVENT DETECTION

The aim of sound event detection is to temporally locate
the sound events and assign a class label to each event
present in an audio signal. In a real-life situation, there
can be multiple sound events present simultaneously, i.e.,
the audio signal can be polyphonic at a certain time. An
example of this is illustrated in Figure 1, where an audio
signal is labeled with the sound events happening in time
domain. Sound event detection can be formulated as a multi-
label classification problem in which the temporal locations
of sound events are obtained by doing binary classification
of the activity of each sound event class over consecutive
time frames.

In the sound representation stage, the audio signal x(t)
is first divided into N time frames by using e.g. Ham-
ming window of length 40 ms and 50% overlap. Then, the
magnitude spectrum matrix X for the audio signal z(t) is
obtained by taking the absolute value of the Fast Fourier
transform (FFT) of the short time frames. The traditional
approach is to compute further higher level representations
from X,, ,, where m and n are the frequency bin and
frame indices. Instead, we add another hidden layer of the
deep architecture and initialize that layer’s weights with
mel filterbank magnitude response to automatically learn the
higher level representations. This technique is explained in
detail in Section III

The task in the classification stage is to model the nonlin-
ear relationship between the magnitude spectrum X and the
target outputs Y € REXN a5

X—a()=Y €))

where « is the classifier model, Y is the binary matrix
encoding the present events in frame n and K is the pre-
determined number of events. If the event k is present in a
frame n, Yy, is set to 1 and otherwise 0. In multi-label
sound event detection, the pre-determined events can occur
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Fig. 2: Mel filterbank magnitude response.

in any different combination at a time. So, a vector of length
K is required to encode the target outputs Y € REXN,

The classifier model « is trained using annotated material.
The start and end times of each event in the audio signal
x(t) is annotated and used to obtain the binary target outputs
Y. The annotation procedure is illustrated in Figure 1 and
explained in more detail in Section IV-A.

III. METHOD

In this work, we combine the following findings:

e Mel scale approximates the human hearing perceptually
better than a linear frequency scale [12],

o New improvements on DNN architectures and learning
are needed to push the features even further back to the
raw levels of acoustic measurements [30].

We use magnitude spectrum of short time frames as input
for a DNN and initialize the first hidden layer weights of a
DNN with mel scale filterbank magnitude response. This is
done to integrate the empirical human perception knowledge
in the automatic feature learning. In order to introduce
the temporal information encoded in the consecutive time
frames, we use appropriately constrained CNN with context
window input. We obtain the binary detection output by
regarding the network outputs as posterior probabilities and
thresholding these probabilities with a constant ¢.

A. Mel scale filterbank

Mel scale is a perceptually motivated scale that is designed
so that the intervals consist of equal perceptual pitch incre-
ments. The reference point is often chosen as setting 1000
mels to 1 kHz. The relation between mel scale frequency
mel and frequency f (Hz) is commonly defined with the
following formula [15]:

/
-
mel = 2595log;, (1 + =) (2)

First, the lowest and highest edges of the frequency range
o, %] are converted into mel frequencies according to (2),
where F's is the sampling rate. Then, the mel range is equally
spaced into B mel bands. Mel scale filterbank magnitude
response Fy ,, is designed according to this mel scale,
where b and m are the mel filter and frequency bin indices,
respectively. The magnitude response of the filterbank is
approximated using triangular band-pass filters. For each
mel filter, the triangular band-pass filter magnitude response

Output
layer

Hidden layers

Fig. 3: Symbolic representation of the DNN topology with
mel scale weight initialization. The dashed red weight
connections between [(*) and (V) are initialized with mel
filterbank magnitude response F, ,,, where b € [1,...B] and
m € [1,..M].

Fy,m is selected in the range [0, 1], where the response
is 0 outside a band, and from band start rises linearly to
peak 1, from which it linearly decays to 0 at band end.
The slope is larger at the lower frequencies where the mel
bands contain fewer frequency bins, and vice versa. Then,
the magnitude response for each filter is scaled so that the
magnitude sum for each filter is approximately constant. In
this work, the resource code in [31] is used to obtain the
mel scale filterbank magnitude response explained above and
visualized in Figure 2.

Mel band magnitudes E are computed from the magnitude
spectrum X and mel scale filterbank magnitude response F
as

M
Eb,n = Z Fb,me,n (3)

m=1

where M is the half of the number of FFT bins in the
magnitude spectrum. In this work, 1024 point DFT is used,
therefore M = 1024/2 + 1 = 513. Negative frequency
terms of X are discarded because the FFT is computed for
real input and therefore X is Hermitian-symmetric, where
the negative frequency terms consist of complex conjugate
values of the positive frequency terms.

