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Abstract. We propose a model of depth camera based on a four-lens device. This device is used for validating
alternate approaches for calibrating multiview cameras and also for computing disparity or depth images. The
calibration method arises from previous works, where principles of variable homography were extended for
three-dimensional (3-D) measurement. Here, calibration is performed between two contiguous views obtained
on the same image sensor. This approach leads us to propose a new approach for simplifying calibration by
using the properties of the variable homography. Here, the second part addresses new principles for obtaining
disparity images without any matching. A fast algorithm using a contour propagation algorithm is proposed with-
out requiring structured or random pattern projection. These principles are proposed in a framework of quality
control by vision, for inspection in natural illumination. By preserving scene photometry, some other standard
controls, as for example calipers, shape recognition, or barcode reading, can be done conjointly with 3-D mea-
surements. Approaches presented here are evaluated. First, we show that rapid calibration is relevant for devi-
ces mounted with multiple lenses. Second, synthetic and real experimentations validate our method for
computing depth images. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.6.061108]
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1 Introduction
Multiview imaging is a large domain, where numerous
approaches can take place for computing the depths in a
scene. Stereovision,1 multicamera array,2 light-field imag-
ing,3,4 and coded aperture imaging5 are the best-known tech-
niques for capturing several point of views of a scene. Using
a metric calibration on these systems allows for addressing
recently growing applications in a research or industrial con-
text. In multiview imaging, the depth estimation problem is
then related to the disparity between same pixels projected
on the different coordinates in the different views. This task
usually relies on the identification of the similarity between
the different views, allowing for computing displacements of
identified points and their corresponding three-dimensional
(3-D) positions. The similarities identification is usually a
time-consuming task and is referenced as matching methods
based on local or global methods.6 Local methods compare
two regions of interest by measuring similarity with well-
known criteria such as block matching or feature
approaches.7 These approaches are efficient on images con-
taining a large percentage of textured area, but fail for uni-
form regions, because these areas contain too few
information for the matching process. Occluded regions,
due to the difference of point of views, are another cause of
occurring errors in the matching process. Global approaches
can overcome some of these issues, by estimating a disparity
map that minimizes energy criteria on the whole image.
Graph cuts,8 belief propagation,9 and dynamic program-
ming10 methods are the best-known global approaches.
Computational complexity of these methods is often high,

and they are not able to properly solve the cases where
images contain large uniform surfaces. For robotics or indus-
trial control, light patterns are projected on whole objects and
background of the scene, for helping the matching process.
In this case, patterns modify the aspect of homogeneous
objects, which seem to be textured. These active techniques
are efficient for computing disparity map, but images are
then unusable for any other controls such as edge detections,
intensity measurements, barcode reading, or optical charac-
ter recognition (OCR).

In order to deduce a depth from disparity, a metric cali-
bration of the acquisition system is needed. Usually, calibra-
tion consists of determining intrinsic parameters for the
acquisition device used for metric measurements and permits
to compute distances between scene objects and the camera
device. An interesting survey of the reference methods is
proposed by Zhang,11 where approaches are divided into
three categories following the reference object used for cal-
ibration. Highest accuracy can theoretically be obtained by
using a 3-D object for calibration, but in practice, calibration
with a two-dimensional (2-D) apparatus seems to be the best
choice in most situations, because of its ease of use and good
accuracy. In this case, calibration is performed by taking
images of the 2-D pattern plane under different orientations
by moving either the plane or the camera. A dozen of acquis-
itions are then a recommended minimum. Calibration of
multicamera devices has been studied by Vaish et al.2

This work compares a nonmetric approach, using plane
and parallax, with metric calibration for computing synthetic
aperture images. If the operating mode for calibrating is sim-
ilar to our approach developed in this paper, the proposed
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affine model leads to generate images focused at different
relative or uncalibrated depths.

