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This thesis describes the integration of a RISC core processor with the MIPS assem-
bly language. The COFFEE Core is a RISC core processor developed at Tampere
University of Technology. The compiler and tools, based on GCC and GNU Binutils,
are several versions behind the current releases. To become more widely adopted
in research and industry, the processor would need to use up-to-date industry stan-
dard tools. Modifying the processor to use the MIPS or ARM instruction set would
allow the associated tools to be used as well. The COFFEE architecture is com-
pared with both the MIPS and ARM architectures to determine which architecture
would provide the most benefits to developers and how the COFFEE Core might be
adapted to meet the architectural requirements. When compared with the COFFEE
instruction set, the ARM instruction set is found to have an overlap of 7 identical in-
structions and 32 similar instructions and the MIPS instruction set is found to have
an overlap of 22 identical instructions and 54 similar instructions. MIPS and ARM
were also found to be comparably beneficial to developers. After these comparisons,
the MIPS architecture was selected as the most compatible, due to the larger overlap
in the instruction set compared to ARM. A subset of overlapping MIPS instructions
was chosen to be mapped to the corresponding COFFEE instructions. The Decoder
and Control Unit of the COFFEE Core was modified and the processor was tested
with MIPS assembly, finding the implemented instructions to be functional. The
integration of MIPS with the COFFEE Core is therefore shown to be feasible. Ad-
ditional modifications outside the Decoder and Control Unit of the COFFEE Core
would be required to implement the remaining MIPS instructions.
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1. INTRODUCTION

The reduced instruction set computing (RISC) design philosophy was originally
developed to increase the timing performance of processors. Complex instruction
set computing (CISC) processors had previously been developed while focusing on
reducing the semantics gap when compiling high level programming languages to
computer language. This resulted in processors with complex instructions which
were not all that quick to execute. With the focus then shifting to processor perfor-
mance, the RISC computer design philosophy was developed [22] [8].

Early RISC processors had the following design choices in common [22] [16].

• Memory is only accessed by loading and storing to registers

• Operations are register to register

• Addressing modes are simplified

• Operations are simplified

• Instruction formats are simplified and of fixed length

• One instruction is completed per clock cycle

As RISC processor cores are highly simplified, software takes a significant role in
optimizing the compilation of high level languages to machine language [8].

RISC core processors are now widely used in embedded processing and companies
such as ARM, MIPS, and Atmel produce RISC core processors [6] [21] [15]. Processor
cores can be purchased either as part of a physical product or as a licence to use the
architecture.

The COFFEE Project at Tampere University of Technology has developed a RISC
soft-core processor called the COFFEE Core with supporting software [14]. A soft-
core is synthesizable and can be run on an FPGA, allowing for easy modification
of the implementation and distribution of the hardware. The current plans are
to offer the core for free under an open-source licence [16]. If the COFFEE Core
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were widely distributed, the software would need frequent updating to maintain
industry standard. As this is rather labour intensive, it would seem logical to prefer
to use software from an established RISC architecture. Thus, a COFFEE Core
taking in an industry standard instruction set such as from ARM or MIPS would
be beneficial. An added benefit to minimized labour would be the use of additional
software tools, libraries, and technology associated with the new architecture. This
thesis will investigate the feasibility of adapting the COFFEE Core to read an
industry standard architecture.

1.1 Background

The COFFEE project is a project at Tampere University of Technology. The COF-
FEE Core is a RISC Core developed for the COFFEE project.

The current COFFEE Core uses an instruction set and software tools developed
specifically for the COFFEE Core [14]. The tools take advantage of COFFEE’s
unique features that differentiate it from other commercial cores. The software tools,
although customized, are based on the open-source GCC tool-chain. A new updated
GCC tool-chain is released about once a year [1], meaning that the COFFEE tools
must also be updated. As updating the tool-chain takes additional resources, it is
not always possible to update the tool-chain in a timely manner, and therefore the
current COFFEE tool-chain is out of date compared to the current version of the
GCC tool-chain.

The current COFFEE tool-chain is based on GCC version 3.44. The most updated
version of the GCC tool-chain is GCC version 4.8.0, which was released on March
22, 2013 [1], and so the COFFEE tool-chain does not have any of the features added
since the version 3.44 release.

In addition to the COFFEE compiler, a set of binary utilities, or Binutils, are also
provided for COFFEE. The current version of the COFFEE Binutils is based on
GNU Binutils version 2.17. The most up-to-date version of GNU Binutils as of the
writing of this thesis is version 2.23.1 [2], meaning that the COFFEE Binutils is also
out of date and possibly missing new features.

COFFEE also does not have software tools comparable to the tools provided by
many commercial cores, such as software tools provided by MIPS or ARM and
compatible tools by third party vendors for development and debugging. Associated
developer tools are also provided for both cores by the MIPS and ARM companies
and by third party vendors [17] [7]. MIPS and ARM processors are commonly used
in industry.
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1.2 Problem Definition

The difficulty faced is then how to keep the existing COFFEE compiler and software
tools up to date while also providing an industry standard development environment
for the COFFEE Core. This thesis will evaluate which industry standard develop-
ment environment is the most beneficial to the developer, and then propose an
approach to interface the COFFEE core with that environment.

If the COFFEE Core were interfaced with an industry standard development envi-
ronment, it will become more useful because tools, libraries, and operating systems
associated with the chosen environment can then be used with the COFFEE core.

1.3 Work Description

The objectives of this work are as follows:

1. To propose an approach to integrate the COFFEE Core with an industry
standard development environment while eliminating the need to update the
COFFEE compiler and tools

2. To integrate the COFFEE Core with the development environment

The approach followed to achieve the above objectives are as follows:

• Perform a review on MIPS, ARM and COFFEE tools and architectures

• Compare tools and architectures of MIPS and ARM with COFFEE to de-
termine which architecture, when interfaced with COFFEE, offers the most
benefits to the developer

• Propose an approach for integrating COFFEE with the chosen architecture

• Implement and demonstrate, as proof of concept, the integration of COFFEE
with the chosen architecture

1.4 Scope

The integration of COFFEE with the chosen architecture will be done at the hard-
ware level rather than the software level. This will require the COFFEE processor
to understand machine-level instructions from the software tools of the chosen ar-
chitecture.
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It is expected that the integration will require significant modification of the COF-
FEE Core. Thus, for the first iteration of the integration the modifications will be
limited to only the decoding and control processes of the COFFEE Core. These
parts of the processor determine the incoming instruction and what corresponding
controls need to be set inside the processor. The reasoning for this limitation is
two-fold.

• To simplify the problem and the chosen approach

• To limit the modifications made to the COFFEE Core by only modifying what
is necessary

This simplification allows the thesis to focus on overlaps and similarities between the
two architectures and what approach needs to be taken for a minimally functioning
integrated processor. Since the purpose of this thesis is to integrate COFFEE with
another architecture, rather than to write a new processor, most of the original
architecture will be retained and modifications are made only when necessary.

1.5 Thesis Outline

This thesis will first begin with a theoretical background describing the fundamentals
behind the RISC design philosophy. The RISC design has allowed for improved
timing performance in comparison to CISC architectures.

The COFFEE Core is introduced as part of a project at Tampere University of
Technology. The basic architecture and instruction set of the COFFEE Core are
described. The COFFEE Core is a RISC design, and is thus pipelined with an
optimized instruction set. The challenges facing the COFFEE Core in becoming
widely adopted in industry is addressed.

As the COFFEE Core would need to be integrated with an industry standard envi-
ronment, the MIPS and ARM environments are evaluated and the architectures are
compared with MIPS to determine which environment provides the most benefit to
the developer and to evaluate the similarities with COFFEE. The MIPS environ-
ment is chosen for its similarities to the COFFEE Core, wide industry adoption and
open-source tools, and developer benefits.

The MIPS and COFFEE designs are then more closely compared and a design is
developed to integrate the COFFEE Core with the MIPS environment. The inte-
gration will require the COFFEE Core to decode MIPS instructions and direct the
correct controls to the rest of the Core. This will involve modification of the COF-
FEE Core hardware responsible for decoding and control. A small subset of MIPS
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instructions deemed to be similar in function to COFFEE instructions are imple-
mented. The challenges in implementing the remaining instructions are discussed.

The integration design is implemented and tested using simple MIPS assembly pro-
grams. The implemented MIPS instructions are found to function according to the
corresponding COFFEE instruction specifications. Recommendations are made for
further work in implementing the remaining instructions and adapting the COFFEE
architecture to the MIPS architecture.
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2. RISC CORE PROCESSORS

The acronym RISC stands for reduced instruction set computing and describes a
processor design philosophy with the goal of increasing the timing performance. Be-
fore RISC was Complex Instruction Set Computing (CISC) which was focused on
the challenge of reducing the semantics gap when compiling high-level computer
language to machine language. An instruction set with complex instructions would
simplify the compilation and required software, and made sense at a time when
software costs were high [22]. As software costs declined, the focus shifted to im-
proving processor speed, and thus RISC was introduced. A reduced and simplified
instruction set and a pipelined design executes more quickly, thus improving pro-
cessor timing. The following design choices were common in the early RISC core
processors [22] [16].

• Memory is only accessed by loading and storing to registers and operations
are register to register

• Addressing modes are simplified

• Operations are simplified

• Instruction formats are simplified and of fixed length

• One instruction is completed per clock cycle

Memory is only accessed by loading and storing to registers. This reduces memory
accesses and cache misses. Operations are then register to register and do not
require memory access. This also helps to simplify the instruction set. Addressing
modes are simplified allowing for faster processing. Operations are also simplified.
Simple operations execute more quickly than complex operations and thus reduce
the overall execution time. The operations can also be broken down into parts
and executed in steps, ideally in one clock cycle. If more complex operations are
necessary, they can be executed in a co-processor or in software. Instruction formats
are simplified and of fixed length. A simplified instruction format reduces decode
time. Because instruction formats are consistent, determining the instruction and
accessing registers can take place in the time clock cycle.
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A RISC processor uses a pipelined design. For a brief definition of a pipeline, this
means that the design consists of a series of consecutive stages where each stage
runs independently and all stages can run simultaneously. It takes one clock cycle
for all the stages to run once, if they all run simultaneously. Instructions are broken
down into a series of steps. An instruction moves through each of the stages and
at each stage a step is completed. The instruction moves to the next stage for the
next clock cycle. Since each stage may run independently of every other stage, one
instruction can enter the pipeline and one instruction can leave the pipeline at a
time in a first-in-first-out (FIFO) like manner. One instruction exits the pipeline in
each clock cycle, and thus the design is one instruction per cycle.

In a one instruction per cycle design, the actual latency of the instruction does not
matter, since it is broken down into parts. Rather, only the latency of the slowest
pipeline stage matters when determining the clock rate of the core. As additional
pipeline stages are added, the instructions can be broken into smaller steps resulting
in even faster possible clock rates. Thus, the pipelined one-instruction-per-cycle
design results in faster processing.

