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Image Receptive Fields for Artificial Neural Networks
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Abstract

This article describes the structure of the Image Receptive Fields Neural Network (IRF-NN), introduced recently by our team. This
structure extends simplified learning introduced by Extreme Learning Machine and Reservoir Computing techniques to the field of
images.

Neurons are organized in a single hidden layer feedforward network architecture with an original organization of the network’s
input weights. To represent color images efficiently, without prior feature extraction, the weight values linked to a neuron are
determined by a 2-D Gaussian function. The activation of a neuron by an image presents the properties of a nonlinear localized
receptive field, parameterized with a small number of degrees of freedom.

This article shows that an efficient representation of the images is provided by a large number of neurons, each associated to a
randomly initialized and constant receptive field. The training step determines only the output weights of the network. It is therefore
extremely fast, without retropropagation or iterations, and remains efficient with large sets of images.

The network is easy to implement, presents excellent generalization performances for classification applications, and allows the
detection of unknown inputs. The efficiency of this technique is illustrated with several benchmarks, photo and video datasets.

Keywords: Computer vision, Visual object recognition, Artificial neural networks model, Supervised learning algorithm, Visual
receptive fields, Extreme Learning Machine.

1. Introduction

The IRF-NN has been designed by our research team with the
purpose of easing the use of images in supervised learning ap-
plications. Its algorithm, although very simple, allows to work
directly on photographs, or images, in color or gray-level, with-
out any preprocessing or prior feature extraction. Training of a
multi-class recognition task, for example, is simply achieved by
presenting a collection of views and their labels.

The network uses the most elementary neural network ar-
chitecture: a feedforward neural network with a single hidden
layer. The novelty of the approach lies in the initialization of
the weights. The weights connected to a neuron are not con-
sidered independent, but their values are determined by a 2-D
Gaussian function discretized into an input image size bitmap.
The activation of a neuron is a function of the spatial integration
of the input pixels weighted by the Gaussian function of their
position. The gain factor and the sigmoid function of the neu-
ron modulate this response strongly: some visual stimuli cause
a response in the quasi linear zone of the sigmoid while others
provoke a response close to negative or positive saturation.

Albeit the model is elementary, a neuron of the internal layer
of the IRF-NN presents the properties of a receptive field: its
response is mostly sensitive to a local region in the image and
to specific stimuli; similar stimuli trigger activations of simi-
lar magnitude. Considering the global network activation, we
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will show that the neighborhoods induced in the stimuli space
are well adapted to the processing of images, since it can take
lighting or color changes into account, as well as position, ro-
tation, or shape variations, thanks to the spatial organization
of the weights. It can be observed, for example, that moving
an object in the image causes a gradual modification of the re-
sponse.

The initialization of the weights, and therefore of the recep-
tive field connected to a neuron, depends on a few parameters
that are considered as degrees of freedom (DOF). A few config-
uration choices specify the range of these DOF as well as the
receptive field type. For example the weights can be either of
same sign or centered with zero mean. This latter case favors a
response to contrast between the central and peripheral region
of the receptive field.

A complementary novelty in the IRF-NN approach is the ran-
dom initialization of the free parameters of the receptive fields.
In practice, all free parameters of the receptive fields are ini-
tialized randomly: center and radius, but also magnitude and
color sensitivity. Thus, each neuron has a specific and unique
sensitivity. Unlike other approaches, no notion of convolution
product or weight sharing is involved here. The receptive fields
are not duplicated or iterated through the image. Our empir-
ical studies establish that the activation vector of the internal
layer forms an image encoding with interesting properties for
learning algorithms.

Supervised learning using a set of examples can be imple-
mented in an extremely simple way. It follows a technique suc-
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cessfully introduced in the field of dynamic systems as Reser-
voir Computing (RC) [1, 2], and more recently for classification
or nonlinear function approximation with the Extreme learning
machine (ELM) [3]. They are based on the following obser-
vation: endowing a network with a randomly initialized inter-
nal layer of large size allows to avoid the strenuous adaptation
phase of the input weights to the examples. Only the output
layer is then adapted through supervised learning and the deter-
mination of the output weights becomes a linear problem that
can be solved using a simple algorithm, without iterations or
local minima problems.

The ELM network uses randomly initialized and indepen-
dent input weights. A theoretical approach shows that this net-
work, like a Multi-Layer Perceptron, has universal approxima-
tion capability [4]. It can approximate any continuous target
function and classify any disjoint regions. Why would it not
work with images? There is no limitation in size or nature
of the input vector. Experiments reveal easily the problem.
The ELM network can be configured to achieve classification
of photographs, whatever their sizes. Its recognition score can
reach 100% on the training set. However, no generalization is
observed even for photos that differ only slightly.

Generalization is based on the proximity of the vectors in an
appropriate space. It is necessary to design the mapping of the
inputs into the internal space for a better representation of im-
ages. In particular, an image should not be considered as a table
of independent components. Pixel values should be interpreted
in correlation with their position and their neighborhood.

The notion of receptive fields in the IRF-NN takes this neigh-
borhood implicitly into account. The main difference with an
ELM network resides in the initialization of the input layer, not
in a supplementary algorithmic step. The weights of the input
layer are not independent random variables since their initial-
ization is based only on a dozen of DOF by neuron. Empirical
results confirm that generalization is effective and appropriate
for various image characteristics.

The IRF-NN approach allows to process images with an ef-
ficiency and simplicity similar to the one that made the success
of the RC and ELM approaches. Their fundamentals are iden-
tical. An ordinary linear regression is sufficient for an efficient
adaptation of the output weights, even with a large number of
images. The architecture implemented follows very closely the
one of a single layer feedforward network (SLFN). The weights
of the input layer are determined in a generic way, indepen-
dently of the images to be processed, using a random draw for
the free parameters of the neurons. There is only one global
coefficient (noted q) that takes the dynamics of the image set
into account to optimize the nonlinear response globally. Once
initialized, the input layer remains constant. It can be stored
either as a weight matrix or as a table of free parameters of
the neurons. The weight vectors can be generated at any time
to take images of various sizes into account, without requiring
any modifications of the network or its training.

The properties of the IRF-NN appear to be remarkable. The
examples presented in this article verify that the algorithm can
process a large number of images (several tens of thousands),
to distinguish and recognize 1,000 objects, and learning time

takes only a few minutes. The network is able to generalize
efficiently from only a few views, as well as identify a particular
view within a very similar set of images. Photograph processing
for object recognition is fast, compatible with real-time video
applications.

Several recent conference papers [5, 6, 7] have presented
some of the properties of the IRF-NN. The purpose of this pa-
per is to describe further the principle of the neural network
with the basic algorithms and the setting of the parameters, to
discuss a number of its characteristics and to establish the main
network properties.