We propose in this work a multilens device (Fig. 1) and a
postprocessing algorithm using contours in order to avoid
computing a disparity map of homogeneous objects by
using projected light patterns. A fast and flexible calibration
step is also proposed. The calibration of this device could be
qualified as an indirect method, because intrinsic parameters
are not determined individually as is usually done, but in an
overall manner using a reference homography. One of the
main interests is to simplify the calibration step, which is
then easily achievable by an operator for industrial applica-
tions. This method is an improvement of previous works,12 in
which we have extended the principles of “variable homog-
raphy,” defined by Zhang and Greenspan13 for measuring the
height of emergent fibers on glass and nonwoven fabrics.
This method has been defined for working with fabric sam-
ples progressing on a conveyor belt. Triggered acquisition of
two successive images was needed to perform 3-D measure-
ments. In this work, we have retained advantages of variable
homography for measurements along the optical axis, but we
have reduced the acquisitions to a unique one, by developing
a device made of four lenses placed in front of a single-image
sensor. We have also adapted the variable homography for-
mulation for this device, and we give a new formulation to
calculate the depth. This method is presented in the first part
of this paper and can be applied to any disparity maps cal-
culated from various methods. In the second part, we pro-
pose also a new framework for computing disparity map
adapted to our device, which then becomes a depth camera.
The disparity map computation is an alternate to matching
methods, exploring a contour-based solution, where no cor-
respondence matching is needed, drastically reducing the
computational time. In 3-D industrial control by vision,
most of stereovision systems project structured or random
patterns on objects for providing texture on uniform surfaces.
This method is efficient for measuring disparities between
the multiple views, but in this case, only the depth images
can be used for image analysis because the scene photometry
is strongly modified by the projected pattern. On the con-
trary, we propose an algorithm preserving gray-image levels.
The camera could then be used to both measure object height
and perform any other classic vision control, such as optical
character or pattern recognition. However, this method is not
fully universal, and we have only studied cases for measuring
flat objects, in a context of industrial control.

This paper presents first the geometry of our device and
describes the extension of variable homography for 3-D mea-
surements. This approach leads to propose a new calibration
scheme, for which only a reference homography is needed,
instead of the intrinsic parameters, as usually. Second, we
have proposed an alternate manner of computing a depth
map. Preliminary and promising results on synthetic and
real images are presented in the last part.

2 Variable Homography and Depth Measurements
from Disparity

The concept of variable homography has been defined by
Zhang and Greenspan13 for parallax compensation in
image mosaicking without metric calibration. This concept
has then been extended by Xu et al.12 for 3-D measurements
by using two successive acquisitions of fabrics scrolling on a
conveyor belt.

This part presents how the variable homography can be
used for modeling our multiview device, described in
Fig. 1. Figure 2 gives a schematic representation of our

Fig. 1 (a) Exploded view of the camera with its four minilenses, (b) assembled camera, and (c) corre-
sponding subimages (NW, north-west, NE, north-east, SW, south-west, and SE, south-east).

Fig. 2 Geometric cross-section between two adjacent subimages.
O1, O2: optical centers of subimages 1 and 2; b: distance between
O1 and O2; f 1, f 2: lenses focal distances; ε: difference between f 1
and f 2; ZAi , ZBi : distances between Oi and planes A and B; p1A
and p2A: PA projections on both subimages; p1B and p2B : P projec-
tions on both subimages; and pA: projection on subimage 1 of the
virtual point P 0

A.
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system made out of minilenses and a single-image plane.
This figure is a 2-D section representing only two neighbor-
ing projections, given the subimages noted Ii and Iiþ1 (we
will use I ¼ 1 for next equations). With four projections on
the image sensor, each subimage has three possible neigh-
bors. If index i represents the SE view (south-east), index I þ
1 can be any view of NE (north-east), SW (south-west), or
NW (north-west). This scheme simplifies our system to a
parallel stereovision system, where triangulation could be
used to determine the depth of point P when intrinsic and
distortion parameters are known. Ideal situation is encoun-
tered when these parameters are identical for each camera,
which is however never the case in practice. Precise calibra-
tion is then needed to determine numerical values of optical
centers and focal distances. These parameters are necessary
for the geometric reprojection, for computing depth by inter-
secting the two rays of each associated left and right image
pixels. For example, in Fig. 2, f1, f2, O1, and O2 must be
known for recovering the depth of a point P from the rays
(O1 p1B) and (O2 p2B).

An alternative approach is to take benefit of variable
homography for modeling this device.

2.1 Variable Homography Definition for a Pair of
Views

Variable homography formulation introduces a matrix K giv-
ing some interesting properties between both homographies
HA and HB defined for the A and B parallel planes and veri-
fying p1A ¼ HA · p2A and p1B ¼ HB · p2B:

EQ-TARGET;temp:intralink-;e001;63;429HBðkÞ ¼ Ki · HA · K−1
iþ1

where Kn ¼
2
4 kn 0 ð1 − knÞu0n

0 kn ð1 − knÞv0n
0 0 1

3
5; (1)

with n ¼ i or iþ 1 and where u0n and v0n stand for the co-
ordinates of the optical centers On projected on the image
sensor. The main parameter of K is the distance ratio kn
defined by kn ¼ ZAn∕ZBn, giving the possibilities to com-
pute HB from HA. By sweeping k around realistic values
and by using a matching comparison method, it would be
possible to find reliable correspondences where k ¼
argmaxfMatching½p1BðkÞ; p2B�g. This is the idea presented
by Zhang and Greenspan13 in their paper to compensate par-
allax in image mosaicking. We propose to extend this
method, by developing the equations of HA and HB, in
order to simplify the reprojection equation to compute
depth and easily include in our model all intrinsic parameters
described in Fig. 2.

