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Abstract

A language-agnostic approach for type-based component-oriented software synthesis is devel-

oped from the fundamental principles of abstract algebra and Combinatory Logic. It relies on

an enumerative type inhabitation algorithm for Finite Combinatory Logic with Intersection

Types (FCL) and a universal algebraic construction to translate terms of Combinatory Logic

into any given target language. New insights are gained on the combination of semantic

domains of discourse with intersection types. Long standing gaps in the algorithmic under-

standing of the type inhabitation question of FCL are closed. A practical implementation

is developed and its applications by the author and other researchers are discussed. They

include, but are not limited to, vast improvements in the context of synthesis of software

product line members. An interactive theorem prover, Coq, is used to formalize and check all

the theoretical results. This makes them more reusable for other developments and enhances

confidence in their correctness.
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Zusammenfassung

Es wird ein sprachunabhängiger Ansatz für die typbasierte und komponentenorientierte

Synthese von Software entwickelt. Hierzu werden grundlegende Erkenntnisse über abstrakte

Algebra und kombinatorische Logik verwendet. Der Ansatz beruht auf dem enumerativen Ty-

pinhabitationsproblem der endlichen kombinatorischen Logik mit Intersektionstypen, sowie

einer universellen algebraischen Konstruktion, um Ergebnisterme in jede beliebe Zielsprache

übersetzen zu können. Es werden neue Einblicke gewonnen, wie verschiedene semantische

Domänen des Diskurses über Softwareeigenschaften miteinander verbunden werden können.

Offene Fragestellungen im Zusammenhand mit der Algorithmik des Typinhabitationspro-

blems für Intersektionstypen werden beantwortet. Eine praktische Implementierung des

Ansatzes wird entwickelt und ihre bisherigen Anwendungen durch den Autor und andere Wis-

senschaftler werden diskutiert. Diese beinhalten starke Verbesserungen im Zusammenhang

mit der Synthese von Ausprägungen von Software Produktlinien. Ein interaktiver Theorem-

beweiser wir genutzt, um alle Ergebnisse der Arbeit zu formalisieren und mechanisch zu

überprüfen. Dies trägt zum einen zur Wiederverwendbarkeit der theoretischen Ergebnisse in

anderen Kontexten bei, und erhöht zum andern das Vertrauen in ihre Korrektheit.

vii



viii



Contents

Abstract (English/Deutsch) v

List of figures x

Introduction 1

1 Introduction 1

1.1 Related Work on Software Synthesis and the Need for Language Agnosticism . . 2

1.2 Combinatory Logic Synthesis, Contributions, and Organization . . . . . . . . . 7

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory 11

2.1 Formal Verification Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Intersection Types with Products and Type Constructors . . . . . . . . . . . . . . 16

2.3 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Finite Combinatory Logic with Intersection Types (FCL) . . . . . . . . . . . . . . 33

2.4.1 Basic Properties and Decidability of Type Checking . . . . . . . . . . . . . 33

2.4.2 Combining Separate Domains of Discourse . . . . . . . . . . . . . . . . . 37

2.5 Verified Enumerative Type Inhabitation in FCL . . . . . . . . . . . . . . . . . . . 45

2.5.1 The Cover Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Generation of Tree Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Algebraic Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.6.1 Subsorted Σ-Algebra Families . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.6.2 Undecidability of Sort Emptiness with infinite Index Sets . . . . . . . . . 90

2.6.3 Finite Index Sets and Combinatory Logic . . . . . . . . . . . . . . . . . . . 92

3 The (CL)S Framework 101

3.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Scala Extensions and their Relation to the Coq-Formalization . . . . . . . . . . . 105

3.3 Metaprogramming Support Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 110

3.4 Software Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



Contents

4 Applications and Impact 113

4.1 Work done in collaboration with the Author . . . . . . . . . . . . . . . . . . . . . 113

4.2 Work done by Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Work done by other Researchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Conclusions and Future Work 117

A Appendix 121

Bibliography 148

x



List of Figures

3.1 Data flow in cls-scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Projects in the cls-scala framework and their dependencies . . . . . . . . . . . . 103

3.3 Class to encapsulate inhabitation results . . . . . . . . . . . . . . . . . . . . . . . 109

3.4 Main components of project templating for target language Java . . . . . . . . . 110

4.1 Simplified Solitaire Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xi



List of Figures

xii



Chapter 1

Introduction

In 1918’s Vienna, Ludwig Wittgenstein finished his most famous work, the "Logisch-philo-

sophische Abhandlung" that is also known as "Tractatus logico-philosophicus" [202], or

Tractatus for short. It was a reaction to the – in his opinion – confused state of Philosophy,

where many problems resulted from getting lost in the limitations of language. The ideas

presented in this text are motivated by summer heated discussions about detailed limitations

of object-oriented languages with Ugo de’Liguoro, Jakob Rehof, Andrej Dudenhefner, Boris

Düdder, and Moritz Martens at the Vienna Summer of Logic 2014 [119], and have been made

fully manifest with its publication 100 years after the Tractatus in 2019. A core motivation is

to address the – in the author’s opinion – confusing state of software synthesis, where many

problems result from getting lost in limitations of programming languages. Statement 6.002 of

the Tractatus postulates:

"Ist die allgemeine Form gegeben, wie ein Satz gebaut ist, so ist damit auch schon

die allgemeine Form davon gegeben, wie aus einem Satz durch eine Operation

ein anderer erzeugt werden kann."

Translated to English, this means all sentences are constructed by applying operations to other

sentences. This idea is not only fundamental to the philosophy of language, but also to abstract

algebra and the theory of Combinatory Logic. The latter was discovered by Moses Schönfinkel,

who was the first to successfully modularize the rules of logic in his groundbreaking work

"Über die Bausteine der mathematischen Logik" in 1924 [174]. Abstract algebra [71] is the

mathematical way of assigning meaning to sentences by interpreting them in other languages.

The main contribution of this text, which is humble in light of the aforementioned precursors,

is to recognize the connection of software synthesis with abstract algebra and Combinatory

Logic. This provides a synthesis framework based on types and algebraic sorts, which is

agnostic to the details and limitations of individual programming languages. Further reasons,

contributions, prior publications, and the overall organization of the text are outlined in the

rest of this introduction.
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Chapter 1. Introduction

1.1 Related Work on Software Synthesis and the Need for Language

Agnosticism

The most general definition of software synthesis is the process of translating an abstract

program specification to an executable program. This definition is broad enough to have

spawned multiple regular conferences, workshops, and conference tracks including ASE [88],

LOPSTR [124], SYNTH [182], IWLS [34], a special track at POPL [6], and many more. Gulwani

et al. [90] provide one of the most recent overview articles on the subject. The article is in part

based on a broad range of input, collected at a Dagstuhl Seminar organized by its authors

[31]. In their categorization, the approach described here is a mixture of enumerative search

and constraint solving. To better understand the field and its challenges, a short historical

overview focused on the more immediate influences on this text will be provided next.

Thomas [185] describes a 1957 talk given by Church as the first formal treatment of the

problem. Church posed the question, if functions operating on bit strings can be synthesized,

such that inputs and outputs satisfy a given logic formula. While undecidable for arbitrary

logics, the problem was later solved for monadic second order logic [36]. As it is the case for

many contributions by Church, the synthesis problem quickly gave rise to a vast amount of

research. By the late 1970s Manna and Waldinger [130] already acknowledge that the literature

on the subject is too vast to summarize in a single paper. Almost 40 years of continuous

research later, it is too vast to be even comprehended by a single person. Therefore, a few

landmark approaches and general directions will be discussed here, without any claim for

completeness. One of them was by said authors, who were among the first to treat program

synthesis as a theorem proving problem [131]. This idea is influential until today and also

a core component of the approach taken in this text, which uses an algorithm for theorem

proving in Combinatory Logic as its basis. A shortcoming of their specific implementation

of this idea becomes evident in their later exemplification of synthesizing an unification

algorithm [132] and Traugott’s subsequent work on synthesizing sort functions [190]: the

logic statements used for specification of the synthesis goal are similar to Hoare-Logic [102]

and therefore hinder abstract component-oriented modeling, which is crucial for any large

scale application. A Dagstuhl workshop organized by Rehof and Vardi [166] later identified

component orientation as one of the main challenges in the field. The problem of choosing

an adequate specification language was also addressed by Pnueli and Rosner [158], who

focused on temporal specification aspects rather than mere descriptions of static input/output

relations. This has since spawned a sub-field known as reactive synthesis, which has its own

standardized competitions [110] and is a driving factor for practical advances in temporal

logic, as well as game and automaton theory. This work adopts the taxonomic classification

and idealization of complex system properties by semantic types from the area of reactive

synthesis. It was first applied to linear temporal logic based synthesis by Steffen et al. [181].

The initial definition is also compatible with any form of executable algebraic specification.

Ehrig and Mahr [71] describe the origins of algebraic specification as a reaction to the software

2



1.1. Related Work on Software Synthesis and the Need for Language Agnosticism

specification (or lack thereof) crisis in the 1970s. Going back to Wittgenstein’s idea of compos-

ing all sentences out of operations on sentences, algebraic software specifications describe

software by imposing rules on the application of operations. These rules are standardized in

form of signatures. In contrast to Hoare-Logic, which constraints memory states before and

after running imperative programs, signatures constrain the meaning of operations by their

input and output sorts (types), and add additional relations, which are most often equations.

This avoids the need to find agreeing memory models and memory location names. It thereby

improves compositionality. It is also more flexible in the range of possible specifications,

because it is not tied to the imperative programming model. Examples will be illustrated in

this text, where algebraic specifications are used to synthesize automata, applicative terms

in Combinatory Logic, and even music. Here, a combination of many-sorted signatures [70],

subsorting [83], and signature indexing, which is a generalization of parameterization [148], is

used. There are notable and practically successful approaches to synthesize programs solely

from algebraic specifications. These include the suite of software developed by the Kestrel

institute [87] and its SpecWare component [178], the Maude System [127], the Alloy specifi-

cation language [108] and in a broader sense also the Expander theorem prover [149]. The

approaches have in common, that they are interested in producing one model to satisfy the

specification or a counter model to show contradictions in the specification. To this end, the

specification has to be very precise and needs to exist in the respective formalism. In contrast,

the approach taken in this text assumes that most software components exist without precise

specifications. Here, synthesis is meant to be a tool of automation which reduces the cost

of creating software. Formal specifications require expert users and time, which outweighs

the cost benefits of synthesis in many projects. This is especially the case, if large software

system parts would have to be re-implemented in another language and formal correctness

guarantees are not a core project requirement. The idea is instead to work with possibly under

specified systems with exchangeable target languages and multiple possible models. Similar

to oracles in complexity theory [152], it should be easier to test and select a solution than to

correctly construct it.

The need for language agnosticism does not just arise from the lack of experts on one lan-

guage and the increasing complexities faced when trying to make it generic enough to solve

all problems of one given software project (getting lost in the limitations of the language).

Recent empirical evidence shows that even within single software projects multiple languages

are present [188; 133; 134]. When synthesis is understood as the automation of composing

preexisting software artifacts, it is thereby unrealistic to assume they all exist in one language

– much more so if the language has been created to cater the needs and limitations of the

given synthesis approach instead of the problem at hand. In the realm of automated software

composition, the importance of language agnosticism is not widely acknowledged yet. The

FeatureHouse framework by Apel et al. [5] is a notable exception, but it only automates com-

position after artifacts have been manually selected and brought in order, while synthesis

would be responsible for the former task. It remains to discuss some more recent synthesis

approaches in light of the language-agnostic requirement.

3



Chapter 1. Introduction

Haack et al. [92] enumerate instantiates of ML-Functors, which are parameterized signatures.

This idea is very similar to the proposal in this text, but their algorithms are not formally

specified and the authors conjecture that they are incomplete. Their implementation is

limited to the ML programming language.

Feng et al. [74] generate calls to abstract programming interfaces (APIs) by translation to

Petri Nets in which places are types and transitions are API calls. Synthesis is then reduced

to solving a place reachability problem. This is language independent in principle, but the

complications of Petri Nets really only make sense for imperative languages, where variable

sharing is exposed to the synthesis algorithm. For other scenarios the authors discuss a

simpler hyper-graph based representation, but fail to address why the standard technique

of hash-consing [75] is insufficient to create variable sharing. They also allude to a possible

hyper-multigraph extension. This extension turns out to be equal [18] to the Tree Grammars,

which are generated in the approach developed here. While the authors of [74] conjecture

that enumeration of these hyper-multigraphs might be difficult, and their construction is

easy, the opposite is the case: the most complex part of the algorithm is creating the Tree

Grammars. This misprediction is due to the fact that [74] uses a much weaker type system,

which only supports nominal subtyping instead of intersection types with support for nominal

and structural subtyping. Without richer type specifications, their approach has to rely on

user supplied tests. Many of these can be avoided by the semantic type concept used and

discussed here.

A number of more direct type based synthesis approaches exist. These answer the type inhabi-

tation question, that is: relative to a fixed type system, given a context of type assumptions

Γ and a target type τ does there exists a term M , with type τ, i.e. Γ ⊢ M : τ? For the simply

typed Lambda Calculus, Statman [179] has shown that this problem is PSPACE-complete.

The first algorithm for actually finding inhabitants instead of just proving their existence is

attributed to Ben-Yelles [12; 99]. Given the Curry-Howard isomorphism between proofs and

types [176], the observation that type inhabitation can be used to construct programs is in line

with the earlier results by Manna and Waldinger [131]. Multiple variations of the algorithm

by Ben-Yelles [12] exist with slightly different goals, e.g. finding principal (think "best fitting

for its type") inhabitants [35; 63], or proofs for equivalent Sequent Calculi [69]. The latter was

among the first put into practice with the Haskell tool Djinn [7; 135]. Later, Gvero et al. [91]

implemented InSynth, a similar tool for Scala, which is based on a stratified version of simply

typed Lambda Calculus to avoid redundant results. One of the authors, Piskac [157], proposes

and proves an extension to Hindley-Milner polymorphism [139], but the claim to complete-

ness is not clear, since a later study on the undecidability of this problem by Benke et al. [13]

exists. Both [13] and work on type inhabitation with Combinatory Logic, intersection types,

and type schematism [57] suggest finite restrictions on the space of possible substitutions

in order to obtain algorithms instead of semi-algorithms. This approach is also taken here.

Osera [147] does the same, where additionally synchronization, a form of Sequent Calculus

[176], and refinement by examples are combined to generate lambda expressions. The core

system without polymorphism is also described in [146]. It was later enhanced to represent
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1.1. Related Work on Software Synthesis and the Need for Language Agnosticism

refinements with intersection types [78]. The key idea is to encode multiple user-provided

input/output examples into types, which is possible since intersection types can represent

arbitrary finite function tables [163]. It thereby bridges a long standing gap to the field of

example-directed synthesis. Example-directed synthesis has applications especially when

used by experts in some other domain than computer science. Leading work in this area has

been done by Gulwani, and is even integrated into wide-spread commercially used tools such

as Excel, with [73; 151] as a latest prominent accounts of development in this area. There

also exist example-based techniques relying on Tree-Automata, the machine equivalent of

the Tree Grammars used here, with an application to code-completion [200]. Comparing

[78] to other recent work on type directed synthesis with refinement types by Polikarpova

et al. [160], examples put less burden on the user, by not requiring formal specifications. In

contrast, traditional refinement types are very much in spirit of the initial work by Manna

and Waldinger [131]. Demanding more help from the user, these specifications can provide

additional guidance to the synthesis algorithm improving its performance, and adding safety

as well as resource consumption guarantees to the generated programs [159; 116]. Lambda

Calculus with intersection types yields undecidable type inhabitation [193] and typability

problems [82]. However, a recent development by Dudenhefner and Rehof has characterized

a large fragment of the type system, with decidable typability [64], inhabitation [65], and

useful notions of principality [66]. This might, in future, close the gap in expressiveness be-

tween refinement with intersection type based examples used by Frankle et al. [78] and the

program logic oriented refinement types used by Polikarpova et al. [160]. Here, a different

approach will be taken. As explained earlier in reference to [181], instead of examples or full

logical specifications, intersection types are used to encode semantic concepts ordered by a

taxonomy. Formal specifications remain optional and can be added per use-case, exploiting

the vast existing knowledge [71] on how to do this with algebraic specifications. Type-based

approaches are also used in the field of automation of interactive theorem-provers. Here, they

are known as Hammers and a dedicated workshop exists for their study [113]. Prominent

examples of Hammers are Sledegehammer for Isabelle/HOL [32], HOLyHammer for HOL Light

[112], and CoqHammer for Coq [44]. Theorem provers are usually complex target languages

with undecidable inhabitation problems and almost no further generalization across theorem

provers is possible. Hence, Hammers are custom designed tightly integrated tools with little

common ground, except that they usually try to encode fragments of their target languages

into a logic solvable by automated theorem provers. In principle, the approach presented here

can be used for the specific purpose of synthesizing algebraically generated expressions in

Coq, because it is implemented and formalized in an executable fragment of Coq without any

axioms. Results from this may however be limited, because the execution of code in Coq is

very slow. At the time of writing, some preliminary effort has been undertaken to build the

infrastructure necessary to use the findings of this text for AST-fragment based synthesis of

Coq code [205] within a faster Scala implementation.