A few complications arise when a pipeline design is used. Data hazards are caused
when the same data is needed in two separate places in the pipeline. As the number
of stages in a pipeline increases, the likeliness of a hazard occurring also increases.
Consider the case of a branch. While a branch is in the pipeline and before the
branch condition is evaluated, several instructions may have entered the pipeline. If
the branch is taken, the later instructions are then no longer needed, requiring them
to be flushed from the pipeline. There is also the case that a later instruction may
depend on the outcome of the earlier instruction, such as in a series of arithmetic
operations. Usually this conflict can be avoided at compile time by scheduling the
instructions to avoid data hazards and inserting stalls or bubbles into the pipeline
to avoid a data conflict. Within the pipeline, data forwarding can be used to send
data from later stages to earlier stages where the data is needed. If the data is not
ready, a stall is introduced until the data is received from the execute stages [16].

Several embedded RISC processors are available on the market from companies
such as ARM, MIPS, and Atmel [6] [21] [15]. The COFFEE core from the COFFEE
Project at Tampere University of Technology is also a RISC core processor.
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3. COFFEE RISC CORE

The Coffee Project is a project at Tampere University of Technology. The project
consists of hardware blocks, software tools, and four platforms.

The hardware blocks consist of the COFFEE RISC Core, the MILK co-processor,
and the BUTTER co-processor [14]. The COFFEE RISC Core is a harvard-type,
soft-core RISC processor [16]. For this thesis, only the COFFEE RISC Core was
considered and will be described in more detail in the following sections.

The software tools consist of a compiler and associated binary utilities. The C
Compiler is based on GCC v3.4.4 and further supports the MILK FPU (floating
point unit), co-processing, and optimization. The binary utilities includes a linker,
assembler, and disassembler and is based on GNU Binutils version 2.17 [14].

3.0.1 COFFEE Hardware Architecture

The COFFEE Core is based on a harvard architecture, meaning that the data
and instructions are stored and accessed via separate interfaces. The processor
was designed according to RISC principles and is a pipelined design executing one
instruction per clock cycle [12].

COFFEE as a RISC Core

The COFFEE Core is considered a RISC core because it is designed to use an
optimized set of instructions called a RISC Instruction Set Architecture (ISA). In
a RISC core, the architecture and instructions are optimized for fast execution,
versus the more complex instructions of CISC architectures that may take longer
to execute. The faster execution per instruction of RISC ISAs results in increased
processor performance.

There are a few common considerations when designing a RISC core, as was ad-
dressed in the chapter RISC Core Processors, and many of these are reflected in the
design of the COFFEE Core, as outlined in the paper "COFFEE - A Core For Free"
[16].
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One instruction per cycle COFFEE is a pipelined design, thus resulting in a
throughput of one instruction per cycle.

Fixed Instruction Length The COFFEE core accepts both 16 bit and 32 bit
instructions. A fixed length instruction simplifies the instruction encoding.

Load and Store Memory Access COFFEE is a load-and-store architecture,
meaning that data from memory needs to be loaded into registers before being
operated on. This helps to optimize memory accesses and cache misses.

Simplified Address Mode A simplified addressing mode results in faster pro-
cessing times and thus a faster clock cycle.

Fewer, Simpler Instructions Simpler instructions allow the pipeline to be de-
signed in fewer, quickly executing stages, and thus increasing the pipeline through-
put. This results in a faster clock rate, and faster processing. In the RISC core,
instructions can be executed as quickly as one clock cycle, or up to three clock cycles
in the case of the 32 x 32 bit multiplication.

COFFEE Pipeline Structure

The COFFEE architecture is a pipelined structure as in Figure 3.1. To achieve
a fast clock rate, each instruction is broken into separate steps and executed over
several clock cycles. The pipeline is designed in stages to execute each step of each
instruction. Instructions are then pipelined, meaning that one instruction enters the
first stage of the pipeline and one instruction exits the last stage of the pipeline in a
FIFO manner for every clock cycle. This gives a throughput of one instruction per
cycle, regardless of the latency of an instruction. The COFFEE pipeline consists of
mainly a control unit and six pipeline stages: FETCH, DECODE, EXE1 (execute
stage 1), EXE2 (execute stage 2), EXE3 (execute stage 3 and memory stage), and
WRITE-BACK [16].

FETCH The fetch stage obtains a new instruction from the location indicated by
the Program Counter (PC) and increments the PC by four in the 32 bit instruction
mode, or the size of one instruction [16].
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Figure 3.1: COFFEE Pipeline [16]

DECODE The DECODE stage determines the instruction accepted in the FETCH
stage. A new processor status register (PSR) is set depending on the incoming in-
struction, and exception logic is evaluated. Immediate values from immediate in-
structions are extended to 32 bits. Operands consisting of registers or immediate
values are then routed towards either the arithmetic logic unit (ALU) or the co-
processor interface contained in the EXE2 stage. Jump and branch instructions are
also executed immediately after the decode stage. That is, the offset defined by the
instruction is added to the PC [16].

As instructions run through the pipeline, a data dependency may occur where a later
instruction depends on the result of an earlier instruction. The COFFEE pipeline
forwards the data of an earlier instruction to a later instruction as soon as it is
available. However, if the data is not able to be forwarded, a stall will occur in the
fetch or decode stages. For example, condition flags Z, N, and C, denoting a zero
result, negative result, or a carry bit respectively are updated after an arithmetic
operation is completed and are then immediately available to the DECODE stage
[16].

EXE1 In the first execute stage, addition, subtraction, byte manipulation, shift-
ing, and boolean operations are performed. Multiplication for both 16 and 32 bit
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operands begins in this stage and continues into the co-processor stage, also referred
to as EXE2. Multiplication for 16 bits x 16 bits has a two cycle latency and 32 bits
x 32 bits has a three cycle latency. Condition flags are evaluated and available for
the decode stage [16].

EXE2 The co-processor stage manages access to the co-processors [16]. The mul-
tiplications for 16 and 32 bit operands continues into the co-processor stage. The
16 bit x 16 bit multiplication completes in this stages, with a 32 bit result. The
32 bit x 32 bit multiplication continues and completes in the memory stage, called
EXE3, with a 64 bit result. Condition flags are evaluated in both the co-processor
and memory stages and are then immediately available to the decode stage [16].

EXE3 The memory stage, or EXE3, forwards all results to the WRITE-BACK
stage to ensure all instructions with one, two, or three cycle latencies enter the write-
back stage at the same time. Load and store instructions access the data memory
[16].

WRITE-BACK The write-back stage writes the results of the instruction to the
specified destination register in the register file [16].

Core Control Unit

The Core Control Unit (CCU) is described according to the COFFEE Core Control
documentation [13] and with reference to the actual VHDL code.

The CCU controls the data as it moves through the processor, and manages the
control signals controlling the pipeline stages. A simplified block diagram of the
CCU is shown in Figure 3.2. The CCU controls the pipeline as an instruction moves
from stage to stage. To simplify the control, the CCU itself also has a sequential
stage structure. The flush and enable controls for managing data hazards also affect
the control entities. The control unit consists of a master control entity, a flow
control entity, and five decoding entities. Each decoding entity is connected to a
stage of the pipeline, ensuring the right controls are provided at the right time.
The instruction or opcode flows through the pipeline from stage to stage where it
is decoded and the appropriate controls are set. Decoding occurs separately at each
stage as sending an opcode to each entity is more efficient than sending several
signals to indicate the selected instruction.
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Figure 3.2: Simplified Block Diagram of Core Control Unit [13]

Master Control Entity The Master Control Entity manages context switching
and flushing in the case of interrupts and exceptions. As the master control, it can
override the PC, status flags, and flush any stage, regardless of the signals set by
any other part of the control unit.

Flow Control Entity The Flow Control Entity is responsible for datapath control
and manages the movement and timing of data through the pipeline. The entity
also manages data, control, and resource hazards, the data bus and co-processor
interfaces, context switching, and the hardware control stack.

The following decode units each correspond to a stage or section of the pipeline and
determine the corresponding control signals. The decode units form a parallel control
pipeline with the instruction decoding occurring in each entity as the instruction
moves through the pipeline.

The timing of the decode entities with respect to the instruction in the processor
pipeline is shown in the following Figure 3.3. Each decode entity is represented as
a labelled box and takes an instruction as input in the corresponding stage. The
arrows show to which stage the control outputs are directed. Instructions are moving
through each stage of the pipeline and the data is then used when the instruction
arrives at that stage. Instructions are decoded at each step by the control unit
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decode entities. The first two decode units, CCU DECODE I and CCU DECODE
II, take in the instruction currently in the DECODE stage. The CCU DECODE
I provides control outputs available immediately for the DECODE stage, whereas
CCU DECODE II registers the results for use in the EXE 1 stage in the next clock
cycle. When the instruction moves to the EXE 1 stage, the control signals from CCU
DECODE II are used as control inputs. The third decode unit, CCU DECODE III,
runs as the instruction is in the EXE 1 stage, and registers the outputs for use as
control inputs when the instruction moves to the EXE 2 stage. CCU DECODE IV
runs when the instruction is in the EXE 2 stage and registers the results for use in
EXE 3. CCU DECODE V runs when the instruction is in the EXE 3 stage and
registers the results for use in the WRITE-BACK stage.

Figure 3.3: Timing of Control Pipeline

CCU DECODE I This entity runs when the corresponding instruction is cur-
rently in the pipeline DECODE stage. The resulting control signals go immediately
to the DECODE stage (stage 1).
The first decode entity provides control signals for the instruction currently in the
DECODE stage. The outputs of this entity are non-registered and available imme-
diately in the same cycle. The register file index of the first and second register
operands, as well as the index of the target register is extracted from the instruction
word. The conditional execution information is also extracted from the instruction
word. Decoding then occurs to determine if the instruction is a branch instruction,
if one or two operands are needed, how many ALU cycles are needed to complete the
instruction, and if the instruction writes to the register file. Controls to the ALU in
the form of ALU opcodes are set depending on the instruction and decoded within
the ALU. The safe state, which is the pipeline stage at which an instruction will no
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longer cause an exception or change the PSR or condition register, is evaluated.

CCU DECODE II This entity runs when the corresponding instruction is cur-
rently in the DECODE stage. The resulting control signals go to the pipeline EXE1
stage (stage 2).
The second decode entity provides control signals for the first execution stage. The
outputs are registered, meaning that the entity runs when the instruction is cur-
rently in the DECODE stage and the resulting control signals will be available for
the first execution stage, EXE1, in the next clock cycle. The entity manages map-
ping of instructions and data to co-processor registers. The entity also has flush
controls for flushing an instruction in the pipeline.

CCU DECODE III This entity runs when the corresponding instruction is cur-
rently in the EXE1 stage. The resulting control signals go to the pipeline EXE2 stage
(stage 3).
The third decode entity provides control signals for the second execution stage,
EXE2. As the outputs of this entity are also registered, the control signals are cal-
culated when the instruction is in EXE1. The entity controls the data going from
the second execution stage, EXE2, to the third execution stage, EXE4. Depending
on the instruction, the data could come from the ALU after one cycle of execution,
a multiplication after two cycles of execution, or the condition register. Signals to
the data bus interface also indicate if the next memory access is a read or write. A
signal informs the address checker to validate the data address for load and store
instructions.