Section 2 gives a short state of the art and presents the main
artificial neural network techniques for image recognition. Sec-
tion 3 details the IRF-NN architecture, weight initialization for
gray-level and color images and the algorithms of the network.
Section 4 discusses our concept of image receptive fields (IRFs)
induced by the organization of the weights. It first gives a gen-
eral interpretation of the network in terms of random and sparse
sampling of a continuous scale-space representation of the in-
put image. Then it provides some detailed information about
the networks functioning and its configuration. Section 5 illus-
trates some IRF-NN properties with various image datasets. It
shows that the internal representation forms an efficient encod-
ing of the images. A single linear classifier can then be used to
perform classification or recognition of large sets of images.

2. Related works

The neural network developed in this article presents two
characteristics that are atypical in the field of image process-
ing. The IRF-NN uses the image directly without prior feature
extraction and yet is based on a very simple neural feedforward
architecture with only one internal layer. Over the years, the
state of the art tends to associate pixel-array inputs to very large
multilayer networks. Increasing in size is however not the only
path to improvement. Our work is consistent with a few recent
publications showing that simple networks can produce stun-
ning and competitive performances.

2.1. Learning techniques applied to images
Object recognition in computer vision has been intensively

investigated in the last four decades. When it comes to iden-
tify objects from previously selected examples, the task can be
assimilated to supervised classification, a field in which non-
linear approaches like neural networks or SVMs have proved
themselves very successful (e.g.[8, 9]). An image however dif-
fers quite from the signals for which artificial neural networks
have proven efficient. It is a large 2-D pixel array, subject to
many fluctuations like lighting or angle of view, and in which
the object to be recognized represents only a part of the data
vector in variable environments. The region representing the
object is itself variable in size, position, and even angle. And it
gets even more complex when the context of the scene is taken
into account, where several objects can be present and induce
shadows, reflections, occultations, etc.

An obvious approach is to reduce the number of variables of
the problem. The classifier is not presented with an array of
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pixels but with a vector of descriptors resulting from various
processing steps. Invariant feature extraction eases the classi-
fication task; if necessary the dimension of the vector is fur-
ther reduced, e.g. by principal axis projection with principal
component analysis (PCA). The feature-based approach is very
general and uses several decision algorithms like nearest neigh-
bors, classification trees, bag-of-works, etc. The advantages of
using neural networks in this context are notably discussed in
the interesting review of Egmont-Petersen et al. [10].

The success of these approaches depends chiefly on appro-
priate feature selection, which is task specific and subject to the
designer skills. There are no generic features available and no
theory for feature selection [11]. The improvements of detec-
tors and the evaluation of their performances are an active re-
search area (e.g. [12]). A recent paper by Andreopoulos and
Tsotsos [13] presents a very detailed overview of the object
recognition literature. It emphasizes that the role of learning
algorithms has become much more important in recent years,
with more advanced techniques.

In some works, the feature selection is integral part of learn-
ing. The cascade of classifiers approach of Viola and Jones [14]
uses a very large number of elementary features, initially far
larger than the number of pixels. The training process progres-
sively excludes inappropriate features and retains only a little
part of them that ensure fast recognition processing. The ini-
tial features, i.e. the Haar wavelet family, are not task specific.
The Viola-Jones detector requires no prior expertise and is an
effective tool for recognition. The training, however, remains
long and difficult. This seminal work has motivated many of
the recent advances, particularly in face detection [15].

2.2. Direct use of images
Less well known in the community of image processing, the

pixel-based neural approaches work directly with images. They
require more computing power but are compatible with today’s
processors. The Neocognitron, proposed by K. Fukushima in
1980 [16], is the oldest of these architectures and has been
steadily refined over the years (e.g. [17, 18]). It organizes the
network in layers working as convolutional filters. The suc-
cessive transformations of the image create a representation
that invariant to some deformations like translation, 2D rota-
tion, scaling, etc. This representation is used by the recogni-
tion layer with simple decision rules: linear combination and
winner-take-all selection. The convolutional scheme of connec-
tions allows the neural units to be connected to a small neigh-
borhood of the previous layer and to share their weights. The
same operations are then repeated on different parts of the im-
age and the number of free parameters to adapt is reduced.

More recent variants like LeCun’s Convolutional Neural Net-
works [19], or Hinton’s Deep Learning architecture [20] ob-
tained remarkable results for some applications like automatic
classification of manuscript numbers or characters. Several re-
search teams develop these networks with success on challeng-
ing benchmarks, e.g. Cardoso & Wichert [21], Cireşan et al.
[22], Krizhevsky et al. [23].

These networks are relatively large. LeCuns convolutional
network is composed of 6 layers, about 10,000 units and 60,000

free trainable parameters. Krizhevskys structure has 8 layers,
650,000 neurons, and 60 million parameters. This complexity
is certainly justified by the task, as this network is trained on 1.2
million high-resolution images of the ImageNet LSVRC-2010
contest and recognizes 1,000 classes. But learning cycles took
five to six days, which suggests to consider alternatives.

A few recent works point to possible ways for simpler archi-
tectures and easier learning. Cox et al. [24] evaluate random
layers without structured filter kernels, nor any learning. They
can obtain networks which achieve state-of-art performance on
face recognition tasks. Coates et al. [25] obtain high per-
formance for unsupervised classification with single layer net-
works. Their analysis highlights that a large number of nodes
in the hidden layer and dense feature extraction are critical to
performance. Saxe et al. [26] evaluate networks with a sin-
gle convolutional layer, and particularly compare performances
between random and tuned weights. Their work demonstrates
that training of weigths improves performances, but for object
recognition, good architecture selection is more important than
weight tuning.

Our work extends these last approaches by using a very sim-
ple structure. The hidden layer is single, but not convolutionnal.
The random initialization of the weights is associated to the idea
of receptive fields. Working with only a single hidden layer is a
first step to better explore its operation and its potential before
adding more layers.

3. Image Receptive Field Neural Network

The IRF-NN retains the structure and functioning of a sim-
ple feedforward neural network with one hidden layer. The pur-
pose of the minor algorithmic modifications, compared with the
standard algorithm, is to directly accept images as inputs, in the
form of an array of gray-level or color pixels.

The input vector becomes therefore very large, with compo-
nents that are strongly correlated locally. The complexity found
in image classification problems necessitates the use of a large
number of neurons. This scaling-up of the network size implies
some particular adaptations, which remain computationally in-
expensive and offer a real efficiency in the learning of images.

This section gives a detailed presentation of the implemented
technique. It starts with a brief restatement of the SLFN equa-
tions and the specifics of ELM training. The novelty of the pro-
posed network is described with the organization of the weights
in terms of receptive fields. In the second part, the configuration
parameters and the user settings are discussed, and the section
concludes with a synthetic overview of the algorithms.