2.2 HA and HB Equations
Plane A is considered as the reference plane and is used for
calibrating the device. As our device uses four minilenses, it
is interesting to study the case where these lenses do not have
exactly the same focal distances. HA is then determined by
assuming that homography is a combination of an intrinsic
parameter and translation matrices and is given in Ref. 1 as

EQ-TARGET;temp:intralink-;e002;326;752HA ¼

0
B@

f1
f2

ZA2
ZA1

0 u01 þ buf1
ZA1

− f1
f2

ZA2
ZA1

u02
0 f1

f2
ZA2
ZA1

v01 þ bvf1
ZA1

− f1
f2

ZA2
ZA1

v02
0 0 1

1
CA

¼

0
B@ α 0 u01 þ buf1

ZA1
− α · u02

0 α v01 þ bvf1
ZA1

− α · v02
0 0 1

1
CA; (2)

where bu and bv are the horizontal and vertical distances
between optical centers, respectively. By considering ZA2 ¼
ZA1 þ ε ≈ ZA1 at the working distances, HA has been simpli-
fied in Eq. (2) by introducing the focal distance ratio
α ¼ f1∕f2. Equations (1) and (2) lead to give a simplified
equation for HB, representing the geometric transformation
for any point P located in a virtual plane B, parallel to the
reference plane A:

EQ-TARGET;temp:intralink-;e003;326;564HB ¼

0
B@ α 0 u01 þ k1

buf1
ZA1

− α · u02
0 α v01 þ k1

bvf1
ZA1

− α · v02
0 0 1

1
CA: (3)

2.3 Point P Depth Computation from a Pair of Views
From HA and HB homographies, we propose to compute
the depth of any point P, by the definition of disparity d
given by d ¼ HB · p2B −HA · p2B. By considering that
p1B ¼ HB · p2B and with Eqs. (2) and (3), d can be written
as

EQ-TARGET;temp:intralink-;e004;326;421d ¼ HB · p2B|fflfflfflfflffl{zfflfflfflfflffl}
p1B

−HA · p2B|fflfflfflfflffl{zfflfflfflfflffl}
pA

¼ distðp1B; pAÞ

¼

8>>>>><
>>>>>:

2
666664
ðk1 − 1Þ

Cu

buf1
zffl}|ffl{
ZA1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

du

3
777775

2

þ

2
666664
ðk1 − 1Þ

Cv

bvf
z}|{

1

ZA1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dv

3
777775

29>>>>>=
>>>>>;

1∕2

: (4)

Assuming that k1 ¼ ZA1∕ZB1 and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u þ b2v

p
, relations

between depth ZB1 and disparity d are finally given by

EQ-TARGET;temp:intralink-;e005;326;278ZB1 ¼ ZA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
u þ C2

v

p
d · ZA1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
u þ C2

v

p ¼ bf1
dþ bf1

ZA1

or

d ¼ bf1
ZB1

−
bf1
ZA1

:

(5)

This definition of disparity is slightly different from the
one usually given. In the next part, we study the differences
and advantages to use this definition for 3-D measurements,
especially in a 3-D industrial vision context.

2.4 Comparison with Triangulation Method
When two cameras are separated by lateral translation with
no rotation, triangulation method leads to obtain the depth
relative to p1B and p2B coordinates. From Fig. 2, depth
ZB1 can be expressed as
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EQ-TARGET;temp:intralink-;e006;63;752ZB1 ¼
bþ ε

f2
ðO2 − p2BÞ

ðp2B−O2Þ
f2

− ðp1B−O1Þ
f1

: (6)

This relation is usually simplified assuming f1 ¼ f2 and
O1 ¼ O2 in the coordinate systems of each subimage:

EQ-TARGET;temp:intralink-;e007;63;688ZB1 ¼
bf1
d

with d ¼ p2B − p1B: (7)

