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Abstract 

In this work a simple chemical method for depositing cobalt hexacyanoferrate (CoHCF) films has been 

developed. The films have been prepared by successive immersion of the fluorine doped glass substrates (FTO) 

into an acidic aqueous solution of CoCl2 and K4[Fe(CN)6]. The characterization of the films with X-ray 

diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) showed that the 

films have crystalline structure. The electrochemical properties of the films were characterized by cyclic 

voltammetry. Obtained films exhibited electrochromism, changing colour reversibly between transparent and 

brown. Visible transmittance spectra of CoHCF films in their bleached and coloured states were recorded in-

situ. Those spectra were used to estimate the optical band gaps. The dependence of the optical density on charge 

density was examined and used to calculate the colouration efficiency. The response times of the colouring and 

bleaching to an abrupt potential change from -2 V to +2 V and reverse were also examined. The maximum light 

intensity modulation ability of the films and saved energy, when the AM 1.5 spectrum is taken as an input, were 

calculated to be 55% and 243.56 Wm-2, respectively, which makes this films suitable for application in 

electrochromic devices. 
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1. Introduction  

The ability of some materials to change reversibly their colour effected by the redox reactions, is known as 

electrochromism. Generally, electrochromic materials displayed distinct visible reversible colour changes 

between a transparent (bleached) and a coloured states, or between two coloured states, but there are also 

materials that exhibit several colours and are termed polyelectrochromic [1,2]. 

Over the past decade, a large number of scientific papers and patents have been issued in the field of 

electrochromism due to the increased research activity of the many scientists worldwide. 

To date, a variety of applications of electrochromic materials such as smart windows for buildings and vehicles 

[3-6], sunglasses [7], antiglare mirrors [8], displays [9] and camouflages [10] have been widely researched. 

Especially, smart window represents a promising energy saving electrochromic device in green building to 

reduce the power consumption for lighting and air conditioning [11-13]. 

The research field of electrochromic compounds is very broad and includes the both organic and inorganic 

materials. Viologens, conducting polymers, metallopolymers and phtalocyanines are common organic 

electrochromic materials [14], while transition metal oxides and metal hexacyanometallates are common 

inorganic electrochromic materials [15]. 

In recent years, transition metal hexacyanoferrates, have raised renewed and growing interest not only because 

of their electrochromic properties [16-18], but also because of the peculiar properties such as electrocatalysis 

[19-21], ion exchange properties [22, 23], charge storage capabilities [24-26], and magnetic properties [27,28]. 

Transition metal hexacyanoferrate refers to Prussian blue (PB) [29, 30] and its analogs (PBAs) [18, 22]. They 

belong to mix-valence compounds which could be expressed with the generic formula, AxMk[Fe(CN)6]y·mH2O, 

where M is transition metal, A is alkali metal counter-cation necessary to ensure the electro neutrality, x, k, and 

y are stoichiometric coefficients, and m indicates the number of water molecules intercalated in the structure 

[31]. 

Among the PBAs, cobalt hexacyanoferrate (CoHCF) is considered as an attractive material because of the 

interesting physicochemical properties such as electrochromism, termochromism, photochemical magnetism, 

and ectrocatalytic and sensing properties. CoHCF has general chemical formula AxCo[Fe(CN)6]y except for the 

crystal water. As an electrochromic material, CoHCF has unique properties with colour changes dependent not 

only on its oxidation state, but also on the nature of counter cations incorporated in it during electro reduction 

[28]. On the other hand, the colour of the oxidized state of CoHCF depends on its chemical composition. It is 

known that CoHCF has two oxidized states with different spin configurations: AxCoIII[FeII(CN)6]y (blue), and 

AxCoII[FeIII(CN)6]y (red). With mixed oxidized state, CoHCF exhibits a brown-bleached colouration change 

[18]. 

CoHCF films were mostly prepared by different variations of electrochemical method [32-36], although 

chemical deposition was also reported [36]. The electrochromic properties of CoHCF thin films depend on their 
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structural, morphological and compositional characteristics, which, on the other hand, depend on the deposition 

method and deposition conditions [37]. 