3.1. IRF-NN Architecture
IRF-NN features a classical feedforward architecture, known

as multi-layer perceptron (MLP) [27], in its simplest form with
a single hidden layer (SLFN). Each unit or neuron of this in-
ternal layer performs the weighted sum of the inputs using an
adaptive weight vector. Its activation is determined by a nonlin-
ear transfer function, for example the hyperbolic tangent func-
tion. The network’s output is a linear combination of the acti-
vated internal neurons.
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More formally, the response of a SLFN can be expressed by
two equations. Noting x ∈ Ω ⊂ Rd the input vector, M the
number of neurons, i the neuron index, win

i the input weight
vector of a neuron, and wout

qi component q of the output weight,
the output vector ŝ ∈ Rm is defined by elements

ŝq (x) =
M∑

i=1

wout
qi hi (x) + wout

q0 (1)

or in matrix form ŝ(x) = Wouth, with Wout =
(
Wout

i

)
0≤i≤M

∈
Rm x(M+1) and h the activation vector defined as h0 = 1 and

hi (x) = tanh

 d∑
j=1

win
i j x j + win

i0

 = tanh
(
xTwin

i + win
i0

)
. (2)

When the neural network is used for multiclass classification, a
standard technique [8] is to encode the desired responses in a
binary vector of type 1-of-n. Let c = c(k) be the class of input
k, and m the number of classes, the vector sk ∈ Bm is defined
as sk,c = 1 and sk,i = 0 ∀i , c. The network response is then
estimated as the index of the largest output value

ĉ(k) = arg max
i

(ŝi(k)) (3)

The standard approach of SLFN uses examples (xk, sk) to adapt
both input and output weight matrices in a training phase. The
IRF-NN is created with a large hidden layer and keeps the Win

weights constant. These uncomplicated supervised learning
techniques have been popularized by the reservoir computing
and ELM approaches. A large number of neurons in the hid-
den layer and a random initialization of the input weights make
the adaptation of the input weights needless. Only the output
weights Wout have to be adapted, therefore the computation rule
is very simple and can be expressed as a linear regression

Wout = H† S (4)

where H† is the Moore-Penrose generalized inverse [28] of the
hidden layer activation matrix for N examples, and S the is the
matrix of the associated target vectors. No epochs or iterations
are necessary to calculate the weights.

Many recent works confirm the efficiency of this approach in
numerous applications. In the following we show that this effi-
ciency is confirmed for inputs as complex as images, by modi-
fying the function of the input weights.

3.2. Receptive fields induced by weight organization
The IRF-NN differs from a SLFN or an ELM mainly in the

way its inputs are handled. The input weights are no more con-
sidered as independent variables, but are structured to play the
role of receptive fields. They are initialized randomly but only
with a few DOF per neuron.

The IRF-NN architecture is represented in Figure 1, high-
lighting the adaptation of the input stream to images. For the
sake of clarity and to avoid confusions, the network compo-
nents are renamed as follows. Input vector x represents an im-
age and is therefore noted Φ, index j of the input component

represents a pixel and is noted p, weights Win, organized as re-
ceptive fields, are noted G, and the adaptive weights Wout are
simply noted W.

First we introduce the receptive fields for gray-level images.
The input of the IRF-NN becomes a digital image I = Ik, where
index k references the image in a set. Image I, represented by a
matrix of dimension nx×ny needs to be reorganized as a column
vectorΦ of size d = nx.ny to be treated as an Rd input vector in
the scalar product of equation (2). The bi-dimensionality of the
image and the pixel positions are however not lost in this oper-
ation, as they are taken into account by the weight coefficients.

Input weights gi associated to neuron i constitute a vector of
same dimension as the input image. Its values are generated as
a function of the spatial location of the pixel they connect so
that weights gi form a smooth and localized function in the im-
age coordinates. In this article it is considered that all neurons
implement the same type of functions, 2-D elliptic Gaussian
functions. These functions have a few parameters that can be
adjusted to determine a specific receptive field. In our notation,
all parameters associated to a neuron i are represented in vector
Ωi. The weights are then defined as

gip = g(xp, yp,Ωi)

= γi +
1

πnxnyσxσy
exp

− (xp/nx − µx,i)2

σ2
x,i

−
(yp/ny − µy,i)2

σ2
y,i


(5)

where xp, yp are the coordinates of pixel p, nx and ny are the
width and height of the image, µx,i, µy,i, σx,i, σy,i define the cen-
ter and the width of the function along the x and y axes.

To ease the use of images of various sizes, the pixel coordi-
nates are presented in the form xp /nx and yp /ny in the expres-
sion of gip. Parameters µ and σ are thus expressed as reals in
the interval [0, 1] of these rescaled coordinates axes.

Two additional coefficients are introduced to scale the am-
plitude of the dot product: αi adjusts the slope of the sigmoid
function and thus the sensitivity domain of the neuron; q is the
network’s global gain control parameter that takes the dynamics
of the image into account. Its tuning is discussed in section 4.2.
Neuron activation (2) is reformulated as

hi (k) = hi(Φk) = tanh
(

1
q

(
αigT

i Φk + βi

))
, (6)

and comparison with (2) identifies Wi
in = [win

0i,w
in
i ] =

[
βi
q ,
αi gi

q

]
.

By setting the parameters of its Gaussian function, each neu-
ron can be associated to a specific receptive field. In gray-level,
the set of parameters is

Ωi =
{
µx,i, µy,i, σx,i, σy,i, αi, βi, γi

}
(7)

which determines the center and radius of the Gaussian recep-
tive field, the amplitude of the response and two bias constants.
For color images αi becomes a 3-D vector that will be discussed
later. In our approach, these sets Ωi are considered as the DOF
of the weight vectors. They are determined randomly during
initialization, using a uniform distribution over a bounded in-
terval.
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Figure 1: IRF-NN architecture. The raw images are directly presented to the network in vector form. The weights of the hidden layer G are organized as random
Gaussian receptive fields gi that are randomly parameterized at initialization but not modified during learning. Only the output weights W are adapted.

Only the bounds of distribution coefficient σ need to be con-
sidered as a network configuration parameter. Radius σ can be
adjusted according to the nature of the images to be processed,
but very generally σ.,i ∈ [0.01, 0.5] leads to good results. Let’s
consider the other coefficients: αi ∈ [−1, 1], since the practical
amplitude range is adjusted by coefficient q (discussed in sec-
tion 4.2); µ.,i ∈ [0, 1] to fix the center of the Gaussian inside the
image; β is not used in this work, so βi = 0; parameter γi will
be used to set a zero mean to a proportion of the receptive fields
gi as presented in section 4.3.