CCU DECODE IV This entity runs when the corresponding instruction is cur-
rently in the EXE2 stage. The resulting control signals go to the EXE3 stage (stage
4).
The fourth decode entity provides control signals for the third execution stage. As
the outputs of this entity are also registered, the control signals are calculated when
the instruction is in EXE2. A control signal to the memory interface indicates if
a memory load occurs in the next clock cycle. The correct data from either the
co-processor interface or the core pipeline is selected to proceed from EXE3 to the
RFW stage. The data to be written to the register file is selected from either the
pipeline or the memory interface.

CCU DECODE V This entity runs when the corresponding instruction is cur-
rently in the EXE3 stage. The resulting control signals go to the WRITE-BACK
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stage (stage 5).
The fifth decode entity provides control signals for the instruction currently in the
write-back stage and selects if the data to be written to the register file is the result
of the pipeline or from the memory interface.

3.0.2 COFFEE Instruction Set Architecture

The COFFEE Instruction Set consists of 67 instructions [9]. The instruction set
was first designed while considering instruction sets of processors currently on the
market, thus resulting in many overlapping instructions [16]. The instruction set
contains arithmetic and logic instructions, bit manipulation and shift instructions,
load and store instructions, co-processor instructions, conditional branches, and
jump instructions [10].

The COFFEE core ISA allows individual instructions to be executed conditionally,
thus reducing the need for jumps. Conditional instructions, such as compare in-
structions, save the resulting flags of the compare to one of eight condition registers
in the COFFEE core. The branch instruction then takes the result of the compare
from the condition register and branches accordingly [11].

CPU Registers

Before the instructions are reviewed in detail, the registers used in COFFEE are
briefly described as they are presented in the COFFEE Core User Manual [12].

The COFFEE register bank consists of two register sets, user registers (SET 1) and
superuser registers (SET 2), and eight condition registers (CRs). SET 1 and SET 2
each contain thirty-two registers. SET 1 is used by applications programs and SET
2 is a privileged instruction set used by an operating system and protected from
application programs. The registers are allocated as shown in Table 3.1 and consist
of general purpose registers (GPRs), a processor status register (PSR), and a saved
processor status register (SPSR). Two GPRs may also be optionally used as link
registers (LRs).

There are no hardware restrictions as to the type of information that can be stored in
a GPR. Register 31 is a combination LR and GPR, meaning that linking information
for interrupt and exception returns or jump and link instructions can be stored in
register 31. All registers except the PSR are 32 bits in length.

The PSR is 8 bits in length and stores status information including if interrupts are
enabled or disabled, if the instruction length is 16 or 32 bits, the selected register
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Table 3.1: COFFEE Register Bank [12]

Register Number Set 1 (User Registers) Set 2 (Superuser Registers)
0 GPR GPR
1 GPR GPR
. . . . . . . . .
28 GPR GPR
29 GPR PSR
30 GPR SPSR
31 GPR/LR GPR/LR

set, and the user mode. The SPSR saves the PSR when the user mode changes.

In addition to the registers in SET 1 and SET 2, the eight condition registers are
used to store results from compare instructions or condition flags from arithmetic
instructions. Each condition register has a length of 3 bits and consists of three
flags, Z (zero flag), N (negative flag), and C (carry flag).

Instructions

The COFFEE ISA, contains 67 instructions of 32 bit length [9]. The instructions
are divided into the following categories [10]:

• Integer Arithmetic

• Byte and Bitfield Manipulation

• Boolean Bitwise Operators

• Conditional Jumps (Branches)

• Other Jumps

• Integer Comparison

• Shifts

• Memory load and store and data moving

• Coprocessor instructions

• Mode changing instructions

• Miscellaneous Instructions
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Many of the COFFEE instructions have similar instructions in the MIPS and ARM
instruction sets. This is especially true for many of the more standard instructions,
such as basic arithmetic operations, jumps and branches, and shifts. As COFFEE,
MIPS, and ARM are RISC architectures, comparable load and store instructions
also exist.

Instruction Format

The COFFEE instructions can contain a number of different fields used to indi-
cate source and destination register, immediate values, or for additional features
such as conditional execution. The fields and the functionality they support are
described in Table 3.2 adapted from the COFFEE Instruction Encoding document
and the encoding of the instructions is described in detail in the document COFFEE
Instruction Encoding [9].

Table 3.2: COFFEE Instruction Fields [9]

Field Size (bits) Description
cond 3 specifies execution condition
creg 3 specifies one of eight condition registers to

either store or read condition flags
cp_sreg/sr 5 specifies co-processor source register
cp_dreg/dr 5 specifies co-processor destination register
dreg 5 or 3 specifies destination register
imm, imm1, imm2 - an immediate value
imml - left part of an immediate value
immr - right part of an immediate value
msb 1 most significant bit of a 16 bit immediate
sregi 5 or 3 specifies a source register
cex 1 enables or disables conditional execution
xxx - unused bits

The length of some fields, such as for immediate values and for destination and source
registers, is variable and the size of the field depends on the particular instruction.
Additionally, the encoding of a particular instruction also depends on whether or
not conditional execution is used, since when conditional execution is not used there
are more available bits in the instruction for other uses, such as a longer immediate
value.

There is some consistency in the arrangement of the instruction fields, meaning that
the placement of the fields stays the same for different instructions. As an example
of the arrangement of fields, consider the ADD instruction for the addition of two
values stored in registers in Table 3.3.
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Table 3.3: ADD Instruction

opcode (000001) cex creg cond xxx sreg2 sreg1 dreg
31...26 25 24...22 21...19 18...15 14...10 9...5 4...0

The instruction contains one destination register in bits 4 to 0 and two source
registers from bits 9 to 5 and bits 14 to 10. The cex bit specifying if conditional
execution is at 25, the condition register at bits 24 to 22, and the condition in bits
21 to 19. In all other instructions requiring the same fields, the fields consists of the
same bits. That means, for example, when the destination register is required by
an instruction it is always from bits 4 to 0.

Some instructions have two decodings for instances when an instruction does not use
conditional execution. The additional bits are then used for an expanded immediate
value. Consider the ADDI instruction that adds a register value to an immediate
value. Table 3.4 shows the encoding with conditional execution and Table 3.5 shows
the encoding without conditional execution.

Table 3.4: ADDI Instruction (with conditional execution)

opcode
(101101)

cex (1) creg cond imm sreg1 dreg

31...26 25 24...22 21...19 18...10 9...5 4...0

Table 3.5: ADDI Instruction (without conditional execution)

opcode
(101101)

cex (0) imm sreg1 dreg

31...26 25 24...10 9...5 4...0

For conditional execution of the ADDI instruction, the condition specified by cond
is compared to the flags in the condition register specified by creg. When cex is 0,
the instruction is always executed and creg and cond are no longer necessary. By
freeing up the creg and cond fields, there is now more space in the instruction for
other types of data. The immediate value is then expanded from 9 bits to 15 bits.

The remaining instructions generally follow the same format and expand immediate
values to the unused fields. In the case of some instructions, such as CMPI (compare
immediate), this can mean dividing the immediate value into two parts (Table 3.6).

The destination register field is unused, allowing part of the immediate value to be
stored in bits 4 to 0 as well as bits 21 to 10, resulting in a split immediate value.
This immediate value is recombined during the DECODE stage of the pipeline.
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Table 3.6: CMPI Instruction

opcode (110111) cex (0) creg immr sreg1 imml
31...26 25 24...22 21...10 9...5 4...0

3.0.3 COFFEE Software and Tools

The COFFEE compiler and binary utilities have been developed specifically for
the COFFEE Core. The compiler tool-chain is based on GCC version 3.44. The
COFFEE binary utilities, or Binutils, are based on GNU Binutils version 2.17.

3.0.4 Challenges of the COFFEE Core

The COFFEE Core has been used primarily for research purposes, as it is highly
modifiable with all parts of the processor accessible to the researchers. As discussed
in the Introduction, maintaining the software for the COFFEE Core requires ad-
ditional labour every time the GCC tool-chain or GNU Binutils is updated. By
interfacing with an industry-standard architecture, researchers will be able to take
advantage of already available up-to-date compilers and tools. In the next chapter,
the two candidate architectures, ARM and MIPS, are compared with COFFEE to
determine the similarities to COFFEE and the potential benefit to the researcher
using the COFFEE Core.
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4. MIPS AND ARM ARCHITECTURES AND

COMPARISON

A brief comparison of the COFFEE architecture with the MIPS and ARM archi-
tectures was performed to determine which architecture is most similar, thus being
easier to implement, and which would provide the most benefits to the end user in
terms of available tools.

4.1 Comparison of MIPS and ARM

COFFEE, ARM, and MIPS are all RISC architectures. All three architectures use
load and store models for managing data.

As the design of the COFFEE instruction set took into account the designs of other
RISC instruction sets, it was assumed that there would be overlap in available
instructions and features of the ISA [16].

Comparison of Available Tools

Both MIPS and ARM provide development tools for producing code to run on MIPS
and ARM architectures. In addition, open-source GNU tools are available for both
MIPS and ARM.

MIPS Tools MIPS provides several tools and software for different development
needs when developing for the MIPS platform. The tools consist of the MIPS
Corporation’s own software and plugins to commonly used software. The MIPS
Navigator provides low level debugging C/C++ tool-chains, and an instruction set
simulator. Eclipse plugins are provided to profile software running on a MIPS core.
Probe software for debugging MIPS cores and that take advantage of any special
features of the core is available. MIPS also provides new releases of the Sourcery
G++ GNU Toolchain for systems without an operating system, and systems with
GNU/Linux operating systems. Additional MIPS tool-chains and tools have also
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been developed by third parties. MIPS also contributes to the Linux project, thus
ensuring that embedded Linux runs smoothly on MIPS platforms [17].

ARM tools ARM provides several tools and software for development on the
ARM platform. The ARMDevelopment Studio provides a ARM compilation toolchain
and tools such as a debugger, performance analyzer, simulator, and Eclipse plugins.
A third party development environment is also provided by Keil, called MDK-ARM
Microcontroller Development Kit, which in addition to development and debug tools,
also provides its own real-time operating system and middleware libraries [7].

The MIPS and ARM tools are comparable and neither offers any obvious advantages
over the other. The one downside of both MIPS and ARM tools is the cost. However,
there are open-source GNU tool-chains for both MIPS and ARM.

Comparison of Common Instructions

As the COFFEE ISA was designed in keeping commercial processors in mind, there
are many overlapping instructions and features with MIPS and ARM ISAs. The
MIPS and ARM instruction sets were compared to the COFFEE instruction set
and classified as identical, similar, and non-similar instructions as shown in Table
4.1. Identical instructions have the exact functionality as instructions in COFFEE.
Instructions classified as similar mean that a comparable instruction exists in COF-
FEE, but would need some modifications within the processor to have exactly the
same functionality. Non-similar instructions, or the remaining instructions, may
still have some relation to COFFEE instructions, but are different enough that they
may require more time to implement or need additional hardware. The number of
remaining instructions was not counted because the number is variable depending
on the features of the processor.