B. DNN with mel scale weight initialization

As the input for the DNN, we use the first half of the
magnitude spectrum, which is a lower level representation
compared to traditional acoustic features such as MFCCs. As
in [6], DNN structure consists of two hidden layers before
the output layer. The difference with the architecture in [6] is
that we add another hidden layer (') of B hidden units at the
front part of the DNN architecture, i.e., between the input
layer and the first hidden layer. For a given input vector
X (where x = X.,, time frame index n is omitted for
simplicity), the input layer I(°) is set to x and the hidden



neuron outputs z(-l) for the layer [(1) are computed as
2V = Z wilx))  (i=12..B) )

where W) € RB*M are the hidden neuron weights and 0 is
the activation function. The output layer outputs z(¥ € [0,1]
are treated as the posterior probability ¢ for each event class.
Selecting 6 as rectified linear unit will result in the same
structure in computing mel band magnitudes as in Eq. 3
and computing feedforward neural network outputs as in
Eq. 4. Instead of initializing the weights W) with small
random values, we use mel filterbank magnitude response
Fy 1, so that this layer will learn a filterbank that provides
better discrimination of the given sound events. The process
is illustrated in Figure 3. For the output activations, logistic
sigmoid function is used to obtain multi-label outputs.

Mel scale filterbank magnitude response F, ,,, is a sparse

matrix due to the fact that mel bands span only a few
frequency bins in the linear scale, especially for the lower
frequencies. On the other hand, randomly initialized weights
of the rest of the architecture, i.e., weights for layers [ @) 13
and [(® are sampled from a uniform distribution U(—A, A),
where A is calculated from the randomized initialization
method proposed in [32]. The random weights drawn from a
uniform distribution U(—A, A) have zero medn by definition
and their variance can be calculated as 0% = %(
A)2. Using Fy,, directly to initialize the weights W(1>
would result in a mismatch in terms of mean and variance
with the rest of the architecture, which may slow down
the learning. Therefore, the mean of Fy,, coefficients is
subtracted and the variance is matched with the uniformly
distributed weights before initialization. In order to avoid
some neurons having the same initial weights as zero and
introducing an undesired symmetry to initialization after
mean and variance matching, the zero weights of W(1) are
replaced with small random values. This initial mel filterbank
response is illustrated in Figure 6(a).

C. DNN with context windowing

Context windowing, i.e., expanding the input instance
from the features of a single frame to a neighbourhood of
frames, has been shown to improve the performance signifi-
cantly in sound event detection with a DNN classifier [29]. In
context windowing for DNN, the input X. ,, is concatenated
with C L preceding and C— succeeding frame features to
form context window X,m, as

X7 — [xTig . XT
’ 2

LN

2] ®)

where superscript 7" represents the the transpose.

While using DNNs, context windowing can be done
by concatenating input frame features in single dimension.
However, this approach can be deemed inefficient, as the
information that some of the features actually come from
consecutive time frames is discarded while presenting the
input to DNN. In addition, when the number of input features
is high, the number of parameters to be learned between

Fig. 4: An illustration of the CNN topology with mel scale
weight initialization. Cascaded windows represent the B
feature maps and the crossed section represents the convo-
lutional filter shape M x 1.

the input and the first hidden layers increase accordingly.
Moreover, combining context windowing with mel scale
weight initialization in a DNN architecture would result
in separate learned filterbanks for each frame, unless a
weight sharing technique is used. Therefore, in this work,
context windowing for DNN input instances is only used in
the baseline mel band magnitude feature experiments. The
experiments involving mel scale weight initialization and
context windowing are conducted with CNN architectures.

D. CNN with mel scale weight initialization and context
windowing

CNNs s can be regarded as the extensions of DNNs that can
also learn the spatial and/or temporal information encoded
in the multi-dimensional input features. CNNs have three
properties that can be used to explain their difference with
DNNs: local receptive field, weight sharing and pooling.
Local receptive field means that each hidden neuron in a
CNN layer is not connected to all the neurons in the previous
layer, but only a local region of the input neurons to the
convolutional layer. Multiple local fields with the same shape
can be defined to extract different features in each region by
working parallel to each other, and the weights and biases
of each of these local fields define a feature map. The local
region is shifted through all the input neurons and the same
local region weights and biases are applied through the whole
input space, i.e., the weights are shared throughout the input.
Finally, a pooling layer is often added after the convolutional
layer to subsample the output and reduce the translational
variations on the feature maps.

In this work, we aim to benefit from the temporal infor-
mation encoded in the consecutive time frames (by using
context windowing) and at the same time keep the filterbank
structure in the first hidden layer of the deep architecture.
In order to combine context windowing with mel scale
weight initialization in a deep architecture, the weights in
the first hidden layer are initialized with mel filterbank
magnitude response and shared over the input frame features
in the context window. This structure essentially becomes a
constrained version of CNN using context windows as input.



The context window X € RMXCXN is formed as

Kinogt Xy, op e Xm0 Xy 0

XMJ.—cgl X;w,n—%i

o ©)
where &, = X, . ,,.

After context windowing, each input instance for CNN
can be regarded as the spectrogram for C' frames, as shown
in Figure 4(a). The target output for each input instance X,
will be the same as the target output for the center frame
of the context window, i.e., Y:‘" = Y. ,. The number of
feature maps in the convolutional layer is fixed to B and for
each feature map, the convolutional filter shape is fixed to
M x 1. Given the context window X (where X = X, . p,
time frame index n is omitted for simplicity), the output of
the convolutional layer Z € RE*P is calculated as

M
Zep =00 WymXme)  (c=1,2,...C) (7)

m=1

where W), represents the weights for the b*" feature
map. The complete CNN topology corresponds to a single
convolutional layer without pooling connected to two fully
connected hidden layers before the output layer as illustrated
in Figure 4(c).

