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Abstract 

Ridge Regression and Robust Regression Estimators were proposed to deal with the problem of 

multicollinearity and outlier in a classical linear regression model respectively. This paper proposes a robust 

ridge regression estimator (RRR) for solving the problem of multicollinearity and outlier in a classical linear 

regression model simultaneously.  The technique of the estimator requires using the robust estimators (M, MM, 

S, LTS, LAD, LMS) to estimate the ridge parameter instead of using the Ordinary Least Squares (OLS) 

estimator. The Robust Ridge Estimators performed better than OLS and the Ordinary Ridge Regression (ORR) 

estimator when data set suffers from both problems. Mean Square Error was used as a criterion for examining 

the performance of these estimators. Result was achieved by the application of the proposed estimator to a data 

set having the two problems. 
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1. Introduction 

Linear regression model routinely assesses the degree of relationship between one dependent variable and a set 

of explanatory variables. The Ordinary Least Squares (OLS) Estimator is most popularly used to estimate the 

parameters of regression model. The estimator has some very attractive statistical properties which have made it 

one of the most powerful and popular estimators of regression model. The performance of OLS estimator is 

inefficient in the presence of multicollinearity. The regression coefficients possess large standard errors and 

some even have the wrong sign Gujarati [8]. In literature, there are various methods existing to solve this 

problem. Among them is the ridge regression estimator first introduced by Hoerl and Kennard [11]. Ridge 

Regression Estimator has a smaller MSE than OLS estimator. 

Consider the standard regression model: 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖                                                                                                                                              (1)                                 

X is an n× 𝑝𝑝 matrix with full rank, Y is a n× 1 vector of dependent variable, 𝛽𝛽 is a p× 1 vector of unknown 

parameters, and 𝜖𝜖 is the error term such that E(𝜖𝜖) = 0 and 𝐸𝐸(𝜖𝜖𝜖𝜖 ′)=𝜎𝜎2𝐼𝐼. 

The OLS estimator is defined as: 

𝛽̂𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌                                                                                                                                     (2)                                      

While the ridge estimator is defined as: 

𝛽̂𝛽 = (𝑋𝑋′𝑋𝑋 + 𝐾𝐾𝐾𝐾)−1𝑋𝑋′𝑌𝑌                                                                                                                           (3)                                  

Where K is a scalar ridge parameter. 

Another common problem in a regression model is problem of outlier and non-normality of error term. Robust 

regression estimator is an important estimation technique for analyzing data that are contaminated with outliers 

or data with non normal error term. It can be used to detect outliers and to provide resistant (stable) results in the 

presence of outliers. These include M estimation proposed by Huber [13], LTS estimation by Rousseeuw [24], S 

estimation by Rousseeuw and Yohai [23], and MM estimation proposed by Yohai [29].  

Inevitably, these two problems can exist together in a data set; see for instance [12]. When both problems exist 

then robust ridge regression (RRR) estimator proposed in this paper is suggested. This has also attracted the 

attention of some researchers. Holland [12] proposed robust M-estimator for ridge regression to handle the 

problem of multicollinearity and outliers. Askin and Montgomery [3] proposed ridge regression based on the M-

estimates. It is computed using weighted least squares procedures. Walker [27] modified Askin and 

Montgomery’s approach to allow the use of GM estimators instead of M estimators. Simpson and Montgomery 

[26] proposed a biased-robust estimator that uses a multistage GM estimator with fully iterated ridge regression 
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to control both influence and collinearity in the regression data set. Pfaffenberger & Dielman [22] combines 

least absolute value estimator with Ridge to proposed Ridge Least Absolute Value Estimator. Silvapulle [25] 

proposed a new class of ridge type M estimators obtained by using M estimators instead using OLS estimators. 