The aim of this work is to investigate electrochromic properties of CoHCF thin films prepared by a new simple 

chemical deposition method, and their possible application in electrochromic devices for solar light modulation. 

2. Experimental 

Prior the deposition, the substrates were degreased with hexane and then acetone. In the next step they were 

cleaned with detergent, alkaline solution, hydrochloric acid, and finally rinsed with deionized water and dried in 

air. 

2.1. Preparation of the deposition solutions 

Two stock aqueous solutions of cobalt(II) chloride and potassium hexacyanoferrate(II) with volumes of 100 cm3 

were prepared. The 0.1 M cobalt(II) chloride solution was prepared by weighing out 2.379 g of cobalt(II) 

chloride hexahydrate, dissolving it in100 mL volumetric flask in approximately 50 mL deionized water, and 

after dissolving, it was diluted up to desired volume of 100 mL. The 0.1 M stock solution of potassium 

hexacyanoferrate(II) with volume of 100 mL was prepared in a similar way by dissolving 4.224 g of potassium 

hexacyanoferrate(II) trihydrate in about 50 mL deionized water in 100 mL volumetric flask, and after 

dissolving, it was diluted up to 100 mL. 

The chemical deposition of the cobalt(II) hexacyanoferrate thin films is carried out from two solutions. One of 

the solutions is prepared by mixing 30 mL 0.1 M aqueous solution of CoCl2, 60 mL H2O and 20 mL 3 M HCl in 

150 mL laboratory beaker. The second solution is also aqueous solution prepared by mixing 30 mL 0.1 M 

K4[Fe(CN)6], 60 mL H2O and 20 mL 3 M HCl in 150 mL laboratory beaker. 

2.2. The deposition of thin films 

The chemical deposition is carried out at room temperature by successive immersion of the  substrate into two 

solutions. The experimental variables, such as pH, concentration, number of immersions, were optimized in 

pursuance of the best quality of the thin films.  Prior to the deposition, 20 mL of each deposition solution was 

transferred to 25 mL laboratory beaker. Previously clean substrate was immersed into one solution and after 2 to 

3 s in the other solution where it stays for the same time. These two immersions are count as one deposition 

cycle. The film thickness increases by increasing the number of deposition cycles. The final film thickness can 

be control and determined by counting the immersions of the substrate into one of the solutions. Throughout the 

deposition process the solution of CoCl2 become pale pink, the K4[Fe(CN)6] solution become greenish, and the 

formed films are transparent. During the deposition after the tenth and then after each twentieth deposition cycle 

the substrate was rinse with water and gently rub down the thin film with a piece of cotton. This is necessary in 

order to provide cleaning of the surface by removing weakly sticking microcrystals and obtaining transparent 

films. At the end of the deposition the thin films were rinsed with water, rub down with cotton again, washed 

with deionized water and dried at ambient conditions. The as deposited thin films were transparent. The research 
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study was conducted with two kind of samples prepared with 100 and 200 deposition cycles and these 

corresponds on two thickness 370 and 690 nm respectively. The average increase in the growth in the film 

thickness in one deposition cycle was calculated to be about 3.6 nm. It can become higher if one uses higher 

concentrations of cobalt(II) chloride and potassium hexacyanoferrate(II) in their solution, but in that case the 

film will contain powder-like deposit. 

2.3. Characterization of the thin films 

Commercially available fluorine doped tin oxide (FTO) - coated glass with dimensions of 50 x 20 mm and 

electric resistance of 10-20 Ω·cm-2 were used as substrates. The XRD patterns of the thin films were recorded by 

Rigaku Ultima IV X-ray powder diffraction (XRPD) instrument. CuKα radiation was used in the 2θ range of 5º-

70º. The thickness and the surface morphology of the thin films was observed by Tescan, Vega 3LMU Scanning 

Electron Microscope. AFM micrographs were taken using Shimadzu Scanning Probe Microscope SPM-9700 in 

dynamic mode at room temperature. The chemical identification was conducted using Oxford X-act EDS. The 

samples for SEM and EDS analysis were gold coated by Quorum, Q150R ES Rotary Pumped Coating System. 

