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State Feedback Fuzzy Adaptive Control for Active Shimmy Dampingg

Gaétan Pouly∗, Thai-Hoang Huynh, Jean-Philippe Lauffenburger, Michel Basset
Q1

In the context of aircraft, shimmy is an oscillatory phe-
nomenon of the landing gear mainly due to the tire and
the landing gear structural dynamics. This phenomenon
which can result in severe damage to the landing gear
must be damped. This paper presents a new nose land-
ing gear model including an actuator model and a simple
tire/road interface description approximating the Pacejka
model to allow the active damping of the shimmy phe-
nomenon. Two state feedback control solutions, based on
indirect and direct fuzzy adaptive theories, are also pre-
sented and compared with a more classic Proportional
Integral Derivative (PID) solution. Results corresponding
to different test scenarios and robustness analysis show
that the proposed controllers are able to efficiently damp
the shimmy phenomenon, unlike the PID controller.

Keywords: Adaptive control, fuzzy estimation, feedback
linearization, nonlinear systems, active shimmy damping.

1. Introduction

The shimmy phenomenon is the self-excited oscillation of
a wheel about its vertical steering axis, which may occur
in many physical rolling systems such as aircraft nose
wheels, automobiles, motorcycles. This phenomenon is
particularly well-known for its non-linear chaotic dynam-
ics [25] and could for instance be adequately represented
by a dimensionless formulation. Shimmy is a violent,
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possibly dangerous vibration that can cause system mal-
functions or even damages. In order to increase the under-
standing of this phenomenon on aircraft Nose Landing
Gears (NLG), researchers have designed different shimmy
models. These white boxes models are mainly based on
different ways of defining the elasticity of the tires, which
plays a fundamental role in the dynamics involved [22],
[24] and [26]. The system under study is nonlinear exclu-
sively because of the tire characteristics. So the tire plays
a very important role in the system’s behavior. In the liter-
ature, several models of the tire/ground interface could
be found ([20], [17], [19]). There are essentially two
ways to describe the elastic lateral dynamics of the tires:
the first one is a point contact approach (Moreland’s tire
model, for instance) assuming that the ground/tire inter-
action occurs via a single point; the second one is based
on the elastic string theory defining a physical tire model
by an elastic string. These tire descriptions, associated
with a NLG model, help to analyze the stability and the
shimmy oscillation characteristics and to synthesize pas-
sive and/or active shimmy dampers. Studies have shown
similar results for these two approaches [22].

A classic solution to avoid shimmy is to increase the
stiffness of the NLG by changing its material for instance,
and to increase the damping constant by using additional
passive dampers, for instance [1]. One of the main draw-
backs of such shimmy passive damping solutions is that
under changing load conditions or ground-tire interfaces,
they may not be efficient because of the fixed structural

Received 8 October 2009; Accepted 13 September 2010
Recommended by N. K. Kazantzis, D. Normand-Cyrot



2 G. Pouly et al.

parameters of the NLG. Then, considering the limitations
of passive damping, active solutions may be investigated,
in order to take account of the changing conditions. Due to
the improvement of the embedded systems (microproces-
sor efficiency, field bus integration,. . .) such active control
solutions are conceivable.

In the general context of active damping of oscilla-
tory systems, different control approaches have been used,
depending on the models of the oscillatory phenomena.
For an oscillatory system described by a linear second
order model, simple methods such as velocity feedback
control, PID control, or linear filter were first adopted to
adjust the damped ratio of the system [9] and [8]. Then,
modern control theories such as optimal control, adaptive
control, robust control, fuzzy control or neural networks
were used to design damping controllers for more complex
oscillatory systems [5], [6] and [11].

Focusing on the active damping of the shimmy phe-
nomena, different solutions have been proposed recently.
Basically, active shimmy damping solutions rely on the
use of sensors measuring the NLG behaviors, and a feed-
back control algorithm to calculate the damping moments
generated by an anti-shimmy actuator. From the control
theory point of view, active damping solutions would
increase the system performance as the damping moments
are generated, based on feedback measurement signals
corresponding to real operating conditions. Even if the
active control of the landing gear started in the 70s, only
few studies ([2], [28], [7]) have been carried out on active
shimmy damping and until now, no aircraft has been
equipped with such a device. In [2], a feedback signal pro-
portional to the vertical angular velocity of the NLG wheel
is used to control the pressure of a hydraulic actuator. The
switching control method is applied to stabilize the NLG
dynamics in [28]. In [7], the authors suggested a control
algorithm for a simple nonlinear model of the NLG based
on the feedback linearization law. One drawback of the
above solutions is that the control designs are based on a
nominal shimmy model. However, it is difficult to consider
that the behavior of the NLG stays close to its nominal
behavior. In fact, the system is time-varying, the vertical
load affects the response of the system, the tire dynamic is
time-dependent and varies according to the ground/wheel
interface. Therefore, the control performance may change
following the behavior variations. Recently, there has been
a strong development in the adaptive control of nonlinear
systems using neural networks and fuzzy systems, not only
in theory, but also in applications. Different authors have
described fuzzy adaptive controllers based on backstep-
ping ([27], [3] and [4]). These solutions help to reduce
the adapted on line parameters and thus reduce the com-
putation time of the algorithm. [16] proposed a hybrid
solution using H∞ control to suppress the influence of
external disturbances. However, these solutions need a

particular class of nonlinear system (expressed in a strict
feedback form), which is not adapted to shimmy control.
Finally, [23] or [13] suggested fuzzy adaptive algorithms
with no restriction on the system structure. So, the ability
of overcoming the uncertainties and time-varying dynam-
ics of such an algorithm is a solution to the active shimmy
damping problem. Two approaches may be distinguished
in the design of a state feedback fuzzy adaptive controller:
direct or indirect approaches. For the direct solution, the
fuzzy system is adjusted directly to ensure the control
objectives, while the indirect adaptive approach uses two
fuzzy systems to estimate the plant dynamics and then
calculate the control law.

One of the contribution of this paper is the extension
of the well known nonlinear shimmy model described by
Somieski. On the one hand, an electrical actuator model
is added in order to develop active control solutions. On
the other hand, the initial tire model used by Somieski
(based on a piecewise linear representation of the lat-
eral force) is replaced by a nonlinear description of the
lateral force function of the slip angle. The second con-
tribution concerns a control method based on feedback
linearization. The applicability of feedback linearization
is limited due to the necessity of a detailed knowledge of
the system dynamics in order to synthesize an accurate
nonlinear controller. To cope with this drawback, adap-
tive nonlinear controllers are proposed. The aim of this
study is to design state feedback control laws to drive the
system output y, here the wheel angle around the verti-
cal axis (ψw), tracking a given reference output ym here
fixed to 0◦. In the following, it is assumed that all the
states of the system are measurable and available for feed-
back. This assumption is a limitation for the practical and
real time implementation of the solution since, in practice,
a number of physical data are difficult to obtain. How-
ever, this paper presents a first contribution concerning
active shimmy damping using an electromechanical actu-
ator. In this context, this study helps to evaluate if active
shimmy damping is possible considering the most favor-
able conditions before the generalization to more realistic
conditions (with less data available, noisy measurements,
etc . . .) and also to define the global specifications of the
electromechanical actuator (required control torque, band-
width, energetic aspects,. . .). Moreover, it helps to obtain
a reference (showing the best performance which could be
obtained in an ideal case), which can be used to evaluate
future developments.

Direct and indirect methods have been developed here
and validated through different simulation scenarios (pulse
disturbance applied on the wheel corresponding to a tire
damage, rough runway, etc. . .) with varying speed con-
ditions. To highlight the efficiency of the controllers, a
comparisonhasalsobeenperformedwithasimplePIDsolu-
tion. The latter has been tested, considering the same NLG
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nonlinearmodelandhasrevealedtheneedformoreevolved
control structures. Finally, the validity of the control solu-
tionsandthesensitivityof themodelwith respect tovarying
parameters are analyzed thanks to a robustness study.