Arslan & Billor [4] proposed two alternative ridge type GM estimators to handle multicollinearity and outliers 

simultaneously. Authors in [28] introduced a robust regression estimator that performs well regardless of the 

quantity and configuration of outliers. Habshah and Marina [9] proposed Ridge MM estimator (RMM) by 

combining the MM estimator and ridge regression. Hatice and Ozlem [10] proposed robust ridge regression 

methods based on M, S, MM and GM estimators. Maronna [19] proposed robust MM estimator in ridge 

regression for high dimensional data. 

In this study, ridge regression methods based on M, S, MM, LTS, LAD and LMS estimators are examined in the 

presence of both outliers and multicollinearity. Mean Square Error was used as a criterion for examining the 

performances of these estimators. The data sets used in this study was extracted from the study of Hussein and 

Ahmed [14]. 

2. Materials and Methods 

2.1 Ridge Regression 

The concept of ridge regression was introduced by Hoerl and Kennard [11]. Ridge regression is a method of 

biased linear estimation which has been shown to be more efficient than the OLS estimator when data exhibit 

multicollinearity. It reduces multicollinearity by adding a ridge parameter, K, to the main diagonal elements of 

X'X, the correlation matrix. The ridge estimator is defined in (3) such that 𝐾𝐾 ≥ 0.  In literature several 

techniques for estimating the Ridge parameter K have been suggested by different researchers. Among them are 

[11,18,17,6,7,15,16,1,2,21,20]. 

In this study, the ridge parameter by Kibria [15] is used. It is defined as: 

𝐾𝐾�𝐺𝐺𝐺𝐺 = 𝜎𝜎2

�∏ 𝛼𝛼𝑖𝑖2𝑝𝑝
𝑖𝑖=1 �

1
𝑝𝑝
                                                (4)                                                                                                                                           

𝜎𝜎2 and 𝛼𝛼𝑖𝑖2 are generally unknown. Hoerl and Kennard in [11] suggested the replacement of 𝜎𝜎2 and 𝛼𝛼𝑖𝑖2 by their 

corresponding unbiased estimators  𝜎𝜎� 2𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼�𝑖𝑖2 where 𝜎𝜎�2 =
∑ 𝑒𝑒𝑖𝑖

2𝑛𝑛
𝑖𝑖=1
𝑛𝑛−𝑝𝑝

. 

2.2 Robust Estimators 

2.2.1 M Estimators 

The most common general method of robust regression is M-estimation, introduced by Huber [13]. It  is nearly 

as efficient as OLS. Rather than minimize the sum of squared errors as the objective, the M-estimate minimizes 

a function ρ of the errors. The M-estimate objective function is 
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1 1

ˆ
min min

n n
i i i

i i

e y X
s s

βρ ρ
= =

 ′−  =        
∑ ∑

                                                                        (5)                                                                                                 
 

Where s is an estimate of scale often formed from linear combination of the residuals. The function ρ gives the 

contribution of each residual to the objective function. A reasonable ρ should have the following properties: 

ρ(e)≥0, ρ(0)=0,ρ(e)=ρ(-e), and ( ) ( )i ie eρ ρ ′≥  for i ie e′≥  

the system of normal equations to solve this minimization problem is found by taking partial derivatives with 

respect to β and setting them equal to 0, yielding, 

   
1

ˆn
i i

i
i

y X X
s

βψ
=

 ′−
  
 

∑ =0                                                         (6) 

Where ψ  is a derivative of ρ. The choice of the ψ  function is based on the preference of how much weight to 

assign outliers. Newton-Raphson and Iteratively Reweighted Least Squares (IRLS) are the two methods to solve 

the M-estimates nonlinear normal equations. IRLS expresses the normal equations as: 

                 ˆX WX X Wyβ′ ′=                                                                                                    (7)                                             

2.2.2 S Estimator 

Rousseeuw and Yohai [23] introduced S estimator which is derived from a scale statistics in an implicit way, 

corresponding to s (θ) where s(θ) is a certain type of robust M-estimate of the scale of the residuals 

𝑒𝑒1(𝜃𝜃), … , 𝑒𝑒𝑛𝑛(𝜃𝜃). They are defined by minimization of the dispersion of the residuals:  minimize S 