We implement the mel scale weight initialization in the
way that we introduce B feature maps with dimensions
M x 1, and initialize the weights W, ,, with mel scale
filterbank magnitude response Fy,,,,. This way, each feature
map is initialized with the coefficients of the corresponding
mel band and filterbank learning is introduced to the deep
architecture in the convolutional layer. As the name suggests,
each feature map learns a different higher level feature and
the learning includes making updates on the standard mel
filterbank magnitude response.

E. Decision Thresholding

In a neural network based sound event detection system,
logistic sigmoid output of the network can be treated as the
posterior probability ¢ for each event class for each time
frame, and the posterior probabilities of the sound events
produced by a deep learning classifier should be converted
into a binary detection format. In a real-life sound event
detection task, the number of positive detections in a frame
n is not constant and it is in the range of [0, K]. In order to
obtain multiple binary detection outputs in a single frame,
posterior probabilities for each sound event is thresholded
with a constant ¢ (in this work, ¢ = 0.5 is used to set an
unbiased probability threshold).

IV. EVALUATION
A. Acoustic Data

We evaluate the performance of the proposed method with
synthetic material that consists of sequences of occasionally
overlapping sound events. There are 9 sound event classes
that have been investigated in this work: alarm clock, baby
crying, cat meowing, dog barking, door bell, footsteps, glass

time(t)
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BN INBN EEEN NEN
B IR IR |
time(t)
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Fig. 5: The polyphony of the mixture is controlled with
the length of the time delay in between samples: (a) high
polyphony, (b) low polyphony.

shattering, music and speech. The samples for these classes
except music and speech are collected from stockmusic '.
The total length of these samples is around 4270 seconds,
with an average length of 17 seconds per sample. In addition,
the speech samples are the clean samples from the training
set (all speakers) of the 2nd CHiME challenge [33] and the
music samples are 15-20 second randomly selected excerpts
from music tracks with various genres [34]. The samples
for each class are distributed randomly as 60 % in training
set, 20 % in validation set and 20% in test set. In order to
simulate the polyphony in real-life recordings, the collected
samples are mixed in 15 minute mixtures in the following
way. Among the samples collected from stockmusic, the
samples having the same track are grouped together in either
training, validation or test sets to avoid that samples recorded
in the same environment would be easily recognized by
the factors other than their sound characteristics. For each
mixture, randomly selected samples from the event classes
are added to the mixture by introducing a random time delay,
adding a sample to the mixture and repeating this until the
end of the mixture. By doing this for each class, a mixture
with time-varying polyphony is obtained. The polyphony
is roughly controlled with the range of the random time
delay, as illustrated in Figure 5. The ground truth activity
for each mixture is obtained by automatically annotating
(labeling) the frames in the mixture where the sample from
the corresponding event class is used. In order to avoid
mislabeling of possible silent segments in the beginning and
the end of the samples, mean RMS energy of the sample is
calculated in short frames, and then, compared to this mean
RMS energy, the frames in the beginning and end of the
sample without enough RMS energy are left unlabeled. A
total of 50 mixtures obtained this way for the whole dataset.
Among the annotated frames, the polyphony percentage of
the test set is given in Table L.

Thttp://www.stockmusic.com



TABLE I: Polyphony level versus data amount percentage
for the annotated frames in the test set.

Polyphony ‘ 1 ‘ 2 ‘ 3

Percentage ‘ 90.9 ‘ 8.5 ‘ 0.5

B. Settings

In order to obtain the magnitude spectrum, the mixtures
are divided into 40 ms time frames with 50% overlap.
Hamming window is applied for each frame to reduce the
boundary effect. Magnitude spectrum for each time frame
is calculated by taking the absolute value of 1024-point
FFT. The baseline model uses 40 mel band energies and
two hidden layers for the DNN [6]. Consequently, our
DNN method uses a fully-connected hidden layer with 40
neurons and for CNN, this hidden layer is replaced with
convolutional layer with 40 feature maps. For both DNN
and CNN methods, the first hidden layer is followed by
2 hidden layers of 200 neurons. During the training with
stochastic gradient descent algorithm, learning rate is set to
0.1 and Nesterov accelerated momentum with value 0.2 is
used. These network hyper-parameters are selected according
to grid search over the validation set. Constant thresholding
of the network outputs with ¢ = 0.5 is used to get the
binary outputs. Each experiment has been repeated ten times
and the results are presented as the average accuracy over
the experiments. This is done to take into account the
accuracy changes due to random initialization of the network
parameters. The experiments are conducted based on Keras
neural networks library [35].

C. Evaluation Metric

The evaluation metric for this work is frame-wise multi-
label F1 score. Correct, wrong and missed detections of
events are obtained for each input instance by comparing
the estimated binary outputs to the target outputs. Then,
precision and recall is calculated from the total number of
correct, wrong and missed detections of events throughout
the whole test set. F1 score is calculated as the harmonic
mean of precision and recall.

D. Overall Results

DNN and CNN architectures with different features, first
hidden layer weight initialization methods and context win-
dow lengths has been experimented and the accuracy results
are presented in Table II. Regardless of the context window
length C, deep architectures trained with magnitude spec-
trum features outperform the mel band magnitude features.
This can be seen as a promising step on using lower
level features as input and automatically learning the higher
level features through deep learning in sound related tasks.
Moreover, CNNs whose first layer weights are initialized
with mel filterbank magnitude response generally outperform
the randomly initialized CNNs.