By comparing this equation with the one obtained with var-
iable homography, there is an evident similarity, and variable
homography translates the disparity d by a term of
(−bf1∕ZA1). This is observed in Fig. 3, comparing
Eqs. (7) and (5). Curves are plotted according to the real
dimensions of our device: pixels size of 10 μm, optical cen-
ters spaced by 9 mm, and f1 ¼ f2 ¼ 8 mm. Triangulation
curve is plotted in red, and the ones obtained from
Eq. (5) are plotted in blue for several values of the reference
distance ZA1. In function of ZA1, blue curves are thus shifted
to the left. In fact, this translation offers some interesting
properties. When the range of measurement is predicable,
it would then be possible to work in the same range of
disparity whatever the working depth, by choosing correctly
ZA1.

It is quite easy to demonstrate that the depth error ∂ZB1
stays identical for both approaches, meaning this translation
does not influence the accuracy of measurement:

EQ-TARGET;temp:intralink-;e008;63;449

∂d
∂ZB1

¼ −
bf1
Z2
B1

→ ∂ZB1 ¼ −
Z2
B1

bf1
∂d: (8)

There are some advantages to use variable homography
for working within the same range of disparity. The same
device and same algorithm can be used for a wide-working
distance range, from macroscopic applications to higher
scales. For example, if ZA1 equals 7 cm, depth ZB1 is ranged
between 7 and 5.8 cm for an interval of d of [0,20] pixels. For
3-D industrial vision inspection, when ZA1 is fixed at 90 cm,
the corresponding measured depths are ranged from 90 to
26 cm, while keeping the same d interval. We can note

that, for these different scales of measurements, we have
used the same device. Switching between the different scales
only requires adjusting the lenses focal distances. This last
point is important, because in this case, accurate measure-
ment would need to redetermine all intrinsic parameters
using Eq. (6) when triangulation method is used. Next
part explains how variable homography leads to an easier
calibration step.

2.5 Simplified Calibration for Multiview Cameras
In practice, lenses are never perfectly aligned in multilens
cameras (lenses are not sorted), and lens focal distances
are also never strictly equal.14 This is especially true for
our prototype and this creates some undesirable distortions
affecting depth measurements. In practice, imperfections are
rarely taken into account and literature usually gives Eq. (7)
as reference method to compute depth instead of the com-
plete equation given by Eq. (6). By considering a multiview
device, the complete determination of these intrinsic param-
eters could be an uncomfortable task, requiring multiple
acquisitions,15 but nevertheless mandatory for providing
accurate measurements.

A great advantage of variable homography is to include in
matrix HA all intrinsic parameters between the views of two
subimages. By projecting measurement points from sub-
image 2 to subimage 1 with HA, the number of required
parameters for 3-D measurement is then reduced, and
they are easy to determine via a simple calibration process.
Sole parameters to recover during the calibration step are:
ZA1,HA, and the constant bf1. The easy and robust proposed
calibration method is realized by using a reference chess-
board pattern for detecting corners and by performing two
successive acquisitions. The first acquisition is done at
reference depth ZA1, and the second one at depth
ZB1 ¼ ZA1 þ dz. Corners of first acquisition are used to cal-
culate all combinations of existing HA homographies
between subimages. For each acquisition, distances in pixels
between the first and last corners detected on the chessboard
are computed. We note dA, the distance for the dataset of first
acquisition and dB, the distance for dataset of the second one.
ZA1 is then obtained by triangulation and is formulated as

EQ-TARGET;temp:intralink-;e009;326;297ZA1 ¼
dz · dB
dB − dA

: (9)

Finally, ZA1, HA, dz, and distances d, computed for corre-
sponding corners p1B and p2B during the second acquisition,
lead to find the best value for bf1. In conclusion, interest of
this calibration lies in its simplicity when calibrating,
because it is easier to calibrate via two acquisitions than
to determine the intrinsic parameters with several snap
images, as usually done with well-known standard
methods.15

This calibration process for determining the variable
homography parameters has been established by considering
two views. This principle is easily extensible for a n-view
camera, i.e., our device. Calibration is then performed for
each pair of working views, without additional acquisition.