(𝑒𝑒1(𝜃𝜃), … , 𝑒𝑒𝑛𝑛(𝜃𝜃�) with final scale estimate  𝜎𝜎� = S( 𝑒𝑒1(𝜃𝜃), … , 𝑒𝑒𝑛𝑛 (𝜃𝜃�)). The dispersion 𝑒𝑒1(𝜃𝜃), … , 𝑒𝑒𝑛𝑛(𝜃𝜃�) is defined as 

the solution of    

                                                     1
𝑛𝑛
∑ 𝜌𝜌 �𝑒𝑒𝑖𝑖

𝑠𝑠
� = 𝑘𝑘𝑛𝑛

𝑖𝑖=1                                   (8) 

K is a constant and 𝜌𝜌 �𝑒𝑒𝑖𝑖
𝑠𝑠
� is the residual function. Rousseeuw & Yohai  suggested Tukey’s biweight function  

given by: 

  

2 4 6

2 4

2

2 2 6( )

6

x x x for x c
c cx

c for x c
ρ


− + ≤= 

 >                                                                                  (9) 

Setting c=1.5476 and K=0.1995 gives 50% breakdown point (Rousseeuw & Leroy, 1984). 
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2.2.3 MM Estimator 

MM-estimation is special type of M-estimation developed by Yohai [29]. MM-estimators combine the high 

asymptotic relative efficiency of M-estimators with the high breakdown of class of estimators called S-

estimators. It was among the first robust estimators to have these two properties simultaneously. The MM refers 

to the fact that multiple M-estimation procedures are carried out in the computation of the estimator. Yohai 

described the three stages that define an MM-estimator: 

Stage 1  A high breakdown estimator is used to find an initial estimate, which we denote 𝛽𝛽� . the 

estimator need to be efficient. Using this estimate the residuals, 𝑟𝑟𝑖𝑖(𝛽𝛽) = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽� are 

computed. 

Stage 2 Using these residuals from the robust fit and  1
𝑛𝑛
∑ 𝜌𝜌 �𝑟𝑟𝑖𝑖

𝑠𝑠
� = 𝑘𝑘𝑛𝑛

𝑖𝑖=1  where k is a constant and the 

objective function 𝜌𝜌, an M-estimate of scale with 50% BDP is computed. This s 

(𝑟𝑟1�𝛽𝛽��, … , 𝑟𝑟𝑛𝑛�𝛽𝛽��) is denoted 𝑠𝑠𝑛𝑛 . The objective function used in this stage is labeled  𝜌𝜌0. 

 

Stage 3 The MM-estimator is now defined as an M-estimator of 𝛽𝛽 using a redescending score 

function, 𝜑𝜑1 (𝑢𝑢) = 𝜕𝜕𝜌𝜌1 (𝑢𝑢)
𝜕𝜕𝜕𝜕

 , and the scale estimate 𝑠𝑠𝑛𝑛  obtained from stage 2. So an MM-

estimator 𝛽̂𝛽 defined as a solution to  

                                                   ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝜑𝜑1(𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖

𝑇𝑇𝛽𝛽�

𝑠𝑠𝑛𝑛
)=0         j=1,…, p.                                           (10)                                                                                    

2.2.4  LTS Estimator  

Rousseeuw [24] developed the least trimmed squares (LTS) estimation method. Extending from the trimmed 

mean, LTS regression minimizes the sum of trimmed squared residuals. This method is given by, 

       𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿  = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                                                                                                (11)    
          

where 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) = ∑ 𝑒𝑒𝑖𝑖2ℎ
𝑖𝑖=1   such that 𝑒𝑒(1)

2 ≤ 𝑒𝑒(2)
2 ≤ 𝑒𝑒(3)

2 ≤ ⋯ ≤ 𝑒𝑒(𝑛𝑛)
2  are the  ordered squares residuals and h is 

defined in the range 𝑛𝑛
2

+ 1 ≤ ℎ ≤ 3𝑛𝑛+𝑝𝑝+1
4

, with n and p being sample size and number of parameters 

respectively. The largest squared residuals are excluded from the summation in this method, which allows those 

outlier data points to be excluded completely. Depending on the value of h and the outlier data configuration. 