In addition to accuracy benefit, mel filterbank weight
initialization also has an understandability benefit. Randomly
initialized weights have an implicit final structure since
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Fig. 6: (a): initial mel filterbank response, (b): final mel
filterbank response, (c): difference between (a) and (b).

they map a very complex nonlinear function starting from
random coefficients for this function. On the other hand, mel
initialized CNNs provide understandable weights in the first
hidden layer, where one can deduct the essential frequency
bins for the particular sound event detection task. The initial
and final mel filterbank responses for C' = 11 is visualized in
Figure 6. The final filterbank clearly preserves the nonlinear
mel scale structure. Moreover, when we look at the difference
between initial and final mel filterbank responses as given
in Figure 6(c), we notice that the frequency bins in some
mel bands are emphasized by decreasing the weights of the
frequency bins in the same filter, but outside the mel band.
This points to the fact that the frequencies in the given mel
band play an important role in the detection of the sound
events.

Consistent with our observations in [29], introducing time
information encoded in successive frames, i.e., using context
windows rather than individual frames, provides great boost
in accuracy. The accuracy nevertheless converges at around
C = 11, which corresponds to 240 ms of audio signal with
the given settings. Using the appropriately constrained CNN
allows us to introduce context windowing to mel filterbank
weight initialization. Consequently, the best detection accu-
racy (marked with bold in Table II) is obtained when these
two methods are combined.

E. Class-wise Results

The detection accuracy for each sound event class is pre-
sented in Table III. Context window length for each method
in Table III is selected as C' = 11, for which the accuracy is
highest as presented in Table II. In sound event detection,
the input usually consists of unstructured sounds, which
makes it hard to both model the sound events and interpret
the accuracy of the proposed methods for each sound event



TABLE II: Detection accuracy as a function of acoustic feature, network architecture and context window length C. MEL:
mel band energy, FFT: magnitude spectrum, random init: complete random initialization of network weights, mel init: mel
filterbank weight initialization in the first hidden layer weights, p and o match: mean and variance matching.

Feature Architecture C=1 C=3 | C=5 | C=7 | C=9 | C=I1 C=13
MEL DNN random init 693 | 753 | 77.1 | 779 | 779 78.9 78.9
FFT CNN random init 714 | 76.1 | 782 | 794 | 80.6 81.2 80.7
FFT CNN mel init 715 | 758 | 785 | 80.2 | 81.2 80.8 80.8
FFT CNN mel init (¢ and o match) | 71.3 | 76.2 | 784 | 79.7 | 80.9 81.8 81.3

TABLE III: Detection accuracy as a function of acoustic feature & network architecture and sound event classes for context

window length C' = 11.

Feature & Architecture alarm clock | baby cry | cat meow | dog bark | door bell | footsteps | glass shatter | music | speech

MEL & DNN random init 61.0 71.0 79.1 69.1 66.0 76.0 75.0 89.6 88.0

FFT & CNN random init 70.8 76.9 78.8 74.8 64.5 78.9 81.3 90.5 89.1

FFT & CNN mel init 65.0 71.6 82.2 74.4 57.7 71.7 81.7 90.0 89.3

FFT & CNN mel init (u&o match) 74.3 76.5 81.8 74.9 69.6 759 82.0 90.3 88.8
separately. However, for the more structured classes such as [6] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound
alarm clock and door bell (which often consist of multiple event detection using multilabel deep neural networks,” in Int. Joint

. . . . Conf. on Neural Networks (IJCNN), 2015, pp. 1-7.

sinusoids recorded simultaneously), mel filterbank weight [71 J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-frames

initialization provides a significant boost in accuracy. For the
classes such as baby crying, footsteps, music and speech the
accuracy difference between the methods seems negligible.

V. CONCLUSIONS

In this work, we aim to combine the automatic feature
learning capabilities of the deep learning architectures with
the empirically obtained human perception knowledge. In-
stead of using the traditional, perceptually motivated mel
band magnitudes as input features, we use magnitude spec-
trum features and initialize the first hidden layer weights
with mel filterbank magnitude response, which essentially
corresponds to computing the mel band magnitudes through
the first hidden layer outputs. During learning process, the
filterbank is updated to provide better discrimination over
sound events. The proposed method does not only improve
the detection accuracy over randomly initialized networks,
but also provide interpretable weights in the first hidden
layer, which can be used to deduct the important frequency
bins in the detection of the given sound events.
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End-to-End Polyphonic Sound Event Detection
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with Learned Time-Frequency Representation Input
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Abstract—Sound event detection systems typically consist of
two stages: extracting hand-crafted features from the raw audio
waveform, and learning a mapping between these features and
the target sound events using a classifier. Recently, the focus of
sound event detection research has been mostly shifted to the lat-
ter stage using standard features such as mel spectrogram as the
input for classifiers such as deep neural networks. In this work,
we utilize end-to-end approach and propose to combine these
two stages in a single deep neural network classifier. The feature
extraction over the raw waveform is conducted by a feedforward
layer block, whose parameters are initialized to extract the time-
frequency representations. The feature extraction parameters are
updated during training, resulting with a representation that is
optimized for the specific task. This feature extraction block is
followed by (and jointly trained with) a convolutional recurrent
network, which has recently given state-of-the-art results in
many sound recognition tasks. The proposed system does not
outperform a convolutional recurrent network with fixed hand-
crafted features. The final magnitude spectrum characteristics of
the feature extraction block parameters indicate that the most
relevant information for the given task is contained in 0 - 3 kHz
frequency range, and this is also supported by the empirical
results on the SED performance.