Note that the initialization of the IRF-NN only involves a
random selection of parameters Ωi. Weight matrix G can be
computed at initialization time if the images to be processed
have all the same size. Otherwise, they can be easily generated
as required for each image format.

3.3. Color Receptive Fields

The principle of image receptive fields (IRFs) can easily be
extended to color images. Figure 2 gives a view of the weights
computed for an image of size 200x200 pixels after random
initialization of an IRF-NN. The general idea is both to keep
the spatial structure of the IRFs and to endow the neuron with
a specific sensitivity to color.

This extension can be achieved by only adapting parameter
αi. In a gray-level image this coefficient can be interpreted as
the tuning of the neuron’s sensitivity to an intensity range. In a
color image, for example in RGB space, a coefficient αi,c can be
associated to each color plane. These coefficients form vector
αi that determines thus the maximum response axis of neuron i
in color space.

The neuron’s response is computed by applying its receptive
field to each of the three RGB planes and then weighting their

values with coefficients αi. Color is therefore taken into account
by introducing the color planes into equation (6),

hi(Φk) = tanh

 3∑
c=1

(
αi,c

q
gT

i Φk,c

) , (8)

in which the RGB image Ik is represented byΦk =
(
Φk,c

)
c=1,2,3.

Each component Φk,c is a vector of size d = nx.ny pixels and
the color index is noted c = 1, 2, 3 for respectively R,G,B. To
simplify the notation, coefficient β, unused in this version, is
omitted.

For color IRFs, the set of parameters is extended:

Ωi =
{
µx,i, µy,i, σx,i, σy,i,

(
αi,c

)
c=R,G,B, βi, γi, ρi

}
, (9)

in which parameter ρi is introduced to balance luminance and
chrominance sensitivities. As previously, all these values are
drawn at initialization time.

The last parameter is used to fix the αi,c distribution. Draw-
ing random and independent values ensures the orientation di-
versity of the neurons in color space, but their responses re-
main more sensitive to luminance than to chrominance, as the
RGB channels of images are strongly correlated. Many au-
thors use prior transformations that separate the chromatic and
achromatic components to increase the efficiency of segmen-
tation operations or image comparisons (e.g. [29, 30]). As
linear transformations, noted T, are generally preferred, they
can be directly incorporated by computing coefficients αi,c =

α′i,c
∑

j
Tc j, after drawing of α′i,c.

In the IRF approach with random weights, selection of a par-
ticular color transformation matrix T is unnecessary. To favor
diversity in neuron sensitivity, the idea is to mix luminance and
chrominance components in variable proportion. The mixture
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Figure 2: Examples of color Gaussian receptive fields gi represented as images.

is obtained without explicit response processing, only by co-
efficient adjustment. Noting αi,c the values to determine, α′i,c
random positive values of mean ᾱ′i , the response for a color
pixel can be decomposed into luminance and chrominance es-
timations, respectively rlu

i =
∑
c
α′i,cϕc and rch

i =
∑
c

(α′i,c − ᾱ′i)ϕc.

Since the desired response verifies ri =
∑
c
αi,cϕc = ρirlu

i + (1 −

ρ)rch
i , we identify the color coefficients αi,c with

αi,c = α
′
i,c − (1 − ρi)ᾱ′i = α

′
i,c − (1 − ρi)

1
3

3∑
c=1

α′i,c (10)

In practice, random coefficients α′i,c for a color neuron are
drawn uniformly in interval [−1, 1], and ρi ∈

[
0,Cp

]
with

boundary Cp, a network configuration parameter set in interval
[0, 1].

3.4. Supervised Learning

Learning is considerably simplified when compared with the
training of an MLP network. Only the output layer of the net-
work needs to be tuned to a specific set of examples.

The input weights initialized with Gaussian functions are
kept constant. Activation vector h of equation (8) is then a
function of the image without any adaptive parameters. This
layer is regarded as generic and independent of image sets. It is
therefore easy to learn simultaneously several functions of the
training set and each output component is a linear function of
parameters W to be determined.

The size of the output vector is not limited, no more than the
kind of functions to be learned. According to the needs, outputs
can be real values, a classification result for two or multiple
classes, a group of several functions, or a multipurpose classifi-
cation. The use of the network is extremely flexible. Only a set
of examples of responses is needed.

These remarks apply in theory to all SLFN approaches and
ELM networks. Practically, the linear regression algorithms are

limited by the numerical implementation, especially for huge
data matrices. It is interesting to observe that the IRF-NN works
efficiently with both large internal vectors and a great amount
of training images.

Using the previous notation, and considering a color or gray-
level image Ik, the network output ŝ ∈ Bm is determined by

ŝ(Ik) = ŝ(Φk) =W.h(Φk) =
M∑

i=1

wihi(Φk) (11)

The only adaptive parameters are those of matrix W ∈ RM x m

and training with examples forms linear equations. In this work
only batch training is considered, although an incremental tech-
nique is a practical alternative that we have tested.

Let DA = {(I1, s1), ..., (Ik, sk), ...(IN , sN)} be the set of labeled
examples where sk is the response vector associated to image
Ik. In matrix notation, H =

[
h(x1)T · · ·h(xN)T

]T ∈ RN×M repre-
sents the activation of the M neurons for the N images accord-
ing to (8), and S = [s1 · · · sN]T ∈ RN×m represents the desired
responses for the N images. Matrix W satisfies output equation
S = H.W, therefore

W = H†.S (12)

where H† is the Moore-Penrose pseudo-inverse of matrix H.
In this context, the hk vectors are linearly independent and

the network configuration tends to enhance their orthogonality,
as discussed in the next sections. Matrix H is then very large,
never singular, but generally close to singularity.

The computationally better way to obtain the pseudo-inverse
is then by using the singular value decomposition (SVD) [28].
Faster algorithms have been considered, but they have proven
to be not stable enough for this application. Most of them use,
explicitly or not, quadratic forms HT H or HHT that induce a
more limited numerical precision of algorithms. Divergences
of the solution are then frequently observed. The SVD imple-
mentation of the pseudo-inverse gives a good precision, and can
automatically avoid instable responses by discarding the singu-
lar values smaller than a tolerance [31].

6



When the network is used with a relatively large number of
neurons compared to the number of examples, i.e. N < 2M, it
is necessary to introduce a regularization to avoid a decline in
generalization (overlearning effect). In this case, the truncated
SVD (TSVD) variant provides an efficient technique that is co-
herent with the proposed approach: only the r strongest singu-
lar values are kept, the others are replaced with zeros [Hansen
1987]. The pseudo-inverse is therefore computed as

H† = VΣ+k UT (13)

Where the U and V matrices are determined by the decom-
position of H into singular values H = UΣ VT and Σ+k =

diag(σ−1
1 , σ

−1
2 , ..., σ

−1
k , 0, ..., 0) ∈ RN×M corresponds to the in-

verse of Σ truncated at rank k(rank − k). Practically the rank is
kept as large as possible, typically k = M/2.