The present study is carried out in the context of the
European DRESS project (“Distributed and Redundant
Electromechanical nose gear Steering System”). Its goal is
to develop a distributed and redundant electrical steering
system for an aircraft NLG which will provide improved
competitiveness and aircraft safety. One of the objectives
of the DRESS project, in direct link with this paper, is to
analyze the impact of the new electrical steering system on
the shimmy phenomenon and to study different methods
for shimmy damping.

The paper is organized as follows: the nonlinear NLG
model is described in Section 3. The direct and indirect
fuzzy adaptive controllers are presented in Section 4. The
simulation results of the two active shimmy damping solu-
tions and the PID solution are given in Section 5 and a
discussion concerning these results is proposed. Finally,
Section 6 concludes this paper.

All the notations used in this paper are summarized in
Section 2.

2. Glossary

M1: torsional moment provided by the torque link [N .m],
ks: stiffness constant of the NLG [N .m.rad−1],
ψa: rotation angle of the turning tube [rad ],
ψw: rotation angle of the wheel [rad ],
M2: damping moment from viscous friction in the bearing

of the oil-pneumatic shock absorber [N .m],
kd : damping constant of the NLG [N .m.rad−1.s],
ψ̇a: rotation speed of the turning tube [rad .s−1],
ψ̇w: rotation speed of the wheel [rad .s−1],
Ja: inertia of the actuator [kg.m2],
Jz: inertia of the NLG [kg.m2],
Ba: viscous friction constant of the actuator [N .m.rad−1.s],
M3: tire moment caused by the lateral tire deformations

due to side slip [N .m],
Mz: self-aligning moment [N .m],
Fy: lateral force [N ],
e: caster length [m],
α: slip angle [rad ],
Fz: vertical load [N ],
v: A/C speed [m.s−1],
M4: tire damping moment related to the yaw rate [N .m],
yl : lateral displacement of the wheel [m],
a: half of the contact length [m],
cFα : cornering stiffness normed by the vertical load

[rad−1],
cMα : self aligning stiffness normed by the vertical load

[m.rad−1],

κ: constant of tread width tire moment [N .m2.rad−1]
δ: limiting slip angle for lateral force [rad ],
αg : limiting slip angle for aligning moment [rad ],
σ : relaxation length of tire deflection [m].

3. Shimmy Modeling for Active Damping

This paper proposes an extension of the well known non-
linear shimmy model presented in [22], for the design of
active damping controllers. This extension is based on the
integration of an actuator model and an improvement of
the tire/road interface. The system considered consists of
the mechanical dynamics of an electromechanical actu-
ator, the torsional dynamics of the NLG, and the forces
and moments describing the tire’s elasticity. For the lat-
ter, the piecewise linear representation of the lateral effort
versus the slip angle has been replaced by a nonlinear for-
mulation. The diagram of this model which considers the
actuator, the turning tube, the sliding tube and finally the
tire/road interface is illustrated in Fig. 1 and is detailed in
the next section.

3.1. Nonlinear Mathematical Formulation

The input of the model is the control torque u which must
be provided by an electromechanical actuator and the out-
put of the model is the yaw angle of the wheel ψw about
its vertical rotating axis. The link between the actuator
and the turning tube is assumed to be rigid, the angle of
the actuator output ψa is equal to the angle of the turning
tube. Applying Newton’s second law to the rotating move-
ments of the actuator and the NLG leads to the following
equations:{

Jaψ̈a = u − Baψ̇a − M1 − M2

Jzψ̈w = M1 + M2 + M3 + M4
(1)

where M1 = ks(ψa −ψw) is the torsional moment provided
by the torque link, M2 = kd (ψ̇a − ψ̇w) is the damping
moment from viscous friction in the bearings of the oil-
pneumatic shock absorber, M3 is the tire moment caused
by the lateral tire deformations due to side slip and M4 is
the tire damping moment related to the yaw rate, Ja is the
inertia of the actuator, Jz is the inertia of the NLG and Ba is
the viscous friction constant of the actuator. Considering
the tire dynamics, the following equations summarize the
nonlinear characteristics of the tire, which are discussed
in detail in [22]:

M3 = Mz − eFy (2)

Fy =
{

cFααFz

cFαδFzsign(α)

for |α| ≤ δ
for |α|> δ (3)
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Fig. 1. Nose Landing Gear model.

Mz =
⎧⎨
⎩ cMαFz

αg

180
sin

(
180

αg
α

)
0

for |α| ≤ αg

for |α|> αg (4)

M4 = κ

v
ψ̇ (5)

ẏl + v

σ
yl = vψw + (e − a)ψ̇w (6)

α ≈ arctanα = yl

σ
(7)

where Mz and Fy are respectively the self aligning torque
and the lateral side force of the tire, Fz is the vertical load
applied on the NLG, v is the aircraft forward velocity, yl is
the lateral displacement of the tire footprint. This lateral
displacement is obtained using the elastic string theory
defining the tire lateral deformation as a stretched elastic
string. Finally, α is the slip angle of the tire, e is the caster
length, a is half of the contact length, cFα is the cornering
stiffness normed by the vertical load, cMα is the aligning
stiffness normed by the vertical load, κ is the tread width

tire moment constant, δ is the limit slip angle for lateral
forces (more details available in [22]).

It is important to note that there are two nonlinearities
in the model, both related to the elasticity of the tires.
These nonlinearities may cause limit cycles and instabil-
ities in the system. Therefore, the NLG is rather difficult
to control.

The precise description of the shimmy phenomena
requires great accuracy in the representation of the elastic
properties of the tires. In fact, shimmy is due to dynamic
reaction forces between the tires and the ground. The phys-
ical elements to be considered are mainly the self aligning
torque Mz and the lateral force Fy applied on the tire with
caster length e as the lever arm (see (2)). Mz and Fy directly
depend on the load (vertical force) Fz applied on the tire
and the slip angle α. Practically, the general shapes of the
curves are shown in Fig. 2 [19].

If, for the self aligning torque Mz , the model proposed
by Somieski using a half period of a sine approximates well
the tire behavior in the considered working range, the sat-
uration function with linear pieces used for the modeling
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Fig. 2. General shapes of tires contributions (Mz and Fy).

of the lateral force could be improved (see Fig. 2). In this
study, the piecewise linear curve is replaced by a sigmoid
function (see (8)), in order to keep a simple expression
of the model devoted to control-oriented applications. As
can be noticed in Fig. 2, this model provides a better
approximation of the lateral force: the proposed modeling
based on a sigmoid function is continuous and approxi-
mates in a better way the corresponding Pacejka model
which has been used as a reference model in this study
for the validation of the sigmoid representation. Indeed,
this new representation extends the validity domain of the
lateral force Fy to a higher tire slip angle (α = 10◦) by
taking account of the rounded shape of the curve around
the maximum of the slip angle.