Index Terms—neural networks, convolutional recurrent neural
networks, feature learning, end-to-end

I. INTRODUCTION

Sound event detection (SED) deals with the automatic
identification of the sound events, i.e., sound segments that
can be labeled as a distinctive concept in an audio signal. The
aim of SED is to detect the onset and offset times for each
sound event in an audio recording and associate a label with
each of these events. At any given time instance, there can be
either a single or multiple sound events present in the sound
signal. The task of detecting a single event at a given time
is called monophonic SED, and the task of detecting multiple
sound events is called polyphonic SED. In recent years, SED
has been proposed and utilized in various application areas
including audio surveillance [1], urban sound analysis [2],
multimedia event detection [3] and smart home devices [4].

The research leading to these results has received funding from the
European Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND. The
authors wish to acknowledge CSC IT Center for Science, Finland, for
providing computational resources.

Tuomas Virtanen
Tampere University of Technology, Finland
tuomas.virtanen @tut.fi

SED has traditionally been approached as a two-stage
problem: first, a time-frequency representation of the raw
audio signal is extracted, then a classifier is used to learn
the mapping between this representation and the target sound
events. For the first stage, magnitude spectrograms, and human
perception based methods such as mel spectrograms and mel
frequency cepstral coefficients (MFCC) have been the most
popular choices among SED researchers, and they have been
used in a great portion of the submissions for the two recent
SED challenges [5], [6]. For the second stage, deep learning
methods such as convolutional and recurrent neural networks
have recently been dominating the field with state-of-the-art
performances [7]-[9].

Using time-frequency representations are beneficial in the
following ways. Compared to raw audio signal in time domain,
frequency domain content matches better with the semantic
information about sounds. In addition, the representation is
2-D, which makes the vast research on classifiers on image-
based recognition tasks applicable to SED. Also, they are often
more robust to noisy environments than raw audio signals (as
the noise and the target sources can occupy different regions
in the frequency domain), and the obtained performance is
often better than using the raw audio signals as input to
the second stage. On the other hand, especially for human
perception based representations, it can be argued that these
representations utilize domain knowledge to discard some
information from the data, which could have been otherwise
useful given the optimal classifier method.

A. Related Work

Recently, classifiers with high expression capabilities such
as deep neural networks have been utilized to learn directly
from raw representations in several areas of machine learning.
For instance, in image recognition, since the deep learning
methods have been found to be highly effective with the works
such as AlexNet [10], hand-crafted image features have been
mostly replaced with raw pixel values as the inputs for the
classifiers. For speech recognition, similar performance have
been obtained for raw audio and log mel spectrograms in using
convolutional, long-short term memory deep neural network
(CLDNN) classifiers [11]. For music genre recognition, raw
audio input for a CNN gives close performance to mel spectro-
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grams [12]. Both [11] and [12] claim that when the magnitude
spectra of the filter weights of the first convolutional layers
are calculated and then visualized with the order of lowest
dominant frequency to the highest, the resulting scale resem-
bles the perception based scales such as mel and gammatone.
For speech emotion recognition, a CLDNN classifier similar
to [11] with raw audio input outperforms the standard hand-
crafted features in the field, and it provides on-par performance
with the state-of-the-art on a baseline dataset [13].

However, when it comes to SED, hand-crafted time-
frequency representations are still found to be more effective
than raw audio signals as the classifier input. In [14], raw
audio input performs considerably worse than concatenated
magnitude and phase spectrogram features. In [15], deep gated
recurrent unit (GRU) classifier with raw audio input ranks
poorly compared to time-frequency representation based meth-
ods in DCASE2017 challenge sub-task on real-life SED [6].
Most likely due to the poor performance, the research on the
end-to-end methods for SED has recently been very limited,
and only two out of 200 submissions have used raw audio
as classifier input (with low success) in DCASE2017 SED
challenge [6]. As an attempt to move towards lower level input
representations for SED, in [16], magnitude spectrogram has
been used an input to a deep neural network whose first layer
weights were initialized with mel filterbank coefficients.

B. Contributions of this work

In this work, we propose to use convolutional recurrent
neural networks (CRNN) with learned time-frequency repre-
sentation inputs for end-to-end SED. The most common time-
frequency representations consist of applying some vector
multiplications and basic math operations (such as sum, square
and log) over raw audio signals divided into short time frames.
This can be implemented in the form of a neural network
layer, and the benefit is that the parameters used in the vector
multiplications can be updated during network training to
optimize the classifier performance for the given SED task.
In this work, we investigate this approach by implementing
magnitude spectrogram and (log) mel spectrogram extraction
in the form of a feature extraction layer block, whose param-
eters can be adapted to produce an optimized time-frequency
representation for the given task. We then compare the adapted
parameters with the initial parameters to gain insight on the
neural network optimization process for the feature extraction

Method framework. The method output shape in various stages of the framework is given in brackets.

block. To our knowledge, this is the first work to integrate
and utilize domain knowledge into a deep neural network
classifier in order to conduct end-to-end SED. The main
differences between this work and the authors’ earlier work on
filterbank learning [16] are the input representation (raw audio
vs. magnitude spectrogram), spectral domain feature extraction
block using neural network layers and the classifier (CRNN
vs. FNN and CNN).