4. Interpretation and configuration of Receptive Fields

The originality of our approach lies mainly in the organiza-
tion of the weights as receptive fields. This section provides
some detailed information about their principle, functioning,
and discusses some user choices. The learning and response
algorithms are simple and configuration free. The guideline,
intuitive but largely verified, is to favor the greatest diversity of
IRFs, and a good distribution of their variants.

4.1. Gaussian functions

In the work presented in this article, the IRFs are defined as 2-
D Gaussian functions. Other functions are potentially possible
as long as they present a localized and smooth response. A non-
smooth local selection provides usable but not as good results,
as can be verified by using a binary rectangular mask where
center, size, and amplitude are random parameters specific to
each neuron. Comparisons and extensions towards new IRF
functions, e.g. Gaussian derivatives, are beyond the scope of
this introduction article.

To justify choosing the Gaussian function, and to present an
interpretation of the network’s operation, the strong relation be-
tween this approach and the scale-space theory developed by
Lindeberg [32] is emphasized. The scale-space representation
embeds the original image into a set of gradually smoothed
signals, in which the fine scale details are successively sup-
pressed. Starting with image f (x, y), a family L of derived
images is defined by the convolution of f (x, y) with Gaussian
kernel g(x, y; t) = 1

2πt e
−(x2+y2)/2t,

L(x, y; t) = (g(., .; t) ∗ f (., .)) (x, y) . (14)

The convolution is performed on variables x and y, while t after
the semicolon indicates the scale level. This definition works
for a continuum of scales t > 0, but practical implementations
use some sampled scale levels.

Lindeberg has studied the properties of this representation
for continues signal and for discrete images. The only possible
smoothing kernels that satisfy adequate conditions are Gaussian
functions. They notably ensure that the views at coarse scales

correspond to simplifications of structures at fine scales without
artifact elements induced by the smoothing method.

The comparison of IRF with scale-space techniques consid-
ers the linear part of the neural response. For the sake of clarity,
only gray-level images are considered and intermediate vari-
ables are introduced. The neural response vector (6) can be
reformulated as hi (k) = tanh

(
zi,k

)
= tanh

(
αi
q ℓi,k

)
to emphasize

the linear computation of argument

ℓi,k = ℓi (Ik) = gT
i (Ωi)Φk (15)

Unlike Lindeberg’s L representation, the IRF-NN approach per-
forms no convolutions and therefore does not create the images
at different scales. But it can be easily verified that ℓi (Ik) is
a point L

(
x, y; t

)
of the continuous scale-space L (., .; .) formed

from image Ik. Indeed, convolution at point (x, y; t) is expressed
as

L(x, y; t) =
+∞∑

i=−∞

+∞∑
j=−∞

g(i, j; t) f (x − i, y − j)

=

+∞∑
i=−∞

+∞∑
j=−∞

g(x − i, y − j; t) f (i, j)

(16)

which corresponds to the defined scalar product when the nu-
merical integration covers the complete image, with imposed
constraints σx = σy and nx = ny and identifying param-
eters as u = nxµx,i, v = nyµy,i, t = nxσx

2/2. Therefore
ℓi (Ik) = L(nxµx,i, nyµy,i; n2

xσ
2
x,i/2).

The set of scalar products performed by the neurons of the
network form vector ℓ (Ik) = (ℓi (Ik))M

i=1 that can be considered
as a random and sparse sampling of continuous L, since param-
eters Ωi are randomly selected at network initialization. One
can note that the L space provides a largely redundant represen-
tation since all the scale-space levels are constructed from the
initial image.

The IRF representation can therefore be seen as the combina-
tion of three virtual stages: representation of the input image in
a continuous scale-space, a random sampling of this represen-
tation, and a nonlinear transformation. This framework allows
analyzing certain properties of the IRF-NN, or considering the
choice of functions for receptive fields.

4.2. Sensitivity tuning
Coefficients αi introduced in (6) are part of the free param-

eters of the gray-level neuron. They are randomly initialized
in the interval [ - 1, 1] and control the sign and the gain of the
linear computation of each IRF. The role played by these coeffi-
cients requires further consideration to get a better grasp of the
functioning of the network and to optimize its configuration.

In equation (6), note that gain parameter αi is associated to
a neuron i while q is global for all neurons. Let temporarily
q = 1 and consider, to illustrate the discussion with a simple
case, some weight vector gi with

∑
p gi,p = 1. Its empirical

variance is then s2
gi =

1
nxny

(∑
p g2

i,p − 1
)

and the linear response

li,k in (15) can be expressed as li,k = nxny

(
rgi,k sk sgi + Īk

)
, bring-

ing up the linear correlation coefficient rgi,k between the two
vectors. The response clearly depends on the correlation, but
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also on the mean value and standard deviation of image Ik. Il-
lumination or contrast changes modify li,k as well as a change
of pattern in the image.

Before applying the nonlinear transformation, the range of
these values needs to be analyzed. The purpose of the IRF-NN
is to treat any kind of image. The activation vector h must char-
acterize all parts of the picture: very small dark objects as well
as very large bright ones in a same image. It must also remain
sensitive to small or large variations all over the image space.
A difference in two images can only be taken into account if
it induces a difference in the internal representation h, thus a
sufficient modification in the response of at least one neuron.

Coefficient αi controls the amplitude of the argument of the
hyperbolic tangent function and therefore the value ranges for
which the neuron presents a quasi-linear response, a non-linear
response, or an almost constant response that will be assim-
ilated to a saturation zone. Consider a particular image and
one IRF, the sensitivity to image variations is best in the quasi-
linear response part, its slope is proportional to αi and decreases
rapidly when

∣∣∣zi,k

∣∣∣ > 0.9. If we have virtually a lot of IRFs with
the same weight vector g, but different αi, all variations can be
represented in the activation vector h at least by one compo-
nent. The neurons with high gains can respond to some stim-
ulus in the dark values but will be saturated when the intensity
increases. Neurons with smaller gains will take over. Similarly,
the global network must be able to detect changes of just a few
pixels as well as major image changes. In summary, the role of
αi is to randomly distribute the neurons along some gray-level
axis. A wide distribution of neuron gain factors is necessary in
the same way that a large distribution of scale factor improves
detection of various forms and sizes of objects.