Fy = cFαFzδ

(
2

1 + e− 2
δ
α

− 1

)
(8)

3.2. State Space Representation

A state space representation of the NLG model is needed
to design the adaptive damping controllers. By choosing
the state variables x1 = ψw, x2 = ψ̇w, x3 = yl , x4 = ψa,
x5 = ψ̇a and considering the control torque u, the nonlinear

dynamics presented above can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = ks(x4 − x1)

Jz
+ kd (x5 − x2)

Jz
+ f1(x3)+ f2(x2)

ẋ3 = vx1 + (e − a)x2 − v

σ
x3

ẋ4 = x5

ẋ5 = −Bax5

Ja
− ks(x4 − x1)

Ja
− kd (x5 − x2)

Ja
+ 1

Ja
u

(9)

where:

f1(x3)= M3(α)

Jz
= M3(yl/σ)

Jz
(10)

f2(x2)= M4(ψ̇w/v)

Jz
(11)

The output of the system is y =ψw = x1. Hence the third
derivative of the output:

y(3) = ks(ẋ4 − ẋ1)

Jz
+ kd (ẋ5 − ẋ2)

Jz
+ ḟ1(x3)ẋ3 + ḟ2(x2)ẋ2

(12)
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Replacing the derivatives of the state variables (9) by (12),
it is obvious that the input u appears on the right hand side
of the result. This means that the system has the rela-
tive degree r = 3, and can be described by the following
equation:

y(3) = a(x)+ b(x)u (13)

where x = [x1,x2, . . . ,x5]T is the system’s state vector,
a(x) and b(x) are nonlinear smooth functions. The explicit
descriptions of these two nonlinear functions can be
obtained after some mathematical manipulations. How-
ever, even if the exact expressions are calculated, they
might not accurately describe the dynamics of the system
when it is operating, because of time-varying parameters
such as the vertical force or tire characteristics. For this
reason, a(x) and b(x) are considered as unknown func-
tions, and the adaptive control theory is adopted to cope
with this uncertainty.

3.3. Shimmy Test Scenarios: Open Loop Results

In order to be comparable with previously published
work on shimmy analysis, the proposed model (except
for the actuator characteristics) has been configured with
the parameters presented in [22] and summarized in the
following table:

Parameter Value Unit

v 0. . .80 m/s
a 0.1 m
e 0.1 m
cFα 20 rad−1

δ 5 ◦
cMα -2 m.rad−1

αg 10 ◦
Ja 0.1 kg.m2

Jz 1 kg.m2

Ba 0.1 N .m.rad−1.s
Fz 9000 N
ks 100000 N .m.rad−1

kd 10 N .m.rad−1.s
κ -270 N .m2.rad−1

σ 0.3 m

These parameters correspond to the NLG of a commercial
civil aircraft.

To illustrate the performance of the model composed
of the electrical actuator, the NLG and the tire/road inter-
face, three different test scenarios have been chosen. In
the aeronautical domain, these test cases describing real
situations help to test the behavior of the NLG. For all the
three proposed cases, the turning tube is kept at zero posi-
tion and a perturbation is applied directly on the tire. The
case studies that have been selected are:

• Scenario 1: Constant ground speed, pulse disturbance

The aircraft is supposed to have a forward ground speed
of 80m/s, the disturbance is a torque pulse of 1000N .m
for 0.1s and directly acts on the vertical axis at the wheel
level. This test actually corresponds to a tire damage
scenario.

• Scenario 2: Constant ground speed, rough runway

The purpose of this test is to investigate the effect
of the roughness of the runway while the aircraft is
running at a maximum speed of 80m/s. This influ-
ence is modeled by a random disturbance which is a
white noise with zero mean and a standard deviation of
100N .m.

• Scenario 3: Varying ground speed, rough runway

In this scenario, the same test as in scenario 2 is per-
formed, with a varying forward velocity of the aircraft:
v changes from 10 to 80m/s. This test is carried out
because of the sensitivity of the shimmy phenomenon
to the aircraft forward velocity [22].

The simulation of scenario 1 with the model described
in Section 3.1 is illustrated in Fig. 3. The disturbance is
applied on the tire at time 0.2s for a duration of 0.1s.
As can be seen in the figure, the NLG starts to oscil-
late, i.e. shimmy appears, as soon as the perturbation is
applied on the tire. Then, the amplitude of the oscilla-
tions starts growing with time and the system becomes
unstable.

Scenario 2 is illustrated in Fig. 4. The disturbance, rep-
resenting a high roughness of the runway, is applied on
the tire at the beginning of the simulation and the air-
craft runs at 80m/s. As can be seen in the figure, the NLG
slowly starts to oscillate and after a while, as in scenario 1,
becomes unstable in the same way.

Concerning these two scenarios, the results are those
obtained for a simulation of 1s.

Scenario 3 is illustrated in Fig. 5. The aircraft forward
velocity is a critical parameter of the shimmy phenomenon
and this scenario aims at illustrating this aspect. During
landing and takeoff, the aircraft ground velocity varies
between 0 and 80m/s and this scenario shows the impact
of this varying parameter on the behavior of the NLG;
the simulation is performed on 15s. At low speed (under
25m/s), the system is stable whereas it becomes unsta-
ble and shimmy appears when the forward velocity of the
aircraft is higher than 25m/s.

These 3 scenarios show a shimmy phenomenon char-
acterized by a natural frequency around 50Hz and an
increasing amplitude up to 20◦. These results are in ade-
quacy with the ones which can be found in the literature.
It must be underlined that such a situation could generate
malfunctioning and/or severe damages of the landing gear.
That is why damping solutions are required.
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Fig. 3. Shimmy caused by a tire damage.

Fig. 4. Shimmy caused by a rough runway.

4. State Feedback Active Shimmy Damping

4.1. Takagi-Sugeno Fuzzy Systems

Fuzzy systems are one of the most appropriate approaches
to expert knowledge modeling. This solution is gener-
ally used for plants which are mathematically difficult to
model accurately and where the experience of an operator
is needed. In the NLG model presented previously, it is
difficult to accurately describe the tire/road interface, the
importance of weather conditions, the influence of varying
load, etc. This is why the fuzzy theory is necessary. The
capability of approximating a function helps to cope with
these uncertainties and will be used differently in the direct
and indirect algorithms. For the indirect adaptive solution,
the fuzzy system is used to estimate the NLG dynamics
before computing the control input while the direct fuzzy
adaptive solution directly allows the approximation of the
control input.

Several standard fuzzy systems are described in the lit-
erature. In particular, the two algorithms developed in this

paper are based on the Takagi-Sugeno fuzzy system such
that the p fuzzy rules have the following form:

Rm(m=1···p) : If (x1 is F1
1 and · · ·and xn is Fn

1 )

Then ym = θm (14)

where Fj
i is the ith fuzzy set (a part of the discourse uni-

verse) for the state variable j (i = 1 . . .k for the state x1 or
i = 1 . . . l for the state xn, j = 1 . . .n). For each fuzzy set Fj

i ,
a membership function μ such that μ

Fj
i
∈ [0,1] is defined.

Several membership functions can be found in the litera-
ture and Gaussian membership functions are designed for
this study. These functions are specified with a “center” c
and a “width” σ such that:

μ(x)= exp

(
−
(

x − c

σ

)2
)

(15)

Furthermore, the fuzzy Cartesian product is used to imple-
ment the “and” operation present in the fuzzy rule. Finally,
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Fig. 5. Impact of the forward velocity.

a weighted average method is used for the defuzzification
and the output y of the fuzzy system is:

y =

p∑
i=1
θiμi

p∑
i=1
μi

= θTς (16)

where μi := μF1
k ×F2

l ×···×Fn
m
(x1,x2, . . . ,xn) is the mem-

bership function of the ith rule, θT := [θ1,…,θp] and
ςT := [μ1…μp]/[∑p

i=1μi].
The design of fuzzy systems can be performed by the

use of two main methods: an empirical method and an
automatic method. The first method gives the possibility to
manually choose the number of rules, the parameters of the
membership function and the outputs of the fuzzy system.
Based on a trial and error process with experimental tests,
satisfying fuzzy system parameters can be obtained. This
kind of method is suitable when the size of the fuzzy sys-
tem is “sufficiently” low and when the input variable space
can be easily fitted. Nevertheless, this method has the
drawback to generally define more terms than are needed.
The second method consists in searching optimal param-
eters of the fuzzy system. In [29], a genetic algorithm
gives the possibility to optimally define the fuzzy system

parameters. This method permits to improve the
performances of the fuzzy system but a large number
of training samples are required. Section 4.4 describes
how the fuzzy systems have been tuned (number of rules,
membership functions, . . .).