Fig. 3 Depths ZB1 function of disparity d . Triangulation and variable
homography comparison.
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2.6 Improved Calibration with Lens Distortion
Correction

Our multiview camera prototype uses low-cost lenses, pre-
senting a distortion coefficient close to 1.5% (value is issued
from lens datasheet). To improve measurements accuracy,
we propose to take into account the distortion in our calibra-
tion scheme. By using standard approaches, such as correc-
tions by using radial distortion models, the precise positions
of the optic centers of each subimage can be determined. As
these intrinsic parameters are combined in HA, they are not
immediately available at this step with our calibration proc-
ess. We propose therefore an alternate approach. We consider
that the distortion effects are comparable with a nonuniform
image magnification on image plane. This approach leads to
adjust the computation of ZB1 as a function of the spatial
location of correspondences in subimages. This can be
done by using the proportional relationship existing between
magnification, focal distance, and parameter bf1. The cor-
rection is performed by using the Γ operator, which trans-
forms a vector representing a point P of coordinates
ðu; v; 1Þ in the lifted coordinates16 P̃:

EQ-TARGET;temp:intralink-;e010;63;518Pðu; v; 1ÞT → P̃ ¼ ΓðP;PÞ ¼ ðu2; v2; u · v; u; v; 1ÞT: (10)

By using pB1 as reference location, bf1 is then computed
by the quadratic functions defined by

EQ-TARGET;temp:intralink-;e011;326;752bf1 ¼ ð a b c d e f Þ · p̃B2: (11)

Corners collected previously form a dataset and permit
computation of the polynomial coefficients by using a
least mean square method.

2.7 Measurement Accuracy
Themeasurementsobtained in thisparthavebeenobtainedwith
our device presenting the following characteristics: CCD size:
15 × 15 mm2; CCD resolution: 2048 × 2048 pixels; mini-
lenses diameters: 8 mm; minilenses focal distance: 7.5 mm;
distance betweenminilenses: 9mm; and subimages resolution:
550 × 550 pixels. We present experimental measurements for
three ranges of depth, in order to estimate the accuracy of our
device in termofdepthmeasurement.Here, onlymeasurements
performed on SW and SE subimages are presented for this
experimentation. As shown byEq. (8), depth error is a function
of two factors: geometric parameters estimation and disparity
measurement.

At this point, we are interested in measuring the quality of
the parameters estimated during calibration. For minimizing
the role of disparity measurement in our estimation, we have
used a pattern chessboard as depth target and corners detec-
tion is performed with the corresponding function of the
OpenCV library. For each depth level, numerous acquisitions
are performed, leading to about 1000 measurements. We
have set the camera-chessboards distances at 4, 33 and
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Fig. 4 Depth measurement distributions for three ranges of measurements: 4, 33, and 88.5 cm. Top:
results of simplified calibration method; and bottom: results of improved calibration method.
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88.5 cm, and the measured depth corresponds to ZB1 (dis-
tance separating the chessboard and the optical center).
Figure 4 gives the distributions of depth measured for
each corner. By working at a short distance, captured images
present important optical distortions. In this case, the second
method offers a significant improvement, providing a stan-
dard deviation lower than 1%. For evaluating depth error,
percentage is not significant here, because the uncertainty
of measurements is directly linked to the depth range [see
Eq. (8)], meaning depth error increases systematically
with depth.

This is the reason why our evaluation is presented by
comparing theoretically predicted error with the measured
standard deviation. In this case, the main difficulty concerns
evaluation of the disparity variation ∂d, which is a difficult to
assess parameter. Even if we use a subpixel corner detector,
∂d heavily depends on the pattern chessboard scale in sub-
images and thus of the working distance. To provide the best
estimations, we have bounded its values between two real-
istic limit values, fixed here at 0.1 and 0.5 pixels. These val-
ues are then used for the result comparisons presented in
Table 1. This table shows that the standard deviations
observed during our measurements are comprised within
the range of estimated depth error. This confirms that the pro-
posed calibration is well adapted to our measurement
approach by variable homography. These values of depth
error allow for keeping a good uncertainty of measurements
for applications in the field of metrology by vision.

2.8 Subimage Rectifications
Previous measurements were performed on coordinates of
detected corners. To transform our device into a depth
camera, disparity has to be computed on all pixels of the sub-
image. As we have defined disparity as d ¼ p1B −HA · p2B,
a simple preprocessing steps can be performed, for rectifying
each subimage with homography HA. In this case, a refer-
ence subimage must be chosen. Next examples consider
SE as reference subimage, as illustrated in Fig. 5, but any
other subimage could be selected instead. By rectifying sub-
images, we ensure that correspondences between images are
well aligned along the epipolar line, as is well known in ster-
eovision. By organizing lens positions in a square, epipolar
lines are then horizontal, vertical, or diagonal following posi-
tions of subimages used for computing disparity. Multiview
approach is then interesting because in the reference sub-
image, epipolar lines calculated from other views could be
combined to improve the matching for establishing corre-
spondences and thus enhanced the final disparity map.