While this text tries to overcome the language specific limitations of type based synthesis, other

language-agnostic synthesis methods exist. Syntax-guided synthesis (SyGus) [2] is an umbrella

5



Chapter 1. Introduction

term for a joint effort to synthesize programs from their syntactic structure. Many approaches

to SyGus are implemented using Satisfyability Modulo Theory (SMT) solvers or variants thereof

[167]. Just relying on the grammar of the synthesis target language results in a vast search

space (all possible programs) and additional invariants, again in the form of language-specific

equations, have to be taken into account to make it useful. Logics resulting from this are of

very high complexity (mostly PSPACE-hard or above). The aforementioned Vienna Summer of

Logic [119] spawned a dedicated set of competitions for SyGus implementations [3]. Recent

work by Reynolds et al. [168] reconciles SyGus with many-sorted algebraic signatures and

integrates counter-examples to speed up the search process. Signatures used in [168] neither

support parametric nor subtype polymorphism, which makes them strictly weaker than

the approach discussed here. A problem with SyGus is that program syntax is usually not

component-oriented. Inala et al. [105] try to overcome this for a specific domain, abstract data

type transformation, with a template based approach. They tie their approach to a specific

template language. Other than not being language-agnostic, this is very much in the spirit of

using combinators and abstract algebra, where the result of combinator/operation application

can be any complex syntax tree manipulation, including template instantiation.

Finally, there are some synthesis approaches, the spirit of which can be described as using

meta techniques. Some of these are discussed next.

Based on insights into the monadic nature of backtracking by Kiselyov et al. [115], the miniKaren

language by Byrd and Friedman [37] tries to solve the most general synthesis problem possible,

by enumerating terms relative to an arbitrary given relation. There are a homepage [39],

book [79], and a dedicated workshop [38], which illustrates the traction of synthesis toward

more fundamental solutions. The miniKaren language is a spiritual successor to the logic

programming language Prolog [106], and could as such have serverd as an implementation

vehicle for the approach discussed here. In fact, early prototype versions have been based

on Prolog [56], but it quickly became apparent, that a more targeted programming effort was

needed to improve performance, maintainability, and usability.

The application of machine learning to synthesis tasks has also gained some prominence

[120; 72; 89; 175]. Work by Liang et al. [126] uses Combinatory Logic to generate programs.

However, they restrict combinators to a fixed base, which severely limits practicality. One of

the main challenges in that area are code-base updates without expensive retraining. Parisotto

et al. [153] try to achieve this with a domain specific language, but then have to resort to

extensive input/output examples to convey synthesis targets. The problem can be traced to

the topic of the Dagstuhl seminar [166] on component oriented synthesis: machine learning

approaches usually do not compose, when new or updated program components become

available.
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1.2. Combinatory Logic Synthesis, Contributions, and Organization

1.2 Combinatory Logic Synthesis, Contributions, and Organization

First described by Schönfinkel [174], Combinatory Logic is a formal component-oriented

approach to logic and programming languages, which predates Turing Machines and Lambda

Calculus [191]. An excellent historical account of its almost 100 years of development is given

by Cardone and Hindley [40]. Here, two fundamental extensions to what is usually known as

Combinatory Logic with simple types [176; 100] are used. The first extension are Barendregt-

Coppo-Dezani (BCD) intersection types. Originally, intersection types have been added to

Lambda Calculus [8] to obtain a system characterizing exactly the set of normalizing lambda

terms [82]. They later have been used to type Combinatory Logic [49]. The second extension

generalizes the combinator base form the two Turing-complete standard combinators S and

K to an arbitrary set of combinators, which are given as input. This results in Hilbert-Style

systems of logic relative to the combinators as axioms [176]. The resulting system of Finite

Combinatory Logic with Intersection Types (FCL) has been studied by Rehof and Urzyczyn

[165]. It provides inherent modularity with combinators, an expressive polymorphic type

language with intersection types, and it is well-suited for type based synthesis, because type in-

habitation is decidable. The system can be extended with bounded schematic polymorphism

[57] and the (CL)S Framework is developed around it [56; 55; 20].

This text describes the author’s contributions to the understanding of Combinatory Logic

Synthesis and their practical application in form of the (CL)S Framework. In short they can be

outlined as follows:

1. A rigorous mechanized formalization of the theory of Combinatory Logic Synthesis is

provided in Chapter 2. The formalization [15] is purely constructive and valid in the

Calculus of inductive Constructions [186] without additional axioms. It is mechanically

checked by the Coq proof assistant [184] and formally verified algorithms can be ex-

tracted to Haskell and OCaml. To the best knowledge of the author, this makes (CL)S

the only approach to synthesis with a sound and complete fully theorem prover verified

theory.

1.1. An extension of intersection types with constructors and products is presented in

Section 2.2 and its effects on the BCD subtype relation are studied in Section 2.3.

1.2. The currently best known verified algorithm for deciding the BCD type relation is

developed in Section 2.3.

1.3. The first mechanized proof for decidability of type-checking in FCL is given in

Section 2.4.

1.4. A proper theory of combining domains of discourse with semantic types is devel-

oped in Section 2.4.

1.5. The first fully formalized algorithm for answering the enumerative type inhabita-

tion problem of FCL is developed in Section 2.5.
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Chapter 1. Introduction

1.6. The question of Rehof and Urzyczyn [165] about the possibility to use Tree Au-

tomata for FCL including subtyping without double exponential blow-up is posi-

tively answered in Section 2.5.

1.7. Indexed many-sorted algebraic signature families with subsorting are defined in

Section 2.6.1 and their general sort emptiness problem is proven to be undecidable

in Section 2.6.2.

1.8. All finite restrictions of the sort emptiness problem of indexed many-sorted alge-

braic signature families with subsorting are proven to be decidable via reduction

to the enumerative type inhabitation algorithm for FCL in Section 2.6.3.

1.9. An algebra independent, sound, complete, and unique translation of synthesized

applicative terms of Combinatory Logic to any target language is constructed in

Section 2.6.3.

2. A practical Scala implementation of the resulting synthesis framework is developed in

Chapter 3.

2.1. Scala is extended to allow the seamless specification of combinators in Section 3.1

and Section 3.2.

2.2. Support mechanisms to integrate metaprogramming into the synthesis framework

are developed in Section 3.3.

2.3. Software tests for the resulting framework are developed in Section 3.4.

3. The impact of the framework on other people’s work is evaluated in Chapter 4. This

includes a novel technique for the model driven development of Software Productlines.

4. A critical discussion of current limitations and salient points of future work is provided

in Chapter 5.

The rest of this chapter describes the relation of the author’s prior academic publications to

this text.
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1.3 Publications

First ideas of this text were presented in [20], where the author outlines his ideas for extensions

of an older F# based implementation of (CL)S in sections 4.2 and 5 of that text. The application

is synthesis of configurations for dependency injection frameworks, which is also investigated

in the master’s thesis of the author [14]. Ideas for language independent metaprogramming are

sketched out in [20], but still focus on Staged Composition Synthesis with modal intersection

types [59]. Modal intersection types were later dropped from the framework. Work with

Heineman et al. [96] showed that metaprogramming is a useful component of synthesis.

However, the binding analysis to ensure all template components are closed (a requirement

to use modal box types) turned out to be infeasible and impractical. Strictly speaking, none

of the published examples in [20; 96] meet this requirement, because all target language

code uses libraries and thereby has unbound names. A target language specific analysis of

compositional safety properties with the meta language would have been necessary to ensure

that modal-types give the guarantees they are used for. Additionally, the target language

needs a compatible type system and compiler with programmatically accessible binding

analysis features to check if box-types are used used correctly. In practice, even the availability

of usable parsers and syntax trees is a problem for most target languages [5]. All attempts

quickly turned out to be an instance of "getting lost in the details of language", which this

text motivates to avoid. In an older formalization [17] of the work presented here, the Modal

Calculus used by Davies and Pfenning [47] is shown to be representable by the new algebraic

approach. Subsequently, the main framework developers including the author made the joint

decision to drop support for modal types. Another less formal observation resulted from

many discussions with other researchers and feedback from rejected papers. It turned out

that explaining the concept of modal types raised the mental burden of conveying the ideas of

the framework.

In a separate line of work, applications of Combinatory Logic Synthesis to the generation

of object-oriented code are investigated [19; 22; 25]. Specifically, mixin application chains

are synthesized, where a Mixin is a function mapping classes to classes. A Lambda Calculus

with records and intersection types is developed to represent objects, classes, and mixins.

Results regarding synthesis are positive. However, the specification mechanism is difficult

to get right and very fine-tuned, favoring the needs of synthesis and type-theory rather than

being easy to understand. These insights add to the motivation to have a simpler, language

independent approach. The usefulness of records motivated adding distributing covariant

type constructors to the framework.

Applications to product lines have been studied. In [23] a product line of robot control

programs is synthesized. Schäfer [170] subsequently improved the results. They no longer

require modal types, work with new versions of (CL)S, and are generalized to support multiple

implementation strategies, including arrows. In [21] valid configurations of feature diagrams

are synthesized and then translated to product line code.

9



Chapter 1. Introduction

Feature diagrams and their encoding into Combinatory Logic are formalized in Coq. Success

with this formalization motivated the other applications of theorem proving in this text. A

first Coq verified algorithm to decide the BCD subtype relation is analyzed in [23]. It is based

on the idea of prime ideals, which is also discussed in Section 2.3. The algorithm has been

improved since then, leading to the form presented in [28]. Section 2.2 and Section 2.3 are

largely based on the latter publication.

A snapshot of the framework at that point in time was presented at PEPM 2018 [26]. The

formalization has since then been improved to use indexed signature families instead of

open and closed sorts. While even more expressive, it simplifies encodings of sorts, and

provides completeness and uniqueness instead of completeness and uniqueness up to choice

of substitutions. Internally, the formalization has also been completely rewritten to allow a

clearer presentation and code that can be extracted from Coq to Haskell and OCaml.

The latest addition to the (CL)S framework is a debugger, jointly developed with Anna Vasileva

and discussed in detail in [18].

10



Chapter 2

Theory

This chapter describes the theory of a language-agnostic synthesis framework. All proofs are

formalized in Coq and available online [15]. Proofs in the text try to give a high-level intuition

about the necessary low-level steps. Table A.1 maps all statements to the formalization,

allowing to trace every step in every proof. The chapter is organized to first give some details

on the formalization in Section 2.1. This is followed by the basic definitions required for

intersection types in Section 2.2. Then, in Section 2.3, the Barendregt-Coppo-Dezani [8]

subtype relation and a decision procedure for it are studied in depth. Finite Combinatory

Logic with Intersection Types (FCL) is defined and studied in Section 2.4. An enumerative

type inhabitation algorithm for FCL is developed in Section 2.5. A new result presented in

Section 2.6 links this algorithm to language-agnostic synthesis.
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Chapter 2. Theory

2.1 Formal Verification Setup

All algorithms in this text are specified using a number of standard functions and data-

structures that are available in almost all functional programming languages and have well-

studied algorithmic [162; 145] and category theoretic [136] properties. They are implemented

in the Mathematical Components library [129] for Coq, which was used in version 1.8.0 to-

gether with Coq version 8.8.2. This library also includes hundreds of proven lemmas about

these structures, which are silently assumed in this text, but explicitly mentioned in the ac-

companying machine checked formalization. The text requires basic knowledge of standard

notions from Set and Category theory. Readers unfamiliar with them may find a precise mod-

ern introduction in [52]. The relationship between sets and types in Coq is clarified in [10].

Here, the intuitive understanding is used in which types act as sets. The impredicative sort

(type variables can be instantiated by expressions of the same sort) Prop in Coq represents

predicates. In the machine-checked formalization, no Axioms are added to the type theory of

Coq, which is explained in [186]. This means all proofs can be done in an intuitionistic (no

excluded middle), purely constructive (no axiom of choice), proof relevant (two proofs of the

same proposition are not necessarily the same), and intensional (functions mapping the same

inputs to the same outputs are not necessarily the same) way. The presentation in the text

avoids some of the detours imposed by this weaker logic and mentions differences when they

become relevant. In practice, the purist approach to logic pays off by allowing extraction to

Haskell and OCaml. Ramifications from not being able to use the principle of the excluded

middle (P or not P is always true) are mild, because the Small Scale Reflection extensions

for Coq [85] can be used to perform a double negation translation [193] of any intuitionistic

predicate P with little syntactic overhead whenever a decision procedure for P is available.

Proof irrelevance can also be restored whenever P is decidable by any function Pdec: types

with decidable equality can be truncated (all their equality proofs are equal) [94] and thus P

can be replaced by Pdec = true. The technique of handcrafted small inversions by Monin and

Shi [141] justifies performing case-analysis on the complex dependently typed operational

semantics step relations used in this text, even without (equality-)proof irrelevance or the

equivalent Axiom K, which is otherwise required for dependent pattern matching [41].

The rest of this section will introduce some standard [129; 52; 150; 136; 53; 162; 145] structures

and notations used throughout this text.

Definition 1 (Basic Structures)

• The category Set has sets as objects, functions as morphisms. For any set A, the identity

morphism is the identity function idA : A → A with i dA(x) = x. Composition is function

composition ( f ◦ g )(x) = f (g (x)).

• The singleton unit set is given by 1= {()}.

• The set of booleans is given by B= {true, false}.
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2.1. Formal Verification Setup

• The set of natural numbers is given by N= {0,1,2,3, . . . }.

• An I -indexed family of objects/morphisms A of some category C is a map from I into

C , i.e. for any i ∈ I , Ai is a object/morphism.

– Families of sets are used to define indexed data types. A simple example is family

LT = {k ∈N | k < n}n∈N, which has LT10, the set of natural numbers less than 10, as

its member.

– Families of morphisms model generic functions, e.g. up : (LTn → LTn+1)n∈N can be

defined by upn(k) = k +1.

– The category of I -indexed families over Set is denoted by SetI . It has I -indexed fam-

ilies of sets as objects and I -indexed families of functions as morphisms. The iden-

tity morphism is the family of identity functions idA : (Ai → Ai )i∈I with idA(i , x) = x.

Composition is function composition at a given index, ( f ◦ g )s = fs ◦ gs .

• Products
∏︁

x∈I Ai over some set I are objects equipped with unique projections

π : (
∏︁

j∈I A j → Ai )i∈I .

– Tuples with n ∈ N elements over some family of sets A are written∏︁
k∈{1,2,...,n} An =∏︁n

k=1 An = A1 × A2 ×·· ·× An .

– The special case of n = 2 is the Cartesian product A1 × A2 and projections are

abbreviated in suffix notation π1(x, y) = (x, y).1 = x and π2(x, y) = (x, y).2 = y .

– Function families f : (Ai → Bi )i∈I are isomorphic to f ′ :
∏︁

i∈I Ai → Bi with

fi =πi ( f ′). Notations are sometimes mixed to avoid clutter in repeated indexes.

• Sums
⨁︁

i∈I Ai over some set I are objects equipped with unique injections

inj : (Ai →⨁︁
j∈I A j )i∈I .