4.2. Indirect Fuzzy Adaptive Control

Asimplified version of the indirect fuzzy adaptive solution
from [23] is developed here. The particularity of the pro-
posed NLG model appears when (12) is developed (using
(9) and (13)). Indeed, in this formulation, the contribution
b(x) does not explicitly depend on the state variables but
only on structural parameters of the NLG model:

B = kd

JaJz
(17)

In this study, kd , Ja and Jz will be considered constant in
the working domain of the controllers. This simplification
aims at reducing the number of required fuzzy systems
necessary to estimate the plant dynamics, since only a(x)
must be estimated. Finally, a simplified indirect adaptive
controller is obtained. Considering this aspect, the indirect
adaptive control solution presented in [23] is simplified
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Fig. 6. Indirect fuzzy adaptive control scheme.

and the following nonlinear system is obtained:

y(r) = a(x)+ Bu (18)

The indirect adaptive feedback controller developed in
this paper is represented in Fig. 6.

The plant is represented by (18). In this strategy, the
states of the system are used to estimate the dynamics of
the NLG â(x) through a fuzzy system in which the output
of the rules θa are adapted using an update law. The control
signal u is composed of the certainty equivalence control
term uce based on the estimated system dynamics â(x) and
the sliding mode term usi. The latter helps to overcome the
estimation error of the fuzzy system.

The certainty equivalence control term is used to esti-
mate the feedback linearization control term ; it is defined
such that the output of the system follows the refer-
ence ym and such that the error e0 = ym − y decreases
exponentially:

uce = 1

B

(−â(x,θa)+ ν
)

(19)

where ν(t) := y(r)m + ηes + es and es := ės − e(r)o . The
tracking error es is defined as es := kT e with e :=
[e0 ė0 . . . e(r−1)

0 ], k := [k0 . . . kr−2 1].
The elements of k are chosen such that L(s) := sr−1 +

kr−2sr−2 + . . .+ k1s + k0 is Hurwitz (see Section 4.4).
In this indirect fuzzy adaptive algorithm, a(x) is an

unknown nonlinear function which must be estimated by
the fuzzy system using (20), to calculate the feedback
linearization control law:

â(x,θa)= θT
a ςa (20)

where θT
a := [

θa1 . . . θap

]
and ςT

a := [
μa1 . . .μap

]
/[∑p

i=1μai

]
. Moreover, the unknown function a(x) can

be formulated as follows:

a(x)= θ∗T
a ςa + δa(x) (21)

where δa(x) is the optimal approximation error of a(x)
by the fuzzy system and θ∗

a is the best value of the
parameter θa:

θ∗
a := arg min

θa

[
sup

x

∣∣∣θT
a ςa − a(x)

∣∣∣] (22)

It is thus possible to prove that the fuzzy system can
approximate a smooth nonlinear function with arbitrary
small error if the number of fuzzy rules is large enough
[12]. The parameter error vector θ̃a(t) represents the dif-
ference between the current estimated parameter and the
best value of this parameter and is defined by:

θ̃a(t)= θa(t)− θ∗
a (23)

The estimation of the function â(x,θa) in (20) needs to be
updated in order to follow the system dynamics and the
variations induced by external perturbations. Then, the
parameter θa of the fuzzy system is updated such that:

θ̇a = −Q−1
a ςaes (24)

with Qa ∈ �p×p a square positive semidefinite matrix
which helps to vary the adaptation speed of the fuzzy sys-
tem. The sliding mode control term usi has been chosen to
ensure the stability of the control law and is expressed by:

usi = δa

B
sign(es) (25)

The constant δa ∈ � is defined such that the estimation
error δa(x) is bounded:

|δa(x)| ≤ δa (26)
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In (26), δa represents a known bound of the error estima-
tion related to the fuzzy system. Since the fuzzy system is a
universal approximator, it is considered that δa(x) remains
arbitrarily small, if an appropriate fuzzy system with an
arbitrarily large number of rules is chosen. Finally, |δa(x)|
can be bounded by δa and this term is used in this con-
trol law to counteract the modeling error between the real
nonlinear function a(x) and its estimate â(x,θa).

Aeronautical constraints are very strict and it is funda-
mental to ensure that the control solution is stable. The
stability theorem and its proof for the indirect solution
described initially in [23] and applied to the proposed
active shimmy controller in [21] is formulated hereafter.

Theorem 4.1: Stability and tracking error results: Con-
sidering the system defined in (18), the control signal
defined in (19), (25) and assuming the following:

• A1: the error estimation due to the fuzzy system is
bounded (26).

It can be concluded that:

• C1: the plant output and its derivatives up to (r-1) order
are bounded.

• C2: the control signal is bounded.
• C3: the output error e0 will converge to zero.

Proof: The r-derivative of the output error can be writ-
ten as:

e(r)0 = y(r)m − y(r)

= y(r)m − a(x)− B(uce + usi)

= −a(x)+ â(x,θa)−ηes − es − Busi (27)

The tracking error equation becomes:

ės +ηes = −Busi − a(x)+ â(x,θa)

= −Busi + (φT
a ςa − δa(x)) (28)

Considering the Lyapunov function candidate:

V = 1

2
e2

s + 1

2
θ̃T

a Qa θ̃a (29)

where Qa ∈ �d×d (d = dim(φa)) is a positive definite
matrix. Differentiating V (t) with respect to time leads to:

V̇ = −ηe2
s − Busies + (â(x,θa)− a(x))es + θ̃T

a Qa
˙̃
θa

(30)

Considering equations (23) and (24), the derivative of the
parameter error vector becomes:

˙̃
θa = θ̇a (31)

Consequently V̇ becomes:

V̇ = −ηe2
s − Busies + (â(x)− a(x))es − θ̃T

a ςaes

(32)

Equations (21) and (23) enable the following simplifica-
tion:

V̇ = −ηe2
s − Busies + (θ̃T

a ςa − δa(x))es − θ̃T
a ςaes

(33)

Now the assumption A1 and the definition of usi

(equation 25) allow to write:

V̇ = −ηe2
s − δasign(es)es − δa(x)es

≤ −ηe2
s − δasign(es)es +|δa(x)| |es|

≤ −ηe2
s ≤ 0 (34)

This means that V ∈ L∞. If V ∈ L∞ then es ∈ L∞ and
θ̃a ∈ L∞ by the definition of V .
If Gi(s) is defined by:

Gi(s)= si

L(s)
(35)

for i = 0, . . . ,r −1, it is simple to show that Gi(s) is stable
because L(s) has its r −1 roots in the open left half plane.
Thus, the error becomes:

e(i)0 = Gi(s)es (36)

with es ∈ L∞.
Then, error e(i)0 is bounded for i = 0, . . . ,r −1 and e(k)0 =

y(k)m − y(k), so the conclusion is that y(t), . . . ,y(r−1)(t) are
bounded.

As proven above, θ̃a is bounded so the “certainty equiv-
alence” control term is bounded. Moreover, the “sliding
mode” control term is bounded. The conclusion is that u
is bounded.

If equation (34) is used:

∞∫
0

ηe2
s dt ≤ −

∞∫
0

V̇ dt = V (0)− V (∞) <∞ (37)

then es ∈L2. Moreover previous considerations show that
â(x), θ̃a, δa(x,θa) and ςa(x) are bounded. From (28) and
the fact that es and usi are bounded, it is obvious that ės is
bounded. Thus, by Barbalat’s Lemma, the tracking error
es will converge to zero and e0 will converge to zero. �

4.3. Direct Fuzzy Adaptive Control

The block diagram of the direct fuzzy adaptive controller,
initially proposed in [23] is presented in Fig. 7.
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Fig. 7. Direct fuzzy adaptive control scheme.