A global network parameter q is used to facilitate the range
selection of αi which are arbitrarily fixed in the interval [−1, 1].
Work in progress studies the automatic determination of the op-
timal value of q. It uses the distribution of the responses for an
image set, and thus takes the image representation (e.g., gray-
level ranges in [0, 1] or [0, 255]) and the effective dynamics of
the images into account.

A first step of the study determines boundaries of acceptable
values for q. This computation is briefly presented. For a given
set of N images with H ∈ RN×M , let Z′ be the linear part com-
puted with q = 1:

Z′ = (αiℓi (Ik))i=1..M
k=1..N .

q will be determined to optimize H = tanh(Z) = tanh(Z′/q).
An obvious constraint is to ensure that each image is well rep-
resented by vector hk = tanh(Zk). Any vector whose values are
either almot null, or totally saturated with values almost equal
to 1, is out of order. To formalize first the non-null rule, let
hmin = 0 + εm be the arbitrary fixed minimal boundary. The
internal vector hi,k is considered as not-null if maxi

∣∣∣hk,i

∣∣∣ > hmin.
All vectors hk respect this constraint if mink

(
maxi

∣∣∣hk,i

∣∣∣) > hmin.
Since tanh is an increasing function, the development shows a
maximum value for q since

min
k

(
maxi tanh

(∣∣∣∣∣αiℓi,k

q

∣∣∣∣∣)) > hmin ⇒ q <
mink (maxi |Z′|)

atanh(hmin)
.

The same reasoning holds to determine the minimum using the
rule of non-saturation with limit hmax = 1 − εM . Then

maxk (mini |Z′|)
atanh(hmax)

< q <
mink (maxi |Z′|)

atanh(hmin)
(17)

This relation imposes limits for parameter q. It also provides a
quick test of pertinence of internal representation for the image
set, and for detecting inconsistent images, if any. The comple-
mentary study in progress aims to determine the optimal choice
qopt which ensures not only extrema, but also the best distribu-
tion of the hi j. Good results for a learning set can be obtained
simply by imposing a predeterminated proportion of H in the
unsaturated range defined by [hmin, hmax], for example a propor-
tion of 15 or 20%. This method remains empirical and needs
futher study. A stronger objective is the determination of q inde-
pendently of the image set, allowing the use of any image. Two
preliminary observations support this approach: performance is
weakly sensitive to the value of q, and optimal values empiri-
cally identified on various datasets are not too different. The bar
graph in figure 3 illustrates the proportion of neural activation
components for a few images selected in various datasets. Color
is coded in [0, 255], q = 0.5, and the experimental protocol is
developed in section 5.2. Despite the diversity of the images
used, 10 to 30% of the components of vector h fall in the unsat-
urated range [hmin, hmax]. The proportion in this range is hetero-
geneous in some dataset (COIL or Flowers) but the differences
are not really more important between datasets. VIDEO has a
high and more homogeneous rate that is close to a few CBS
views. MNIST is very particular with its gray-level and almost
binary views, resulting in a very high near-null activation rate.

4.3. Receptive Field Support and Normalization

The efficiency of the IRFs can be increased by introducing
certain variants or algorithmic precisions in weight initializa-
tion step (5). Therefore, the Gaussian functions can be centered
to endow the network with sensitivity to local contrasts in the
image. The weight vector can be normalized to improve the
comparison of signals generated by the various neurons. These
variants affect exclusively the determination of weight matrix
G and do not introduce any supplementary complexity in the
training or operation of the IRF-NN.

The notion of receptive field support is now introduced. In
image processing applications, Gaussian functions are usually
used as filters implemented by a convolution product on the
whole image. Therefore their support size is limited to reduce
the computational cost. In this work, the Gaussian functions
are not used as convolution products. Each weight vector is
involved in only one inner product computation and the limita-
tion of the support size affects much less the performances. The
main purpose here is not to reduce processing time, but to de-
fine a variant of the IRF with zero mean weights on a localized
region.

This support size can be defined by the distance of the pixel
to the center of the Gaussian, or equivalently by the argument of
the Gaussian (5). Let RFS i be the set of support pixels defined
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Figure 3: Distribution of the components of internal representation h. For each view, sampled from various datasets, the proportion of h (in absolute value) is shown
for near-null and unsaturated ranges, respectively dark bars: [0, hmin] and light bars: [hmin, hmax].

by

RFS i =

 p |
(xp/nx − µx,i)2

σ2
x,i

+
(yp/ny − µy,i)2

σ2
y,i

> Cs

, (18)

where Cs is a threshold to be fixed (Cs = 1.6 in this study). The
weights are initialized by (5) with condition∣∣∣∣∣∣ gip = g(xp, yp,Ωi) i f p ∈ RFS i

gip = 0 else .

A variant to these positive IRFs is a zero mean receptive field
(ZM-RF). Weight vectors with zero mean on all pixels are not
very effective. More interesting are the vectors centered only
on a local support region, as such IRFs that respond to local
contrast I − ĪS , where ĪS is the mean image intensity of support
region RFS i. Their weights are then positive around the cen-
ter, negative for a farther ring and zero beyond (Figure 4). The
ZM-RFs have therefore ON and OFF zones like the commonly
used Laplacian of Gaussian (Mexican Hat) or the Difference of
2-D Gaussian functions. A comparison of these functions for
IRFs is interesting and will be developed in a forthcoming pa-
per. Constant γi in equation (5) is used to handle this centering
operation. It is either set to 0 for positive IRFs, or else initial-
ized to

γi = −ḡip = −
1

#RFS i

∑
p∈RFSi

gip. (19)

Experimental results show that this kind of IRFs increase the
recognition performances for certain objects or in certain con-
texts, but not necessary for all images. A general observation is
confirmed here: the best results are obtained using the greatest
diversity of IRFs. For a given neural network, a mixture of zero
null and positive IRFs ensures the sensitivity of the network to
both local contrast and intensity of the signal. Therefore we in-
clude a proportion CZM of ZM-RF neurons (CZM = 0.9 in this
study).

A last optimization, applied to all IRFs, is weight normal-
ization to adjust the amplitude of the Gaussians. This may ap-
pear unnecessary because definition (5) theoretically imposes
unity-sum of the weights, i.e.

∑
p gip = 1. Moreover, the neu-

ral response is also always multiplied with stochastic gain αi.
However, observations confirm the advantage of this normal-
ization. The rationale of this step is to favor a similar dynamic
range of response for all IRFs. The random gain provides then
a similar probability distribution for each of them. Note that
implicit unity sum assumes infinite support, whereas supports
are always limited to image pixels and are often unbalanced,
especially when the center of the Gaussian is in the vicinity of
the image edge. The normalization of the dynamics of both
localized and zero means IRFs is therefore advised.