– Sums
⨁︁

i∈I Ai in Set are given by inji (x) = (i , x) and encode tuples where the second

component depends on the first.

– The notation Σi∈I Ai is more common in literature, but avoided to resolve a name

clash with signatures, which also use capital letter Σ.

• Lists A∗ over any set A are given by the grammar:

A∗ ∋∆ ::= [::] | [:: x&∆]

where x ∈ A.

– Singleton lists are abbreviated using [:: x&[::]] = [::x].

– Element x is in [:: y&∆] iff x = y or x is in ∆.

– The subsequence relation ⊑⊆ A∗× A∗ is the least relation closed under the rules

[::] ⊑∆
∆1 ⊑∆2

∆1 ⊑ [:: x&∆2]
∆1 ⊑∆2

[:: x&∆1] ⊑ [:: x&∆2]
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Chapter 2. Theory

– Relation suffix ⊆ A∗× A∗ is the least relation closed under the rules

suffix(∆1,∆2)
suffix(∆1, [:: x&∆2]) suffix(∆,∆)

• Lambda functions λx.Mx behave like normal functions f (x) = Mx , but do not require

an explicit name. □

Lists come with multiple pre-defined functions.

Definition 2 (Functions on Lists) If A and B are sets, and ∆,∆1,∆2 ∈ A∗, ∆̃ ∈ B∗, z ∈ A, s ∈ B ,

n ∈ N, f : A → B , p : A → B, and g : A → ⨁︁
i∈{0,1}{(i , X ) | X = B or i = 0 and X = 1}i then

function

• behead(∆) =
⎧⎨⎩∆ for ∆= [:: x&∆′]

[::] otherwise
removes the first element of a list.

• ohead(∆) =
⎧⎨⎩(1, x) for ∆= [:: x&∆′]

(0, ()) otherwise
returns the first element of a list (if it exists).

• foldl( f , s,∆) =
⎧⎨⎩foldl( f , f (s, x),∆′) for ∆= [:: x&∆′]

s otherwise
folds a list to the left.

• foldr( f , s,∆) =
⎧⎨⎩ f (x, foldr( f , s,∆)) for ∆= [:: x&∆′]

s otherwise
folds a list to the right.

• map( f ,∆) =
⎧⎨⎩[:: f (x)&map( f ,∆′)] for ∆= [:: x&∆′]

[::] otherwise
applies function f to all the elements in the list.

• filter(p,∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[:: x&filter(p,∆′)] for ∆= [:: x&∆′] and p(x) = true

filter(p,∆′) for ∆= [:: x&∆′] and p(x) = false

[::] otherwise
removes all elements x of a list where test p(x) fails

• pmap(g ,∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pmap(g ,∆′) for ∆= [:: x&∆′] and g (x) = (0, ())

[:: y&pmap(p,∆′)] for ∆1 = [:: x&∆′] and g (x) = (1, y)

[::] otherwise
collects all successful applications of g on elements of a list.

• ∆1 ++∆2 =
⎧⎨⎩[:: x&∆′

1 ++∆2] for ∆1 = [:: x&∆′
1]

∆2 otherwise
concatenates two lists
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• lsize(∆) =
⎧⎨⎩1+ lsize(∆′) for ∆= [:: x&∆′]

0 otherwise
computes the length of a list.

• rcons(∆, z) =
⎧⎨⎩[:: x&rcons(∆′, z)] for ∆= [:: x&∆′]

[::z] otherwise
adds an element to the end of a list.

• last(z,∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x for ∆= [::x]

last(z, [:: y&∆′]) for ∆= [:: x&[:: y&∆′]]

z otherwise
returns the last element of a list or its first argument if the list is empty.

• rev(∆) = catrev(∆, [::])

where catrev(∆,∆2) =
⎧⎨⎩catrev(∆′, [:: x&∆2]) for ∆= [:: x&∆′]

∆2 otherwise
reverses a list.

• zip(∆,∆̃) =
⎧⎨⎩[:: (x, y)&zip(∆′,∆̃′)] for ∆= [:: x&∆′] and ∆̃= [:: y&∆̃′]

[::] otherwise
combines two lists.

• nth(z,∆,n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x for n = 0 and ∆= [:: x&∆′]

nth(z,∆′,n′) for n = n′+1 and ∆= [:: x&∆′]

z otherwise
returns the n-th element of a list or the default element z if the list is too short.

• take(n,∆) =
⎧⎨⎩[:: x&take(n′,∆′)] for n = n′+1 and ∆= [:: x&∆′]

[::] otherwise
extracts up to n elements from the start of a list.

• subseqs(∆) =
⎧⎨⎩map(λ∆′′.[:: x&∆′′],subseqs(∆′))++∆’ for ∆= [:: x&∆′]

[::[::]] otherwise

computes all subsequences ∆′ ⊑∆ of a list ∆.

• nseq(n, z) =
⎧⎨⎩[:: z&nseq(n′, z)] for n = n′+1

[::] otherwise
returns a list of n repetitions of z.

• enum(A) = [:: x1&[:: x2&.. . [::xn] . . . ]]

enumerates set A as a list if A is the finite set [:: x1&[:: x2&.. . [::xn] . . . ]]

• undup(∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
undup(∆′) for ∆= [:: x&∆′] and x is in ∆′

[:: x&undup(∆′)] for ∆= [:: x&∆′] and not x is in ∆′

[::] otherwise
removes all duplicates in a list. □

15



Chapter 2. Theory

2.2 Intersection Types with Products and Type Constructors

Prior to any formalization, syntactic conventions for intersection types have to be established.

Definition 3 (Intersection Types with Products and Type Constructors) Intersection types

are formed over the following syntax:

T ∋ A,B ::=ω | c(A) | (A⋆B) | (A → B) | (A∩B)

where c ∈ C is a constructor drawn from a countable set C, which will be chosen per use-case.

Throughout this text, capital Latin letters A,B ,C , . . . are used to denote intersection types,

while small Latin letter denote constructors. Lists of types are denoted by ∆ with some index

or apostrophe for disambiguation. Products ⋆, arrows → and intersections ∩ are to be read

just like their set-theoretic counterparts ×, → and ∩. Parentheses and unnecessary syntax are

reduced using the following conventions:

• Intersections bind stronger than products, which bind stronger than arrows:

A∩B ⋆C → D ×E ∩F = (((A∩B)⋆C ) → (D × (E ∩F )))

• Intersections and arrows associate to the right:

A∩B ∩C → D → E = ((A∩ (B ∩C )) → (D → E))

• Products associate to the left:

A⋆B ⋆C = ((A⋆B)⋆C )

• Constructors with ω-arguments are abbreviated:

c = c(ω)

Equality A = B is strict syntactic equality following the conventions above. □

The syntax presented in Definition 3 is identical to the syntax in [28]. Type constructors are

formally studied in their most generic form with arbitrary arities in [125]. Here, the system

is made more uniform by restricting them to the universal type of anything ω, constructor

symbols applied to one argument, arrows, intersections and a single binary product construc-

tor. This restriction retains the possibility to express interesting types. Notation conventions

highlight that type constants, e.g. int or String, can be represented by having a single ω

argument: int= int(ω) and String= String(ω). Parameterized types such as List(String)

are directly supported. Products can encode multiple parameters, e.g. Graph(N ⋆E) for a
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graph with nodes of some type N and edges of some type E . Unlike other presentations

[8; 194; 57] there are no type variables. Usually, type variables either model an arbitrary fixed

set of type constants or they are used for schematic polymorphism. The former use-case is

handled by constructor symbols as explained above and no point in the formalization requires

the latter use-case.

The following functions allow some basic analysis and manipulation of the structure of types.

Definition 4 (Functions to analyze and manipulate types) Lists of types can be converted

to an intersection associated to the right:

intersect(∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω for ∆= [::]

A for ∆= [::A]

A1 ∩ intersect[:: A2&∆′] for ∆= [:: A1&[:: A2&∆′]]

For any list ∆ (not necessarily of types), the shorthand⋂︂
Ai∈∆

M = intersect(map(λAi .M ,∆))

is used to compute its intersection and (if necessary) convert its contents using expression M .

The arity of a type is the type of the arguments of its outermost type constructor:

arity(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for A =ω
T for A = c(B)

T×T otherwise

Types can be measured counting the elements in their syntax tree, the maximal length of an

arrow they include, or the maximal depth of their syntax tree (ignoring intersections):

size(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for A =ω
1+ size(B) for A = c(B)

1+ size(B)+ size(C ) for A = B ∩C or A = B →C or A = B ⋆C

length(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1+ length(C ) for A = B →C

max{depth(B),depth(C )} for A = B ∩C

1 otherwise

depth(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for A =ω
1+depth(B) for A = c(B)

1+max{depth(B),depth(C )} for A = B →C or A = B ⋆C

max{depth(B),depth(C )} for A = B ∩C

□
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2.3 Subtyping

The intuition of the intersection type operator ∩ is revealed when types are preordered by

the relation ≤ introduced by Barendregt, Coppo, and Dezani-Ciancaglini [8]. In "A ≤ B" type

A is a subtype of B , meaning that its values can take the shape of values of type B and used

whenever values of type B are expected. This is also referred to as subtype polymorphism.

Relation ≤ is called BCD Subtyping, abbreviating last name initials in honor of its inventors.

Many programming languages are equipped with some similar notion. See [9] for a discussion

of how BCD subtyping can provide a basis for the formalization of other subtype relations.

Also Section 2.6 will come back to this point.

Definition 5 (BCD Subtyping) The subtype relation A ≤ B is the least relation closed under

the rules:

c ≤C d A ≤ B
(CAX)

c(A) ≤ d(B)
(CDIST)

c(A)∩ c(B) ≤ c(A∩B)

(ω)
A ≤ω (→ω)ω≤ω→ω

B1 ≤ A1 A2 ≤ B2 (SUB)
A1 → A2 ≤ B1 → B2

(DIST )
(A → B1)∩ (A → B2) ≤ A → B1 ∩B2

A1 ≤ B1 A2 ≤ B2 (PRODSUB)
A1⋆ A2 ≤ B1⋆B2

(PRODDIST )
(A1⋆ A2)∩ (B1⋆B2) ≤ A1 ∩B1⋆ A2 ∩B2

A ≤ B1 A ≤ B2 (GLB)
A ≤ B1 ∩B2

(LUB1)
B1 ∩B2 ≤ B1

(LUB2)
B1 ∩B2 ≤ B2

A ≤ B B ≤C ( TRANS)
A ≤C

(REFL)
A ≤ A

where ≤C is an arbitrary fixed preorder chosen together with the constructor symbols C. □

Rules (CAX), (CDIST), (PRODSUB), and (PRODDIST) are extensions to the original relation [8]

and account for the extended set of intersection types used in this text. The extensions are

again a restriction of those studied in [125]. Rule (ω) positions type ω as the universal type

of any value. This is analogous to the type Object in Java or C#. Rule (→ω) accounts for the

lack of information on functions where the only known property is that they compute ω, i.e.

anything. Combined with rule (ω) this information is equally (un-)specific as the information
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that such a function could be anything. Rule (SUB) expresses the subtype polymorphism

property for functions. A function of type A1 → A2 is usable in place of a function of type

B1 → B2 if it operates on less specific inputs (B1 ≤ A1, contravariance) and produces more

specific outputs (A2 ≤ B2, covariance). Note how rule (PRODSUB) is the same for products

with the crucial difference that components A1 and B1 are also covariant (A1 ≤ B1) in its

first premise. Similarly, unary constructors are ordered by (CAX). Here, the first premise is

replaced by a customizable relation ≤C⊆ C×C that can be chosen with the set of constructor

symbols C. This extension mechanism provides the basis for embedding signature subsorting

in Section 2.6. Rules (GLB), (LUB1), and (LUB2) turn the intersection operator ∩ into the

meet of a semi-lattice [86]. If values of type A can be used for B1 and B2, they can be used

whenever the intersection B1 ∩B2 is expected. Vice versa, values of the intersection of types

B1 and B2 can be used as values of both of these types. These rules are compatible with

interpreting types as sets of values with ≤ as subset inclusion ⊆ and ∩ as the intersection of sets.

Rules (DIST), (CDIST), and (PRODDIST) allow distribution of intersections over covariantly

related type components. Distribution over the contravariant left component of arrows

(A1 → B1)∩ (A2 → B2) ≤ A1 ∩ A2 → B1 ∩B2 is derivable from the other rules and does not need

to be explicitly included. Finally (TRANS) and (REFL) close ≤ under transitivity and reflexivity,

turning it into a preorder. Equivalent formulations of the rules above are discussed in [194].

The decision problem for the BCD Subtype relation is the following: given two types A and B ,

are they related by A ≤ B? At first glance, most rules of the subtype relation seem to indicate

that a decision procedure can simply try to construct a proof tree by reading the rules from

conclusion to premise. However, this approach breaks down because of type B in rule (TRANS),

which is not present in the conclusion and would thus have to be guessed. Rules with variables

in their premises that do not occur in their conclusion are called called cut-rules and B is

called a cut-type. Reformulating a proof system without cut rules is called cut-elimination and

the textbook example of cut-elimination is Gentzen’s Hauptsatz [176]. Laurent [125] proves

that cut elimination is possible for the rules of ≤. Solutions to the BCD Subtype decision

problem can be traced along a line of work started over 30 years ago with a decidability

proof by Pierce [156]. It was subsequently improved to decision procedures with exponential

worst-case runtime [45; 46; 118]. Later, algorithms with polynomial O (n4) [165] and O (n5)

[180] runtimes have been obtained. The first procedure with quadratic runtime O (n2) was

developed in [67]. Algorithms with mechanized proofs but without runtime guarantees have

followed [24; 125; 30], where issues with the original proof have been discovered in [30]. The

decision procedure used in this text is the first with formally verified quadratic bounds on the

number of recursive steps involved to find a solution. At the time of writing a detailed account

of its development is peer-reviewed and accepted for publication [28] with authorship of the

presented parts of that publication coinciding with the declared authorship of this text.

Besides the aforementioned cut in rule (TRANS), the most difficult part in designing and

verifying a decision procedure for ≤ is created by the first premise in rule (SUB). It toggles the

positions of types to B1 ≤ A1 instead of A1 ≤ B1. This effectively prevents structural recursion

on types from working and more advanced techniques have to be employed for ensuring
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termination. Larchey-Wendling and Monin [123] suggest a way to obtain a termination

certificate Dom that allows recursion decreasing on its structure for such situations. The trick

is to turn a proof about a recursively defined function f into a proof about an inductively

defined relation R. The relation is then proven to be functional (xR y1 and xR y2 implies

y1 = y2). Termination certificate Dom x is defined to be a proof tree for the statement that

there exists y such that xR y (x is in the domain of the relation). If Dom is total (for all x there

exists a proof Dom x) function f can then be defined by structural recursion on the proof tree

Dom x for any input x. Bounding the size of Dom puts a bound on the number of recursive

calls in f , yielding information about worst case performance. Inductively defining R is also

a good way to understand the algorithm: it effectively specifies its operational semantics by

means of rules for each possible input. This is useful for debugging purposes, because the

algorithm can be "halted" at each rule invocation. Furthermore, the relation provides an

alternative cut-free representation for ≤.

Some auxiliary functions are required for the main decision procedure.

Definition 6 (Auxiliary functions to decide BCD Subtyping) Testing for ω≤ A is purely syn-

tactic:

isOmega(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

true for A =ω
isOmega(A2) for A = A1 → A2

isOmega(A1) and isOmega(A2) for A = A1 ∩ A2

false otherwise

Function castB : T→ arity(B) collects type components to be recursively compared when

checking A ≤ B . Its helper function cast′B avoids inefficient functional list concatenations

using an accumulator parameter ∆.

castB (A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[::ω] for B =ω
[::(ω,ω)] for B = B1 → B2 and isOmega(B2)

cast′B (A, [::]) otherwise

cast′B (A,∆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[:: A′&∆] for A = c(A′) and B = d(B ′) and c ≤C d

[:: (A1, A2)&∆] for A = A1 → A2 and B = B1 → B2

[:: (A1, A2)&∆] for A = A1⋆ A2 and B = B1⋆B2

cast′B (A1,cast′B (A2,∆)) for A = A1 ∩ A2

∆ otherwise

□

The relational specification of subtyping can be thought of as a machine performing steps to

transform inputs to outputs.
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2.3. Subtyping

Definition 7 (BCD Subtype Machine) The BCD Subtype relation is decided by a machine

transforming inputs

ISub ∋ i ::= [ subty A of B ] | [ tgt_for_srcs_gte A in ∆]

to outputs

OSub ∋ o ::= [ Return b] | [ check_tgt ∆′]

where b is a Boolean, A,B ∈T, ∆ is a list of pairs of types, and ∆′ is a list of types.