In this strategy, there is no need to estimate the dynamics
of the plant; the fuzzy system, adapted with an update
law, is used to directly estimate the control signal û. As
is the case for the indirect solution, a sliding mode signal
usd helps to overcome the estimation error of the fuzzy
system. The control signal u is based on the estimated
certainty equivalence control term û and the sliding mode
term usd such that:

u = û + usd (38)

On the assumption that function a(x) and constant
B describing the system dynamics are unknown, the
ideal feedback linear control law cannot be implemented.
Instead, this control term is approximated by a universal
approximator, here a fuzzy system, of the following form:

û(x,θu)= θT
u ςu(x) (39)

Moreover, the unknown function u(x) can be formulated
as follows:

u(x)= θ∗T
u ςu + δu(x) (40)

where δu(x) is the optimal approximation error of u(x)
by the fuzzy system and θ∗

u is the best value of the
parameter θu:

θ∗
u := arg min

θu

[
sup

x

∣∣∣θT
u ςu − u(x)

∣∣∣] (41)

The parameter error vector θ̃u(t) represents the difference
between the current estimated parameter and the best value
of this parameter and is defined by:

θ̃u(t)= θu(t)− θ∗
u (42)

The estimation of the function û needs to be updated to
take account of the possible changes in the system behav-
ior due to time varying parameters. Then, the following
fuzzy system update law is chosen:

θ̇u = Q−1
u ςues (43)

with Qu ∈ �p×p a square positive semidefinite matrix.
The sliding mode control term which helps to overcome

the approximation error of the fuzzy system and ensures
the stability of the control loop, is expressed as:

usd = δusign(es) (44)

The constant δu ∈ � is defined such that:

|δu(x)| ≤ δu (45)

It represents a known bound of the error estimation due to
the fuzzy system.

The properties of the direct fuzzy adaptive controller
are presented in the following theorem and the stability
proof from [23] applied to the proposed controller in [10]
is recalled here:

Theorem 4.2: Stability and tracking error results:
Considering the system defined in (18), the control signal
defined in (38), (39), (44) and assuming the following:

• A1: the error estimation due to the fuzzy system is
bounded, so |δu(x)| ≤ δu.

It can be concluded that:

• C1: the plant output and its derivatives up to (r-1) order
are bounded.

• C2: the control signal is bounded.
• C3: the output error e0 will converge to zero.

Proof. The rth derivative of the output error is:

ė(r)0 = y(r)m − y(r) = y(r)m − (a(x)+ Bu)

= y(r)m − v − B(u − u∗)= −es −ηes − B(û + usd − u∗)
= −es −ηes − Bθ̃T

u ςu + Bδu − Busd (46)

With es = ės − e(r)0 the previous equation leads:

ės +ηes = −Bθ̃T
u ςu + Bδu − Busd (47)
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Considering the Lyapunov candidate function:

V = 1

2B
e2

s + 1

2
θ̃T

u Quθ̃u (48)

where Qu ∈ �d×d (d = dim(φu)) is a positive definite
matrix. Take the derivative of V with respect to time and

notice that ˙̃
θu = θ̇u imply:

V̇ = 1

B
esės + θ̃T

u Quθ̇u

= es

B
(−ηes − Bθ̃T

u ςu + Bδu − Busd )+ θ̃T
u Quθ̇u

= −ηe2
s

B
− esusd + esδu + θ̃T

u (Quθ̇u −ςues) (49)

The use of equation (43) enables to show that:

V̇ = −ηe2
s

B
− esusd + esδu (50)

The definition of the sliding control term in equation
(44) enables to write:

V̇ ≤ −ηe2
s

B
≤ 0 (51)

Since V is a quadratic function and V̇ ≤ 0 the control sys-
tem is proved to be stable. It is clear that V ∈ L∞, which
implies es ∈ L∞ and θ̃u ∈ L∞. With es bounded and the
fact that us bounded, the equation (47 ) gives ės ∈ L∞.

If Gi(s) is defined by:

Gi(s)= si

L(s)
(52)

for i = 0, . . . ,r −1, it is simple to show that Gi(s) is stable
because L(s) has its r −1 roots in the open left half plane.
Thus, the error becomes:

e(i)0 = Gi(s)es (53)

Then, error e(i)0 is bounded for i = 0, . . . ,r − 1 and e(k)0 =
y(k)m − y(k), so the conclusion is that y(t), . . . ,y(r−1)(t) are
bounded.
From equation (50), the following is obtained:

∞∫
0

ηe2
s dt ≤ −

∞∫
0

V̇ dt = V (0)− V (∞) <∞ (54)

which implies that es ∈ L2. Thus, by Barbalat’s Lemma,
the tracking error es will converge to zero and e0 will
converge to zero. �

4.4. Controller Design

The active shimmy damping controllers for an aircraft
NLG are designed on the indirect and direct adaptive fuzzy
control algorithms discussed in the previous sections. Sup-
pose that the aircraft moves straight forward, then the
reference output ym corresponding to the desired wheel
angle ψw can be set to zero for the problem of shimmy
damping. The following section details the design of the
active damping controllers corresponding to the NLG
parameters given in [22], and recalled in Section 3.3.

The outputs of the fuzzy systems are adaptively
obtained based on an error minimization process, see (24)
and (43). Then, only the number of fuzzy rules and the
parameters of the membership functions are selected. The
empirical method was adopted to obtain the parameters of
the fuzzy system. Several reasons justify this choice:

• The fuzzy system is “sufficiently” simple (only 5 clearly
defined inputs permit to obtain the output of fuzzy
system),

• The parameters space of variation is known,
• The model of the system and the control law give the

possibility to compare the function to be identified (a(x)
in the case of indirect solution) and the output of the
fuzzy system (â(x)).

A heuristic method based on a trial and error technique
has been adopted in this study. The number of required
membership functions of the two fuzzy systems is obtained
by simulation tests. A trade off between the number of
membership functions and the performance of the fuzzy
systems has been performed. As a conclusion, the fuzzy
system obtained for the direct control solution is com-
posed of 48 rules (3 (membership functions for ψw)×2
(membership functions forψa)×2 (membership functions
for ψ̇w)×2 (membership functions for ψ̇a)×2 (member-
ship functions for yl) = 48 rules). Concerning the indirect
control solution, the fuzzy system is composed of 72
rules (3 (membership functions for ψw)×2 (membership
functions for ψa)×3 (membership functions for ψ̇w)×2
(membership functions for ψ̇a)×2 (membership functions
foryl) = 72 rules).

When two membership functions are used for a signal,
the centers correspond to the two bounds of the varying
space −xi and xi. When three membership functions are
required, the second center is placed in the middle such that
c = 0. Concerning the standard deviation σ , this parameter
is chosen such that the membership function covers the
whole variation space of the different parameters.

The NLG model considered is a 5th order nonlinear
system with a relative degree of 3. In this case, the
tracking error is es(t) = ë0 + k1ė0 + k0e0. The constants
chosen for the indirect solution are k0 = 25 and k1 = 7,
whereas the constants are equal to k0 = 50 and k1 = 15
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for the direct solution. Parameter ki are chosen such that
the polynomial has its roots in the open left half plane.
The considered polynomial defines the tracking error es.
The goal of the adaptive controller is to “learn” how to
control the plant to drive es to zero. As a conclusion,
parameters ki give the possibility to define the conver-
gence speed of the system, in terms of the error, its first
derivative, etc.

The particularity of these algorithms is the use of a con-
stant value for the control gain B. This constant, defined
by the model parameters kd , Ja and Jz , is equal to 100.
The simulations showed that the maximum value of the
estimates â(x) is approximately equal to 10,000; so, for
the indirect solution, the error estimation is deliberately
bounded by 10% of this maximum value (δa = 1,000).
Concerning the direct solution, δu is chosen to be small to
limit the chattering phenomenon which may occur in the
switching stabilizing control signal.