Table 4.1: Instruction Set Comparison

Instruction Set Identical Similar
MIPS 22 51
ARM 7 32

As is evident from the above table, there is more overlap between MIPS and COF-
FEE than between ARM and COFFEE. The MIPS instructions set has most of the
basic arithmetic and logic instructions as does COFFEE, whereas ARM eliminates
many of the simpler instructions and instead has more complicated arithmetic and
logic instructions that are not available in either MIPS or COFFEE. Additionally,
the ARM instruction set seems to have many complex instructions that may not
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necessarily abide by the principles of simple RISC instructions [3]. For example,
in ARM the instruction ADD (addition) is equivalent to ADDU (add unsigned) in
MIPS and COFFEE. An equivalent to a signed ADD does not exist because, as
ARM documentation states, the instruction is not commonly used by compilers in
any case and is not necessary [3]. ARM also contains more complicated instructions
such as MLA (multiply and accumulate), and MLS (multiply and subtract) which
would need hardware modification within COFFEE to implement.

ARM instructions do use conditional execution in a similar way that COFFEE uses
conditional execution and reserves four bits in the instruction format. The four
bits are reserved to represent the sixteen possible execution conditions [5; 4]. The
condition codes are compared to the application program status register (APSR)
to determine execution. One major difference between ARM and COFFEE is that
COFFEE has only three bits reserved for conditional execution, meaning there are
only eight possible execution conditions, instead of the sixteen for ARM. This also
means that the status register of ARM stores one additional condition flag in com-
parison to COFFEE’s condition registers, which stores only three ALU flags. This
unfortunately means that the ARM and COFFEE conditional execution is not com-
patible and ARM code can not be executed as the ARM compiler has intended when
using the COFFEE processor. Conditional execution is not present in the MIPS ISA
and instructions are always executed.

ARM uses several instruction formats for the instruction encodings, varying depend-
ing on the version of the instruction set. MIPS has three instruction formats.

Comparison of MIPS and ARM Register Sets

The MIPS register set has 32 general purpose registers available at any one time.
The first register, GPR 0, is zero at all times. The ARM register set has only 16
available general purpose registers at any one time. The main purpose of this is to
save bit space in the instruction, as it requires only four bits in the instruction to
specify a register instead of five bits for MIPS [3]. Additionally, MIPS has HI and
LO registers to save the result of multiplications and divisions [19]. These registers
are not present in ARM and MIPS.

ARM stores all the ALU condition flags in the ARM APSR which are then compared
with condition codes specified by conditional instructions [3]. In COFFEE, the ALU
flags are saved in the first condition register (CR 0). The conditions can then be
tested by any conditional instruction specifying CR 0.

MIPS, on the other hand, does not use condition codes to make comparisons. In-



4. MIPS and ARM Architectures and Comparison 23

stead, comparisons are made that compare two registers to each other, compare a
register value to an immediate, or compare a register value to zero. For conditional
branch instructions, a branch occurs if the comparison is true. For compare instruc-
tions such as SLT (set if less than), the true or false result is stored in a GPR for
use by a later instruction [19].

4.2 MIPS

MIPS was the chosen architecture because of the instruction overlap with COFFEE,
the architectural similarities, and the simple instruction format of MIPS instructions,
making the instructions easier to decode. The MIPS architecture will be reviewed
in the following chapter based on the MIPS Architecture documentation [18] [19]
[20].

The MIPS architecture reviewed here is known as MIPS32 Release 3, meaning the
most recent release of the architecture for 32 bit instructions as of this writing.
Different implementations of the MIPS architecture exist in industry, and each may
have slight differences in the hardware design. However, the overall architecture of
the processors is always the same and compliant with MIPS [18].

4.2.1 MIPS Architecture

The basic MIPS architecture is described in this section and excludes any additional
features such as co-processing and floating-point units.

The basic pipeline of the MIPS architecture consists of four stages: Fetch, Arithmetic
operation, Memory Access, and Write-back. The pipeline fetches a new instruction
each clock cycle, and moves the instructions through the pipeline stage by stage [18].

The MIPS architecture also meets the RISC guidelines mentioned earlier in this
thesis in that it uses a load and store architecture to manage memory access, op-
erations are register to register, operations and addressing are simplified, and the
architecture is pipelined with a throughput of one instruction per cycle.

Each MIPS register is 32 bits. MIPS contains one set of 32 GPRs and two special
HI and LO registers. In the 32 GPR register set, the first register, R0, is tied to low,
meaning that the value of the register is unchangeable and always contains zero.
The last register, R31, is used to store address information for instructions such as
for JAL (Jump and Link). When the register is not being used to store link data,
the register acts as any other GPR. The HI and LO registers act as containers for
the 64 bit result of a 32 by 32 bit multiplication or division. The HI register contains
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the upper 32 bits, and the LO register contains the lower 32 bits. The multiplication
and division instructions automatically store the result in these registers [18].

The MIPS ISA also refers to an interface called CP0 (co-processor zero), which acts
as an interface to the privileged resource architecture to accomodate an operating
system. The processor status and user modes are stored in the CP0 register CPSR
(Current Program Status Register). The APSR (Application Program Status Reg-
ister) is contained in the CPSR and stores the zero, carry, sign, and overflow flags
(Z,C,N,V) of an ALU operation or compare instruction [18]. This is comparable to
the condition register of COFFEE with the exception that COFFEE does not track
the overflow flag (V).

4.2.2 MIPS Instruction Set Architecture

The MIPS32 Release 3 instructions can be subset to remove instructions that are
not needed if the processor does not contains the functionality. Subsetting must be
performed according to the subsetting rules outlined in the MIPS documentation
[18]. Basically, all CPU instructions must be implemented and all FPU and co-
processor instructions are optional.

The instructions remaining in the subset can be categorized as follows:

• CPU Arithmetic Instructions

• CPU Branch and Jump Instructions

• CPU Instruction Control Instructions

• CPU Load, Store, and Memory Control Instructions

• CPU Logical Instructions

• CPU Insert/Extract Instructions

• CPU Move Instructions

• CPU Shift Instructions

• CPU Trap Instructions

• Privileged Instructions

The above MIPS instructions can be divided into three main types of instructions,
which also correspond to the instruction formats used to describe each instruction
[18].
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• I-Type Instructions - Immediate instructions

• R-Type Instructions - Register instructions

• J-Type Instructions - Jump instructions

The instruction formats for each type make use of several fields to describe different
parts of the instructions such as the opcode, source and destination registers, and
immediate values shown in Table 4.2 [18].

Table 4.2: MIPS Instruction Fields [18]

Field Size (bits) Description
opcode 6 opcode
rd 5 destination register
rs 5 source register
rt 5 second source register
shift amount 5 shift amount
function 6 opcode extension
imm 16 immediate value

An I-Type instruction, or immediate instruction, is any instruction needing to take in
an immediate value. The name of the instruction usually ends in an ’i’ to denote an
immediate but can also include other instructions. Instructions such as ADDI (add
immediate), ADDIU (add immediate unsigned), ORI (or immediate), and XORI
(xor immediate) take in immediate values. The second input value comes from a
register specified by rs. The encoding is shown in Table 4.3.

Table 4.3: I-Type Instruction Format

opcode rs rt immediate
31...26 25...21 20...16 15...0

An R-Type instruction, or register instruction, is an instruction that takes in regis-
ters as operands. These include instructions such as ADD, MULT, and SUB. The
encoding is shown in Table 4.4.

Table 4.4: R-Type Instruction Format

opcode rs rt rd shift amount function
31...26 25...21 20...16 15...11 10...6 5...0

The function field is necessary to extend the instruction set. With an opcode of
6 bits, only 64 instructions are possible. The extension of the 6 bit function field
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allows a possible 40096 instructions, much more than a RISC processor will likely
ever need.

A J-Type instruction, or jump instruction, takes in a target address. The PC is set
to the target address specified in the target field. There are two jump instructions:
J (jump), and JAL (jump and link). The encoding is shown in Table 4.5.

Table 4.5: J-Type Instruction Format

opcode target
31...26 25...0

Branch instructions, although similar in function to jump instructions, use the I-
Type instruction format.

After reviewing the MIPS architecture, it was more closely compared with COFFEE
to determine the best approach to integrating the two architectures. Emphasis is
placed on similar instruction specifications and similarities in the instruction encod-
ings.
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5. APPROACH AND DESIGN

The MIPS and COFFEE architectures are now more closely compared to deter-
mine the exact process and method of interfacing the COFFEE Core to MIPS.
The architecture consists of both the hardware architecture and the instruction set
architecture.

A design to integrate the two architectures based on the results of the comparisons
is also proposed.

5.1 Hardware Architecture Comparison

General comparisons between the COFFEE architecture and the MIPS architecture
were made to gain an overall understanding of the differences that may affect the
execution of MIPS instructions on the COFFEE core. The following architectural
comparisons were made:

• Pipeline

• GPR Registers

• Condition Registers

• Special Registers

• Privileged Architecture

5.1.1 Pipeline

The COFFEE pipeline consists of six stages: FETCH, DECODE, EXE1, EXE2,
EXE3, and WRITE-BACK. The MIPS pipeline may contain a number of stages
depending on the implementation, but will always contain the stages fetch, execute,
memory access, and write-back. The differences between the two pipelines should
not affect the decoding of the MIPS instructions in the COFFEE core.
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5.1.2 GPR Registers

There are 32 GPR registers in COFFEE with no restrictions on what can be stored
in a register. In MIPS, there are also 32 registers. However, register zero in MIPS,
R0, is always zero and can not be set to any other value. The MIPS compiler
depends on R0 always being zero and a program would need R0 to always be zero
for the program to properly run. To run MIPS instructions properly on COFFEE
the GPR 0 register would also have to remain zero. To prevent changes made to
R0, it could be detected in the Decoder when R0 is used as a destination register
and the assignment either prevented, or the value of zero written to the register.

5.1.3 Condition Registers

There are 8 condition registers in COFFEE. The condition register stores the result
of a comparison from the CMP instruction or the flags from an arithmetic operation.
The flags N, Z, and C denote negative, zero, and carry. If the result of an operation
is negative, the N flags is set. If the result is zero, the Z flags is set. If there is a carry
bit in the result, the C flags is set. When the result is needed, such as is the case for
a conditional branch such as BNE, branch when not equal, the branch instruction
reads the condition register, which already contains the result of the comparison.
MIPS, on the other hand, does not use condition registers for comparisons. When
an instruction requires a comparison, such as BGEZ, branch if greater than or
equal to zero, the comparison and branch are done in one instruction. That means
that a register is compared to zero, and if the result is greater than zero a branch
occurs. There are no condition registers involved in the comparison and branch.
Some COFFEE instructions, such as arithmetic instructions like ADD (Addition)
and SUB (Subtraction), automatically save the condition flags resulting from the
operation to the COFFEE condition register zero to be used by later instructions.
MIPS arithmetic instructions do not save any condition as condition registers are
not used.