Its operational semantics is specified by the least relation ↝⊂ ISub ×OSub closed under the

following rules:

(STEPω)
[ subty A of ω]↝ [ Return true]

[ subty
⋂︁

Ai∈castc(B)(A) Ai of B ]↝ [ Return b]
(STEPCTOR)

[ subty A of c(B)]↝ [ Return castc(B)(A) ̸= [::] and b]

[ subty
⋂︂

Ai∈castB1⋆B2 (A) Ai .1 of B1]↝ [ Return b1]

[ subty
⋂︂

Ai∈castB1⋆B2 (A) Ai .2 of B2]↝ [ Return b2]
(STEP⋆)

[ subty A of B1 ×B2]↝ [ Return castB1⋆B2 (A) ̸= [::] and b1 and b2]

[ tgt_for_srcs_gte B1 in castB1→B2 (A)]↝ [ check_tgt ∆]

[ subty
⋂︂

Ai∈∆
Ai of B2]↝ [ Return b]

(STEP→)
[ subty A of B1 → B2]↝ [ Return isOmega(B2) or b]

[ subty B of A.1]↝ [ Return b]

[ tgt_for_srcs_gte B in ∆]↝ [ check_tgt ∆′]
(STEPCHOOSETGT)

[ tgt_for_srcs_gte B in [:: A&∆]]↝

[ check_tgt if b then [:: A.2&∆′] else ∆′]

(STEPDONETGT)
[ tgt_for_srcs_gte B in [::]]↝ [ check_tgt [::]]

[ subty A of B1]↝ [ Return b1]

[ subty A of B2]↝ [ Return b2]
(STEP∩)

[ subty A of B1 ∩B2]↝ [ Return b1 and b2]

□
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Behavior of the subtype machine can be explained considering each rule individually: Rule

(STEPω) is just rule (ω) from the BCD relation. Constructors are analyzed recursively by

(STEPCTOR). Auxiliary function castc(B) collects all arguments to recursively compare. For

example, if d ≤C c, f ≤C c, and not e ≤C c the result of casting is castc(B)(d(A1) ∩ (A2 →
A3)∩ e(A4)∩ f (A5)) = [:: A1&[::A5]]. If the list returned by cast is empty, either type shapes

did not match or there was no compatible constructor symbol. It is crucial to check this,

because the premise [ subty
⋂︁

Ai∈castc(ω)(A) Ai of ω] ↝ [ Return b] is fulfilled for any A,

even if it is structurally fully incompatible with c(ω), e.g. A = (A1⋆ A2)∩ (A3 → A4). Formal

verification in Coq spotted forgetting this check at an early stage of development. Rule

(STEP⋆) for the product constructor is analogous to (STEPCTOR). Arrows are more difficult

to process because of the aforementioned switch in variance of their first argument. Three

rules are required. The entry point, (STEP→), ensures subtyping of the second argument and

identifies arrows collapsing to ω using isOmega. The second argument cannot be directly

compared. If multiple arrows are present in A, their distribution by (DIST) can be required for

subtyping. However, just collecting all targets in A does not work: if A ≤ A1, A ≤ A2, and not

A ≤ A3 distribution in (A1 → B1)∩ (A2 → B2)∩ (A3 → B3) results in A1∩ A2∩ A3 → B1∩B2∩B3

which is not a subtype of A → B1 ∩B2, even though just distributing the first two arrows

results in (A1 → B1)∩ (A2 → B2)∩ (A3 → B3) ≤ A1 ∩ A2 → B1 ∩B2 ≤ A → B1 ∩B2. Instruction

[ tgt_for_srcs_gte B1 in castB1→B2 (A)] in the first premise of (STEP→) is responsible for

selecting the correct arrows in A. Rules (STEPCHOOSETGT) and (STEPDONETGT) implement this

computation. If the input list created by castB1→B2 (A) is fully processed or empty no additional

arrow target is to be selected (STEPDONETGT). If there is a remaining arrow, its first argument is

compared to B1 and the second argument is added to the list of targets to compare if this check

is successful. In the above example, this results in B1 and B2 being added to ∆′ while B3 is

dropped. The final rule (STEP∩) is an implementation of (GLB): components of intersections

are just recursively compared. Unlike ≤, relation ↝ does not include cut rules and the choice

of rule to apply is fully determined by the input instruction. The following proofs will establish

that ↝ can be implemented by a recursively defined function and that it is correct (sound and

complete) with respect to relation ≤.

Lemma 1 (Functionality of the BCD Subtype Machine) For all instructions i ∈ ISub and out-

puts o1,o2 ∈OSub, if i ↝ o1 and i ↝ o2 then o1 = o2.

PROOF Induction on the proof of i ↝ o1 followed by case analysis on i ↝ o2 ■

The termination certificate Dom can be defined next.

Definition 8 (Termination certificate for the BCD Subtype Machine) For any input i ∈ ISub,

termination certificate Dom i is a finite proof tree constructed from the following rules:

Dom[ subty A of ω]

1 Dom[ subty
⋂︁

Ai∈castc(B)(A) Ai of B ]

Dom[ subty A of c(B)]
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2.3. Subtyping

1 Dom[ tgt_for_srcs_gte B1 in castB1→B2 A]

2 for all ∆, if [ tgt_for_srcs_gte B1 in castB1→B2 A]↝ [ check_tgt ∆]

then Dom[ subty
⋂︂

Ai∈∆
Ai of B2]

Dom[ subty A of B1 → B2]

1 Dom[ subty B of A.1] 2 Dom[ tgt_for_srcs_gte B in ∆]

Dom[ tgt_for_srcs_gte B in [:: A&∆]]

Dom[ tgt_for_srcs_gte B in [::]]

1 Dom[ subty
⋂︂

Ai∈castB1⋆B2 (A) Ai .1 of B1]

2 Dom[ subty
⋂︂

Ai∈castB1⋆B2 (A) Ai .2 of B2]

Dom[ subty A of B1⋆B2]

1 Dom[ subty A of B1]

2 Dom[ subty A of B2]

Dom[ subty A of B1 ∩B2]

Childproofs of a tree p ∈ Dom i are selected using p.1 and p.2 where the boxed number in

front of each premise specifies which projection is chosen. □

The rules of Dom closely follow those of ↝. Each recursive use of ↝ is modeled by a child

proof in Dom, while other information - especially the result value - is erased. This leads to

Dom being just weak enough to poof totality.

Lemma 2 Totality of the Termination Certificate Dom For all instructions i ∈ ISub there exists a

proof tree Dom i .

PROOF First if A is ω, Dom[ subty ω of B ] is obtained by induction on the structure of B .

For the other cases, induction on the maximal depth of A and B is followed by induction on

the structure of B . Function castB (A) either returns components with a smaller depth than

A, or [::ω] or [::(ω,ω)]. The ω-cases are dispatched by the earlier proof. Otherwise the list

returned by castB (A) contains only types with depth less than A. For (STEPCTOR), (STEP⋆), and

(STEP∩) the induction hypotheses solve the goal. For rule (STEP→) target collection in the first

premise is shown to compute a list of targets with depth less than A by induction on the length

of castB1→B2 (A) using the outer induction hypothesis for checking if B1 is a subtype of any

of the sources. This is possible in spite of the toggled position of B1, because the maximal

depth of types A and B ignores the order of A and B . Any target list returned by invocations

of (STEPCHOOSETGT) and (STEPDONETGT) only contains targets produced by cast castB1→B2 (A)

and their intersection has a depth smaller than B2, because depth does not increase when

performing intersection operations. This is sufficient to complete the proof for the second

premise of (STEP→) using the induction hypotheses. ■
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Functionality and totality are enough to translate the operational semantics ↝ into denota-

tional semantics, a recursive procedure to decide subtyping.

Definition 9 (Procedure deciding the BCD Subtype Relation)

subtypes(i ∈ ISub) : Dom i → {o ∈OSub | i ↝ o}

subtypes(i )(p) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ Return true] if i = [ subty A of ω]

[ Return castc(B)(A) ̸= [::] and b]

if i = [ subty A of c(B)] and

for A′ :=⋂︂
castc(B)(A) Ai

subtypes([ subty A′ of B ])(p.1) = [ Return b]

[ Return isOmega(B2) or b]

if i = [ subty A of B1 → B2] and

for A1 := castB1→B2 (A)

subtypes([ tgt_for_srcs_gte B1 in A1])(p.1) =
[ check_tgt ∆] and

for A2 :=⋂︂
Ai∈∆ Ai

subtypes([ subty A2 of B2])(p.2) = [ Return b]

[ Return castB1⋆B2 (A) ̸= [::] and b1 and b2]

if i = [ subty A of B1⋆B2] and

for A1 :=⋂︂
Ai∈castB1⋆B2 (A) Ai .1

subtypes([ subty A1 of B1])(p.1) = [ Return b1] and

for A2 :=⋂︂
Ai∈castB1⋆B2 (A) Ai .2

subtypes([ subty A2 of B2])(p.2) = [ Return b2]

[ Return b1 and b2]

if i = [ subty A of B1 ∩B2] and

subtypes([ subty A of B1])(p.1) = [ Return b1] and

subtypes([ subty A of B2])(p.2) = [ Return b2]

[ check_tgt if b then [:: A.2&∆′] else ∆′]

if i = [ tgt_for_srcs_gte B in [:: A&∆]] and

subtypes([ subty B of A.1])(p.1) = [ Return b] and

subtypes([ tgt_for_srcs_gte B in ∆])(p.2) =
[ check_tgt ∆′]

[ check_tgt [::]] if i = [ tgt_for_srcs_gte B in [::]]

□

Each case in function subtypes implements a rule of ↝. It thus respects its restricted range

{o ∈ OSub | i ↝ o}. Recursive calls always use a child trees of p ∈ Dom i and thus terminate
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because p is finite. Lemma 2 ensures existence of p for any input instruction i . Lemma 1

proves that subtypes does not lose any solutions. In Coq the termination certificate is part of

the universe of propositions, which is erased when extracting the specification to an executable

functional target language such as Haskell or OCaml: The constructive proof of Lemma 2 is

enough to ensure Dom proof trees exist and can be constructed without actually ever wasting

resources for constructing them. Most executable programming languages accept recursive

definitions without totality proofs and eliminate this overhead.

The proof that ↝ actually implements ≤ requires to show to

[ subty A of B ]↝ [ Return true] iff A ≤ B.

The first part of this bi-implication is easier. It requires establishing some key properties of ≤.

Lemma 3 (Properties of the BCD Subtype Relation)

1. intersect(map(λAi .M)(∆1 ++∆2)) ≤
intersect(map(λAi .M)(∆1)) ∩
intersect(map(λAi .M)(∆2))

2. isOmega(B) implies A ≤ B

3. castc(B)(A) ̸= [::] implies A ≤ c(
⋂︁

Ai∈castc(B)(A) Ai )

4. A ≤⋂︁
Ai∈castB1→B2 (A)(Ai .1 → Ai .2)

5. A ≤⋂︁
Ai∈castB1×B2 (A)(Ai .1⋆ Ai .2)

6. (A1 → B1)∩ (A2 → B2) ≤ (A1 ∩ A2) → (B1 ∩B2)

7.
⋂︂

Ai∈∆(Ai .1⋆ Ai .2) ≤ (
⋂︂

Ai∈∆ Ai .1)⋆ (
⋂︂

Ai∈∆ Ai .2) if ∆ ̸= [::]

8. Let X be a set, f : X →T, and ∆1,∆2 : X ∗.

If for all x in ∆1: x is in ∆2 then⋂︁
Ai∈∆1

f (x) ≤⋂︁
Ai∈∆2

f (x)

PROOF Structural induction and case analysis. No difficult cases exist. ■

Lemma 4 (Soundness of the BCD Subtype Machine) For all types A,B ∈T:

if [ subty A of B ]↝ [ Return true] then A ≤ B.

PROOF The change in variance of arrows again requires to first perform induction on the

maximal depth of types A and B . This is followed by structural induction on the derivation

of [ subty A of B ] ↝ [ Return true]. If the derivation ends in (STEPCTOR), (STEPPROD),

(STEPω) or (STEP∩) the inner structural hypothesis and Lemma 3 are enough to finish the proof.

Rule (STEP→) additionally requires the first induction hypothesis for its first premise. ■
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The proof of completeness requires to show that ↝ supports transitivity of subtyping as well

as several other properties established by the following lemma.

Lemma 5 (Properties of the BCD Subtype Machine)

1. isOmega(B) implies [ subty A of B ]↝ [ Return true]

2. [ tgt_for_srcs_gte B1 in ∆]↝ [ check_tgt ∆′] implies

∆′ ⊑ map(λAi .Ai .2)(∆)

3. [ tgt_for_srcs_gte B1 in castB1→B2 A]↝ [ check_tgt ∆] and

isOmega(A) implies isOmega(Ai ) for all Ai in ∆

4. [ subty A of B ]↝ [ Return true] and isOmega(A) implies isOmega(B)

5. ∆2 ⊑∆1 and [ tgt_for_srcs_gte B1 in ∆1]↝ [ check_tgt ∆′
1] and

[ tgt_for_srcs_gte B1 in ∆2]↝ [ check_tgt ∆′
2] implies ∆′

2 ⊑∆′
1

6. ∆⊑∆′ and [ subty
⋂︁

Ai∈∆ Ai of A]↝ [ Return true] implies

[ subty
⋂︁

Bi∈∆′ Bi of A]↝ [ Return true]

7. [ subty A of
⋂︁

Ai∈∆1
Ai ]↝ [ Return b1] and

[ subty A of
⋂︁

Ai∈∆2
Ai ]↝ [ Return b2] implies

[ subty A of
⋂︁

Ai∈∆3
Ai ]↝ [ Return b1 ∧b2] for ∆3 =∆1 ++∆2

8. [ subty A of B ]↝ [ Return true] implies

[ subty
⋂︁

Ai∈castc(C ) A Ai of
⋂︁

Bi∈castc(C )B Bi ]↝ [ Return true]

9. [ tgt_for_srcs_gte B in [::(ω, A)]]↝ [ check_tgt ∆] implies ∆= [::A]

10. [ subty A of A]↝ [ Return true]

11. [ tgt_for_srcs_gte A in ∆1]↝ [ check_tgt ∆′
1] and

[ tgt_for_srcs_gte A in ∆2]↝ [ check_tgt ∆′
2] implies

[ tgt_for_srcs_gte A in ∆3]↝ [ check_tgt ∆′
3] for

∆3 =∆1 ++∆2 and ∆′
3 =∆′

1 ++∆′
2

12. [ tgt_for_srcs_gte A in ∆1 ++∆2]↝ [ check_tgt ∆′] implies

there exist ∆′
1,∆′

2, s.t.

[ tgt_for_srcs_gte A in ∆1]↝ [ check_tgt ∆′
1] and

[ tgt_for_srcs_gte A in ∆2]↝ [ check_tgt ∆′
2] and

∆′ =∆′
1 ++∆′

2

13. [ subty A of B1 ∩B2]↝ [ Return true] implies

[ subty A of B1]↝ [ Return true] and [ subty A of B2]↝ [ Return true]

14. C = c(C ′) or C =C1⋆C2 and castC B ̸= [::] and

[ subty A of B ]↝ [ Return true] implies

castC A ̸= [::]
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15. [ subty A of B ]↝ [ Return true] and

[ subty B of C ]↝ [ Return true] implies

[ subty A of C ]↝ [ Return true]

16. [ subty c(A1)∩ c(A2) of c(A1 ∩ A2)]↝ [ Return true]

17. [ subty A∩ A of A]↝ [ Return true]

PROOF The statements are proven in the order they are presented. Most just require induction

and/or case analysis. The weakening property in case 6 is inspired by [125]. It is needed for the

reflexivity proof for A = A1∩A2. Transitivity in case 14 again needs nested structural induction

with an outer induction on the maximum of the depth of the types involved. ■

Lemma 6 (Completeness of the BCD Subtype Machine) For all types A,B ∈T:

if A ≤ B then [ subty A of B ]↝ [ Return true].