The amplitude normalization must be consistent for all IRFs,
and should take the ones with zero mean into account. Lin-
deberg [33] shows that the normalization of a Gaussian or its
derivatives is equivalent to setting the sum of the positive values
always equal to one. This technique is commonly used when
the sum of the weights is zero (e.g. [34]), and gives good re-
sults for our approach. We retain therefore g′ip =

1∑
p max(0,gip) gip

where gip is determined by (5) or by (18).

5. Network properties and applications

This section presents and illustrates some IRF-NN proper-
ties. A few of these properties and perspectives of applica-
tion have been presented in recent conference papers [5, 6, 7].
We also carried out an in-depth study to determine the parame-
ters of the network, its encoding performances on large image
datasets, and its generalization capabilities. This study, that is
the subject of a companion article [35], has been conducted on
public image databases COIL and ALOI [36] for 3-D objects in
rotation and compared to other classification techniques. This
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Figure 5: The datasets used in the experiments.

section summarizes the main results and develops new experi-
ments.

5.1. Image datasets

The datasets used for the experiments, all freely available,
are presented briefly. The diversity of the tested images is il-
lustrated in figure 5 with a couple of views extracted from each
set.

The widely used COIL1 [37] and the more recent ALOI2 [36]
datasets consist of color views of small 3-D objects in rota-
tion on a turntable, taken at a five degree interval. COIL and
ALOI consist respectively of 100 and 1,000 objects, amounting
to 7,200 and 72,000 image views.

The Change Blindness Scenes (CBS)3 dataset has been de-
vised to conduct psychological experiments to compare how
color, object position, and object presence are encoded in vi-
sual memory [38]. CBS has been used to measure the time
it takes for observers to detect small scene changes. This set

1http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
2http://staff.science.uva.nl/ aloi/
3http://wiki.cnbc.cmu.edu/Objects

contains 66 color pictures of real scenes, each of which is sup-
plemented with 2-9 variants (300 views in total) where a small
element in the scene has been altered in color, position, and
presence/absence. The changed versions would look as natural
as the original versions (Figure 6).

MNIST4 is a well-known database of handwritten digits
composed of a training set of 60,000 examples and a test set
of 10,000 examples. The digits have been size-normalized and
centered in a fixed-size image [19].

Flowers collection5 contains more than 8,000 photos of flow-
ers belonging to 102 different categories [39].

Experiments have also been conducted on video sequences
from various sources, including commercials, a movie, and per-
sonal videos. For this experiment, MOVIE is defined with the
first 100,000 frames (66mn) of the The Return of the King6

movie.

4http://yann.lecun.com/exdb/mnist/
5http://www.robots.ox.ac.uk/ vgg/data/flowers/index.html
6The Lord of the Rings: The Return of the King. Dir. Peter Jackson. New

Line Cinema, 2003.DVD.

10



Figure 6: CBS scene (m21055). Variants are based on color or location changes of a minor image element. See the man in the back.

5.2. Internal representation of images
Since the input layer is constant, without adaptation to image

sets, an important verification is the capacity of the network to
represent any image. Internal vector h is an image encoding
which must be significant for any image, and discriminant and
sensitive to small changes. The training and response steps only
use this internal data.

Numerous experiments have confirmed that the internal rep-
resentation is rich, sensitive and discriminant. Properties of this
image mapping are easier to point out with supervised train-
ing tests, but a direct examination gives an interesting insight.
This analysis doesn’t require labeled datasets. After the initial-
ization of an IRF-NN, any picture I can be presented. Vector
h(I) is computed by (6) for gray-level images or (8) for color
images.

Lets consider an initialized IRF-NN of 2,000 neurons and
input some views. The bar graph in figure 3 is an indicator
of the neurons’ activation ranges for samples of 15 images se-
lected in various datasets (CBS, COIL, FLOWERS, VIDEO,
MNIST). For this activation analysis, absolute values are ar-
bitrarily classified in 3 ranges: near-null [0, hmin], unsaturated
[hmin,hmax[, and quasi-saturated [hmax, 1], where thresholds used
are hmin = .1, hmax = .98. The graph verifies that for vari-
ous kinds of pictures, the representation consists of a sufficient
number of neurons in the unsaturated range. Best application
results are generally obtained for a proportion from 5 to 20%.
The exhaustive test verifies that each image has several compo-
nents in the unsaturated range (see section 4.2).

To what extent is vector h sensitive to image details? Let
∆h = |hk − hk+1| be the difference between the representation
of two images k and k + 1. Figure 7 presents two histograms of
∆h for images taken from the CBS dataset. One is for two al-
most identical views (original and minor color variant of scene
m21055 in Figure 6), and the other for views of very different
scenes (m21055 and h17146). As expected, the differences are
small but significant for similar views, and large for different
scenes.
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Figure 7: Histograms of the difference between two h vectors.

In similar views, about 90% of the component values of vec-
tor h are identical. The amplitudes of the other values are
widely distributed and reflect the range of sensitivity of the ran-
dom IRFs, as shown in Figure 8. The figure plots the evolu-
tion of the components for the three variants of scene m21055
shown in Figure 6. Intermediary images are created by linear
combination of these views to outline the changes. To the sake
of readability, only 150 neurons are drawn; among those pre-
senting large amplitude variations, eight are arbitrarily selected
and colored to emphasize the diversity of changes.

The graphs presented here are illustrative. The internal rep-
resentation depends on network parameters, but also on ran-
dom initialization and is therefore not strictly identical for two
networks. Systematic tests are therefore easier to perform on
applications with the whole network, as presented in the next
section.

5.3. Generalization and supervised classification
The most notable property of the IRF representation is the

possibility to realize image classification tasks with a simple
linear operator. This property stems from non-linear mapping
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of inputs in a high-dimensional space and is shared by most
neural networks. But it is well known that its effectiveness is
related to the kernel functions and parameters of the mapping.
The suitability of IRF for images must be experimentally stud-
ied. This section presents some results to illustrate classifica-
tion performances and generalization capacity.

We first need to verify that the network can handle large im-
age sets and can discriminate possibly resembling pictures. The
objective is as well to validate the IRF principle and to verify
the parameters used for an image set. A quick and easy test
is to measure the recognition rate after training and verify that
τlearning = 100%, repeatable for any network initialization. A
first test associates a different class to each view to verify that
the network is able to distinguish them. A preliminary trial on
the 366 CBS views has shown that 44 images cannot be differ-
entiated. It allowed us to detect duplicates and renamed image
files in the dataset. Therefore only 322 views are retained for
this test and are all correctly recognized after training.