5.1.4 Special Registers

There are two special registers in MIPS called LO and HI used for storing the 64
bit result of a multiplication or division. The additional instructions, MFLO and
MFHI which denotes move from LO and move from HI respectively, are then used
to retrieve the results from LO and HI and store the result in a GPR. The LO and
HI registers do not exist in COFFEE and would need to be added for the dependent
instructions to work properly. The COFFEE core does have a method for obtaining
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a 64 bit result for a multiplication using the MULS or MULU instruction for the
lower 32 bits and MULHI instruction to retrieve the upper 32 bits. The result
is saved in two GPRs specified by the instructions. The affected instructions are
summarized in Table 5.1.

Table 5.1: Affected Special Register Instructions

Instruction Description Reason why affected
MTHI, MTLO Move to HI and LO registers HI and LO registers do not

exist in COFFEEMFHI, MFLO Move from HI and LO reg-
isters

MULT, MULTU Multiplication to HI and LO
registers

MIPS also provides an instruction to read a value from a hardware register and store
the result in a GPR. The hardware registers store information such as which CPU
is currently in use, and have some relation to the privileged interface. Access to the
register is controlled by CP0. No comparable instruction exists in COFFEE. The
affected instructions are summarized in Table 5.2.

Table 5.2: Affected Hardware Register Instructions

Instruction Description Reason why affected
RDHWR Read hardware register No comparable instruction

in COFFEE

5.1.5 Privileged Architecture

The privileged architecture in COFFEE and MIPS is used by an operating system
running on the processor. The COFFEE privileged architecture is mainly imple-
mented using special instructions and a separate register set. The COFFEE proces-
sor can also run in user mode or superuser mode. The superuser mode is used for
the operating system and allows default access to the privileged register set, a set of
32 GPR’s reserved just for the superuser mode. The SCALL (system call) instruc-
tion is used to switch the COFFEE core into the superuser mode and access the
privileged architecture and the RETU instruction switches back to the user mode.
The privileged register set can also be accessed using the CHRS, change register
set, instruction. In MIPS the privileged architecture (PRA) is accessible through
an interface called CP0, co-processor zero, or also referred to as the system con-
trol processor. The PRA in MIPS is responsible for "exception handling, memory
management, scheduling, and control of critical resources" [18] and contains several
control and status registers relating to these functions. Specific co-processor instruc-
tions are used to load and store data to the registers of CP0. The instruction MTC0
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(move to co-processor zero) moves data from a GPR to a specified co-processor
register and MFC0 (move from co-processor zero) moves data from a GPR to a co-
processor register. Although both MIPS and COFFEE contain privileged register
sets, the manner of accessing registers is different for MIPS and COFFEE meaning
the COFFEE privileged interface would need to be modified to accomodate MIPS.

Interrupts and Exceptions Certain MIPS privileged instructions have similar
instructions in COFFEE. The interrupt instructions such as EI and DI (enable
interrupt and disable interrupt) and ERET (return from interrupt) have similar
COFFEE instructions. The MIPS enable and disable interrupt instructions, EI
and DI, can be decoded and use the same control signals as the enable and disable
interrupt instructions for COFFEE. The MIPS exception return instruction, ERET,
is used to return from interrupts, exceptions, and error traps and clears execution
and instruction hazards. The similar COFFEE instruction, RETI for return from
interrupt, manages interrupt returns and restores the PC, CR0, and PSR from the
stack. The compiler ensures the instruction is followed by two NOPs to clear hazards.
Because the specification of the two instructions have small differences, it is unclear
if RETI from COFFEE can be used in place of ERET from MIPS, since errors will
likely occur if the instruction is used for an exception or error trap return. The
MIPS compiler also does not guarantee the two NOP instructions necessary after
RETI. The affected instructions are summarized in Table 5.3.

Table 5.3: Affected Interrupt and Exception Instructions

Instruction Description Reason why affected
ERET Exception Return Different specifications
MFC0 Move from Co-processor

Zero (Privileged Interface)
Differences in privileged
architecture

MTC0 Move to Co-processor Zero
(Privileged Interface)

Memory Resources The COFFEE core does not currently have instructions for
cache access and does not use virtual memory. Therefore, the related cache access
and translation look-aside buffer (TLB) instructions are not implementable. The
affected instructions are summarized in Table 5.4.

Other Privileged Instructions Additional instructions include access to shadow
sets and entering a low power standby mode. COFFEE does not currently use
shadow sets or have a low power mode. Comparable instructions also do not exist in



5. APPROACH AND DESIGN 31

Table 5.4: Affected Memory Resource Instructions

Instruction Description Reason why affected
TLBP, TLBR,
TLBWI,
TLBWR

Read, Write, and Probe
TLB

No existing COFFEE TLB
instructions or architecture

CACHE, SYNCI Cache operation and syn-
chronization

No existing COFFEE cache
instructions

COFFEE. Hardware modifications and additions would be necessary. The affected
instructions are summarized in Table 5.5.

Table 5.5: Other Affected Privileged Instructions

Instruction Description Reason why affected
WRPGPR Write to GPR in Previous

Shadow Set
No matching COFFEE in-
struction

RDPGPR Read from GPR in Previous
Shadow Set

No matching COFFEE in-
struction

WAIT Enter Standby Mode Standby Mode does not ex-
ist in COFFEE

5.2 Instruction Set Comparison

The instruction set and functions of instructions were compared for MIPS and COF-
FEE to determine how the MIPS instructions could be integrated into the COFFEE
architecture. The following comparisons were made.

• Instruction Specifications

• Instruction Format

• Instruction Encodings

• Comparisons, Conditions, and Flags

5.2.1 Instruction Specifications

The specifications of all MIPS and COFFEE instructions are compared to determine
the overlap between the two instruction sets and to gauge the similarities between
the remaining instructions. Overlapping instructions with the exact same specifica-
tions would be the easiest to implement on the COFFEE core, whereas instructions
with similar specifications may need some modification. A significant number of
MIPS instructions are expected to have no matching specifications in the COFFEE
instruction set.



5. APPROACH AND DESIGN 32

Identical instructions The COFFEE instruction set and MIPS instruction set
have an overlap of 22 instructions with the same specifications. It is expected that
these will be the simplest instructions to implement and are shown in Table 5.6 as
well as Appendix A.1.

Table 5.6: Instructions with similar specifications

MIPS Instruction Description COFFEE Instruction
ADDI Add immediate ADDI
ADDIU Add immediate unsigned ADDIU
ADDU Add unsigned ADDU
AND Bitwise AND AND
ANDI Bitwise AND immediate ANDI
DI Disable interrupts DI
EI Enable interrupts EI
EXT Extract bit field EXBF
JAL Jump and link JAL
JALR Jump and link register JALR
J Jump JMP
JR Jump register JMPR
LW Load word LD
MUL Multiply word to GPR MULS
NOP No operation NOP
NOR Bitwise NOR NOR
OR Bitwise OR OR
ORI Bitwise OR immediate ORI
SUB Subtract SUB
SUBU Subtract unsigned SUBU
XOR Bitwise exclusive OR XOR

Similar and easily implementable instructions Some MIPS instructions have
specifications that are similar but not identical, or are instructions that could be
implemented with some minor modification using the existing functionality of the
COFFEE Core. The differences and reasons why are addressed throughout this
chapter and are summarized in Appendix A.2.

Instructions with no comparable match A number of MIPS instructions have
no match at all to the COFFEE instructions and are described in the section Re-
maining Instructions. These instructions would likely need significant modification.
The number of instructions in this category is variable, as it depends on the fea-
tures of the processor. A number of instructions in the smallest subset of the MIPS
instructions set are reviewed in this Chapter and the analysis is summarized in
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Appendix A.3.

5.2.2 Instruction Format

The instruction format of MIPS is compared to the format of COFFEE to find
comparable fields. Each field of each instruction format is compared to determine
how compatible the instructions are and what changes would need to be made
in the COFFEE Core instruction decoding to accomodate the MIPS instructions.
When comparing, all the MIPS instruction fields will need to match with COFFEE
instruction fields at least in field type. There are some differences in lengths of
fields and how each field is used in the decoding, which is addressed in the section
Instruction Encodings.

The Figure 5.1 shows the comparable COFFEE fields for the MIPS I-Type instruc-
tion format.

Figure 5.1: MIPS I-Type format compared to COFFEE Immediate format

The length in bits of immediate values in COFFEE is variable. In MIPS, however,
the length of the immediate value is always 16 bits. This makes the sign and zero
extension of the immediate value much simpler than it is currently for the COFFEE
instructions.

The Figure 5.2 shows the comparable COFFEE fields for the MIPS J-Type instruc-
tion format.

The target address of the MIPS and COFFEE version are of different lengths with
25 bits for COFFEE and 26 bits for MIPS. One difference between the two jump
instructions, however, is how the target address is evaluated. To calculate the effec-
tive address in COFFEE, the value in the target field is shifted left by one bit and
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Figure 5.2: MIPS J-Type format compared to COFFEE Jump format

sign extended. To calculate the target address in MIPS, the value in the target field
is shifted two bits.

The Figure 5.3 shows the comparable COFFEE fields for the MIPS R-Type instruc-
tion format.

Figure 5.3: MIPS R-Type format compared to COFFEE two-register format

In the MIPS R-Type format, the instruction is determined by the combination
of the opcode and function fields, and is comparable to the opcode field of the
COFFEE instruction. The source and destination registers match up directly for
both formats, with the same number of bits for determining each register. As the
COFFEE conditional execution is not used, the fields creg and cond are not required
and have no match in the MIPS format.
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From these comparisons, it is seen that the MIPS instruction fields for the three
instruction formats have comparable fields for the COFFEE instruction format.
This means that to decode MIPS instructions on the COFFEE Core, the COFFEE
decoding can simply be modified to account for the fields being in different locations
in the instruction.

5.2.3 Instruction Encodings

The instruction encodings for MIPS and COFFEE instructions were compared in
more detail to determine which instructions would translate well from MIPS to
the COFFEE Core and which instructions would need additional changes in the
decoding.

There are some MIPS instructions that are very similar to COFFEE instruction
except for small differences in the encoding. Some of these differences could prevent
an instruction from functioning in COFFEE. Probably the easiest way to determine
if these instructions would work or not would be to implement and test them.

5.2.4 Shift and Rotate Instructions

The shift instructions in MIPS have very similar matching instructions in COFFEE
with one minor difference between them. In COFFEE, the instructions allow there
to be 6 bits to determine the amount of bits to shift. In MIPS, the instruction
allows there to be only 5 bits to determine the amount of shift. This does not seem
to be too much of a problem for immediate values, since an extra zero can simply
be added to make the 5 bits from the MIPS instruction the required 6 bits for
COFFEE. Currently, the Decoder sends 11 bits to the ALU where the appropriate
bits are then selected. This can be modified to set the upper 6 bits to zero and to
retain the lower bits. For MIPS shift instructions taking the shift amount from the
lower 5 bits of a register, it could also be ensured that the 6th bit of the register is
zero. Also affected are the rotate instructions, ROTR and ROTRV for rotate word
right with the rotate amount defined either as an immediate value or a register
value. Additional hardware may need to be added to the ALU to allow for a rotate
operation. The affected instructions are summarized in Table 5.7.