The electrochemical measurements were carried out with cyclic voltammetry using a micro AUTOLAB II 

equipment (Eco-Chemie, Utrecht, Netherlands) in the potential range between −0.7 and −0.2 V. The 

electrochemical properties of the thin films were examined in 1M KCl aqueous electrolyte in conventional three 

electrode system consisting of CoHCF film/FTO as working electrode, Pt wire as counter electrode and KCl-

saturated Ag/AgCl as reference electrode. 

The optical spectra of the thin films, in their bleached and coloured states, were recorded in-situ by a Varian 

Cary 50 Scan spectrophotometer ranging from 350 to 900 nm. The working voltages in the range of ±2.0 V were 

applied. The electrochromic, glass, home-made cell was used as a two electrode system. One electrode was a 

substrate with a thin film and the other electrode was a blank FTO substrate. The distance between the two 

electrodes in the cell was about 1 cm and 1M KCl aqueous solution was used as an electrolyte (~30 ml). The 

active surface area of the electrodes was about 8 cm2. An electrochromic cell with two clean FTO substrates 

filled with electrolyte was measured as 100 % background. Sequential potential switching measurements were 

carried out for response time (τ ) calculations. 

All reagents used during the experiments and the analysis were of analytical grade purity. 

All as-deposited thin films with different thickness have passed an adhesiontape test. 

3. Results and Discussion 

The CoHCF films prepared by chemical deposition method exhibited electrochromism. They were transparent 

in reduced state, and had a brown colour in oxidation state (Fig. 1). 

Fig. 2 shows the diffraction patterns of the blank FTO substrate and CoHCF film deposited on FTO substrate. 

Diffraction peaks at: 17.62°, 25.02°, 35.58°, 40.06°, and 44.04° 2Θ values belong to CoHCF (JCPDS No. 82–



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 40, No  1, pp 242-257 

246 
 

2284), and the other intensive peaks, denoted with asterix, belongs to FTO substrate.  As can be seen, all the 

peaks related to CoHCF represent a typical face-centered cubic (fcc) structure [38]. From the diffractogram, the 

lattice constant was evaluated as 10.07 Å. This value of the lattice constant lies between the values of the 

Co(III)-Fe(II) state  and the Co(II)-Fe(III) state, implying the mixed valence structure [18]. 

  

Figure 1: Photographs of chemically deposited CoHCF film in bleached and coloured states. 

 

Figure 2: X-ray diffraction patterns of the blank FTO substrate and CoHCF film deposited on FTO substrate. 

 

Figure 3: SEM microphotograph of the chemically 

deposited CoHCF film. 

 

Figure 4: Two-dimensional AFM image of chemically 

deposited CoHCF film. 
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The surface morphology of CoHCF films was investigated using scanning electron microscope (SEM). The 

SEM microphotograph shown in Fig. 3 illustrates two dimensional image of film that has a rough surface and is 

formed of well-defined crystallites or crystal clusters with dimensions between 50 – 350 nm. The same results 

were obtained from the AFM microphotograph (Fig. 4). 

The electrochemical properties of the CoHCF films were characterized by cyclic voltammetry (CV) 

measurements. Fig. 5 presents cyclic voltammograms of the CoHCF films with two different thicknesses (370 

and 690 nm). The cycling was carried in 1M KCl aqueous solution in a potential range from -0.7 V to -0.2 V 

and back to -0.7 V. The potential scan rate was a 10 mV/s, and the films working area was 1 cm2. As shown in 

Fig 5, both films showed a clear redox reaction, indicating switching between reduced Co(II)-Fe(II) 