II. METHOD

The input X € RY*T consists of T frames of raw audio
waveforms sampled of N samples with sampling rate Fj,
and Hamming window with N samples is applied to each
frame. Initially (i.e. before the network training), the output of
the feature extraction block is either max pooled magnitude
spectrogram, mel spectrogram or log mel spectrogram. The
method framework is illustrated in Figure 1.

A. Feature Extraction block

The input X to the feature extraction block is fed through
two parallel feedforward layers, I*® and /'™, each with N
neurons with linear activation function and no bias. The
weights of these two layers, namely W™ ¢ R¥*N and
wim ¢ REXN , are initialized so that the outputs of these
layers for each frame X., (¢ = 1,..T") would correspond
to the real and the imaginary parts of the discrete Fourier
transform (DFT):

N-1
Fi: = Z X, t[cos(2mkn/N) — i - sin(2rkn/N)]
n=0
hon < cos(2mkn/N)
”", — bln(2ﬂ'k7’L/N)
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for k =0,1,..., 3 ., N — 1, where Z is the
weighted output for each feedforward layer. The reason for
taking only the first half of the DFT bins is that the raw audio
waveform input X is purely real, resulting with a symmetric
magnitude spectrum. Each weight vector Wy, . can be deemed

(€]



as an individual sinusoidal filter. For both [*® and '™, the
outputs given the input X is calculated using the same weights
W' and W™ for each of the T frames. Both layers are
followed by a square operation, the outputs of the layers are
summed, and finally a square root operator results with the

magnitude spectrogram S € RE*T;

Skt = [Frel =1/ (Z5,)? + (Z})? @
At this stage, S can be directly fed as input to a CRNN
classifier, or it can be further processed to obtain M (log)
mel spectrogram using a feedforward layer with M neurons,
rectified linear unit (ReLU) activations and no bias:

N/2—-1
Zye) = max(0, > Win%Sk) 3
k=0

for m = 0,1,...M — 1. The weights W™¢! of this layer is
initialized with the mel filterbank coefficients in the similar
manner with [16] and log compression is used in part of the
experiments as

Zlogmel — log(zmel + E) (4)

where ¢ = 0.001 is used to avoid numerical errors. The
parameters W™¢! are obtained from Librosa [17] package and
the center frequencies for each mel band are calculated using
O’Shaughnessy’s formula [18]. For the experiments where this
layer is utilized, the weights W™ and W™ are kept fixed, as
explained in Table I.

In our experiments while using S directly as the input for
CRNN, we observed that when the number of features for S
is dropped from % to M by using max-pooling in frequency
domain, the computation time is substantially reduced with
very limited decrease in accuracy. Hence, we followed this
approach when the mel feature layer is omitted.

B. Convolutional Recurrent block

Following the same approach with [8], the CRNN block
consists of three parts:

1) convolutional layers with ReLU activations and non-
overlapping pooling over frequency axis

2) gated recurrent unit (GRU) [19] layers, and

3) a single feedforward layer with C' units and sigmoid
activation, where C' is the number of target event classes.

The output of the feature extraction block, i.e., a sequence
of feature vectors, is fed to the convolutional layers and the
activations from the filters of the last convolutional layer are
stacked over the frequency axis and fed to the GRU layers. For
each frame, GRU layer activations are calculated using both
the current frame input and the previous frame outputs. Finally,
the GRU layer activations are fed to the fully-connected layer.
The output of this final layer is treated as the event activity
probability for each event. The aim of the network learning
is to get the estimated frame-level class-wise event activity
probabilities as close as to their binary target outputs, where
target output is 1 if an event class is present in a given frame,

TABLE 1
A TABLE SHOWING WHICH WEIGHT MATRICES ARE LEARNED FOR EACH
EXPERIMENT. v/ STANDS FOR LEARNED, X STANDS FOR FIXED, AND -
STANDS FOR NOT UTILIZED IN THE EXPERIMENT.

Learned? Wre  Wwim  yymel
DFT learned v v -
Mel learned X X v

Log mel learned X X 4

and 0 vice versa. In the usage case, the estimated frame-level
event activity probabilities are thresholded with 0.5 to obtain
binary event activity predictions. More detailed explanation
about CRNN block can be found in [8].

The network is trained with back-propagation through time
using Adam optimizer [20] with learning rate 10~3, binary
cross-entropy as the loss function and for maximum 300
epochs. In order to reduce overfitting of the model, early stop-
ping was used to stop training if the validation data frame-level
F1 score did not improve for 65 epochs. For regularization,
batch normalization [21] was employed in convolutional layers
and dropout [22] with rate 0.25 was employed in convolutional
and recurrent layers. Keras deep learning library [23] was used
to implement the network.