PROOF Induction on the derivation of A ≤ B using Lemma 5. Lemma 5.14 takes care of the

problematic transitivity rule (TRANS). ■

Correctness of the decision procedure in Definition 8 can now be proven.

Theorem 1 (Subtype decision procedure correctness) For all A,B ∈T there exists a termina-

tion certificate p ∈ Dom[ subty A of B ].

For all termination certificates p ∈ Dom[ subty A of B ] there exists a Boolean b such that

subtypes([ subty A of B ])(p) = [ Return b] with b = true if and only if A ≤ B.

PROOF The first part is Lemma 2. In the second part subtypes([ subty A of B ])(p) =
[ Return b] and b = tr ue can be replaced by either [ subty A of B ] ↝ [ Return true]

or [ subty A of B ]↝ [ Return false] because of the definition of subtypes and function-

ality of ↝. The result then immediately follows from Lemma 4 and Lemma 6. ■

Further analysis of the termination certificate provides some insight on a bound of the number

of possible recursive calls.

Lemma 7 (Size of the Termination Certificate) For i ∈ ISub, p ∈ Domi define

measurei (p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for i = [ subty A of ω] or

[ tgt_for_srcs_gte B in [::]]

1+measure(p.1) for i = [ subty A of c(B)]

1+measure(p.1)+measure(p.2) otherwise
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and obtain

measurei (p) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 · size(A) · size(B) for i = [ subty A of B ]

1+ size(B) ·∑︁k
j=1(1+2 · size(A j .1))

for i = [ tgt_for_srcs_gte B in [:: A1&[:: A2&.. . [::Ak ] . . . ]]]

PROOF The key insight is that types returned by castB (A) always have sizes smaller or equal

than the size of A. The result then follows by induction on p with a special case for i =
[ subty A of B1 → B2] where B2 =ω and costi (p) ≤ 3. ■

Kurata and Takahashi [118] identified an algorithmically important property of the restricted

set of types considered in precursors to the full BCD system [43]. This property has been

the basis for the algorithms presented in [165] and has been algebraically classified [24] as

primality of the ideal induced by ≤.

Definition 10 (Primality) The ideal of A ∈T is the non-empty set {B ∈T|B ≤ A} and A is its

principal element. An ideal with principal element C is prime if for all A∩B in the ideal, A ≤C

or B ≤C . Type C is prime if it is the principal element of a prime ideal. □

Prime ideals are desirable because they avoid distribution. For example if C prime, then in

(A1 → B1)∩ (A2 → B2) ≤ C the distribution (A1 ∩ A2 → B1 ∩B2) ≤ C never has to be taken

into account, because one of the types (A1 → B1) and (A2 → B2) is less than C . One of the

particularly beautiful facts about intersection types is that primality is a purely syntactic

criterion and the precursor system [43] correctly captured that notion. Here, the syntactic

criterion is extended to account for constructor symbols and products.

Lemma 8 (Syntactic criterion for Primality) The set

T⊃Tωπ ∋π ::=ω | c(π) | (ω⋆π) | (π⋆ω) | A →π

is identical to the set of prime types.

PROOF By Lemma 4 and Lemma 6 it is sufficient to show

[ subty A∩B of π]↝ [ Return true] implies

[ subty A of π]↝ [ Return true] or

[ subty B of π]↝ [ Return true]

Induction on C uniquely identifies the last rule used to derive [ subty A ∩ B of π] ↝

[ Return true] in each case and the result then easily follows. ■

Let Tπ = {π ∈ Tωπ | not isOmega(π)} denote the set of prime types that do not collapse to ω

under subtyping. In [43] this set is called the set of tail-proper types. In [57] and [67] these

types are called paths and it is proven that every type can be organized into a subtype equal

set of paths.
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Definition 11 (Prime factorization of Types) The following function computes a minimal

sequence of prime factors of type A ∈T:

primeFactors(A) = primeFactors′(A, id, [::])

primeFactors′(A,contextualize,∆) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆ for A =ω and

isOmega(contextualize(A))

addAndFilter(∆,contextualize(A)) for A =ω and not

isOmega(contextualize(A))

primeFactors′(A′,λB.contextualize(c(B)),∆) for A = c(A′)

primeFactors′(A2,λB.contextualize(A1 → B),∆) for A = A1 → A2

primeFactors′(A2,λB.contextualize(ω⋆B),

primeFactors′(A1,λB.contextualize(B ⋆ω),∆))

for A = A1⋆ A2

primeFactors′(A2,contextualize,

primeFactors′(A1,contextualize,∆))

for A = A1 ∩ A2

addAndFilter(∆, A) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[::A] for ∆= [::]

[:: B&∆′] for ∆= [:: B&∆′] and B ≤ A

addAndFilter(∆′, A) for ∆= [:: B&∆′] and not B ≤ A and A ≤ B

[:: B&addAndFilter(∆′, A)] otherwise

□

Function primeFactors is implemented using primeFactors′, which keeps track of the accu-

mulated list of prime factors ∆ and the context of the currently analyzed type with regard to

the initial type. This context is represented as a function mapping the current type into the

structure of the parent type. The context representation is inspired by Zippers, a functional

programming technique [104; 101]. Recursion in primeFactors′ finishes when ω is reached. If

ω is less or equal than the computed prime factor at this point, it is redundant, just like 1 is

redundant as a prime factor in a natural number. Otherwise it is inserted into the list of prime

factors using addAndFilter. Function addAndFilter appends a prime factor A to a list of prime

factors∆ if that list contains no subtype related element. Otherwise, if there is such an element,

and it is smaller than A, ∆ remains constant. If the existing element is greater than A, it will be

replaced. The result of addAndFilter is a minimal list of prime factors without duplication of

subtype equal types. In any case which is not ω, function primeFactors′ recursively proceeds,

adapting the context with the operation to map the next considered argument back into place.

Products have to be split recontextualizing their left and right prime components separately,

setting the other component to ω (c.f. the restricted shape of products in Tπ). The following

lemma is necessary to establish correctness and minimality of primeFactors.
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Lemma 9 (Prime factorization verification properties)

Let ∆,∆1,∆2,∆3,∆′ be universally quantified lists of types and A,B ,C ,D ∈T, then:

1. There exists some B in addAndFilter(∆, A), s.t. B ≤ A

2. There exists some A′ in addAndFilter(∆, A), s.t. A′ ≤C iff A ≤C or there exists B ′ in ∆ s.t.

B ′ ≤C .

3. If ∆ ⊑ ∆′ and there exists A′ in addAndFilter(∆, A) s.t. A′ ≤ B then there exists A′′ in

addAndFilter(∆′, A) s.t. A′′ ≤ B

4. If B is in addAndFilter(∆, A) then B = A or B is in ∆

5. If A is in ∆ and A ≤ B then
⋂︁

Ai∈∆ Ai ≤ B

6.
⋂︁

Ai∈addAndFilter(∆,A) Ai ≤⋂︁
Ai∈∆ Ai

7. Let P :T→B then for all A in ∆: P(A) implies for all B in addAndFilter(∆): P(B)

8. If for all A in ∆: A ∈Tπ and for all B ∈Tπ: contextualize(B) ∈Tπ then

for all D in primeFactors′(C ,contextualize,∆): D ∈Tπ
9.

⋂︁
Ai∈primeFactors′(A,contextualize,∆) Ai ≤⋂︁

Ai∈∆ Ai

10. If for all B ,C ∈T: B ≤C implies

contextualize(B) ≤ contextualize(C ) and

contextualize(B)∩contextualize(C ) ≤ contextualize(B ∩C ) then⋂︁
Ai∈primeFactors′(A,contextualize,∆) Ai ≤ A

11. If B is in addAndFilter(∆, A) then there exists C in [:: A&∆] s.t. C ≤ B

12. If for all A in ∆2 there exists B in ∆1 s.t. B ≤ A then
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai

13.
⋂︁

Ai∈[::A&∆] Ai ≤⋂︁
Ai∈addAndFilter(∆,A) Ai

14. If for all B ,C ∈T: B ≤C implies contextualize(B) ≤ contextualize(C ) then⋂︁
Ai∈[::A&∆] Ai ≤⋂︁

Ai∈primeFactors′(A,contextualize,∆) Ai

Define lists free of subtype equal duplicates

nosubdup(∆) =

⎧⎪⎪⎨⎪⎪⎩
true for ∆= [::]

nosubdup(∆′) and

for all B in ∆ : not A ≤ B and not B ≤ A

for ∆= [:: A&∆′]

15. nosubdup(∆) implies nosubdup(addAndFilter(∆, A))

16. nosubdup(∆) implies nosubdup(primeFactors′(A,contextualize,∆))
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17. If for all A in∆: notω≤ A then for all B in primeFactors′(A,contextualize,∆): notω≤ A

Define deduplication modulo subtyping

desubdup(∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[::] for ∆= [::]

addAndFilter(desubdup(∆′), A) for ∆= [:: A&∆′] and not isOmega(A)

desubdup(∆′) for ∆= [:: A&∆′] and isOmega(A)

18. nosubdup(desubdup(∆))

19. Let P :T→B then for all A in ∆: P(A) implies for all B in desubdup(∆): P(B)

20.
⋂︁

Ai∈desubdup(∆) Ai ≤⋂︁
Ai∈∆ Ai

21.
⋂︁

Ai∈∆ Ai ≤⋂︁
Ai∈desubdup(∆) Ai

22. lsize(addAndFilter(∆)) ≤ lsize(∆)

23. lsize(desubdup(∆)) ≤ lsize(∆)

24. If A in desubdup(∆) then not isOmega(A)

25. If
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai and

for all A in ∆2: A ∈Tπ and not isOmega(A) then

for all A in ∆2: exists B in ∆1, s.t. B ≤ A

26. If
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai and

for all A in ∆2: A ∈Tπ and not isOmega(A) then

for ∆= filter(λA. exists B in ∆2 : A ≤ B)∆1⋂︁
Ai∈∆ Ai ≤⋂︁

Ai∈∆2
Ai

27. If nosubdup(∆) and A,B in ∆ then A ≤ B implies A = B

28. If
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai and

for all A in ∆2: A ∈Tπ and not isOmega(A) and

nosubdup(∆1) and nosubdup(∆2) and

A1, A2 are in ∆2 and B is in ∆1 and A1 ≤ B and A2 ≤ B then A1 = A2

29. If
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai and

⋂︁
Ai∈∆2

Ai ≤⋂︁
Ai∈∆1

Ai and

for all A in ∆2: A ∈Tπ and not isOmega(A) and

nosubdup(∆1) and nosubdup(∆2) and

A is in ∆1 and B is in ∆2 and B ≤ A then A ≤ B

30. If ∆1 ⊑∆2 and nosubdup(∆2) then nosubdup(∆1)
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Define the permutations of a list of types up to subtyping Perm≤ as the least set closed under the

following rules:

A ≤ B B ≤ A ∆1 ∈ Perm≤(∆2 ++∆3)
[:: A&∆1] ∈ Perm≤(∆2 ++[:: B&∆3]) [::] ∈ Perm≤[::]

31. If
⋂︁

Ai∈∆1++[::A&∆2] Ai ≤⋂︁
Ai∈∆3

Ai and

for all B in ∆3: B ∈Tπ and not A ≤ B then⋂︁
Ai∈∆1++∆2

Ai ≤⋂︁
Ai∈∆3

Ai

32. If nosubdup(∆1 ++[:: A&∆2]) then

forall B in ∆1 ++∆2: not B ≤ A and not A ≤ B

33. If
⋂︁

Ai∈∆1
Ai ≤⋂︁

Ai∈∆2
Ai and

⋂︁
Ai∈∆2

Ai ≤⋂︁
Ai∈∆1

Ai and

nosubdup(∆1) and nosubdup(∆2) and

for all A in ∆1: A ∈Tπ and not isOmega(A) and

for all A in ∆2: A ∈Tπ and not isOmega(A) then

∆1 ∈ Perm≤(∆2)

34. If ∆1 ∈ Perm≤(∆2) then lsize(∆1) = lsize(∆2)

PROOF The above statements should be proven in the order they were listed. Then they follow

from easy induction, case-analysis, and application of previous statements. ■

Theorem 2 (Prime factorization correctness and minimality)

For all A ∈T, primeFactors(A) is a subtype equal minimal list of prime factors of A:

1.
⋂︁

Ai∈primeFactors(A) Ai ≤ A

2. A ≤⋂︁
Ai∈primeFactors(A) Ai

3. For all B in primeFactors(B): B ∈Tπ
4. For all ∆, if

⋂︁
Ai∈∆ Ai ≤ A and A ≤⋂︁

Ai∈∆ Ai and for all B in ∆: B ∈Tπ then

lsize(primeFactors(A)) ≤ lsize(∆)

PROOF

1. Direct consequence of Lemma 9.10.

2. Direct consequence of Lemma 9.14.

3. Direct consequence of Lemma 9.8.

4. By Lemma 9.23, ∆ can be deduplicated with decreasing size. By Lemma 9.34 it is suffi-

cient to show that primeFactors(A) ∈ Perm≤(desubdup(∆)). The result is then obtained

using Lemma 9.33 with Theorem 2.1, Theorem 2.2, Lemma 9.16, Lemma 9.18, the

premise and Lemma 9.24, as well as Theorem 2.3, Lemma 9.19 and Lemma 9.17. ■
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2.4 Finite Combinatory Logic with Intersection Types (FCL)

2.4.1 Basic Properties and Decidability of Type Checking

Finite Combinatory Logic with Intersection Types [165] is the main formalism driving synthesis

in this work. In this section some of its basic properties are discussed and the type checking

question for FCL is proven to be decidable.

Definition 12 (Finite Combinatory Logic with Intersection Types) Let B be a finite count-

able base of combinators. The set of applicative terms is defined by

A ∋ M , N ,O ::= c | @(M , N )

where c ∈ B is a combinator and @(M , N ) is the application of term M to argument N . Term

application is also abbreviated to (M N ) using the convention that application associates to

the left and omitting outermost parentheses: M NO = ((M N )O) = @(@(M , N ),O).

Given a function Γ : B →T, called context, the type relation of Finite Combinatory Logic with

Intersection Types is the least relation ⊢⊂ (B →T)×A×T closed under the following rules:

(VAR)
Γ⊢ c : Γ(c)

Γ⊢ M : A → B Γ⊢ N : A (→ E)
Γ⊢ M N : B

Γ⊢ M : A A ≤ B (≤)
Γ⊢ M : B □

In Γ⊢ M : A Term M has type A in context Γ. Context Γ assigns types to combinators. This

assignment is available in type judgments via rule (VAR). Terms are combined into new terms

using application and the arrow elimination rule (→ E) controls which terms are safe to

combine. An intuitive understanding reads Γ⊢ M : A → B as a judgment proving that M is

a function taking inputs of type A to outputs of type B . The only extensions to Combina-

tory Logic with Simple Types [176] are the richer type syntax and rule (≤) that changes type

judgments according to the rules of BCD Subtyping.

Proofs about type judgments use the following case-analysis and induction schemes.