Moreover, the two adaptive control solutions are com-
pared with a simple PID controller especially developed
for this application. Different methods in the literature
help to tune the parameters of a PID controller. For man-
ual tuning, for example, the Ziegler-Nichols method or
the Cohen-Coon method are well known, useful tuning
rules. Based on these methods, the tuning of the PID
parameters can be a delicate task and the PID controllers
obtained are rarely tuned optimally. So, to overcome
this constraint, a self-tuning method can be used to find
the best values of the PID controller: here a neural net-
work is used to self-adjust the PID parameters. In this
approach, the gains Kp, Ki and Kd are determined in
real time using a neural network. During the simulation
tests, the adaptation law has been tuned to let the three
parameters vary freely. Despite this important opportu-
nity to change, the PID parameters rapidly converge to
constant values. Therefore, it has been decided to fix the
gains to the values obtained. Finally, the following tuning
parameters Kp = 500, Ki = 200 and Kd = 95 are obtained.
This choice gives the possibility to obtain a common PID
controller, without significant deterioration of simulation
results. Indeed, the aim here is to compare a simple con-
trol solution classically used for real plants to the adaptive
controllers developed for the NLG application described
here.

5. Control Performances
(Simulation Results)

To illustrate the performance of the proposed shimmy
damping controllers, simulations have been carried out
with the three previously described test scenarios. It is
assumed, in these scenarios, that the bandwidth of the elec-
trical actuator is sufficiently high (approximately 200Hz)

to provide the simulated control torque. In this work,
the mechanical transmission between the actuator and
the turning tube is not considered. Moreover, a robust-
ness analysis is performed. This latter aims at studying
the impact of varying parameters on the stability and the
performances of the closed-loop system.

5.1. Scenario 1: Constant Ground Speed, Pulse
Disturbance

As explained in Section 3.3, this test corresponds to a tire
damage simulation scenario. Fig. 8 and Fig. 9 show the
response of the NLG with respectively the indirect and the
direct active damping controllers.

It is obvious that no shimmy appears since the oscil-
lations are rapidly and efficiently damped. However, as
the figures reveal, there is a small bias angle in the time
the disturbance is applied; the wheel only returns to its
original zero position when the disturbance disappears.
This behavior of the proposed active damping controllers
is quite similar to that of current passive shimmy damp-
ing solutions: the main purpose of the controllers is not to
drive the wheel, but to damp the shimmy oscillation. In
fact, it is possible to choose the design parameters of the
adaptive controllers so that the wheel angle remains close
to its initial position (0◦) even when the disturbance acts
on the system, but in this case the control torque must be
larger.

The two solutions give quite similar responses. In both
cases, the oscillations are correctly damped and the maxi-
mum deviation of the wheel is lower than 1◦ with a mean
value of 0.5◦.

Fig. 10 shows the response of the NLG with the PID
controller in the same conditions. It is obvious that this
solution does not give satisfactory results. On the one
hand, the amplitude of the oscillations is important (more
than 3◦), while the two adaptive solutions help to obtain an
amplitude below 1◦. On the other hand, it can bee seen that
the damping of the oscillations is practically non-existent,
even after the applied disturbance. The response shows
that the amplitude of the wheel angle is still important
after 0.6s, while the two adaptive solutions help to negate
the effect of the perturbation.

So far, the results obtained with these three control
strategies have been compared, based on subjective crite-
ria. The shape of the wheel angle ψw helps to characterize
the validity of the control solution. These subjective cri-
teria used to validate or invalidate the control solution
can be completed by defining an objective criteria based
on the calculation of the damping ratio. The damping
ratio ζ helps to obtain the properties of an oscillating
signal, it describes how rapidly the oscillations decrease
from one maximum or minimum to the next. The com-
mon formulation of the damping ratio uses two successive
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Fig. 8. Active shimmy damping Scenario 1 (Indirect solution).

Fig. 9. Active shimmy damping Scenario 1 (Direct solution).

maximum or minimum values of the signal (ψw1 and

ψw2) and the logarithmic decrement = ln

(
ψw1

ψw2

)
such

that:

ζ = /2π√
1 + (/2π)2 (55)

This damping ratio formulation is used to compare the
three proposed control solutions. When the damping ratio
is close to zero the oscillations are slightly damped. The
value of the damping ratio increases as soon as the oscil-
lations are damped. The calculation is based on the two
successive minima obtained after the disappearance of the
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Fig. 10. Active shimmy damping Scenario 1 (PID solution).

perturbation. The following table presents the damping
ratio obtained for the three control solutions:

First Second Damping
Minima ψw1 Minima ψw2 Ratio ζ

Indirect control
solution

-0.366 -0.147 0.144

Direct control
solution

-0.332 -0.138 0.138

PID solution -2.928 -2.775 0.009

This damping ratio calculation allows the validation of
the subjective judgments mentioned previously. Indeed,
the damping ratio of the indirect and direct control solu-
tions, respectively equal to 0.144 and 0.138, are close
and these values are sufficiently important to character-
ize efficient damping. Nevertheless, for the PID solution,
the damping ratio obtained is 0.009. This value is close to
zero, which corresponds to a low damping of the wheel
angle ψw.

5.2. Scenario 2: Constant Ground Speed, Rough
Runway

This scenario is performed to simulate the effects of
the roughness of the runway on the NLG at high speed
(80m/s). The results with the proposed active damping
controllers are plotted in Fig. 11 and Fig. 12.

Even with important random perturbations and at
a high forward velocity, shimmy does not occur.

Moreover, the variation of the wheel angle due to the
high road imperfections, is very small (less than 0.2◦).
In practice, this small variation cannot cause any damage
or malfunction to the NLG.

Fig. 13 shows the response of the NLG with the PID
controller in the same context. The amplitude of the wheel
angle with this random perturbation is not high, the PID
controller is able to stabilize the NLG even if the phe-
nomena observed may correspond to shimmy oscillations
(approximately 50Hz). However, the two adaptive solu-
tions give better results, because these solutions allow the
amplitude of the wheel angle to fall under 0.2◦ without
periodic oscillations.

5.3. Scenario 3: Varying Ground Speed, Rough
Runway

The aim of this test is to investigate the performance of
the damping controllers when the system is under varying
speed conditions. The forward velocity is a critical param-
eter in the shimmy phenomenon: the shimmy oscillations
traditionally increase with the increasing velocity. In low
speed conditions (≤ 25m/s), shimmy does not easily affect
the NLG behavior [22]. So, this scenario helps to verify
that the active controllers do not affect the system stability
at low speed and that they damp the oscillations at high
speed. Fig. 14 and Fig. 15 show the simulation results with
the two active shimmy damping controllers in action.

Under the critical forward velocity of the aircraft
(≈ 25m/s), the two controllers give similar results:
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Fig. 11. Active shimmy damping Scenario 2 (Indirect solution).

Fig. 12. Active shimmy damping Scenario 2 (Direct solution).

shimmy is not observed and the control laws do not desta-
bilize the NLG. Beyond this critical speed, the shimmy
oscillations which appear with the non-controlled plant
(see Fig. 5) are actually damped.

Fig. 16 shows the response of the NLG with the PID
controller. It is obvious that this solution does not give

satisfactory results. First, it can be seen that shimmy
oscillations appear rapidly under the critical forward
velocity: the system becomes unstable because of the
control loop. Secondly, the amplitude of the wheel angle
with this random perturbation is very high (approximately
20◦ at the beginning) but the controller finally manages
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Fig. 13. Active shimmy damping Scenario 2 (PID solution).

Fig. 14. Active shimmy damping Scenario 3 (Indirect solution).
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Fig. 15. Active shimmy damping Scenario 3 (Direct solution).

to damp the oscillations (15s are needed to come over
the shimmy oscillations). Thirdly, the periodical control
torque required in this case can have strong effects on the
actuator.