5.2.5 Comparisons, Conditions, and Flags

COFFEE has eight condition registers. The first condition register stores the Z,
N, and C flags (zero, negative, and carry), and all registers store the result of



5. APPROACH AND DESIGN 36

Table 5.7: Affected Shift and Rotate Instructions

Instruction Description Reason why affected
ROTR, ROTRV Rotate instructions COFFEE requires 6 bits

rather than 5SLL, SLLV,
SRA, SRAV,
SRL, SRLV

Shift instructions

comparisons made using the CMP or CMPI (compare) instructions. The results are
then used in later instructions, such as BNE (branch if not equal). The instruction
refers to the flags in the specified condition register when determining if a branch
should occur.

MIPS, on the other hand, has no condition registers and uses other methods for
comparisons. A few MIPS compare instructions exist, such as SLT (set on less
than), which stores a boolean result of a comparison in a GPR. The result can
then be used by later instructions. However, most MIPS instructions requiring a
comparison to be made are compound instructions, with both the compare and an
additional function within the same instruction. For example, the BNE instruction
in MIPS does both a comparison and performs a branch, rather than using two
instructions as in COFFEE. As a result of these two differences, none of the compare
instructions from MIPS can be matched to COFFEE instructions. This includes the
compare and branch, compare and trap, compare and store, and compare and move
instructions.

One possible modification would be to stall the processor one clock cycle at the
FETCH stage, so that two COFFEE instructions can be used in place of one MIPS
instruction. For example, in place of the MIPS BNE instruction, the COFFEE
instructions CMP and BNE can be executed consecutively. When the CMP instruc-
tion is in the EXE1 stage where the comparison is evaluated, the result is forwarded
to the DECODE stage where it can be used by the BNE instruction. The target
address of the branch can be extracted from the MIPS BNE instruction for use in
the COFFEE BNE instruction.

The affected instructions are summarized in Table 5.8.

5.2.6 Remaining Instructions

There are a number of instructions, that are without a match for a reason other than
one mentioned in the previous architecture comparisons. Some of these instructions
could be implemented with minor modifications to the architecture, but most of
these instructions simply have no matching instruction and no supporting hardware
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Table 5.8: Affected Comparison and Condition Instructions

Instruction Description Reason why affected
SLT, SLTI,
SLTIU, SLTU

Set on less than No matching COFFEE in-
struction

All TRAP in-
structions

Trap exception Requires 2 instructions in
COFFEE

All BRANCH
instructions

Branches Requires 2 instructions in
COFFEE

in COFFEE.

Load, Store and Memory Instructions Several load and store instructions
exist in MIPS for loading and storing words, halfwords, and bytes, loading value
from unaligned memory addresses, and loading a lower immediate value. COF-
FEE contains LD (load word), LUI (load upper immediate) and LLI (load lower
immediate). The load word instructions for MIPS and COFFEE can be matched
because the specification is the same. The LUI MIPS instruction, however, can not
be matched to the LUI COFFEE instruction because the MIPS version loads an
immediate into the upper 16 bits and clears the lower 16 bits, whereas the COFFEE
version preserves the lower 16 bits. This could be resolved by using the COFFEE
instructions LLI and LUI to first clear the lower bits and then load the upper bits.
The processor would need to be stalled one clock cycle at the FETCH stage. The
MIPS compiler frequently uses the LUI instruction in conjunction with LW to load
a value from memory. The LUI instruction is necessary to refer to a 32 bit memory
address. The shared memory instruction SYNC acts as either a completion barrier
or ordering barrier for instructions loading from or storing to shared memory. The
SYNC instruction will cause the processor to stall until, in the case of a completion
barrier, all load and store instructions in the instruction stream before SYNC are
completed or, in the case of an order barrier, all load and store instructions before
SYNC are ordered before instructions after SYNC. This instruction could be imple-
mented by stalling the processor when needed. The instruction SYNCI is used to
synchronize caches after changes are made to the instruction stream so that the new
instructions can be fetched. The synchronization is done by writing the instructions
to an address provided by the SYNCI that specifies to which cache line to write
for all caches. The PREF instruction is used to increase performance of a program
by moving data between memory and cache. Data is not always moved when a
PREF instruction is executed and the instruction may do nothing. The action of
the instruction depends on what the data will be used for and if it improves program
performance [19]. SYNC, SYCI, and PREF do not have matching instructions in



5. APPROACH AND DESIGN 38

COFFEE. The two instructions LL (load linked word) and SC (store conditional) are
used for atomic read-modify-write in synchronized memory. The PAUSE instruction
checks if the atomic operation started by LL is still being performed. There are no
comparable instructions in COFFEE. The affected instructions are summarized in
Table 5.9.

Table 5.9: Affected Load and Store Instructions

Instruction Description Reason why affected
LB, LBU, LH,
LHU, LL, LWL,
LWR

Load Instructions No matching COFFEE
instructions

SB, SH, SWL,
SWR

Store Instructions

SYNC, SYNCI Shared Memory Load and
Store and Cache Synchro-
nization

LL, SC, PAUSE Atomic Load and Store
PREF Prefetch, moving data be-

tween memory and cache

Arithmetic Instructions Instructions such as CLO (count leading ones), CLZ
(count leading zeros) and DIV (divide) do not have any matching instruction or
supporting hardware in COFFEE. MIPS sign extend instructions SEH and SEB
(sign extend halfword and sign extend byte) are similar to the COFFEE SEXTI
(sign extend immediate) instruction, but are still not a match. The COFFEE core
can sign extend immediate values, but currently does not have the ability to sign
extend a value from a register. The modification to extend a register value can be
done in the Decoder. Some arithmetic instructions can be implemented using two
COFFEE instructions. The arithmetic instruction MADD implements a multiply
and addition in a single instructions. The instruction MSUB is a multiply and
subtraction in a single instruction. COFFEE does not currently support several
arithmetic operations within one instruction. The LUI instruction mentioned in the
Load, Store, and Memory instructions is an arithmetic instruction. The affected
instructions are summarized in Table 5.10.

Insert and Extract The INS (insert) instruction in MIPS is used to insert a
number of bits into a register value at a specified bit position, whereas the EXT
(extract) instruction extracts a number of bits from a register value. The WSBH
instruction (word swap byte halfword) swaps the bytes within each halfword of a
register value. The COFFEE ISA has several instructions for extracting bits, a byte,
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Table 5.10: Affected Arithmetic Instructions

Instruction Description Reason why affected
CLO, CLZ Count Leading Zeros/Ones No matching instruction in

COFFEE
SEH, SEB Sign Extend Halfword/Byte Not an exact match to

COFFEE instruction
SEXTI

DIV, DIVU Division Division instruction is not
available in COFFEE

MADD,
MADDU,
MSUB, MSUBU

Multiply and Add/Subtract Combined instructions can
not be implemented in the
current COFFEE pipeline

LUI Load Upper Immediate Instruction specification for
LUI not the same as in
COFFEE

or a halfword from a register value. The EXBFI instruction can extract a specified
number of bits from a register value. There is some difference in the how the
immediate inputs are defined for MIPS EXT and COFFEE EXBFI. However, with
some modification for the immediates in the Decoder it would be possible implement
the MIPS EXT instruction. The INS instruction and WSBH instruction have no
matching instructions in COFFEE and would require additional modifications. The
affected instructions are summarized in Table 5.11.

Table 5.11: Affected Insert and Swap Instructions

Instruction Description Reason why affected
INS Insert No matching instruction in

COFFEE
WSBH Word Swap Byte Halfword No matching instruction in

COFFEE
EXT Extract Inputs do not match

Trap instructions Most of the MIPS trap instructions also include a compari-
son, such as TEQ for trap if equal and can not currently be implemented in COF-
FEE. Other trap instructions include BREAK, to cause a breakpoint exception,
and SYSCALL, to cause a system call exception. The COFFEE core uses only the
TRAP instruction to cause an exception, for which there is no directly equivalent in
MIPS. The similarly named system call instruction, SCALL, in COFFEE transfers
the processor to the superuser mode, but does not call an exception. The affected
instructions are summarized in Table 5.12.
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Table 5.12: Affected Trap Instructions

Instruction Description Reason why affected
TRAP Instruc-
tions

Causes Trap exception if
evaluated as true

No comparable evaluate
and trap instructions in
COFFEE

BREAK Causes Breakpoint excep-
tion

No matching instruction in
COFFEE

SYSCALL Causes System Call excep-
tion

No matching instruction in
COFFEE

Execution Hazard Barrier Instructions There are a few instructions that ad-
dress hazard barriers in the pipeline. The EHB (execution hazard barrier) instruc-
tion stops execution until all execution hazards are cleared and is interpreted as
a logical shift left (SLL) with a shift of three bits. Instruction hazards as well
as execution hazards are cleared using the JR.HB, JALR.HB and ERET instruc-
tions through use of a software barrier by inserting instructions into the instruction
stream. The COFFEE core does not have any comparable instructions for clearing
hazard barriers, instead relying on the NOP instruction. The MIPS EHB instruction
can be reproduced in COFFEE using the SLL instruction. Implementation of the
other hazard barrier instructions would require cache synchronization instructions.
The affected instructions are summarized in Table 5.13.

Table 5.13: Affected Hazard Barrier Instructions

Instruction Description Reason why affected
EHB Clear Execution Hazards No matching instruction in

COFFEE, but comparable
to a series of NOPS or bit
shifts

JR.HB,
JALR.HB

Jump and Clear Hazard
Barrier

No matching instruction in
COFFEE

ERET Returns from exception and
clears instruction and haz-
ard barriers

No matching instruction in
COFFEE

5.2.7 Comparison Summary

There are a few key things to notice in the comparison.

• There is an overlap of 22 instructions in the MIPS and COFFEE instruction
sets.
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• The MIPS instruction format can be mapped to the COFFEE instruction
format using comparable fields.

• MIPS has a simple instruction format and thus does not require use of condi-
tional execution or condition registers.

• MIPS does not contain HI and LO registers meaning that instructions that
require these register can not be implemented without them existing in COF-
FEE.

• MIPS compare and branch, compare and trap, or compare and store instruc-
tions are only one instruction each. However, two instructions are required in
COFFEE meaning that MIPS compare instructions can not be implemented
without hardware modifications.

• COFFEE does not tie the GPR 0 register to zero, as does MIPS, which may
complicate a running program were the value to ever change.

5.3 Proposed Integration Approach

The proposed approach to integrating the MIPS instruction set to the COFFEE
architecture is to initially concentrate on minimally modifying the hardware to ac-
comodate as many instructions as possible. As there is an overlap of a few similar
instruction in the MIPS and COFFEE instruction sets, it is expected that at least
these instructions can function properly by using this approach. After these instruc-
tions are working, the approach can then be shifted to modify hardware for specific
MIPS instructions.

The modifications needed to implement the MIPS instructions on the COFFEE Core
are broad and would require changes and additional hardware to the entire processor.
Therefore, the scope was limited to only the decoding and control processes in the
COFFEE Core. This limits the modifications to only the DECODE stage of the
pipeline and the Core Control Unit.