3 Computation of Disparity with the Four Minilens
Device

With the set of rectified images, we propose to compute the
corresponding disparity image (or disparity map), in order to
use our device as a depth camera. The main idea is to subtract
distances map between subimages in order to highlight the
disparity values. This approach is to be used in a normal
lightning environment with uniform objects. The next sec-
tion shows that the proposed method does not need complex
calculations, which is an advantage for real-time applica-
tions. However, this method is not universal, and can, up
to now, be used for flat objects only.

3.1 Principle
The four subimages delivered by our device can be combined
for computing up to three disparity images. We have vali-
dated the principle by using only two associations with
three subimages: disparity (SE, SWR) and disparity (SE,
NER). The reference subimage is then SE, as illustrated in
Fig. 5. Our goal is to fill the content of any objects by
the disparity existing between comparable contours of two

Table 1 Comparison between theoretical and experimental depth measurement errors (bf 1 ¼ 7.2 pixels is obtained during the calibration stage).

Depth ZB1 (cm)
Predicted depth error
∂Z ¼ ðz2∕bf 1Þ · ∂d

Range of estimated theoretical depth error Observed experimental
standard deviation

(SC/IC) (mm)∂dmin ¼ 0.1 pixel (mm) ∂dmax ¼ 0.5 pixel (mm)

4 ð0.22 × 10−3Þ · ∂d ¼ 0.05 mm 0.022 0.111 0.12∕0.04

33 ð15.1 × 10−3Þ · ∂d ¼ 3.78 mm 1.51 7.56 2.47∕2.29

88.5 ð107 × 10−3Þ · ∂d ¼ 2.69 cm 10.7 53.8 49.6∕50.1

Note: SC: simplified calibration; IC: Improved calibration.

SW

HANW/SE

NWR

(raw subimage)

NER

SWR SESW
(raw subimage)

NE
(raw subimage)

NW
(raw subimage)

HANE/SE

HASW/SE

Fig. 5 Subimage rectification: preprocessing before computing dis-
parity maps. By choosing SE as reference subimage, disparity
maps between (SE, SWR), (SE, NER), and (SE, SER) can be
computed.
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subimages. To do so, we propose an algorithm composed of
four main steps and operating between two subimages:

• computation of distance images DIxx;
• computation of pseudo-subtraction images pSIxx;
• application of a fusion process; and
• computation of a disparity map by decoding the image

given in the previous step.

As up to three disparity maps can be computed from the
reference subimage, a second and final step merges these
maps in order to eliminate some artifacts. The depth
image is then directly obtained, thanks to the previous cal-
ibration, and using Eq. (5).

3.1.1 Distance images: DIxx

The first step generates distance images (DI) following pre-
determined directions. When the working subimages are hor-
izontals, then DILR (distance image left to right) and DIRL

(distance image right to left) are generated. Similarly, top/
bottom distance images are generated when working subi-
mages are vertical. Diagonal extension is also possible.
Distance images are constituted of values indicating the dis-
tances between pixels to the previous contour encountered
following the scanning direction. A flag × is used when
no contour has been yet encountered by scanning.
Figure 6 illustrates the examples to compute DILR and
DIRL images from SE and SWR views. On this example,
a rectangular object is represented by its contour pixels. A
disparity d (or parallax du) of four pixels is simulated and
the green points P1 and P2 represent a point having same
coordinates on both original subimages. The main property
used for our method is based on the fact that the difference
DILRðSEÞ − DILRðSWRÞ or DIRLðSEÞ − DIRLðSWRÞ for any
pixel inside the object is a function of the disparity value d.

3.1.2 Pseudo-subtraction image: pSIxx

We have defined two distinct operators for exploiting the
property that subtraction between DI images can give the dis-
parity. Furthermore, this property is not true on the whole
image, especially when the flag × is encountered. We
have established that the best result, where object is filled
by the disparity value, is obtained by using two kinds of sub-
traction called here pseudo-subtraction, where the result

value can be the flag ×, the first operand or the true differ-
ence. These operators are defined with arguments a and b,
where a and b are the pixel values of the reference image and
the second input image, respectively. Definitions of these
operators are for DILR images:

EQ-TARGET;temp:intralink-;e012;326;697pSILRða; bÞ →
� ða − bÞ if a; b ∈ N

× otherwise
; (12)

and for DIRL images

EQ-TARGET;temp:intralink-;e013;326;642pSIRLða; bÞ →
8<
:

ða − bÞ if a; b ∈ N

a if b ¼ ×
× otherwise

: (13)

3.1.3 Fusion image

The fusion uses pSILR and pSIRL images for replacing
on pSILR image, the values appearing outside object by
flag ×. This operation is simply defined by

EQ-TARGET;temp:intralink-;e014;326;522FIða; bÞ →
�
a if a; b ∈ N

× otherwise
: (14)

3.1.4 Decoded fusion image

The goal of this final step is to decode the content of fusion
image in order to identify each object by its disparity, posi-
tion, and dimension. Thanks to the previous steps, especially
the distance propagation and pseudo-subtraction ones, a
complete description of objects contained in original subi-
mages can be extracted from the pixel values of the fusion
image. These values are constituted of combinations of
objects positions, sizes, and disparities. For N separated
objects in each view, we have established by simulations
that each pixel value in fusion image can be decoded. We
note and define:

– di, li, and pi, respectively, the disparity, length, and
first position of object i;

– Ai ¼ -di; Bi ¼ li-di-1; Ci ¼ pi-di-pi−1-li−1 þ 1;
– Seq1 ¼ jA1: : : A1B1: : : B1A1: : : A1j; and
– Seqi ¼ jCi: : : CiAi: : : AiBi: : : BiAi: : : Aij.

Fig. 6 Example of computation of distance image DILR and DIRL.
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Each line of the fusion image is then constituted of
the following typical sequences arrangement: ½×: : :×;
Seq1; Seq2; : : : Seqi; : : : SeqN ;×: : :×�. The number of
occurrences of terms Ai, Bi, and Ci inside each sequence
depends on the disparity, length, and position of objects
in the subimages. This information is not used for the decod-
ing. For example in Fig. 7, with d1 ¼ 4 and l1 ¼ 8, where
image fusion is constituted of the arrangement ½×: : :×;
−4;−4;−4; 3; 3; 3; 3;−4;×: : :×�, one can recognize Seq1.

Finally, the role of the decoding stage is to use this prop-
erty for producing the disparity map. Depth images are then
established with Eq. (5), linking depth and disparity.

3.2 Merging Disparity Maps
The algorithm presented above computes disparity map from
two subimages. A complete overview, resuming step connec-
tions, is shown in Fig. 8. This scheme is designed to work
with any couple of subimages. As this approach is only based
on the contours detected in each subimage, the quality of
initial contours is a primary initial prepreprocessing step.
For the moment, no matching process is performed between
subimages and this is an advantage of this approach. Even if
matching could be useful for ensuring that each contour

point in subimage iwould have a corresponding point in sub-
image iþ 1, we have decided to skip it, for increasing the
speed of our method. But, with no matching process,
some contours in subimage i may have no correspondence
in subimage iþ 1. DI images are then affected and some arti-
facts in disparity images can appear. Following scanning
direction, they are characterized by horizontal, diagonal,
or vertical trails. A solution for attenuating these artifacts
has been found by exploiting the multiview capability of
our device. As from a reference image (see Fig. 5), three dis-
parity maps can be computed, we propose to merge them for
smoothing artifacts and retaining the most plausible disparity
value for each pixel.

3.3 Results
Figure 9 presents some results on synthetic scenes, showing
objects located at several depths. The first case shows a basic
configuration, where objects are located far away from each
other. A second case shows superimposed objects. For these
two cases, no final merging is necessary and only one dis-
parity map is sufficient to generate the final depth image. For
the last example, we consider a situation where all contours
pixels have no correspondences in subimages, as can happen

Fig. 7 Examples of pseudo-subtractions pSILR, pSIRL, and FI for an object measuring l ¼ 8 width and for
a d ¼ 4 disparity.
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Fig. 8 Steps used for computing disparity map from SE and SWR subimages. 1: subimage acquisition; 2:
binary contour extraction; 3: distance images computation according scanning direction; 4: pseudo-sub-
traction images computation; 5: fusion step; 6: image fusion decoding; and 7: final disparity map.

Fig. 9 Synthetic images (only subimage SE is shown) containing objects at different depths and cor-
responding depth maps: (a) four objects without superposition are placed in the scene; (b) some super-
posed objects are placed; and (c) contours in subimage are randomly degraded.
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in experimental conditions. The map image is then computed
with the merging process using here disparity images (SE,
SWR) and (SE, NER) as inputs. Final depth image still con-
tains residual errors, but stays very close to the expected
result and is suitable for most of 3-D inspection processes
in industrial vision.