5.4. Robustness Analysis of the Adaptive Control
Solutions

The two proposed fuzzy adaptive control solutions show
satisfactory results but the variations of the system param-
eters are not taken into account during simulation tests.
Indeed, the conditions at the wheel/road interface are not
always the same; the runway can be dry or wet. In addi-
tion, some components of the NLG varies during the life
of the system. Finally, these variations must be taken
into account. That is why a robustness study is proposed.
This robustness study, which is in this paper based on
the indirect state feedback algorithm, aims at testing the
properties of the closed loop system when variations of
the parameters are introduced during simulations. Similar
results have been obtained with the direct state feedback
algorithm.

In the previous section, simulations which correspond
to different perturbations that can destabilize the system

have been proposed (a pulse disturbance acting during 0.1s
and a random noise of low amplitude) and the effective-
ness of the control loops have been highlighted. However,
the tuning of the controllers has been made by consider-
ing a fixed value of the parameters of the landing gear.
Here, different tests are run in order to analyze the perfor-
mances and the stability of the algorithms when variations
of model parameters are considered.

The proposed study will take an interest to 4 different
aspects affecting the system:

• the tire,
• the load,
• the speed,
• the NLG stiffness.

The tire has different behaviors depending on the
tire/road interface. The generated forces and moments
change if the runway is dry, wet or icy [19]. Thus, three
different forces and moments generated at the wheel/road
interface are included in the study of robustness. These
three features called F1

y /M 1
z , F2

y /M 2
z and F3

y /M 3
z corre-

spond to a dry, wet or snowy runway.
As mentioned earlier, the load Fz was fixed. But this

value is not constant during the landing and take off and
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Fig. 16. Active shimmy damping Scenario 3 (PID solution).

can vary depending on the load transfer. The robustness
study focuses on a variation of ±20% of the nominal
load. Thus, Finf

z et Fsup
z are the two types of considered

loads.
The A/C longitudinal speed plays an important role

in the outbreak of the shimmy phenomenon. This phe-
nomenon appears beyond 25m/s and increases with
respect to the speed. Thus, simulations are performed con-
sidering 3 different speeds v1 = 20m/s, v2 = 50m/s and
v3 = 80m/s.

The mechanical characteristics of the NLG are in reality
not constant and the parameters such as the stiffness vary.
That is why the study of robustness considers a variation
of ±10% of this constant defining kinf and ksup.

The combination of all parameter variations has been
studied. Thus, a total of 36 simulations has been conducted
to validate the robustness of the algorithms. Table 1 that
presents these simulation cases is detailed in Section 8.

The validation of the control solution is based on 4
criteria:

• the maximum wheel angle caused by the perturbation
should not exceed 1.5◦,

• the effect of the disturbance should not be in evidence
after 0.2s,

• the torque required to damp the oscillations should not
exceed 2000Nm,

• the value of the damping factor ζ .

The damping factor ζ is calculated by consider-
ing the amplitude of two successive oscillations (cf
(55)).

Simulation results show that criteria 1, 2 and 3 are easily
satisfied. When the landing gear parameters vary con-
sidering the different cases, the control signal is able to
eliminate the shimmy oscillations which appear after the
disturbance. Criterion 4 which corresponds to the damp-
ing factor is a numerical criterion, evaluating the damping
performances of the controller. It allows to compare the
results for different simulations. To simplify the results
presentation, only the plots of the best/worst cases are pre-
sented in this section. Case 32, presented in Fig. 17 is the
most damped closed-loop system while case 11, presented
in Fig. 18, corresponds to the less damped closed-loop
system.

The study of the damping factor shows that the
stiffness of the NLG influences the behavior of the
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Fig. 17. Case 32 : System which is the more damped (ζ = 0.209).

Fig. 18. Case 11 : System which is the less damped (ζ = 0.07).

control solution. Indeed, it can be logically noticed
that the simulations using the stiffness equal to kinf

have more oscillations than the simulations using ksup.
In addition, the aircraft speed is also an important
factor. An increase of v leads to a deterioration of
the performances. Simulations done at 20m/s help
to obtain an important damping while it is lower at
80m/s.

5.5. Discussion

5.5.1. General Properties of Indirect and Direct
Controllers

This section compares the proposed shimmy damping
control algorithms according to different criteria (struc-
ture, performance, tuning difficulty, . . .). The structure of
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fuzzy state feedback adaptive controllers is more com-
plex than traditional PID loops, referring to the adaptive
control schemes described in Fig. 6 and Fig. 7. For
the indirect adaptive solution, a fuzzy identifier mecha-
nism produces a model of the plant. Then, this model
is used to adapt the controller. For the direct adap-
tive solution, the model of the plant is not necessary,
since the controller parameters are directly adapted. Each
solution has a specific structure, however, similar com-
ponents are used in both: a fuzzy identifier, an update
law, a feedback linearization control term and a slid-
ing mode control term. The indirect and direct adaptive
solutions require restrictive assumptions (measurement
of all the states, bounded errors, . . .) and the difference
of structure leads to specific assumptions for each solu-
tion. First, the direct and indirect solutions differ in the
number of fuzzy identifiers. The direct solution requires
only one fuzzy system which allows the identification
of the unknown control function. By contrast, the indi-
rect solution generally requires two fuzzy systems which
approximate the two functions a(x) and b(x), represen-
tative of the unknown nonlinear dynamics of the system.
This difference is generally significant in terms of time
computation. Secondly, due to the certainty equivalence
control term of (19), the singularity problem must not
appear in the indirect solution. Thus, the fuzzy system
must ensure that b̂(x) is bounded away from zero. Thirdly,
the direct adaptive solution requires a bounding condition
for the derivative of nonlinear and smooth functions b(x)
of (13).

5.5.2. Specificities of the Proposed Controllers

Nevertheless, the specificities of the system to be con-
trolled lead to particular structures of the indirect and
direct solutions. The model of the NLG is specific inso-
far as the term b(x) in (13) is independent of the system’s
states such that b(x) = B. As a consequence, the struc-
ture of the algorithms developed in this paper has been
simplified. Indeed, a number of drawbacks of the two
algorithms disappear. First, the bounding condition of
ḃ(x) has no meaning. Secondly, the two solutions require
only one fuzzy system (only a(x) is identified in the
indirect solution) and thus, time computation for the
indirect solution is reduced. Thirdly, the problem of sin-
gularity does not exist, considering that B is a constant
defined by the structural non-zero parameters of the sys-
tem. If, in this paper, this parameter remains constant,
one strategy could be to overcome this assumption. [18]
suggest to overspecify the fuzzy system design and to
consider B as a function of the states x. This choice
may allow greater adaptation flexibility in particular
cases.

5.5.3. Results Discussion

As for performance, the paper illustrates that the two
adaptive controllers give satisfying and similar results in
various test conditions. For scenario 1 (constant ground
speed, pulse disturbance), the perturbation is rejected
and the oscillations disappear rapidly; the system will
not be damaged. For scenarios 2 and 3, the roughness
of the runway does not affect the NLG and no shimmy
is observed, even above the critical aircraft forward
velocity.

Another aspect of this study is to specify the character-
istics (torque required, bandwidth, . . .) of the electrome-
chanical actuator used for shimmy damping. In Fig. 8
and Fig. 9, it can be seen that both controllers require the
same control torque in terms of amplitude (approximately
1500N .m). In fact, a slight difference can be noticed in
favor of the direct solution to achieve the same level of
performance. Finally, Fig. 16 shows that the PID con-
trol strategy, simpler than the fuzzy adaptive controllers
proposed in this paper, does not provide good results
to damp the shimmy phenomenon. Moreover, in some
situations (see Fig. 16), shimmy appears before the crit-
ical forward velocity, due to the control action of the
PID.