The first step to modifying the existing COFFEE hardware to accomodate the
MIPS instruction set is to change the decoding step in the hardware to decode
MIPS instructions rather than COFFEE instructions. In referring to the actual
COFFEE hardware as described in the Chapter COFFEE RISC Core, it is seen
that instruction decoding occurs in several pipeline stages. Instruction decoding
happens in the DECODE pipeline stage and also in the five decoding blocks within
the COFFEE control unit. All of these decoding entities would need to be modified.
In addition to decoding, data and control signals going from the control unit to the
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pipeline stages of the processor would also need to be set depending on the decoded
instruction. The following would need to be considered:

• Decoding the MIPS instruction

– Determining the instruction in the DECODER unit and the COFFEE
control unit

– Extracting immediate values and zero or sign extending where needed

– Determining source and destination registers

• Setting control signals in the COFFEE control unit

The DECODE stage determines which COFFEE instruction has entered the DE-
CODE stage from the previous FETCH stage. The DECODE stage also extends
any immediate values and routes the operands to the ALU or co-processor. The
following modifications would therefore need to occur in the DECODE stage.

In the COFFEE ISA, the instruction is determined by the 6 bit opcode which is
unique for each instruction. In MIPS, the instruction is determined using both the
6 bit opcode and the 6 bit function. A simple modification is needed to determine
the instruction from 12 bits for MIPS instead of from 6 bits for COFFEE.

MIPS opcodes can also be divided by format type of either R-Type, I-Type or J-
Type. Once the type is known, the correct bits are used to determine the source
registers, destination registers, and immediate values. Signal lines are also set to
route the data to the appropriate places depending on the instruction format.

The implementation can then be tested using simple assembly programs.

The following chapter outlines the implementation procedure and results.



43

6. IMPLEMENTATION AND RESULTS

The proposed integration approach is to modify the DECODE and Control Unit
parts of the COFFEE core to enable to the most MIPS instructions to function
with minimal modifications. A subset of MIPS instructions was selected to be
implemented. The COFFEE core is defined as a VHDL design. The design was
modified then compiled and simulated using Modelsim.

For the modified COFFEE core to be tested, the MIPS instructions need to be
read by the COFFEE core. The LLVM MIPS tool-chain was used to generate the
executable. The test code was written in assembly.

The following subset of MIPS instructions was chosen to be implemented and con-
sists of instructions in the MIPS Instruction Set that overlap instructions from the
COFFEE Instruction Set. Modifications for decoding and setting control signals is
necessary to implement the instructions.

Table 6.1: Implemented Instructions

MIPS Instruction Definition
OR Bitwise Logical OR
ORI OR Immediate
XOR Exclusive OR
AND Bitwise Logical AND
ANDI AND Immediate
ADD Addition
ADDU ADD Unsigned
ADDI ADD Immediate
ADDIU ADD Immediate Unsigned
SUB Subtract
SUBU SUB Unsigned
LW Load Word
SW Store Word

6.1 Implementation

The COFFEE VHDL designs for the DECODER and the Control Unit were modi-
fied. This section will briefly summarize each entity and the modifications needed.
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DECODER The DECODE unit is responsible for decoding, updating the PSR,
extending immediates, setting control signals, and routing data. The modifications
are summarized below:

• Decoding was modified to determine the MIPS instruction and determine in-
struction format type (R-Type, I-Type, or J-Type)

• Immediates were retrieved and either zero or sign extended depending on the
instruction

• The source and destination registers are set depending on the instruction and
format type

• Operands are selected for the ALU based on the instruction

CONTROL UNIT The COFFEE Control Unit controls the operation of the
pipeline based on the instructions, as well controlling the mode of operation and
interrupts and updating the PSR. The Control Unit is divided into 5 decoding
entities. Each entity corresponds to a section of the COFFEE pipeline. Each entity
is named CCU Decode with a number indicating stages one to five.

CCU Decode I The first decode stage in the COFFEE Control Unit is executed
when the associated instruction is in the DECODE stage. The results are non-
registered and are used immediately. The ALU is controlled from CCU Decode I
by setting ALU opcodes that are then decoded within the ALU. The opcode design
means that modifications to the ALU behaviour, such as for new instructions, would
need to be made within the ALU rather than the controller. Since this is outside
the scope of the thesis, the ALU controls remain unmodified. The modifications for
MIPS are summarized below:

• Decoding was modified to determine the MIPS instruction and determine in-
struction format type (R-Type, I-Type, or J-Type)

• Comparisons with condition register and writing to condition register is dis-
abled

• Number of operands, source and destination registers are set according to the
format type

• Controls to ALU are set depending on the instruction type
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CCU Decode II The second decode stage in the COFFEE Control Unit is ex-
ecuted when the associated instruction is in the DECODE stage. The results are
registered and used when the instruction moved to the first execution stage, EXE1.
CCU Decode II is focused on register mapping to the co-processor. Since the co-
processor will remain unused for the subset of instructions being implemented and
modifications are not expected to affect the outcome, the CCU Decode II was left
unmodified.

CCU Decode III The third decode stage in the COFFEE Control Unit is exe-
cuted when the associated instruction is in the EXE1 stage. The results are regis-
tered and used when the instruction is in the second execution stage, EXE2. The
modifications for MIPS are summarized below:

• Modifications were made to decode load and store instructions and set controls
for read and write access

• Modifications were made to pass the instruction to the next decode module

CCU Decode IV The fourth decode stage in the COFFEE Control Unit is ex-
ecuted when the associated instruction is in the EXE2 stage. Minor modifications
were made to decode the load instruction and to route data from the previous stage,
CCB, or multiplication result to the next stage.

CCU Decode V The fifth decode stage in the COFFEE Control Unit is executed
when the associated instruction is in the WRITE-BACK stage. No modifications
were needed for this stage since the decoding input is from CCU Decode IV.

To test the modifications, several simple MIPS programs were written to ensure the
proper working of the instructions. An example of one of the programs is shown in
Listing 6.1.
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Listing 6.1: Example MIPS Test Assembly

. data
f i v e :

. 4 byte 5

. g l o b l f i v e

. t ex t
_start :

o r i $8 , $0 , 0x2 #s t o r e s 2 in Reg8
#(Reg 0 must be = 0)

o r i $9 , $0 , 0x3 #s t o r e s 3 in Reg9
addu $10 , $8 , $9 #s t o r e s 5 in Reg10
addi $11 , $10 , 0x1 #s t o r e s 6 in Reg11
addiu $12 , $11 , 0x4 #s t o r e s 10 in Reg12
sub $13 , $12 , $11 #s t o r e s 4 in Reg13
sub $14 , $11 , $12 #s t o r e s −4 in Reg14
subu $15 , $11 , $12 #s t o r e s −4 in Reg15
subu $16 , $12 , $11 #s t o r e s 4 in Reg16
and $17 , $8 , $9 #s t o r e s " 0 . . . 0 0 1 0 " in Reg17
andi $18 , $9 , 0x0 #s t o r e s 0 in Reg18
or $19 , $8 , $9
xor $20 , $8 , $9
add $22 , $8 , $9

There are some things to note about the example code. The variable five in .data is
not necessary for the program and can be removed. However, the current COFFEE
linker will give an error if there is no data present. Additionally, the expected value
saved into some registers is dependent on Register 0 containing the value zero, such
as the first ori instruction. All registers are initialized with the value zero as a
default.

In addition to the above instructions, the LW and SW (Load Word and Store Word)
instructions were also implemented. These instructions require full 32 bit addresses
to access memory, which usually requires the LUI (Load Upper Immediate) in-
struction. Since the LUI instructions in MIPS and COFFEE do not match, this
instruction was not implemented and the LW and SW instructions can not be used.
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6.2 Results

The modifications made to the DECODER and COFFEE Control Unit have resulted
in a few working MIPS instructions. The table below shows the instructions that
function according to the MIPS specifications and were positively tested using MIPS
assembly test programs.

Table 6.2: Implemented and Working Instructions

MIPS Instruction Definition
OR Bitwise Logical OR
ORI OR Immediate
XOR Exclusive OR
AND Bitwise Logical AND
ANDI AND Immediate
ADD Addition
ADDU ADD Unsigned
ADDI ADD Immediate
ADDIU ADD Immediate Unsigned
SUB Subtract
SUBU SUB Unsigned

The GPR 0 register is assumed to always be zero to a MIPS compiler. Since this
is not necessarily the case in COFFEE, a case where GPR 0 is not zero can result
in an error in a running program. Additionally, the LW and SW (load word and
store word) instructions can not be properly used without a properly working LUI
(load upper immediate) instruction, which is needed to load from or save to a 32 bit
memory address and are thus not included in the list of positively tested instructions.

6.3 Discussion

The results have shown that with minimal modifications made to the COFFEE
Core, MIPS instructions can be implemented and function according to MIPS spec-
ifications on the COFFEE core. As the modifications were limited to only the
DECODER stage and the COFFEE Control Unit, it is expected that expanding
the modifications to include other sections of the processor would allow even more
MIPS instructions to function.

The results have also shown that some complications arise from the differences be-
tween the MIPS and COFFEE processors. The MIPS compiler expected that the
GPR 0 register is always zero. This is not the case in COFFEE as the contents of
GPR 0 can be changed at any time. This means that the program can fail if the
program requires that GPR 0 is zero and it is in fact not.
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In addition to a dependency on GPR 0, the results of testing also show that some
instructions have a dependency on other instructions, such as is the case for LUI,
LW, and SW. The LUI instruction is needed to load from or save to a 32 bit memory
address.

By making small modification to the COFFEE core, a small number of MIPS in-
structions can be made to work correctly on the COFFEE core. For more MIPS
instructions to work on the COFFEE core, modifications will need to be made out-
side the DECODE stage and Control Unit. Additional components and registers
and modifications to the ALU will need to be made. From the research and design
process, it can be assumed that as more instructions are added, more work will be
required to modify the processor and more complications will arise.

6.4 Further Work

The next steps to accomodate the MIPS instructions in the COFFEE core will
require modifications throughout the COFFEE Core in addition to modifications
made in the DECODE and Control Unit. The following are suggestions as to the
next steps which should cover most of the remaining MIPS instructions.

• Similar Instructions - The remaining similar instructions such as the Shift and
Rotate instructions can be implemented

• Zero Register - GPR 0 can be tied to low so that the value can never be
modified

• Load Upper Immediate - The LUI instruction can be implemented for load
and store instructions

• Registers - Registers HI and LO can be added for storing results of multipli-
cations and divisions

• Load and Store - Load and store instructions implemented for halfwords and
bytes

• Combined Instructions - Instructions such as MADD (multiply and add) and
MSUB (multiply and subtract) can be implemented

• Compare Combination Instructions - Instructions combined with compare,
such as compare and branch or compare and trap can be implemented as
there are several versions of these instructions
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• Cache - Cache access and cache synchronization instructions can be imple-
mented

• Privileged Interface - the COFFEE superuser mode and privileged register set
can be modified to resemble the MIPS CP0 privileged interface, thus affecting
traps, interrupts, exceptions, system calls, etc
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7. CONCLUSIONS

The COFFEE Core is an open-source soft-core processor that is easy to modify and
distribute. The challenge is that if the COFFEE core were widely distributed, the
software would need constant updating to maintain an acceptable standard. The
feasibility of adapting the COFFEE Core to read the MIPS instruction set was
investigated.