Lemma 10 (Induction on and Inversion of FCL Type Judgments) Let Γ : B → T and P be a

proposition over terms and types, then:

1. Structural induction proofs use:

If for all c ∈ B: P (c,Γ(c))

and for all M1, M2 ∈A, A1, A2 ∈T:

Γ⊢ M1 : A1 → A2 and P (M1, A1 → A2) and

Γ⊢ M2 : A1 and P (M2, A1) implies

P (M1M2, A2)
and for all N ∈A, A1, A2 ∈T:

Γ⊢ N : A1 and P (N , A1) and A1 ≤ A2 implies P (N , A2)

then for all M ∈A, A ∈T: Γ⊢ M : A implies P (M , A)
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2. Combinator judgments can be reduced to Subtype judgments:

for all c ∈ B, A ∈T: If Γ⊢ c : A then Γ(c) ≤ A

3. Arrow elimination can be inverted:

for all M , N ∈A, B ∈T:

If Γ⊢ M N : B then there exists A, s.t. Γ⊢ M : A → B and Γ⊢ N : A

4. Normalized induction proofs use:

If for all c ∈ B: P (c,Γ(c))

and for all c ∈ B, A ∈T:

P (c,Γ(c)) and Γ(c) ≤ A implies P (c, A)

and for all M1, M2 ∈A, A1, A2 ∈T:

Γ⊢ M1 : A1 → A2 and P (M1, A1 → A2) and

Γ⊢ M2 : A1 and P (M2, A1) implies

P (M1M2, A2)
then for all M ∈A, A ∈T: Γ⊢ M : A implies P (M , A)

PROOF

1. Recursion using the fact that trees are finite objects and children get smaller in each

step.

2. Structural induction using the scheme from Lemma 10.1.

3. Structural induction using the scheme from Lemma 10.1.

4. Structural induction using the scheme from Lemma 10.1 and then Lemma 10.2 for the

subtyping case, and Lemma 10.3 arrow elimination case. ■

The formalization is set up such that two more rules are derivable, which are sometimes

explicitly included into the system [50; 165].

Lemma 11 (Rules derivable in FCL) The following two additional rules are derivable in FCL:

Γ⊢ M : A Γ⊢ M : B (∩I)
Γ⊢ M : A∩B

(Aω)
Γ⊢ M :ω

PROOF Both by structural induction on the derivation. For (∩I) additionally Lemma 10.2 and

Lemma 10.3 are used. The proof for rule (Aω) uses the fact that Γ is represented as a function

and has to assign some type A to every combinator, which then can be converted into an

arrow in case of application using BCD rules (ω) and (→ω): A ≤ω≤ω→ω. ■

The system also allows weakening by making subtype assumptions smaller.
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Lemma 12 (Weakening Subtypes) For all Γ1,Γ2 : B →T: if for all c ∈ B: Γ2(c) ≤ Γ1(c) then for

all M ∈A, A ∈T: if Γ1 ⊢ M : A then Γ2 ⊢ M : A.

PROOF By normalized induction (Lemma 10.4) on the derivation Γ1 ⊢ M : A. ■

Many other properties of FCL are best expressed using the construct of multi arrows.

Definition 13 (Multi Arrows) A multi arrow m is a pair T∗×T, where the first component,

srcs, is a list of source types and the second component, tgt, is a target type. Projections m.1

and m.2 select these components.

Multi arrows are converted into types using:

mkArrow(m) = foldl(λt s.s → t )(m.2)(m.1) □

Lemma 13 (Properties of mkArrow) For src, tgt, tgt1, tgt2 ∈T, and srcs,srcs1, srcs2 ∈T∗ func-

tion mkArrow has the following formal properties:

1. mkArrow(([:: src&srcs], tgt)) = last(src,srcs) → mkArrow((srcs, tgt))

2. mkArrow((rcons(srcs,src), tgt)) = mkArrow((srcs,src → tgt))

3. arity(mkArrow((rcons(srcs,src), tgt))) =T×T
4. If tgt1 ≤ tgt2 then mkArrow((srcs, tgt1)) ≤ mkArrow((srcs, tgt2))

5. If isOmega(tgt) then isOmega(mkArrow((srcs, tgt)))

6. If tgt ∈Tπ then mkArrow((srcs, tgt)) ∈Tπ
7. mkArrow((srcs, tgt1 ∩ tgt2)) ≤ mkArrow((srcs, tgt1))∩mkArrow((srcs, tgt2))

8. If lsize(srcs1) = lsize(srcs2) and for all (src1, src2) in zip(srcs1, srcs2): src1 ≤ src2 then

mkArrow((srcs1, tgt)) ≤ mkArrow((srcs2, tgt))

PROOF In the order presented and by inserting the definition of mkArrow and induction or

induction in reverse order on the source types. ■

There is an analogous operation to mkArrow on the term level.

Definition 14 (Reverse Application) Terms can be constructed from other terms M ∈A, N s ∈
A∗ using reverse application:

revApply((M , N s)) = foldr(λN M .@(M , N ))(M)(N s).

The inverse operation is defined by:

unapply(M) =
⎧⎨⎩(c, [::]) for M = c

(c, [:: N &N s]) for M = M ′N and unapply(M ′) = (c, N s)
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Lemma 14 (Properties of revApply and unapply) For M , N ∈A, c ∈ B, and N s ∈A∗ functions

revApply and unapply have the following formal properties:

1. revApply((M , rcons(N s, N ))) = revApply((@(M , N ), N s))

2. revApply((M , [::])) = M

3. revApply(unapply(M))) = M

4. unapply(revApply((c, N s)) = (c, N s)

PROOF Inserting definitions and induction. ■

Being able to construct arrows and terms from lists generalizes (inverse) arrow elimination.

Lemma 15 (Generalized (inverse) Arrow Elimination)

Let M ∈ A, N s ∈ A∗, tgt ∈ T, srcs ∈ T∗ and m be a multi arrow, then judgments can be

(de-)constructed using:

1. If lsize(N s) = lsize(m.1) and for all n ∈N: Γ⊢ nth(M , N s,n) : nth(mkArrow(m),m.1,n)

then Γ⊢ revApply((M , N s)) : m.2

2. If Γ⊢ revApply(M , N s) : tgt then there exists srcs ∈T∗, s.t. lsize(N s) = lsize(srcs) and for

all n ∈N: Γ⊢ nth(M , N s,n) : nth(mkArrow((srcs, tgt)),srcs,n)

PROOF By induction on N s, using Lemma 10.3 for the second statement. ■

Moreover, minimal types can now be assigned to any given term M .

Definition 15 (Minimal Types) The minimal type of M ∈A in context Γ : B →T is found by:

minimalType(Γ, M) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Γ(c) for M = c⋂︁
Ai∈∆ Ai

for M = M ′N and

[ tgt_for_srcs_gte minimalType(Γ, N ) in castω→ω⋆ωminimalType(Γ, M ′)]

↝ [ check_tgt ∆]

where ∆ is computed using Definition 9 with a termination certificate obtained by Lemma 2.□

Lemma 16 (Minimal Type Correctness) Let M ∈ A, A,B ,C ∈ T and Γ : B → T then function

minimalType computes the correct minimal type:

1. For all ∆ in [ tgt_for_srcs_gte B in castω→ω⋆ω A]↝ [ check_tgt ∆]:

A ≤ B →⋂︁
Ai∈∆ Ai
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2. Γ⊢ M : minimalType(Γ, M)

3. If A ≤ B →C then

for all ∆ in [ tgt_for_srcs_gte B in castω→ω⋆ω A]↝ [ check_tgt ∆]:⋂︁
Ai∈∆ Ai ≤C

4. If Γ⊢ M : A then minimalType(Γ, M) ≤ A

PROOF The intermediate statements 1 and 3 are proven by analysis of the last step of the

subtype machine, and each time two separate cases for the result of isOmega(B), showing

that castω→ω⋆ω will find appropriate targets. Soundness in statement 2 is shown by structural

induction using previous case 1 for (→ E). Minimality in statement 4 is shown by normalized

induction using the previous statements 3 for (→ E). ■

Minimal type inference and decidability of the BCD relation are enough to provide a type-

checking algorithm for FCL.

Theorem 3 (Type Checking in FCL) Let M ∈A, A ∈T and Γ : B →T then

Γ⊢ M : A iff minimalType(Γ, M) ≤ A

PROOF The forward direction of the iff is minimality from Lemma 16.4, the other direction

follows from soundness Lemma 16.2 and rule (≤). ■

The rest of this section is dedicated to the study of type inhabitation. The algorithm to infer

minimal types solves the problem: Given a context Γ, and a term M , find the minimal type,

such that Γ⊢ M : A is derivable. Type inhabitation solves the same problem for terms: Given a

context Γ and type A, find all terms M such that Γ⊢ M : A is derivable.

2.4.2 Combining Separate Domains of Discourse

Finite Combinatory Logic with Intersection Types has the power to reason about multiple

domains of discourse simultaneously. Sometimes these domains are hard to describe in a

technically precise way. Steffen et al. [181] have introduced taxonomic modeling with semantic

type descriptors in the setting of synthesis. This was later adopted for intersection types and

inhabitation based synthesis [163]. Successful applications have been demonstrated multiple

times in various different scenarios [57; 59; 20; 21; 23; 96; 25; 171; 201]. Yet, with the notable

exception of [59] where the type system was modified to separate semantic domains, no formal

study has been conducted on mathematical conditions that make a separation of domains of

discourse possible. At this point, enough theory has been established to illustrate semantic

types and domain separation by example.
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Example 1 (Semantic Types) Suppose synthesis is used to create sheets for the music running

in background to motivate reading or writing this text. The sheet is typeset by LilyPond [143],

which can process a textual markup language. One combinator, addLyrics, inserts lyrics

text into a LilyPond markup file. Another combinator, motivationSong, provides a markup

file of "No Surrender" by Bruce Springsteen. Imagine that an automated web search has

downloaded lyrics including the text "surrender" and two combinators have been created.

The first combinator, noSurrender, provides the correct lyrics. The second combinator,

ISurrender, provides the lyrics of "I Surrender" by Celine Dion.

In a technical domain of discourse these combinators can be typed as follows:

Γ1 = { addLyrics : LilyPond(Music) → String → LilyPond(Song)

motivationSong : LilyPond(Music)

noSurrender : String

ISurrender : String }

Synthesis in the technical domain uses type inhabitation to create all terms for which type

LilyPond(Song) is derivable, i.e. the set

{ addLyrics motivationSong noSurrender,

addLyrics motivationSong ISurrender }.

The first term represents the correct version with the advice "No retreat baby, no surrender"

[177]. However the second term not only has a text out of tune, but also includes the disastrous

advice "I surrender. Every night’s getting longer" [51].

A different, nontechnical, domain of discourse describes artist information:

Γ2 = { addLyrics : (Springsteen → Springsteen → Springsteen)∩
(Dion → Dion → Dion)

motivationSong : Springsteen

noSurrender : Springsteen

ISurrender : Dion }.

In this domain the type of combinator addLyrics forces the music and lyrics artist of its

arguments to match.
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The inhabitants of type Springsteen are

{ motivationSong,

noSurrender,

addLyrics motivationSong noSurrender,

addLyrics noSurrender motivationSong,

addLyrics (addLyrics motivationSong noSurrender) motivationSong,

addLyrics motivationSong (addLyrics motivationSong noSurrender), . . . }.

The problematic use of advice from Celine Dion is avoided, but an infinite set of solutions is

found. The output of addLyrics is fed back as input. Moreover, compared to the technical

domain, the arguments of addLyrics are in the wrong order in some terms.

This section discusses why it is correct (sound and complete) to combine Γ1 and Γ2 into

Γ3(c) = Γ1(c)∩Γ2(c), for which inhabitation of LilyPond(Song)∩Springsteen exactly yields the

correct answer

{addLyrics motivationSong noSurrender}.

□

Types in combined contexts need to be classified according to their provenance. The following

definitions make this classification mathematically precise.

Definition 16 (Split Type Universes) A Boolean predicate inPartition :T→B is called proper

classifier, if for all A,B ∈T the following conditions are satisfied:

1. inPartition(A → B) iff inPartition(A) and inPartition(B)

2. inPartition(A∩B) iff inPartition(A) and inPartition(B)

3. inPartition(ω) = true

Two classifiers inPartition1, inPartition2 :T→B are disjoint, if for all A,B ,C ∈T:

1. If inPartition1(A), inPartition2(B), inPartition1(C ), and A∩B ≤C then A ≤C

2. If inPartition2(A), inPartition1(B), inPartition2(C ), and A∩B ≤C then A ≤C

A Split Type Universe is a pair of proper disjoint classifiers. □

Definition 17 (Split Context Pairs) Let (inPartition1, inPartition2) be a Split Type Universe.

The pair of contexts Γ1,Γ2 : B →T is a Split Context Pair, if for all c ∈ B:

inPartition1(Γ1(c)) and inPartition2(Γ2(c)) □
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Lemma 17 (Properties of Split Context Pairs) For all Split Context Pairs (Γ1,Γ2) over a Split

Type Universe (inPartition1, inPartition2), and A,B ∈ T, ∆ ∈ T∗, and M , N ∈ A, the following

statements are true:

1. inPartition1(
⋂︁

Ai∈∆ Ai ) iff for all A in ∆: inPartition1(A)

2. inPartition2(
⋂︁

Ai∈∆ Ai ) iff for all A in ∆: inPartition2(A)

3. inPartition1(minimalType(Γ1, M))

4. inPartition2(minimalType(Γ2, M))

5. There exist ∆1,∆2 ∈T∗, s.t.

minimalType(Γ1, M) =⋂︁
Ai∈∆1

Ai and minimalType(Γ2, M) =⋂︁
Ai∈∆2

Ai and

for Γ(c) = Γ1(c)∩Γ2(c): minimalType(Γ, M) =⋂︁
Ai∈∆1++∆2

Ai

PROOF Statements 1 and 2 are proven by induction on∆. Statements 3 and 4 require induction

on M , and in the case for applications M = M ′N additional induction on minimalType(Γi , M ′)
with index i selecting the context mentioned in the statement to show. The last statement is

shown by induction on M and ∆1,∆2 are [::Γ1(c)], [::Γ2(c)] for M = c or the type lists ∆ used in

the minimalType algorithm for the case of M = M ′N . In the latter case a detailed analysis of

subtype machine behavior is required. ■

Theorem 4 (Split Context Pair Correctness) For all Split Context Pairs (Γ1,Γ2) over a Split

Type Universe (inPartition1, inPartition2), and A,B ∈T, M ∈A, and Γ(c) = Γ1(c)∩Γ2(c):

If inPartition1(A) and inPartition2(B) then

Γ⊢ M : A∩B iff Γ1 ⊢ M : A and Γ2 ⊢ M : B.

PROOF Combining proofs Γ1 ⊢ M : A and Γ2 ⊢ M : B into Γ⊢ M : A∩B is possible because of

Lemma 11 rule (∩) and the context weakening property from Lemma 12. The other direction

follows from the minimality and soundness in Lemma 16, Lemma 17.5, disjointness of universe

classifiers, as well as Lemma 17.3 and Lemma 17.4. ■

In fact, any context pair (Γ1,Γ2) can be transformed into a Split Context Pair. The transforma-

tion requires a theory of intersection homomorphisms and their effect as context transforma-

tions in FCL.

Definition 18 (Intersection Type Homomorphism) Let C1,C2 be preordered countable sets

of constructor symbols and T1,T2 types formed over each of these sets. Function f :T1 →T2

is an Intersection Type Homomorphism if it satisfies the following conditions for arbitrary

types A,B ∈T1:

1. A ≤ B iff f (A) ≤ f (B)
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2. f (A → B) = f (A) → f (B)

3. f (A∩B) = f (A)∩ f (B)

4. f (ω) =ω

5. If there exist A2,B2 ∈T2, s.t. f (A) = A2 → B2 then A = A1 → B1 for some A1,B1 ∈T1 □

Lemma 18 (Intersection Type Homomorphisms as FCL Context Transformations)

Let f :T1 →T2 be an Intersection Type Homomorphism, then for all ∆ ∈T∗
1 , A ∈T1, M ∈A, and

Γ1 : B →T1, as well as Γ2(c) = f (Γ1(c)):

1. f (
⋂︁

Ai∈∆ Ai ) =⋂︁
Ai∈∆ f (Ai )

2. castω→ω⋆ω( f (A)) = map(λAB.( f (AB.1), f (AB.2)))(castω→ω⋆ω(A))

3. minimalType(Γ2, M) = f (minimalType(Γ1, M))

4. Γ1 ⊢ M : A iff Γ2 ⊢ M : f (A)

PROOF Statements 1 and 2 follow by induction on ∆ and A and using the properties of f .

Statement 3 is proven using induction on M and case analysis on the subtype machine

behavior for the context constructed in minimalType(Γ2, M). Both directions of statement 4

require normalized induction on the derivations. The transformation from Γ1 to Γ2 only needs

the properties of f , while the other direction requires previous statement. ■

The canonical way to combine two contexts is coproduct lifting, which is defined next.