LTS can be very efficient. In fact, if the exact numbers of outlying data points are trimmed, this method is 

computationally equivalent to OLS.  
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2.2.5 LMS Estimator 

The least median of squares (LMS) estimator is defined as the p-vector 

𝛽̂𝛽𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                                                                                                (12)                                                          

              Where 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿 (𝛽𝛽) = 𝑒𝑒ℎ2  such that 𝑒𝑒(1)
2 ≤ 𝑒𝑒(2)

2 ≤ 𝑒𝑒(3)
2 ≤ ⋯ ≤ 𝑒𝑒(𝑛𝑛)

2  are the ordered squares 

residuals and h is defined in the range 𝑛𝑛
2

+ 1 ≤ ℎ ≤ 3𝑛𝑛+𝑝𝑝+1
4

. The breakdown value for the LMS estimate is also  

𝑛𝑛−ℎ
𝑛𝑛

. However the LTS estimate has several advantages over the LMS estimate. 

2.2.6 LAD Estimator 

Least Absolute Value (LAV) regression is also known by several other names, including Minimum Absolute 

Deviation regression, Least Absolute Deviation (LAD) regression, and Minimum Sum of Absolute Errors 

regression Dielman [5] developed the LAD estimator which  minimizes the sum of the absolute values of the 

residuals with respect to the coefficient vector b:  

   𝑚𝑚𝑚𝑚𝑚𝑚∑ |𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑏𝑏|𝑛𝑛
𝑖𝑖=1 .                                                                                         (13)            

A property of the LAD estimator is that there are K residuals that are exactly zero. LAD is robust to an outlier in 

the y-direction. However, LAD estimator does not protect against outlying x (leverages). 

2.3 Robust Ridge Regression 

This is a combination of ridge and robust regression to handle the problem of multicollinearity and outliers 

simultaneously. This will dampen the effects of both problems in a classical linear regression model. To 

compute Robust Ridge Estimator, the formula used is: 

𝛽̂𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑋𝑋′𝑋𝑋 + 𝐾𝐾𝑅𝑅𝐼𝐼)−1𝑋𝑋′𝑌𝑌                                                                                                     (14) 

Where 𝐾𝐾𝑅𝑅  is called the robust ridge parameter. It is obtained from robust regression methods instead of using 

OLS. This will be computed as given above, only that   𝜎𝜎� 2𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼�𝑖𝑖2 are replaced with 𝜎𝜎�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2  𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2  

respectively.  

2.4 Data Used in this Study 

Data set taken from Hussein and Ahmed [14] was used to examine the performance of the considered 

estimators. This contains three (3) regressors and one (1) response variable. 
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 2.5 Criterion for Investigation 

 To investigate whether the ridge estimator is better than the OLS estimator, the MSE was calculated using the 

following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝛽̂𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � = 𝜎𝜎�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 ∑ 𝑡𝑡𝑖𝑖
(𝑡𝑡𝑖𝑖+𝐾𝐾)2

𝑝𝑝
𝑖𝑖=1 + 𝐾𝐾2 ∑ 𝛼𝛼𝑖𝑖

2

(𝑡𝑡𝑖𝑖+𝐾𝐾)2
𝑝𝑝
𝑖𝑖=1                                                         (15)                                                                     

       𝑀𝑀𝑀𝑀𝑀𝑀�𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂� = 𝜎𝜎�2 ∑ 1
𝑡𝑡𝑖𝑖

𝑝𝑝
𝑖𝑖=1                                                                           (16) 

Where 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑝𝑝  are the eigenvalues of 𝑋𝑋′𝑋𝑋, K is the ridge parameter obtained from OLS and robust estimates. 

𝛼𝛼𝑖𝑖 is the ith element of the vector 𝛼𝛼 = 𝑄𝑄′𝛽𝛽. 