After a comparison of the MIPS and ARM architectures, MIPS was chosen for its
simplicity and similarity of the instruction set to the COFFEE instruction set. It
was decided to modify the implementation of the COFFEE Core to accomodate
as many MIPS instructions as possible while leaving the overall architecture of the
COFFEE Core intact.

A small subset of MIPS instructions was implemented by modifying only the decod-
ing and control elements of the processor. However, comparisons made between the
instruction sets and architectures of MIPS and COFFEE reveal that implementing
additional instructions would require changes in the core outside the decoding and
control elements and may require altering the architecture of the COFFEE Core to
be more similar to the MIPS architecture.

Thus, a MIPS compatible COFFEE Core is possible if additional modifications are
made to the COFFEE Core to accomodate the remaining MIPS instructions.
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A. APPENDIX

A.1 MIPS Instructions with Identical COFFEE Instruction
Specifications

These instructions had similar specifications in MIPS and COFFEE. Most can be
implemented directly, whereas some may need minimal modifications.

MIPS
Instruction

Instruction Type Instruction Descrip-
tion

COFFEE
Equivalent

ADDI CPU Arithmetic Add (with overflow) ADD
ADDI CPU arithmetic Add immediate (with

overflow)
ADDI

ADDIU CPU arithmetic Add immediate un-
signed (no overflow)

ADDIU

ADDU CPU arithmetic Add unsigned (no
overflow)

ADDU

AND CPU Logical Bitwise AND AND
ANDI CPU Logical Bitwise and immedi-

ate
ANDI

DI Privileged Disable interrupts DI
EI Privileged enable interrupts EI
EXT CPU Insert/Extract extract bit field EXBF
JAL CPU Branch and

Jump
Jump and link JAL

JALR CPU Branch and
Jump

Jump and link register JALR

J CPU Branch and
Jump

Jump JMP

JR CPU Branch and
Jump

Jump register JMPR

LW CPU Load, Store, and
Memory Control

Load word LD
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MUL CPU arithmetic Multiply Word to
GPR

MULS

NOP CPU Instruction Con-
trol

no operation NOP

NOR CPU Logical Bitwise NOR NOR
OR CPU Logical Bitwise OR OR
ORI CPU Logical Bitwise OR immedi-

ate
ORI

SUB CPU arithmetic Subtract SUB
SUBU CPU arithmetic Subtract unsigned SUBU
XOR CPU Logical Bitwise exclusive OR XOR

A.2 MIPS Instructions with Similar COFFEE Instruction Spec-
ification or Simple to Implement

These MIPS instructions have similar instructions to COFFEE or functionality that
could be more easily implemented in COFFEE, but the COFFEE Core would need
additional modification to function.

MIPS
Instruction

Instruction Type Instruction Descrip-
tion

COFFEE
Equivalent
and Notes

SLTU CPU arithmetic Set on less than un-
signed

none

INS CPU Insert/Extract Insert bit field none
WSBH CPU Insert/Extract Word swap bytes

within halfword
none

MTHI CPU Move Move to HI Register none (HI register
does not exist)

LUI CPU Logical Load upper immedi-
ate

none

XORI CPU Logical Bitwise exclusive or
immediate

none

BAL CPU Branch and
Jump

Branch and link none

MOVN CPU Move Move conditional on
not zero

ALU compare
with r0 +
ld/move
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MOVZ CPU Move Move conditional on
zero

ALU compare
with r0 +
ld/move

SSNOP CPU Instruction Con-
trol

Superscalar No Oper-
ation

equivalent to
SLL, R0, R0, 1

LH CPU Load, Store, and
Memory Control

Load Halfword none, not im-
mediate, similar
LLI (no sign ex-
tension)

LHU CPU Load, Store, and
Memory Control

Load Halfword Un-
signed

none, not im-
mediate, similar
LLI (no un-
signed, no sign
extension)

MULT CPU arithmetic Multiply Word to
HI/LO 64 bit result

MULS +
MULHI

MULTU CPU arithmetic Multiply unsigned to
HI/LO 64 bit result

MULU +
MULHI

SYSCALL CPU Trap System
Call

System Call none, SCALL
similar, MIPS
causes an
exception,
whereas COF-
FEE changes
PC, PSR

BEQ CPU Branch and
Jump

Branch on equal BEQ

B CPU Branch and
Jump

Unconditional Branch BEQ r0, r0, off-
set

BNE CPU Branch and
Jump

Branch on not equal BNE

BGEZ CPU Branch and
Jump

Branch on greater
than or equal to zero

none, similar
BEGT, r0

BGEZAL CPU Branch and
Jump

Branch on greater
than or equal to zero
and link

none, similar
BEGT, r0 +
link

BLEZ CPU Branch and
Jump

Branch on less than or
equal to zero

none, similar
BELT, r0
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BGTZ CPU Branch and
Jump

Branch on greater
than zero

none, similar
BGT, r0

BLTZ CPU Branch and
Jump

Branch on less than
zero

none, similar
BLT, r0

BLTZAL CPU Branch and
Jump

Branch on less than
zero and link

none, similar
BLT, r0 + link

SLT CPU arithmetic Set on less than
(signed)

none, similar
compare + ld

SEH CPU arithmetic Sign-extend halfword none, similar
sexti

SEB CPU arithmetic Sign-extend byte none, similar
sexti

SLTI CPU arithmetic Set on less than imme-
diate (signed)

none, no imme-
diate load

SLTIU CPU arithmetic Set on less than imme-
diate unsigned

none, no imme-
diate, but imple-
mentable?

ERET Privileged exception return RETI, except
reti requires to
be followed by 2
NOPs

SLLV CPU Shift Shift left logical vari-
able

SLL, 5 shift bits
instead of 6

SLL CPU Shift Shift left logical SLLI, 5 shift bits
instead of 6

SRAV CPU Shift Shift word right arith-
metic variable

SRA, 5 shift bits
instead of 6

SRA CPU Shift Shift word right arith-
metic

SRAI, 5 shift
bits instead of 6

SRLV CPU Shift Shift right logical vari-
able

SRL, 5 shift bits
instead of 6

SRL CPU Shift Shift right logical SRLI, 5 shift bits
instead of 6

SW CPU Load, Store and
Memory Control

Store word ST

TEQ CPU Trap Trap if equal none, similar
TRAP + ALU
compare
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TGE CPU Trap Trap if greater or
equal

none, simi-
lar TRAP +
compare

TGEI CPU Trap Trap if greater of
equal immediate

none, simi-
lar TRAP +
compare

TGEIU CPU Trap Trap if greater or
equal immediate Un-
signed

none, simi-
lar TRAP +
compare

TGEU CPU Trap Trap if greater or
equal unsigned

none, simi-
lar TRAP +
compare

TLT CPU Trap Trap if less than none, simi-
lar TRAP +
compare

TLTI CPU Trap Trap if less than im-
mediate

none, simi-
lar TRAP +
compare

TLTIU CPU Trap Trap if less than im-
mediate unsigned

none, simi-
lar TRAP +
compare

TLTU CPU Trap Trap if less than un-
signed

none, simi-
lar TRAP +
compare

TNE CPU Trap Trap if not equal none, simi-
lar TRAP +
compare

TNEI CPU Trap Trap if not equal im-
mediate

none, simi-
lar TRAP +
compare

TEQI CPU Trap Trap if equal immedi-
ate

none, similar
TRAP + imme-
diate compare

SC CPU Load, Store, and
Memory Control

Store conditional
word

none, works with
LL + SC (mips)

RDHWR CPU Move Read Hardware Regis-
ter

none
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A.3 MIPS Instructions with No Comparable COFFEE Instruc-
tion Match

These MIPS instructions have no comparable match in COFFEE.

MIPS
Instruction

Instruction Type Instruction Descrip-
tion

COFFEE
Equivalent

BREAK CPU Trap Breakpoint none
CACHE Privileged Perform cache opera-

tion
none

CLO CPU arithmetic Count Leading Ones
in Word

none

CLZ CPU arithmetic Count Leading Zeros
in Word

none

DIV CPU arithmetic Divide none
DIVU CPU arithmetic Divide unsigned none
EHB CPU Instruction Con-

trol
Execution Hazard
Barrier

none

LB CPU Load, Store, and
Memory Control

Load byte none

LBU CPU Load, Store, and
Memory Control

Load Byte Unsigned none

LL CPU Load, Store, and
Memory Control

Load Linked Word none

LWL CPU Load, Store, and
Memory Control

Load world left none

LWR CPU Load, Store, and
Memory Control

Load word right none

MADD CPU arithmetic Multiply and Add
Word to Hi, Lo

none

MADDU CPU arithmetic Multiply and Add Un-
signed Word to Hi, Lo

none

MSUB CPU arithmetic Multiply and Subtract
Word to Hi, Lo

none

MSUBU CPU arithmetic Multiply and Subtract
Unsigned Word to Hi,
Lo

none

PAUSE CPU Instruction Con-
trol

Wait for LLBit to
clear

none
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ROTR CPU Shift Rotate word right none
ROTRV CPU Shift Rotate word right

variable
none

SB CPU Load, Store, and
Memory Control

Store byte none

SH CPU Load, Store, and
Memory Control

store halfword none

SWL CPU Load, Store, and
Memory Control

store word left none

SWR CPU Load, Store, and
Memory Control

store word right none

SYNC CPU Load, Store, and
Memory Control

Synchronize shared
memory

none

SYNCI CPU Load, Store, and
Memory Control

Synchronize caches to
make Writes effective

none

MTLO CPU Move Move To LO Register none, LO regis-
ter does not ex-
ist

PREF CPU Load, Store, and
Memory Control

Prefetch none, no cache
instructions

MFC0 Privileged Move from Coproces-
sor 0 to GPR

none

MTC0 Privileged Move to Coprocessor 0
from GPR

none

MFHI CPU Move Move from HI reg none, no desig-
nated HI reg in
COFFEE

MFLO CPU Move Move from LO reg none, no desig-
nated LO reg in
COFFEE

TLBP Privileged Probe TLB for Match-
ing Entry

none, no direct
TLB/virtual
memory access
for COFFEE

TLBR Privileged Read Indexed TLB
Entry

none, no direct
TLB/virtual
memory access
for COFFEE
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TLBWI Privileged Write Indexed TLB
Entry

none, no direct
TLB/virtual
memory access
for COFFEE

TLBWR Privileged Write Random TLB
Entry

none, no direct
TLB/virtual
memory access
for COFFEE

JALR.HB CPU Branch and
Jump

Jump and Link Regis-
ter, clear Hazard Bar-
riers

none, JALR +
clearhazzards

JR.HB CPU Branch and
Jump

Jump Register, clear
Hazzard Barriers

none, JMPR +
clearhazzards

WAIT Privileged Enter Standby Mode none, no low
power mode

RDPGPR Privileged Read GPR from Pre-
vious Shadow Set

none, no shadow
sets in COFFEE

WRPGPR Privileged Write GPR to Previ-
ous Shadow Set

none, no shadow
sets in COFFEE