Table 1 shows exhaustive tests on all datasets. In this pa-
per most experiments are realized with 2,000 neuron networks.
When the number of views increases, more neurons are neces-
sary to ensure total discrimination. Discussions on the number
of neurons will be detailed in next papers. We just report that
with fewer neurons, some similar views are more frequently
confused. Such confusions appear with MOVIE: about 230
views are not correctly identified with 5,000 neurons. Using
2,000 neurons the misidentifications are about 400; with 30,000
neurons about 20. These confusions are not real errors, they are
all labeled with a previous or next frame (maximum offset = 3
frames for 30,000 and 6 frames pour 5,000 neurons). A suf-
ficient diversity of the representation is needed to distinguish
very similar images. The global result is surprising: although
the movie contains numerous static shots almost all the frames
are discriminated; only totally identical dark images can evi-
dently not be distinguished and are not counted in the test.

The generalization capacity can also be statistically evaluated

with the recognition rate on image sets. Before discussing ex-
haustive result, consider again the previous CBS example and
observe now response vector ŝ. Each component is interpreted
as the probability that the tested image belongs to the corre-
sponding class. Figure 9 plots ŝ values for 5 variants of scene
m21055. The first network (left) has been trained with one view
per scene. Its response for every variant gives a very high prob-
ability (near 1) for label m21055 and near 0 for any other class.
As expected, the figure confirms a suitable generalization. This
example is confirmed for the complete dataset: every view is
correctly associated with the original scene, and the classifica-
tion margins are near 0.9. When the network is trained with
2 independently labeled views of the scene (C2 and P1), score
ŝ shows a perfect recognition of the learned images, and can
approach 0.5 for intermediate views (figure 9 right). This re-
sult is an additional confirmation of the IRF-NN sensitivity and
generalization properties.

Numerous experiments have been systematically realized on
the datasets and give excellent results for recognition of objects
using different views. In the reported tests, the COIL and ALOI
datasets are split in two sets, a learning set composed of 18
photos per object with a 20 degree rotation (25% views of the
dataset), and a testing set composed by all remaining views,
and a testing set composed by all remaining views. Table 2
summarizes the statistical results with recognition rate on the
testing set. It shows very good performance for these tasks.
The network can work with a very large number of classes (or
objects), and a large learning set, as will be illustrated in more
detail with ALOI in a forthcoming paper [35]. The results are
near the state of the art, and largely better for ALOI, which is
remarkable for such a simple architecture.

The computational cost is very competitive. The total dura-
tion of the COIL test7 is about 1 mn and can be detailed: 12s for

7The IRF-NN is implemented with Matlab version 7.12 on an Intel Core i7-
2600 workstation at 3.40Ghz with 16Gb of memory in the Windows 7 64 bits
environment.
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Datasets views IRF neurons confusions Discrimination

CBS 344 2,000 0 100%

COIL 7,200 2,000 0 100%

FLOWERS 8,000 2,000 0 100%

MNIST 60,000 30,000 260±40 99.6%

ALOI 72,000 30,000 0 100%

MOVIE 100,000
5,000 230±40 99.7%

30,000 22±4 99.98%

Table 1: Discrimination of views by IRF-NNs. All experiments are repeated with 20 randomly initialized networks.
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Figure 9: Neural response (blue points) for variant views of m21055. Left: Network trained with 1 view of each the 66 scenes. Right: training with 2 views. Red
line : min and max response for other classes.

the loading of the images, 1.8 s for the initialization of the 1,800
neurons; 15 s for the training of the 1,800 images; 34 s for the
test of 5,400 images. With 9,000 neurons for the ALOI dataset,
the total duration is 25mn. As a comparison, the same test with
SalBayes take several hours and a SIFT approach hundreds of
hours [40].

5.4. Novelty detection

The IRF-NN has an interesting supplementary property: it
can distinguish a known image from an unknown one [7]. A
novel image induces a network response that differs signifi-
cantly from the one observed for views similar to the learning
set. Analysis and combination of some simple criteria like clas-
sification margins and empirical standard deviation of vector ŝ
can be used to score novelty or déjà vu for any image. This
property is efficient when the number of classes is sufficiently
large, but the training can be realized with just some examples
of each class, without need of extension or negative examples.

This property widens the potential applications of the net-
work considerably. Classification of views can be completed
with an unknown response for inputs that do not correspond to
any image of the training set. The technique can also be used
to score a sliding window which scans a large picture to detect
and localize objects. Localization of known objects in a com-
plex scene is very efficient and precise. The IRF-NN provides
the possibility to find in a single scan a lot of very different
objects and label them.

6. Conclusions and perspectives

The IRF-NN is a variant of feedforward neural network de-
signed to learn images. The current version is composed of a
single internal layer where each neuron is connected to every
pixel of the image through weighted links. The original idea is
to compute the weights of each neuron as a 2-D Gaussian func-
tion of pixel positions. One weight vector is defined by a dozen
of degrees of freedom that set position, radius, magnitude, and
color sensitivity of the neuron. These parameters are randomly
initialized and remain constant. Each neuron has therefore a
localized sensitivity to image components and its response de-
pends on a non-linear (sigmoid) function, bearing likeness to
receptive fields observed in biology.

A very large number of neurons and random initialization
of their receptive fields map the images in a high-dimensional
space. The internal activation vector is sufficiently rich and sen-
sitive to represent any image. The presented results show that
this representation is specific, discriminant for similar views but
induces also neighborhood properties when the images present
small differences. Interestingly, the neighborhood is effective
for various variations in the image: change of position, size or
deformation of elements, modification of colors, etc. A large
enough IRF-NN can recognize a thousand objects in rotation
after training with some example views of each. It can discrim-
inate more of 100,000 photographs or video frames.

The algorithms are simple and fast. The large internal layer
obviates adaptation of receptive fields to the image set. The
IRF-NN supervised training only adapts the output weights, as

13



Dataset
# of classes Learning Test # of Rate of class State of art

(or objets) set set Neurons recognition results

CBS 66 66 278 2,000 100% -

COIL 100 1,800 5,400 1,000 99.5% 99.9% [41]

MNIST 10 60,000 10,000 7,500 98.6% 99.8% [42]

ALOI 1,000 18,000 54,000 9,000 99.8% 89.6% [40]

Table 2: Recognition of classes (or objects) after training with a labeled training set

ELM networks. The learning algorithm can use a single lin-
ear multivariable regression that is very fast, simple, without
iterations or local minima problems. The paper details the pa-
rameters and options, and shows that implementation and con-
figuration is very easy.

The approach introduces a flexible use of learning in the field
of image analysis both for recognition of views and for local-
ization in larger scenes. The internal representation can be used
with other classification algorithms; current evaluations show
that a few are faster but the described linear technique give al-
ways better results and never diverges. Various improvements
are under study to accelerate the computations, to work with
more pictures, and to extent applications.
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