3. Results and Discussion 

The model does not include the intercept term because the data was standardized. The results of robust 

diagnostic check of the data as shown in Table 1 revealed the presence of outliers and leverages. The following 

observations: 12, 14, 15, 16, 17, 18, 19, 20, 21 were identified as the outlying points in the X-space while 

observations 12, 13, 14,15,30,31 as the outlying points in the Y-space. Observation 12, 14, 15 are bad leverages.  

This necessitated the use of the robust regression and this provides a more stable regression estimates than OLS 

as seen in Table 2.  The result in Table 2 shows that the estimates of LTS, S and MM estimator are fairly close 

and provides more stable regression estimates when compared with other robust estimators. It is also observed 

that the scale estimates (𝜎𝜎�) of LTS, MM, S are more efficient than others. Though the scale estimates of M 

estimators is not too different from the first three estimators mentioned. The VIF in Table 2 revealed the 

presence of multicollinearity since VIF’s > 10. Also, the coefficient of 𝛽̂𝛽3 has a negative sign which is not 

consistent with the prior expectation, this indicated the presence of multicollinearity and hence necessitate the 

use of Ridge regression estimator rather than using OLS. It could therefore be inferred from Table 1 and 2 that 

the data set suffered the problem of multicollinearity and outliers simultaneously. Hence, since the data set 

suffered both problem of multicollinearity and outlier, the ridge parameter K is computed from the estimates of 

the following robust estimators: (M, MM, S, LTS, LAD, and LMS) and the performance is compared with the 

ridge parameter computed using OLS (Ordinary ridge regression). The ridge regression estimates based on the 

robust estimators in this study is called robust ridge regression. The results were presented in Table 3. The 

negative sign in 𝛽̂𝛽3 is corrected and found to be consistent with prior expectation which shows that the effect of 

multicollinearity has been handled. The regression estimates of robust ridge estimates based on LTS, MM, S and 

M are fairly closed than those obtained based on OLS, LAD and LMS. Table 4 revealed that the problem of 

multicollinearity has been solved using all the estimators but in terms of the MSE of the coefficeints robust 

ridge estimates based on LTS, S and MM performs better than other estimators. OLS has the least performance 

among the estimators with a large MSE. 
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Table 1: Robust Regression Diagnostics 

Observation Index Mahalanobis Robust MCD 

Distance 

Leverage Standardized Robust 

Residual 

Outlier 

       

12 1 1.3526 9.3644 * 6.3730 * 

13 2 0.8171 2.6697  4.3987 * 

14 3 0.9511 5.856 * 7.1817 * 

15 4 4.2907 30.3189 * 14.3779 * 

16 5 2.5975 17.3025 * -0.677  

17 6 0.9385 5.0736 * 0.4202 

-1.0365 

 

18 7 2.0496 10.6951 *  

19 8 1.2055 6.0795 * 0.4342  

20 9 3.971 23.1163 * -0.5587  

21 10 2.9798 17.6757 * -0.3455  

30 11 2.7834 2.6734  -14.2728 * 

31 12 2.2603 2.0341  -14.7688 * 

 

Table 2: OLS and Robust Estimates 

Coefficient OLS LTS S MM M LAD LMS VIF 

𝜷𝜷�𝟏𝟏 0.2079 0.0180 0.0118 0.0232 0.4539 0.4313 0.1171 128.26 

𝜷𝜷�𝟐𝟐 0.9206 1.6952 1.7192 1.6913 0.7254 0.7373 1.7212 103.43 

𝜷𝜷�𝟑𝟑 -0.1340 -0.6148 -0.6259 -0.6178 -0.1116 -0.1027 -0.7165 70.87 

𝝈𝝈� 0.1073 0.0410 0.045 0.0466 0.0501 0.1376 0.1508  

KGM 0.1297 0.0238 0.0372 0.0259 0.0227 0.1853 0.0826  

 