5.5.4. States Measurements

As it is presented in this paper, the proposed state feedback
control solution requires the measure of 5 signals. Theses
measures are:

• the rotation angle of the turning tube (ψa): this sig-
nal is already measured for NLG steering purposes
with RVDT sensors (Rotary Variable Differential Trans-
former).

• the rotation speed of the turning tube (ψ̇a): this sig-
nal can be easily obtained from the rotation angle or a
dedicated sensor could be added on the NLG.

• the rotation angle of the wheel (ψw): an RVDT sensor
can also be used here. Nevertheless, the measure is more
difficult to obtain insofar as the sensor will be in a very
noisy environment.

• the rotation speed of wheel (ψ̇w): a sensor similar to that
used for the measure of ψ̇a can be used here considering
the same limitations.

• the lateral displacement of the wheel (yl): this state is
probably the most difficult to obtain. The lateral dis-
placement is directly linked to the tire slip angle and
today many studies devoted to the accurate measure-
ment or estimation of the slip angle are available ([15]
and [14]).

Thus, currently the only existing measure is the rota-
tion angle of the turning tube. Concerning the rotation
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speed of the turning tube, the rotation angle and velocity
of the wheel, it seems that these measures can be obtained
without much difficulties. Finally, the lateral displacement
of the wheel is difficult to measure that is why a real time
estimation could be investigated.

However the integration of many sensors implies a sig-
nificant cost that is not always accepted by the aircraft
manufacturers. Control solutions requiring less measures
should be investigated in the future.

6. Conclusions

This paper has presented shimmy, an oscillatory phe-
nomenon which can induce severe structural damages to
an aircraft landing gear. This paper describes a control
oriented extension of a well known nonlinear shimmy
model. This extension concerns two main points. On
the one hand, an electrical actuator model is added, in
order to develop active control solutions. On the other
hand, the initial tire model based on a piecewise linear
representation of the lateral force is replaced by a non-
linear description based on a sigmoid curve to represent
the lateral forces versus the slip angle. In a traditional
way, to counteract the oscillatory phenomenon, pas-
sive solutions based on the integration of a damper are
added on the NLG. Here, to overcome the main draw-
back of the classical solutions (non adaptive depending
on external conditions), two active shimmy damping con-
trol strategies have been developed and the simulation
results showing their efficiency are presented. These solu-
tions are also compared with a PID solution. The two
active solutions, based on indirect and direct fuzzy adap-
tive state feedback linearization theories help to damp
shimmy satisfactorily, and to define important specifi-
cations of the electromechanical actuator (mechanical
torque, bandwidth, . . .). Even if the applicability of feed-
back linearization is limited due to the necessary detailed
knowledge of the system, the particularities of the NLG
model (control matrix b(x) is state-independent) allow
a number of simplifications in the structure of the two
algorithms. The indirect adaptive fuzzy control uses an
identifier mechanism producing a model of the plant
which is then used to specify the controller. The direct
adaptive fuzzy control does not need the modeling of
the plant; instead, the controller parameters are directly
estimated.

The performances of the indirect and direct fuzzy algo-
rithms are presented with different disturbance forms
(pulse disturbance corresponding to a tire damage and
random disturbance representing the roughness of the
runway) and forward aircraft velocity profiles. The sim-
ulation results are satisfactory, taking into consideration
the damping results obtained.

Moreover, a control solution based on a PID has been
tested and compared with the two adaptive solutions. The
different simulations show that the results obtained with
this solution are not satisfactory and in some situations the
controller destabilizes the system and generates shimmy
before the critical speed.

The two adaptive control solutions give satisfying
results but the number of parameters may render difficult
the use of such algorithms. Moreover, to obtain an accurate
tuning of the controller parameters, the manual tuning is
certainly not adequate. Then, it could be interesting to opt
for an optimal tuning of the fuzzy adaptive parameters. For
example, based on genetic algorithms and particular test
scenarios which are representative of the use of the sys-
tem, the controller can be adjusted automatically. Firstly,
the optimization of the adaptive law could be considered.
Secondly, both the adaptive law and the fuzzy system may
be optimized.

Except for the model simplifications, based on the
fact that the control gain is independent of the system’s
states, one critical point concerns the availability of all
the states. For the direct as well as the indirect solution,
it is assumed that the five states of the NLG (the rotation
speed of the turning tube (ψ̇a), the rotation angle of the
turning tube (ψa), the rotation speed of wheel (ψ̇w), the
rotation angle of the wheel (ψw) and the lateral displace-
ment of the wheel (yl)) are measured. This provides a
good knowledge of the tire dynamics and of the rotational
dynamics around the vertical axis at the lower and upper
parts of the NLG. This is clearly a constraint for the imple-
mentation of the proposed control solution, as a number
of measurements may be difficult to obtain in practice.
However, this study helps to prove that active shimmy
damping is possible, taking account of the actuator con-
straints. It also helps to evaluate the best performances
that could be obtained with an increased knowledge of
the plant and can be used to validate future developments.
In particular, output feedback controllers using only the
measurement of the wheel rotational angle will be devel-
oped and compared with the state feedback controllers
presented here.

The simulation results showed the need for an important
control torque with respect to applied disturbances. The
electromechanical actuator, providing this torque, could
be composed of a high speed and low torque electrical
motor coupled with a mechanical transmission system
dedicated to lowering speed and increasing torque. The
integration of this mechanical transmission implies struc-
tural changes in the NLG modifying its behavior according
to the shimmy phenomenon. As a consequence, future
investigations will concern the improvement of the actu-
ator model taking account of the mechanical part and the
evaluation of the proposed control solutions with this new
actuator model.
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8. Appendix

Table 1. Combination of the parameter variations

Case Runway state Load speed Stiffness

1 F1
y /M 1

z F
inf
z v1 kinf

2 F1
y /M 1

z F
inf
z v1 ksup

3 F1
y /M 1

z F
inf
z v2 kinf

4 F1
y /M 1

z F
inf
z v2 ksup

5 F1
y /M 1

z F
inf
z v3 kinf

6 F3
y /M 3

z F
inf
z v3 ksup

7 F1
y /M 1

z Fsup
z v1 kinf

8 F1
y /M 1

z Fsup
z v1 ksup

9 F1
y /M 1

z Fsup
z v2 kinf

10 F1
y /M 1

z Fsup
z v2 ksup

11 F1
y /M 1

z Fsup
z v3 kinf

12 F1
y /M 1

z Fsup
z v3 ksup

13 F2
y /M 2

z F
inf
z v1 kinf

14 F2
y /M 2

z F
inf
z v1 ksup

15 F2
y /M 2

z F
inf
z v2 kinf

16 F2
y /M 2

z F
inf
z v2 ksup

17 F2
y /M 2

z F
inf
z v3 kinf

18 F2
y /M 2

z F
inf
z v3 ksup

19 F2
y /M 2

z Fsup
z v1 kinf

20 F2
y /M 2

z Fsup
z v1 ksup

21 F2
y /M 2

z Fsup
z v2 kinf

22 F2
y /M 2

z Fsup
z v2 ksup

23 F2
y /M 2

z Fsup
z v3 kinf

24 F2
y /M 2

z Fsup
z v3 ksup

25 F3
y /M 3

z F
inf
z v1 kinf

26 F3
y /M 3

z F
inf
z v1 ksup

27 F3
y /M 3

z F
inf
z v2 kinf

28 F3
y /M 3

z F
inf
z v2 ksup

29 F3
y /M 3

z F
inf
z v3 kinf

30 F3
y /M 3

z F
inf
z v3 ksup

31 F3
y /M 3

z Fsup
z v1 kinf

32 F3
y /M 3

z Fsup
z v1 ksup

33 F3
y /M 3

z Fsup
z v2 kinf

34 F3
y /M 3

z Fsup
z v2 ksup

35 F3
y /M 3

z Fsup
z v3 kinf

36 F3
y /M 3

z Fsup
z v3 ksup
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