III. EVALUATION
A. Dataset

The dataset used in this work is called TUT-SED Synthetic
2016. 1t is a publicly available polyphonic SED dataset, which
consists of synthetic mixtures created by mixing isolated sound
events from 16 sound event classes. Polyphonic mixtures were
created by mixing 994 sound event samples with the sampling
rate 44.1 kHz. From the 100 mixtures created, 60% are used
for training, 20% for testing and 20% for validation. The total
length of the data is 566 minutes. Different instances of the
sound events are used to synthesize the training, validation and
test partitions. Mixtures were created by randomly selecting
event instance and from it, randomly, a segment of length 3-15
seconds. Mixtures do not contain any additional background
noise. Dataset creation procedure explanation and metadata
can be found in the web page ' hosting the dataset.

B. Evaluation Metrics and Experimental Setup

The evaluation metrics used in this work are frame-level
F1 score and error rate. F1 score is the harmonic mean of
precision and recall, and error rate is the sum of the rate
of insertions, substitutions and deletions. Both metrics are
calculated in the same manner with [8] and they are explained
in more detail in [24].

The input X to the feature extraction block consists of
a sequence of 40 ms length frames with 50% overlap. The
number of frames in the sequence is 7' = 256 which corre-
sponds to 2.56 seconds of raw audio. The audio signals have

Thttp://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016



TABLE II
FRAME-LEVEL F1 SCORE F'l;, AND ERROR RATE FE Rfyy RESULTS FOR
DIFFERENT TIME-FREQUENCY REPRESENTATION METHODS AND
SAMPLING RATES. "DFT” STANDS FOR MAGNITUDE SPECTROGRAM
USING LINEAR FREQUENCY SCALE, "MEL” STANDS FOR MEL
SPECTROGRAM, “FIXED” AND "LEARNED” STANDS FOR WHETHER THE
WEIGHTS OF THE FEATURE EXTRACTION BLOCK ARE KEPT FIXED OR
UPDATED DURING TRAINING.

Method F]-frm ERfrm

DFT 8 kHz fixed 60.8+£0.8 0.554+0.01
DFT 8 kHz learned 60.8+0.8 0.5540.01
Mel 8 kHz fixed 60.8+£0.9 0.554+0.01
Mel 8 kHz learned 61.0+0.8 0.56+0.01
Log mel 8 kHz fixed 63.1£0.6  0.52+0.01
Log mel 8 kHz learned 58.6£1.6 0.56£0.01
DFT 16 kHz fixed 61.94+0.9 0.54+0.01
DFT 16 kHz learned 60.1+£1.7 0.584+0.03
Mel 16 kHz fixed 62.3£0.7 0.54£0.01
Mel 16 kHz learned 60.6£0.9 0.574+0.02
Log mel 16 kHz fixed 65.8+1.4 0.5040.01
Log mel 16 kHz learned 59.9+£1.3 0.56+0.01
DFT 24 kHz learned 58.1£1.6  0.59+0.03
Log mel 44.1 kHz fixed [8] 66.4+0.6 0.484+0.01

been resampled from the original rate of 44.1 kHz to 8, 16
and 24 kHz in different experiments, which corresponds to
N = 160, 320, and 480 features for each frame, respectively.
This is done both to investigate the effect of discarding the
information from higher frequencies, and also to reduce the
memory requirements to be able to run experiments with a
decent sized network and batch size. At the max pooling
(or mel) layer of the feature extraction block, the number of
features is set to M = 40.

In order to find the optimal network hyper-parameters, a grid
search was performed, and the hyper-parameter set resulting
with the best frame-level F1 score on the validation data
was used in the evaluation. The grid search consists of every
possible combination of the following hyper-parameters: the
number of convolutional filters / recurrent hidden units (the
same amount for both) {96, 256}; the number of recurrent
layers {1, 2, 3}; and the number of convolutional layers {1, 2,
3,4} with the following frequency max pooling arrangements
after each convolutional layer {(4), (2, 2), (4, 2), (8, 5), (2,
2,2),65,4,2), 2,2,2,1), (5, 2,2, 2)}. Here, the numbers
denote the number of features at each max pooling step; e.g.,
the configuration (5, 4, 2) pools the original 40 features in a
single feature in three stages: 40—8—2—1. This grid search
process is repeated for every experiment setup in Table II
(except the last experiment, where a similar grid search has
been performed earlier for that work).

After finding the optimal hyper-parameters, each experiment
is run ten times with different random seeds to reflect the effect
of random weight initialization in convolutional recurrent
block of the proposed system. The mean and the standard
deviation (given after £) of these experiments are provided.

C. Results

The effect of feature extraction with learned parameters
have been investigated and compared with the fixed feature
extraction parameters in Table II. For both frame-level F1
score and error rate metrics, experiments with fixed feature
extraction parameters often outperform the learned feature
extraction methods in their corresponding sampling rates. In
addition, the experiments with fixed parameters benefit from
the increased sampling rate, whereas the performance does
not improve for learned feature extraction parameters with
higher sampling rates. One should also note that the F1 score
using both learned and fixed parameters with 8 kHz sampling
rate is 60.8%. Although there is some drop in performance
from the highest F1 score of 66.4% at 44.1 kHz, it is still
remarkable performance considering that about 82% of the
frequency domain content of the original raw audio signal is
discarded in the resampling process from 44.1 kHz to 8 kHz.
This emphasizes the importance of low frequency components
for the given SED task. Since the computational load due to
high amount of data in the raw audio representations is one of
the concerns for end-to-end SED systems, it can be considered
to apply a similar resampling process for the end-to-end SED
methods in the future.