Definition 19 (Coproduct Lifting) Let C1,C2 be preordered countable sets of constructor

symbols and T1,T2 types formed over each of these sets. Additionally, set C3 =B is inserted.

Set C =⨁︁
i∈{1,2,3} Ci is ordered by the least preorder closed under the following rules:

c ≤C1 d

(1,c) ≤C (1,d)

c ≤C2 d

(2,c) ≤C (2,d) (3,b) ≤C (3,b)
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Coproduct lifting into types T formed over C is perfomed using:

lift1(A) = lift(liftCtor1, true, A)

lift2(A) = lift(liftCtor2, false, A)

liftCtor1(A) = (1, A)

liftCtor2(A) = (2, A)

lift(liftCtor, isLeft, A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω for A =ω
liftCtor(c)(lift(liftCtor, isLeft,B)) for A = c(B)

lift(liftCtor, isLeft, A1) → lift(liftCtor, isLeft, A2) for A = A1 → A2

(3, isLeft)(lift(liftCtor, isLeft, A1)⋆ lift(liftCtor, isLeft, A2)) for A = A1⋆ A2

lift(liftCtor, isLeft, A1)∩ lift(liftCtor, isLeft, A2) for A = A1 ∩ A2

Coproduct lifting has partially defined right inverses:

unlift(unliftCtor, A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω for A =ω
A′

1⋆ A′
2 for A = (3,b)(A1, A2) and

unlift(unliftCtor, A1) = A′
1 and

unlift(unliftCtor, A2) = A′
2

c ′(B ′) for A = (i ,c)(B) and i ∈ {1,2} and

unliftCtor((i ,c)) = c ′ and

unlift(unliftCtor,B) = B ′

A′
1 → A′

2 for A = A1 → A2 and

unlift(unliftCtor, A1) = A′
1 and

unlift(unliftCtor, A2) = A′
2

A′
1 ∩ A′

2 for A = A1 ∩ A2 and

unlift(unliftCtor, A1) = A′
1 and

unlift(unliftCtor, A2) = A′
2

unliftCtor1(c) = c ′for c = (1,c ′)

unliftCtor2(c) = c ′for c = (2,c ′)

unlift1(A) = unlift(unliftCtor1, A)

unlift2(A) = unlift(unliftCtor2, A)
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There is an easy to define pair of T-classifiers inPartition j for j ∈ {1,2}:

inPartition j (A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true for A =ω
true for A = (i ,c)(B) and i = j and inPartition j (B)

true for A = (3, true)(A1⋆ A2) and j = 1 and inPartition j (A1) and inPartition j (A2)

true for A = A1 → A2 and inPartition j (A1) and inPartition j (A2)

true for A = A1 ∩ A2 and inPartition j (A1) and inPartition j (A2)

false otherwise

□

The lifting is mostly straight-forward, except for the subtle encoding of products. The latter is

necessary to prevent information leakage between type universes from nested products. Type

ω⋆ω illustrates this point: it contains information because ω≤ω⋆ω is false, but without the

product encoding it cannot be uniquely classified as belonging to any type universe.

Lemma 19 (Properties of Coproduct Lifting) Again let C1,C2 be preordered countable sets of

constructor symbols, T1,T2 types formed over each of these sets and T be formed over C as

constructed in Definition 19. For all k ∈ {1,2}, (ck ,dk ∈ Ck ), and Ak , A1
k , A2

k ∈Tk , ∆k ∈T∗
k , and

B ,B1,B2 ∈T, c ∈ C, b1 = true, b2 = false, coproduct lifting has the following properties:

1. liftk (A1
k → A2

k ) = liftk (A1
k ) → liftk (A2

k )

2. liftk (A1
k ∩ A2

k ) = liftk (A1
k )∩ liftk (A2

k )

3. If there exists A′
1, A′

2, s.t. liftk (Ak ) = A′
1 → A′

2 then

there exists A1, A2 ∈Tk , s.t. Ak = A1 → A2

4. liftk (ω) =ω

5. unliftk (liftk (Ak )) = Ak

6. liftk (
⋂︁

Ai∈∆k
Ai ) =⋂︁

Ai∈map(λA. liftk (A))(∆k ) Ai

7. castliftk (ck (Bk ))(liftk (Ak )) = map(λA. liftk (A))(castck (Bk )(Ak ))

8. isOmega(Ak ) = isOmega(liftk (Ak ))

9. castliftk (A1
k→A2

k )(liftk (Ak )) = map(λAB.(liftk (AB.1), liftk (AB.2)))(castA1
k→A2

k
(Ak ))

10. castliftk (A1
k⋆A2

k )(liftk (Ak )) = map(λAB.(liftk (AB.1), liftk (AB.2)))(castA1
k⋆A2

k
(Ak ))

11. If B = liftk (A1
k )⋆ liftk (A2

k ) and ∆= cast(3,bk )(B)(liftk (Ak )) then

castB (
⋂︁

Ai∈∆ Ai ) = map(λAB.(liftk (AB.1), liftk (AB.2)))(castA1
k⋆A2

k
Ak )
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12. A1
k ≤ A2

k iff liftk (A1
k ) ≤ liftk (A2

k )

13. inPartitionk (liftk (Ak )) = true

14. inPartitionk (B1 → B2) = inPartitionk (B1) and inPartitionk (B2)

15. inPartitionk (B1 ∩B2) = inPartitionk (B1) and inPartitionk (B2)

16. inPartitionk (ω) = true

17. If inPartition1(B1) and inPartition2(c(B2)) then castc(B2)(B1) = [::]

If inPartition2(B1) and inPartition1(c(B2)) then castc(B2)(B1) = [::]

18. If inPartition1(B1) and inPartition2(B2) and B1 ≤ B2 then isOmega(B2)

If inPartition2(B1) and inPartition1(B2) and B1 ≤ B2 then isOmega(B2)

19. If inPartitionk (B) then for all B ′ in primeFactors(B): inPartitionk (B ′)

20. If inPartition1(B1) and inPartition2(B2) and inPartition1(B) and B1 ∩B2 ≤ B then B1 ≤ B

If inPartition1(B1) and inPartition2(B2) and inPartition2(B) and B1 ∩B2 ≤ B then B2 ≤ B

PROOF The statements are proven in the order presented. Most follow from simple induction,

previous lemmas and unfolding of definitions. Statements 12 and 16 require analyzing the

operational semantics of the subtype machine and induction on the termination certificates

for [ subty A1
k of A2

k ] and [ subty B1 of B2]. This is necessary because of transitivity

and the change of arrow variance. For similar reasons, statement 19 is proven by induction in

the size of B . Statement 20 is proven using statement 19 and correctness of prime factorization

(Theorem 2). ■

Theorem 5 (Coproduct Lifting Context Pairs to Split Context Pairs) Any pair of contexts Γ1 :

B → T1 and Γ2 : B → T2 can be lifted into Γ′1(c) = lift1(Γ1(c)) and Γ′2(c) = lift2(Γ2(c)) and

combined to Γ(c) = Γ′1(c)∩Γ′2(c) such that for all A ∈T1, B ∈T2, and M ∈A:

Γ⊢ M : lift1(A)∩ lift2(B) iff Γ1 ⊢ M : A and Γ2 ⊢ M : B.

PROOF By Lemma 19, inPartition1 and inPartition2 are proper disjoint classifiers and (Γ′1,Γ′2)

is a Split Context Pair. Also by Lemma 19, lift1 and lift2 are Intersection Type Homomorphisms.

Hence type judgments of the lifted contexts can be transformed back and forth between the

original and lifted contexts by Lemma 18. ■
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2.5 Verified Enumerative Type Inhabitation in FCL

This section discusses an algorithm for enumerative type inhabitation (enumerate all inhabi-

tants of a given type) in FCL. Rehof and Urzyczyn [165] have studied the decision problem for

type inhabitation in FCL and characterized it as EXPTIME-complete. The decision problem be-

comes undecidable if the system is extended with schematism and (1+k)-EXPTIME-complete1

if the schematism is restricted to variable instantiations of maximal depth k [57]. The decision

problem (does there exist an inhabitant of a given type?) is informative for complexity theory

and [165] also provides decision procedures for the problems of ambiguity (do there exist

multiple inhabitants of a given type?) and infinity (do there exist infinitely many inhabi-

tants of a given type?). Decidability and the alternating tree-automaton based representation

of FCL without subtyping [165] inform the design of an enumerative type inhabitation al-

gorithm, which can construct inhabitants instead of just answering questions about their

existence. The enumerative approach is most valuable from the practical perspective of soft-

ware synthesis and has been at the heart of multiple implementations of the (CL)S Framework

[56; 59; 55; 20; 61]. Yet, it has never been formalized – a gap that has existed for almost 10 years

of development and is finally closed in this section.

2.5.1 The Cover Machine

Combinators are the building blocks of FCL and the most fundamental task in any type

inhabitation algorithm is: given a combinator and a target type, find (all) possible types of

arguments, such that application of the combinator produces (covers) the desired target. The

cover machine solves this goal. For its specification some auxiliary functions are necessary.

Definition 20 (Auxiliary functions for the cover machine) Subtype duplicate free intersec-

tion is defined by:

A ⋔B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A for A ≤ B

B for not A ≤ B and B ≤ A

A∩B otherwise

Function partitionCover partitions a list of types according to membership in another list:

partitionCover(∆1,∆2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

([::], [::]) for ∆2 = [::]

([:: A&∆1
2],∆2

2) for ∆2 = [:: A&∆] and A in ∆1 and

partitionCover(∆1,∆) = (∆1
2,∆2

2)

(∆1
2, [:: A&∆2

2]) for ∆2 = [:: A&∆] and not A in ∆1 and

partitionCover(∆1,∆) = (∆1
2,∆2

2)

1The definition of depth(A) in this text coincides with level(A)+1 in [57].
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Predicate stillPossible : (((T∗×T)×T∗)∗×T∗) → B tests for a list of multi arrows with target

components they cover and a list of target components, which are yet to cover, if these still

can be covered:

stillPossible(splits, toCover) = for all A in toCover :

exists covered ∈ map(λmCovered.mCovered.2)(splits) :

A ∈ covered

Function mergeMultiArrow distributes duplication free intersection over two multi arrows:

mergeMultiArrow(m1,m2) = (map(λsrcs.srcs.1⋔ srcs.2)(zip(m1.1,m2.1)),m1.2⋔m2.2)

Definition 21 (Cover Machine) The instructions of the cover machine are given by

ICover ∋ i ::= Cover splits toCover

| CheckCover splits toCover

| ContinueCover splits toCover currentResult

| CheckContinueCover splits toCover currentResult

where

• splits ∈ ((T∗×T)×T∗)∗ is a list of multi arrows with parts of the target they cover

• toCover ∈T∗ is a list of target components still to cover

• currentResult ∈T∗×T is an intermediate multi arrow, possibly added to the result

The output OCover = (T∗×T)∗ is a list of multi arrows.

Behavior of the cover machine is specified by the following step relation:

not stillPossible(splits, toCover)
(STEPCHECKPRUNE)

(s, [:: CheckCover splits toCover&p])↝ (s, p)

not stillPossible(splits, toCover)
(STEPCHECKCONTINUEPRUNE)

(s, [:: CheckContinueCover splits toCover currentResult&p])↝ (s, p)

stillPossible(splits, toCover)
(STEPCHECKOK)

(s, [:: CheckCover splits toCover&p])↝ (s, [:: Cover splits toCover&p])

stillPossible(splits, toCover)
(STEPCHECKCONTINUEOK)

(s, [:: CheckContinueCover splits toCover currentResult&p])↝

(s, [:: ContinueCover splits toCover currentResult&p])

(STEPDONE)
(s, [:: Cover [::] toCover&p])↝ (s, p)
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(STEPDONECONTINUE)
(s, [:: ContinueCover [::] toCover currentResult&p])↝ (s, p)

partitionCover(covered,toCover) = ([::],∆)
(STEPSKIP)

(s, [:: Cover [:: (m,covered)&splits] toCover&p])↝ (s, [:: Cover splits toCover&p])

partitionCover(covered,toCover) = ([::],∆)
(STEPSKIPCONTINUE)

(s, [:: ContinueCover [:: (m,covered)&splits] toCover currentResult&p])↝

(s, [:: ContinueCover splits toCover currentResult&p])

partitionCover(covered,toCover) = ([:: A&∆], [::])
(STEPADDDONE)

(s, [:: Cover [:: (m,covered)&splits] toCover&p])↝

([:: m&s], [:: CheckCover splits toCover&p])

partitionCover(covered,toCover) = ([:: A&∆], [::])
(STEPMERGEDONE)

(s, [:: ContinueCover [:: (m,covered)&splits] toCover currentResult&p])↝

([:: mergeMultiArrow(currentResult,m)&s],

[:: CheckContinueCover splits toCover currentResult&p])

partitionCover(covered,toCover) = ([:: A&∆1], [:: B&∆2])
(STEPCONTINUE)

(s, [:: Cover [:: (m,covered)&splits] toCover&p])↝

(s, [:: ContinueCover splits [:: B&∆2] m&[:: CheckCover splits toCover&p]])

partitionCover(covered,toCover) = ([:: A&∆1], [:: B&∆2])

mergeMultiArrow(currentResult,m).1 = currentResult.1 (STEP
CONTINUE-

MERGEALWAYS

)

(s, [:: ContinueCover [:: (m,covered)&splits] toCover currentResult&p])↝

(s, [:: ContinueCover splits [:: B&∆2]mergeMultiArrow(currentResult,m)&p])

partitionCover(covered,toCover) = ([:: A&∆1], [:: B&∆2])

not mergeMultiArrow(currentResult,m).1 = currentResult.1
(STEP

CONTINUE-

MERGE-

OPTIONS

)

(s, [:: ContinueCover [:: (m,covered)&splits] toCover currentResult&p])↝

(s, [:: ContinueCover splits [:: B&∆2]mergeMultiArrow(currentResult,m)&

[:: CheckContinueCover splits toCover currentResult&p]])

The n-step closure of ↝ is the least relation closed under the rules:

(s, p)↝0 (s, p)

1 (s1, p1)↝ (s2, p2) 2 (s2, p2)↝n (s3, p3)

(s1, p1)↝n+1 (s3, p3)

By definition the n-step closure coincides with transtive reflexive closure: (s, p)↝∗ (s′, p ′) iff

there exists n, s.t. (s, p)↝n (s′, p ′). In proof trees t for (s, p)↝n+1 (s′, p ′) the first and second

premise are selected using t .1 and t .2. □
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The cover machine processes a stack of instructions. Results are pushed onto an output stack.

Each of the instructions has lists splits, and toCover. For the initial instructions toCover will be

chosen as the prime factors of the target type. List splits will include multi arrows computed

from the type of a combinator. Each of these multi arrows will have the same number of

arguments and be paired with the target prime factors that are greater or equal than the

multi arrow target. For example, if a combinator x has type Γ(x) = (a → b → c ∩d)∩ (d →
e) ∩ ( f → g → h) and the target type is h ∩ c, then one of the initial instructions will be

CheckCover [:: (([:: b&[::a]],c ∩d), [::c])&[::(([:: g &[:: f ]],h), [::h])]] [:: h&[::c]]. This instruction

checks the multi arrows with two targets, which are ([:: b&[::a]],c ∩ d) for a → b → c ∩ d

and ([:: g &[:: f ]],h) for f → g → h. The target prime factors are c and h, so the first multi

arrow is only paired with c, because c ∩d ≤ c and not c ∩d ≤ h. The second multi arrow

is paired with h because h ≤ h and not h ≤ c. Two of the four cover machine instructions

are prefixed with CHECK. They try to prune its exponentially large search space. If at some

point all of the covered components in splits are no longer enough to cover all components

in toCover, the search is aborted and the instruction can be dropped. This shortcut, or

if not viable the resumption of normal operations, is implemented by the first four rules

(STEPCHECKPRUNE), (STEPCHECKCONTINUEPRUNE), (STEPCHECKOK), and (STEPCHECKCONTINUEOK). Rules

(STEPDONE) and (STEPDONECONTINUE) implement failure modes and skip the current instruction.