Table 3: Ordinary Ridge and Robust Ridge Estimates 

Coefficient ORR LTS S MM M LAD LMS 

𝜷𝜷�𝟏𝟏 0.3189 0.3272 0.3279 0.3275 0.3269 0.3131 0.3239 

𝜷𝜷�𝟐𝟐 0.3521 0.4754 0.4310 0.4662 0.4807 0.3367 0.3747 

𝜷𝜷�𝟑𝟑 0.2823 0.1842 0.2235 0.1923 0.1795 0.2868 0.2693 

MSE(β) 3.4539 0.1609 0.1695 0.1684 0.1735 0.1937 0.2247 
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Table 4: VIF OF OLS and Robust Ridge Estimates 

Coefficient ORR LTS S MM M LAD LMS 

𝜷𝜷�𝟏𝟏 0.2989 4.2693 2.0686 3.7314 4.6003 0.1977 0.5674 

𝜷𝜷�𝟐𝟐 0.3571 4.9462 2.4843 4.3573 5.3051 0.2281 0.6940 

𝜷𝜷�𝟑𝟑 0.4333 5.8335 3.0292 5.1779 6.2290 0.2680 0.5398 

 

4. Conclusion 

The OLS and the robust estimators could not perform well in the presence of multicollinearity and outlier. The 

estimators could not correctly estimate the regression coefficients.  The performance of OLS, LAD and LMS 

were close because of the presence of bad leverages.  M estimation is a commonly used method for outlier 

detection and robust regression when contamination is mainly in the response direction. Its performance cannot 

be compared with the high breakdown value estimators (LTS, S, and M). These high breakdown estimators are 

good estimators especially when data sets have bad leverages. In this study, the performance of LTS, S and MM 

were not statistically different in terms of their scale (𝜎𝜎�) and MSE(β). The mean square error revealed that ridge 

regression estimated based on OLS is the least compared to ridge regression based on the robust estimators. 

Ridge estimates based on LTS perform better than all other estimators followed by Ridge estimates based on 

MM and S since they have the smallest mean square error in their order. The other ridge estimates based on M, 

LAD and LMS also perform better than the ridge estimates based on OLS.  In conclusion, it has been seen that 

when data set exhibit both problem of multicollinearity and outlier the robust ridge regression estimator are 

better than OLS and the counterparts ridge or robust estimators.  

References 

[1] Alkhamisi, M., Khalaf, G. and Shukur, G. “Some modifications for choosing ridge parameters.” 

Communications in Statistics- Theory and Methods, 35(11), 2005-2020, 2006.  

[2] Alkhamisi, M., and Shukur, G. “Developing ridge parameters for SUR model.” Communications in 

Statistics- Theory and Methods, 37(4), 544-564, 2008.  

[3] Askin, G. R., & Montgomery, D. C. “Augmented robust estimators.” Techonometrics, 22, 333-341, (1980). 

[4] Arslan, O., & Billor, N. “Robust ridge regression estimation based on the GM estimators.” Journal of 

Mathematical and Computational Science, 9(1), 1-9, 1996. 

[5] Dielman, T.E. “Least absolute value estimation in regression models: An annotated bibliography.” 

Communications in Statistics - Theory and Methods. 4, 51 3-541, 1984. 

200 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 192-202 

 
[6] Dempster, A.P., Schatzoff, M. and Wermuth, N. “A simulation study of alternatives to ordinary least 

squares.” Journal of the American Statistical Association, 72, 77-91, 1977 

[7] Gibbons, D. G. “A simulation study of some ridge estimators.” Journal of the American Statistical 

Association, 76, 131-139, 1981. 

[8] Gujarati, N. D. Basic Econometrics (4th Ed.). New Delhi: Tata McGraw-Hill, 748, 807, 2003. 

[9] Habshah Midi & Marina Zahari. “A Simulation Study on Ridge Regression Estimators in the Presence of 

Outliers and Multicollinearity.” Jurnal Teknologi. 47(C): 59-74, 2007. 

[10] Hatice, Samkar and Alpu, Ozlem."Ridge Regression Based on Some Robust Estimators."Journal of Modern 

Applied Statistical Methods: Vol. 9: Iss. 2, Article 17, 2010. 