In order to investigate how the original parameters of
the feature extraction block have been modified during the
training, the magnitude spectrum peak, i.e. the maximum value
of the magnitude spectrum, of the trained weights for W;°,
W}J“, and Wj° + 4 - W}Cm are calculated for each filter k.
Without network training, these weights represent sinusoid
signals, therefore the magnitude spectrum of each filter is
equal to a single impulse at the center frequency of the filter,
whose amplitude equals to the number of filters. At the end of
the training, the peak of the magnitude spectrum for each filter
stays at the center frequency of the filter, while the amplitude
of the peak is either increased or decreased to a certain degree.
In order to visualize the change in the peak amplitude, the
peak amplitude positioned at the center frequency for each
filter after training is given in Figure 2. The same analysis
is repeated for different experiments using raw audio inputs
with different sampling rates (8 kHz, 16 kHz and 24 kHz) as
input to their feature extraction block which initially calculates
the pooled magnitude spectrogram. The magnitude spectrum
peaks for each experiment is scaled with the number of filters
for visualization purposes, and therefore each peak is equal to
1 before the training. The three observations that can be made
from Figure 2 is

o Although each of these three systems have different

CRNN architectures (grid search for each system results
with different hyper-parameter set) and their raw audio
input is sampled with different rates, the magnitude
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Fig. 2. Magnitude spectrum peaks for the real (W*¢) and imaginary (W™)
DEFT layer filters after the training. The amplitude of the peak for each filter
is positioned at the center frequency of the corresponding filter, resulting with
a line plot covering the whole frequency range for the experiment with given
sampling rate.

spectrum peaks possess very similar characteristics. For
all three experiments, the peaks are modified the most for
the frequencies below around 3 kHz, and there is little
to no change in peak amplitudes after 4 kHz. This may
indicate that the most relevant information for the given
SED task is in 0-4 kHz region. Although the authors
cannot conclude this, it is empirically supported to a
certain degree with the results presented in Table II.
Even though the amount of data from the raw audio
input sampled with 44.1 kHz is substantially reduced by
resampling with 8 and 16 kHz, the performance drop is
limited.
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Fig. 3. (a): Real (W'®) DFT layer filters with different center frequencies
F, and (b): their magnitude spectra. Blue plot represents initial values, and
red plot represents the values after the training. Horizontal dashed lines at -1
and 1 mark the initial maximum and minimum values for the filters.

« For all three experiments, the change in the magnitude
spectrum peaks is not monotonic in the frequency axis.
Some of the peaks in the low frequency range are boosted,
but there are also other peaks in the same frequency
region that are significantly suppressed. This implies a
different optimal time-frequency representation than both
magnitude and mel spectrogram. One should also bear
in mind that this learned representation is task-specific,
and the same approach for other classification tasks
may lead to a different ad-hoc magnitude spectrum peak
distribution.

« Although they represent different branches of the feature
extraction block (and therefore are updated with different
gradients), the magnitude spectrum peaks of W' and
W™ are modified in a very similar manner at the end of
the training.

The learned filters with the center frequencies up to 800
Hz with the sampling rate 8 kHz and their magnitude spectra
have been visualized in Figure 3. The neural network training
process seemingly do not result with a shift in the center
frequencies of the filter. On the other hand, it should be
noted that in addition to the peak at the center frequency, the
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Fig. 4. (a): Initial, and (b): learned mel filterbank responses.

magnitude spectrum of each filter consists of other components
with smaller amplitude values spread over the frequency range,
which reflects that the pure sinusoid property of the filters are
lost.

For the experiments where the mel layer is utilized, the
learned mel filterbank responses are visualized in Figure 4.
One common point among the responses is that the filter-
bank parameters covering lower frequency range have been
emphasized. The learned filterbank response that is the most
resembling its initial response belongs to mel layer with 8 kHz
sampling rate, which also performs the best among these four
experiments with 61% F1 score, as presented in Table II. For
the response of both mel and log mel layers with sampling
rate 16 kHz, the parameters covering higher frequency range
have been emphasized, and the filter bandwidths for higher
frequencies have been increased. However this does not result
with an improved performance, as these experiments provide
60.6% and 59.9% F1 score, respectively.

IV. CONCLUSION

In this work, we propose to conduct end-to-end polyphonic
SED using learned time-frequency representations as input to a
CRNN classifier. The classifier is fed by a neural network layer
block, whose parameters are initialized to extract common
time-frequency representation methods over raw audio signals.
These parameters are then updated through the training process
for the given SED task. The performance of this method
is slightly lower than directly using common time-frequency
representations as input. During the network training, re-
gardless of the input sampling rate and the neural network
configuration, the magnitude response of the feature extraction
block parameters have been significantly altered for the lower

frequencies (below 4 kHz), and stayed mostly the same for
higher frequencies.
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