(transparent) state and Co(III)-Fe(II)/Co(II)-Fe(III) (coloured) state [18]. The diffusion coefficients through the 

anodic and cathodic cycles were estimated by the Randles-Sevcik equation [42]: 

21212351072.2 vCDnip ⋅⋅= ⋅⋅⋅
 

(1) 

Where pi  is the peak current density in A cm-2 from cyclic voltammogram, n is the number of electrons 

transferred in the redox event, which is assumed to be unity, D is diffusion coefficient in cm2 s-1, C is the 

electrolyte concentration in mol cm-3, and v is potential scan rate in mVs-1. The values of the electrochemical 

parameters determined from the CV curves (anodic, ipa and cathodic, ipc peak current density as well as the 

diffusion coefficient) are presented in Table 1. The diffusion coefficients are higher for the oxidation (colouring) 

than reduction (bleaching) process, which means that the deintercalation of the K+ ions from the films goes 

faster than intercalation. 

 

Figure 5: Cyclic voltammograms for 370 nm and 690 nm thick CoHCF films. 
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Table 1: Electrochemical parameters for chemically deposited CoHCF films. 

Film thickness (nm) 
pai  (mA cm-2) pci  (mA cm-2) Diffusion coefficient 

 Da (10-9 cm2s-1) Dc (10-9 cm2s-1) 

370 1.73 -1.30 4.07717 2.30226 

690 1.51 -1.16 3.10614 1.83309 

 

The optical transmission spectra of the CoHCF films in the wavelength range from 350 to 900 nm in both, 

bleached and coloured states, taken in-situ, are presented in Fig. 6. As can be seen, maximum transmittance 

difference (about 50% for 370 nm thick films and 60% for the 690 nm thick films) occurs at around 450 nm. 

 

Figure 6: Visible transmittance spectra of chemically deposited CoHCF thin films: (a) and (c) for 370 nm film – 

bleached and coloured states respectively; (b) and (d) for 690 nm film – bleached and coloured states 

respectively. 

The visible transmittance spectra were used for calculation of the optical band gaps gE of the CoHCF film. For 

that purpose, the absorption coefficient (α ) was estimated from the transmittance data (T) and the film 

thickness (t) [39, 40]: 

Tt

1
ln

1
=α   (2) 

The optical band gaps of the film were calculated from the absorption coefficient by fitting the data to the 

relation: 
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Where B is a constant, νh  is the energy of the incident photon, gE  is the optical energy gap, and m is a 

number which determines the type of electron transition causing the absorption. The value of m is 21  for direct 

allowed, 23  for direct forbidden, 2 for indirect allowed, and 3 for indirect forbidden transitions.  

The plots of ( )2hvα  versus νh  for the chemically deposited CoHCF films in both, the coloured and bleached 

states, are presented in Fig. 7a (for the 370 nm thick film) and Fig. 7b (for the 690 nm thick film). The films 

showed direct electron transition mechanism in both states (bleached and coloured) of the film. The optical 

energy gaps were calculated from the linear parts in the Fig. 7, as intercepts with the photon energy axes. 

 

 

Figure 7: The plots of ( )2
hvα  versus photon energy for chemically deposited CoHCF films: (a) 370 nm, and (b) 

690 nm thick film. 

The obtained results for the optical energy gaps of the films in their bleached and coloured states are presented in 

Table 2. The presence of two band gaps in the coloured (oxidized) state of the films could be ascribed to 

coexisting of both oxidized states with different spin configurations: AxCo3+[Fe2+(CN)6]y (Co(III)-Fe(II)) and 
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AxCo2+[Fe3+(CN)6]y (Co(II)-Fe(III)). 