[11] Hoerl, A. E. & Kennard, R.W. " Ridge Regression Biased Estimation for Nonorthognal 

Problems",Technometrics,Vol.12,  55-67, 1970. 

[12] Holland, P. W. “Weighted ridge regression: Combining ridge and robust regression methods.” NBER 

Working Paper Series, #11, 1-19, 1973. 

[13] Huber, P.H.1964. “Robust estimation of a location parameter.” The Annals of Mathematical Statistics, 35 7 

101. 

[14] Hussein Yousif Abd. Eledum, Abdalla Ahmed Alkhalifa (2012). “Generalized Two stages Ridge 

Regression Estimator for Multicollinearity and Autocorrelated errors.” Canadian Journal on Science and 

Engineering Mathematics, Vol. 3 No. 3, March  2012 

[15] Kibria, B. M. G. “Performance of some new ridge regression estimators.” Communications in Statistics-

Simulation and Computation, 32, 419-435, 2003.  

[16] Khalaf, G. and Shukur, G. “Choosing ridge parameters for regression problems.” Communications in 

Statistics- Theory and Methods, 34, 1177-1182, 2005. 

[17] Lawless, J.F. and Wang, P. “A simulation study of ridge and other regression estimators.” Communications 

in Statistics A, 5, 307-323, 1976. 

[18] McDonald, G. C. and Galarneau, D. I. “A Monte Carlo evaluation of some ridge-type estimators.” Journal 

of the American Statistical Association, 70, 407-416, 1975.   

[19] Maronna, R.A. “Robust Ridge Regression for High-Dimensional Data.” Technometrics, 53(1): 44-53, 2011. 

201 
 



International Journal of Sciences: Basic and Applied Research (IJSBAR) (2014) Volume 16, No  2, pp 192-202 

 
[20] Mansson, K., Shukur, G. and Kibria, B. M. G. “A simulation study of some ridge regression estimators 

under different distributional assumptions.” Communications in Statistics-Simulations and Computations, 39(8), 

1639 –1670, 2010. 

[21] Muniz, G. and Kibria, B. M. G. “On some ridge regression estimators: An empirical comparison.” 

Communications in Statistics-Simulation and Computation, 38, 621-630, 2009. 

[22] Pfaffenberger, R. C., & Dielman, T. E. “A comparison of regression estimators when both multicollinearity 

and outliers are present.”  In Robust regression: Analysis and applications, K. Lawrence & J. Arthur (Eds.), 

243-270. New York: Marcel Dekker, 1990. 

[23] Rousseeuw P.J., and Yohai, “Robust regression by means of S estimators.” In W. H. J. Franke and 

D.Martin  

(Editors.), Robust and Nonlinear Time Series Analysis, Springer-Verlag, New-York, (pp. 256-272), 1984. 

[24] Rousseeuw, P.J. and Van Driessen, K. “Computing LTS Regression for Large Data Sets,” Technical 

Report, University of Antwerp, submitted, 1998. 

[25] Silvapulle, M. J. “Robust ridge regression based on an M estimator.” Australian Journal of Statistics, 33, 

319-333, 1991. 

[26] Simpson, J. R., & Montgomery, D. C.  “A biased robust regression technique for combined outlier-

multicollinearity problem.”  Journal of Statistical Computation Simulation, 56, 1-22, 1996. 

[27] Walker, E: Influence, collinearity and robust estimation in regression. Unpublished  Ph.D. dissertation, 

Department of Statistics, Virginia Polytechnic Institute, 1984. 

[28] Wisnowski, J. W., Simpson, J. R., & Montgomery, D. C. “An improved compound estimator for robust 

regression.” Communications in Statistical Simulations, 31(4), 653-672, 2002. 

[29]Yohai, V.J. "High breakdown point and high breakdown-point and high efficiency robust estimates for 

regression.” The Annals of Statistics, 15, 642-656, 1987. 

 

 

 

 

202 
 