Instead of presenting experimental results in the form
of depth images, we prefer defining the height images,
which facilitates comparison with reference objects:
height image ¼ ZA1 − depth image. Differences are just a
translation of measurement values by the reference distance
ZA1. Figure 10 shows some typical height images computed
on real scenes. We explore situations with objects having
large uniform areas in natural lightning, for which standard
matching methods often fail when no structured illumination
is used. To do so, we have adapted the calibration distance
ZA1 to the objects scale, as explained in Sec. 2.4. Heights
measured for the four reference objects are then well recov-
ered. One can however see some artifacts, which are still vis-
ible on the final depth map. The main characteristic of the
proposed method is its ability to compute disparity map
without requiring any matching. With a single-image sensor
snapping simultaneously four views, the captured images
present similar brightness and contrast. It could be expected
that the edge detection provides same contours for the four
views. In practice, due to the image sensor sampling, it is not
always the case and some no-exact correspondences between
detected contours are sometime encountered. Figure 11
presents an example of this situation, when no-exact corre-
spondences between detected contours corrupt the depth
map. Other artifacts could also be caused by the difference
of point of views, resulting in occultation or hidden edges
between the subimages. With our method, this kind of arti-
fact is significantly smoothed by the merging process and is
not the most frequently seen during our experiments.

Our approach for computing depth map is therefore vali-
dated by these synthetic and experimental results. This work
should provide some new perspectives for establishing dis-
parity maps without matching procedure, which is the main
interest of the approach. The existing artifacts encountered in
some cases should disappear or be attenuated by improving

and adapting an edge detection method for a multilens
device.

4 Conclusions and Perspectives
We have described a multiview device considered as a multi-
view camera and used as a depth camera. This device can
work for detecting objects to a depth of up to 2 m and
could find interests for industrial vision. Main contributions
consist first of an alternate approach for modeling and cal-
ibrating this device with variable homography, and second of
an original and new approach for computing disparity map or
depth images.

Variable homography is an alternate approach for model-
ing multiview systems. Main interest is to propose a rapid
calibration procedure requiring only two acquisitions, with-
out having to determine intrinsic parameters first. A compari-
son with the well-known triangulation method is performed,
and we have demonstrated that the measurement uncertain-
ties are then comparable, but calibration is easier in our case,
especially if intrinsic parameters are not considered as iden-
tical for each subdevice. When optical distortions are signifi-
cant, as for measurements performed at macroscopic scale,
we have also proposed an improved calibration method,

Fig. 10 Experimental results images (only subimage SE is shown) with four objects. Heights measured
are: A: 15.6 cm; B: 19.4 cm; C: 8.7 cm; and D: 3.9 cm.

(a) (b)

NWR NER

SESWR

A

A

B

B

Fig. 11 Zooms on no-similar contours detection and corresponding
artifacts on disparity maps: (a) four contours subimages; and (b) arti-
fact areas where the contours are not identical.
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significantly reducing the measurement uncertainty.
Calibration stays identical for normal and improved methods
and always requires only two acquisitions. The principles
developed with the variable homography method lead to
use a reference homography calledHA, and the measurement
is based on a disparity d defined as d ¼ HB · p2B −
HA · p2B.

In the second part of this paper, a new approach has been
presented for computing disparity map, according to the def-
initions given previously. The major interest of this approach
is to propose a new framework requiring no matching proc-
ess defeated by uniform or poorly textured areas. This
approach is well adapted for measuring height of objects
placed under a camera for industrial vision control. By
using contours, this method is efficient on flat and uniform
objects in natural lightning. Our solution can be considered
as an interpolating method of the disparity or depth informa-
tion in uniform areas, giving a realistic rendering of simple
objects. As the scene photometry is preserved, unlike mea-
surements performed with active illumination, some other
standard controls, as for example calipers, shape recognition,
or barcode reading, can be done conjointly with 3-D
measurement.

This work has validated the interest of our approach, and
some interesting perspectives are envisaged. First, we project
to extend the calibration for other models of multiviews cam-
eras, such as the focused plenoptic17 ones. A study of the best
compromise between resolution, depth accuracy measure-
ment, working distance, pixel size, and number of mini or
microlenses should be performed. Second, we would like
to improve the original method proposed for computing dis-
parity map. In the future, we will focus on edge detection, in
order to reduce artifacts and also extend our approach for
natural and complex scenes.
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