Table 2: The optical band gaps estimated from Figure 7 

Film thickness (nm) Eg (bleached) (eV) R2 Eg (coloured) (eV) R2 

370 3.001 0.998 2.148 1.785 0.998 0.997 

690 3.019 0.997 2.145 1.791 0.99750 0.999 

 

An important parameter for the characterization of electrochromic films is the colouration efficiency, which 

determines the amount of optical density change ( ODD ) induced as a function of the injected/ejected charge 

( )QD .It is given by the equations [41]: 

( )
Q

OD
A

D

D
=η

 
 (4) 

and 

( )
c

b

T

T
OD ln=D

 
 (5) 

Where η  is the colouration efficiency at given  Tb and  Tc are the bleached and coloured transmittance 

values, respectively, QD  is the injected/ejected charge during the colouration process, and A is the active area 

of the electrochromic film. In this work, the colouration efficiency was calculated from ( )ODD  at 550 nm and 

( )AQD , during the colouration, after the film was fully bleached. 

 

Figure 8: The dependence of the optical density on the charge density at 550 nm for 370 and 690 nm thick film. 
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Electrochromic colouration efficiency (η ) was determined from the plot of the optical density change against 

the charge per unit area ( AQ ), displayed in Fig. 8. The colouration efficiency at 550 nm was extracted as the 

slope from the line fitted to the linear part of the curve. The calculated η  values were found to be 24.6 cm2 C-1 

and 13.1 cm2 C-1 for the 370 nm and 690 nm films respectively. Similar values were referred in [42]. 

In order to determine the response time, the time dependence of transmittance due to the abrupt potential 

switching between ± 2V was recorded in-situ and presented in Fig. 9. 

 

Figure 9: The time response of the transmittance at 550 nm of the 370 nm and 690 nm thick CoHCF films. 

The response time τ was determined as the time needed for the film to reach 80% of the final change in the 

transmittance. According to this criterion, the response time was found to be 50 s for colouring, and 57 s for 
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coloured states [43]. The irradiance of the solar spectrum AM 1.5 [44] and the transmittance spectra of the 
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Where Tb and Tc are transmittance at the bleached and the coloured states, respectively, ( )λI  is solar irradiation 

intensity at a specific wavelength (W m-2 nm-1). 

 

Figure 10: Spectral intensity of the transmitted AM 1.5 solar irradiance spectrum trough the CoHCF film in the 

bleached and coloured states 

The solar energy is calculated by integrating the solar intensity within the wavelength ranging from 350 nm to 

900 nm, and the difference between the integrated intensities in the bleached and the coloured state is deemed as 

saved energy [45]. The results of the numerical integration for the spectral intensity within the visible region 
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As can be seen in the Table 3, the estimated integrated intensity modulation and saved energy are 55% and 

243.56 Wm-2, respectively. These considerable values give the opportunity for implementation of the chemically 

deposited CoHCF films in electrochromic devices for solar light modulation. 

4. Conclusions 

CoHCF films were successfully prepared onto FTO coated glass substrates by chemical deposition method. The 

described method is economical, not requires sophisticated equipment, and offers a possibility for large area 

depositions. The chemicals are available and relatively cheap. X-ray, SEM-EDS and AFM analysis show that 

the films have a rough surface and are formed of well defined crystallites or crystal clusters with dimensions 
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between 50-350 nm. The obtain films exhibited good electrochromic properties. They were stable and exhibited 

good reversibility, with colour changed from originally transparent to brown colour when positive potential was 

applied, and back to transparent when potential was reversed. The optical and electrochromic properties of the 

films are convenient for visible light intensity modulation applications. The maximum difference in the 

transmittance between the transparent and coloured states was found to be more than 50% at 450 nm. Optical 

energy gaps were estimated from the transmittance measurements for the both, transparent and coloured states 

of the films, assuming direct semiconductor transition mechanism. The colouration efficiency was found to be 

less than 25 cm2 C-1 with tendency to decrease with the film thickness. The switching times between transparent 

and brown states were found to be 50 s (370 nm film) and 64 s (690 nm film) for colouring, and 57 s for 

bleaching, for the both films. The maximum light intensity modulation ability of the films and saved energy 

were calculated to be 55% and 243.56 Wm-2, respectively, which makes chemically deposited CoHCF suitable 

for application in electrochromic devices. 
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