They are inserted to ensure left totality of the step relation and invariants established for

proper initialization will later prevent, that their precondition (empty choices for splits) ever

occurs. If the first multi arrow in splits does not cover any new elements of toCover, it is

removed by (STEPSKIP) or (STEPDONECONTINUE). The opposite condition, if the first multi arrow

covers all remaining targets, is implemented in rules (STEPADDDONE) and (STEPMERGEDONE). In

each case the multi arrow from splits is pushed to the output stack. In (STEPMERGEDONE) it is also

merged with the current result. When merging two multi arrows, all of their targets and all of

their sources are intersected, avoiding redundancy whenever possible: mergeMultiArrow(([::

b&[::a]],c), ([:: d&[::a ∩ e]], f )) = ([:: b ∩d&[::a ∩ e]],c ∩ f ) where redundancy in the second

argument has been removed, i.e. a ∩e instead of a ∩ (a ∩e). The DONE-rules continue with

the rest of the multi arrows in splits. Intuitively in (a → c)∩ (b → c), type a → c is enough

to cover target c, but b → c is also viable, and recursive targets a and b can have different

inhabitants. Possibilities to cover the target are lost when resuming with the rest of splits, so

prune checks are scheduled. The CONTINUE-rules are used for the remaining cases, where

the first multi arrow in splits covers some, but not all, of the targets in toCover. This multi

arrow is then included in the current result, either by copying it if there was no prior result

(rule (STEPCONTINUE)) or by merging it with the previous result. In rule (STEPCONTINUE) merging

with the previous result does not change any of the sources of the current result. Unlike the

other CONTINUE-rules and the DONE-rules, which need to consider inclusion and exclusion

of the first multi arrow, the multi arrow can always be included in this case. For example in

(a → b)∩ (a → c)∩ (d → e ∩c) with target b∩c ∩e choosing a → c after b → c does not change

any sources ((mergeMultiArrow(([::a],b), ([::a],c))).1 = ([::a],b).1). Unchanged sources imply

that no inhabitants are ruled out for recursive targets compared to the scenario without that

particular choice. The choice is always safe, again avoiding exploration of an entire search
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space area.

The first fact to establish about the specification in Definition 21 is functionality (c.f. Lemma 1).

Lemma 20 (Functionality) For all n ∈N, and s, s1, s2 ∈OCover and p, p1, p2 ∈ I∗Cover the cover

machine step relation is functional:

1. If (s, p)↝ (s1, p1) and (s, p)↝ (s2, p2) then (s1, p1) = (s2, p2)

2. If (s, p)↝n (s1, p1) and (s, p)↝n (s2, p2) then (s1, p1) = (s2, p2)

PROOF The precondition of all rules in Definition 21 are mutually exclusive. ■

Definition 22 (Cover Machine Step Function) The result (s′, p ′) of steps (s, p)↝n (s′, p ′) for

n ≤ 1 is computed by:

step(s, p) : {(s′, p ′) ∈ (OCover × I∗Cover) | if p = [::] then (s′, p ′) = (s, p) else (s, p)↝ (s′, p ′)}

step(s, p) =⎧⎪⎨⎪⎩
(s, [::]) for p = [::]

(s′, p ′) for
P (s, p)

(s, p)↝ (s′, p ′)
in the rules of ↝ and P (s, p) = true

Similar to the implementation of the subtype machine, totality of the implementation of the

cover machine is guaranteed by a termination certificate.

Definition 23 (Cover Machine Termination Certificate) For any input (s, p) ∈OCover × I∗Cover

termination certificate Dom(s, p) is a proof tree constructed from the rules of (s, p)↝n (s′, [::])

for some n ∈N and s′ ∈OCover. □

A tail recursive procedure now implements the full n-step behavior of the cover machine.

Definition 24 (Procedure implementing the Cover Machine)

coverMachine(s, p) : Dom(s, p) → {s′ ∈OCover | (s, p)↝∗ (s′, [::])}

coverMachine(s, p)(d) =⎧⎨⎩s′ for step(s, p) = (s′, [::])

coverMachine(s′, [:: i &p ′])(d .2) for step(s, p) = (s, [:: i &p ′])

□

It remains to show that the cover machine is total, i.e. that a termination certificate can be

provided for all inputs.
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Lemma 21 (Totality of the Cover Machine) For i ∈ ICover define:

splitsOf(i ) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

splits for i = Cover splits toCover

or i = CheckCover splits toCover

or i = ContinueCover splits toCover currentResult

or i = CheckCover splits toCover currentResult

isChecked(i ) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
true for i = Cover splits toCover

or i = ContinueCover splits toCover currentResult

false otherwise

measure(i ) =
⎧⎨⎩22·lsize(splitsOf(i )) for isChecked(i ) = true

22·lsize(splitsOf(i )) +1 otherwise

For all n ∈N, s1, s2 ∈OCover and p1, p2 ∈ I∗Cover the following statements are true:

1. If (s1, p1)↝ (s2, p2) then
∑︁

i in p1
measure(i) <∑︁

i in p2
measure(i)

2. If (s1, p1)↝n (s2, p2) then n ≤∑︁
i in p1

measure(i)

3. Proof tree Dom(s1, p1) exists

PROOF The first statement is proven by case analysis on the possibilities for (s1, p1)↝ (s2, p2)

and application of some simple arithmetic. The second statement then follows by induction

on n, the first statement, and transitivity of ≤ on natural numbers. Finally the proof tree

for Dom(s1, p1) is constructed by iterating the single step function up to
∑︁

i in p1
measure(i)

times. The second statement proves that more iterations cannot result in additional steps and

thereby the program instruction stack p must be empty as is required for the leaves of the

Dom proof tree. ■

Correctness of the cover machine is a multi faceted issue and its proof requires to study

multiple properties and invariants of the machine behavior first.

Lemma 22 (Stack Behavior) For all s1, s2 ∈OCover, and p1, p2 ∈ I∗Cover the cover machine satis-

fies the following stack invariants for its state and list of instructions

1. If (s1, p1)↝ (s2, p2) then suffix(behead(p1), p2)

2. If (s1, p1)↝ (s2, p2) then suffix(s1, s2)

3. If (s1, p1)↝∗ (s2, p2) then suffix(s1, s2)

PROOF Case analysis and in the last case induction on the steps. ■
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More auxiliary functions for multi arrows are used in the subsequent specifications.

Definition 25 (Auxiliary Functions for Multi Arrows) Function mergeMultiArrows merges se-

quences of multi arrows:

mergeMultiArrows(ms) =⎧⎨⎩([::],ω) for ms = [::]

foldl(λm1m2.mergeMultiArrow(m1,m2))(m)(ms′) for ms = [:: m&ms′]

Function filterMergeMultiArrows flattens sequences of sequences of multi arrows by merging

subsequences or removing them if they are empty:

filterMergeMultiArrows(mss) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[::] for mss = [::]

filterMergeMultiArrows(mss′) for mss = [:: [::]&mss′]

[:: mergeMultiArrows([:: m&ms])&

filterMergeMultiArrows(mss′)]

for mss = [:: [:: m&ms]&mss′]

Components that might be subject to merging in a run of the cover machine are collected

from its instructions using:

mergeComponentsOf(i ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

map(λm.m.1)(splits)

for i = Cover splits toCover or

i = CheckCover splits toCover

[:: currentResult&map(λm.m.1)(splits)]

for i = ContinueCover splits toCover currentResult or

i = CheckContinueCover splits toCover currentResult

□

The first soundness property captures the fact that the cover machine does not add multi

arrows to its results which were not present in its input instructions:

Lemma 23 (Cover Machine Input Merge Component Soundness)

For mss1,mss2 ∈ ((T∗×T)∗)∗, and m1,m2 ∈ (T∗×T), i ∈ ICover, and p1, p2 ∈ I∗Cover, and s1, s2 ∈
OCover, and splits ∈ ((T∗×T)×T∗)∗ the following statements are true:

1. filterMergeMultiArrows(mss1 ++mss2) =
filterMergeMultiArrows(mss1)++filterMergeMultiArrows(mss2)

2. If mss1 ⊑ mss2 then filterMergeMultiArrows(mss1) ⊑ filterMergeMultiArrows(mss2)
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3. filterMergeMultiArrows(map(λms.[:: mergeMultiArrow(m1,m2)&ms])(mss1)) =
filterMergeMultiArrows(map(λms.[:: m1&[:: m2&ms]])(mss1))

4. If (s1, [:: i &p1])↝ (s2, p2) then

for all m in take(lsize(s2)− lsize(s1), s2) :

m is in filterMergeMultiArrows(subseqs(mergeComponentsOf(i )))

Define soundness as a Boolean predicate on OCover × I∗Cover by:

sound(s, p) = for all m in s :

m is in

flatten(map(λi .filterMergeMultiArrows(subseqs(mergeComponentsOf(i ))))(p))

5. If (s1, p1)↝ (s2, p2) then sound(take(lsize(s2)− lsize(s1), s2), p1)

6. If (s1, [:: i &p1])↝ (s2, p2) then

for all i2 in take(lsize(p2)− lsize(p1), p2) :

if isChecked(i ) then splitsOf(i2) = behead(splitsOf(i))

7. If (s1, [:: i &p1])↝ (s2, p2) then

for all i2 in take(lsize(p2)− lsize(p1), p2) :

if i2 = ContinueCover splits toCover currentResult or

i2 = CheckContinueCover splits toCover currentResult then

currentResult is in

filterMergeMultiArrows(subseqs(mergeComponentsOf(i )))

8. If (s1, [:: i &p1])↝ (s2, p2) and sound(splits, p2) then sound(splits, [:: i1&p1])

9. If (s1, p1)↝∗ (s2, p2) then sound(take(lsize(s2)− lsize(s1), s2), p1)

PROOF Statements 1, 2, and 3 are proven by induction on mss1, mss2, and mss1. They are

used to decompose properties of output states in multi step reductions. Statement 4 is the

interesting part of single step soundness in statement 5. The idea is to show that freshly

pushed outputs (those in take(lsize(s2)− lsize(s1), s2)) are the result of merging multi arrows in

the instructions before the step was performed. Lemma 22 facilitates this kind of reasoning by

decomposing instructions and outputs. Statement 4 requires Lemma 22.2 followed by case

analysis on i . Statement 5 is then proven by simple case analysis on p1. Reductions with

multiple steps require reasoning backwards: the output state is related to the input instructions.

Statements 6, 7, and 8 perform backwards reasoning for single steps. They follow from the

decomposition properties and case analysis on the first instruction i . Finally, statement 9 is

proven by induction on the steps, decomposition of the first step with Lemma 22.2 and the

later steps with Lemma 22.3, finishing by conjunction of the properties obtained by statement

5 for the first step with the properties obtained by statement 8 with the induction hypothesis

for the last steps. ■
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Completeness requires a more subtle and technically challenging argument. Statements and

definitions of the following lemma will be illustrated in its proof and the puzzled reader is ad-

vised to read it first and then interactively step through the accompanying Coq formalization.

Lemma 24 (Cover Machine Input Merge Component Completeness)

Define

toCoverOf(i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
toCover for i = Cover splits toCover or

i = CheckCover splits toCover or

i = ContinueCover splits toCover currentResult or

i = CheckContinueCover splits toCover currentResult

and some Boolean predicates to encode invariants:

• complete(s, i ) =
for all m1 in filterMergeMultiArrows(subseqs(mergeComponentsOf(i ))) :

if m1.2 ≤ ⋂︂
Ai∈toCoverOf(i )

Ai :

exists m2 in s :

for (srcs, tgt) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

((mergeMultiArrow(currentResult,m1)).1,

currentResult.2∩⋂︁
Ai∈toCover Ai )

for i = ContinueCover splits toCover currentResult or

i = CheckContinueCover splits toCover currentResult

(m1.1,
⋂︁

Ai∈toCoverOf(i ) Ai ) otherwise

lsize(m2.1) = lsize(srcs) and

for all (src1, src2) in zip(srcs,m2.1) : src1 ≤ src2 and

m2.2 ≤ tgt

• instruction_covered(i ) =
for all ((srcs, tgt),covered) in splitsOf(i ) :

tgt ≤ ⋂︂
Ai∈covered

Ai and

for all A in toCoverOf(i ) : If tgt ≤ A then A is in covered

• not_omega_covered(i ) =
not toCoverOf(i ) = [::] and for all A in toCoverOf(i ) : not ω≤ A

• arity_equal(i ) =
for all (srcs1, tgt1) in mergeComponentsOf(i ) :

for all (srcs2, tgt2) in mergeComponentsOf(i ) : lsize(srcs1) = lsize(srcs2)
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• toCover_prime(i ) = for all A in toCoverOf(i ) : A ∈Tπ
• currentResultNotDone(i ) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

If A in toCover then not currentResult.2 ≤ A

for i = ContinueCover splits toCover currentResult or

i = CheckContinueCover splits toCover currentResult

true otherwise

For n ∈ N, mss ∈ ((T∗×T)∗)∗, ms ∈ (T∗×T)∗, srcs ∈ T∗, and A,B , tgt ∈ T, and m,m1,m2 ∈
(T∗ ×T), i ∈ ICover, and p1, p2 ∈ I∗Cover, and s, s1, s2 ∈ OCover, splits ∈ ((T∗ ×T) ×T∗)∗, and

covered,toCover ∈T∗ the following statements are true:

1. for all A in (partitionCover(covered,toCover)).1: A is in covered

2. for all A in (partitionCover(covered,toCover)).2: A is not in covered

3. (partitionCover(covered,toCover)).1 ⊑ toCover

4. (partitionCover(covered,toCover)).2 ⊑ toCover

5. If (s1, p1)↝ (s2, p2) and for all i1 in p1: instruction_covered(i1) then

for all i2 in p2: instruction_covered(i2)

6. If (s1, p1)↝ (s2, p2) and for all i1 in p1: not_omega_instruction(i1) then

for all i2 in p2: not_omega_instruction(i2)

7. If (s1, p1)↝ (s2, p2) and for all i1 in p1: arity_equal(i1) then

for all i2 in p2: arity_equal(i2)

8. If for all m1 in ms: for all m2 in ms: lsize(m1.1) = lsize(m2).1 then

for all m in ms: lsize(m.1) = lsize((mergeMultiArrows(ms)).1)

9. (mergeMultiArrow(m1,m2)).2 ≤ m1.2∩m2.2

10. m1.2∩m2.2 ≤ (mergeMultiArrow(m1,m2)).2

11. for all (src1, (src2, src3)) in zip(mergeMultiArrow(m1,m2).1,zip(m1.1,m2.1)):

src1 ≤ src2 ∩ src3

12. for all (src1, (src2, src3)) in zip(mergeMultiArrow(m1,m2).1,zip(m1.1,m2.1)):

src2 ∩ src3 ≤ src1

13. (mergeMultiArrows(ms)).2 ≤⋂︁
mi∈ms mi .2

14.
⋂︁

mi∈ms mi .2 ≤ (mergeMultiArrows(ms)).2

15. If for all m1 in ms: for all m2 in ms: lsize(m1) = lsize(m2) then

nth(ω, (mergeMultiArrows(ms)).1,n) ≤⋂︁
mi∈ms nth(ω,mi .1,n)
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16. If for all m1 in ms: for all m2 in ms: lsize(m1) = lsize(m2) then⋂︁
mi∈ms nth(ω,mi .1,n) ≤ nth(ω, (mergeMultiArrows(ms)).1,n)

17. If (s1, p1)↝ (s2, p2) and for all i1 in p1: toCover_prime(i1) then

for all i2 in p2: toCover_prime(i2)

18. If for all A in toCover: isPrimeComponent(A) and

for all A in toCover: m.2 ≤ A implies A is in covered and

m.2 ≤⋂︁
Ai∈covered Ai and⋂︁

mi∈[::m&ms] mi .2 ≤⋂︁
Ai∈toCover Ai then

m.2 ≤⋂︁
Ai∈(partitionCover(covered,toCover)).1 Ai and⋂︁

mi∈ms mi .2 ≤⋂︁
Ai∈(partitionCover(covered,toCover)).2 Ai

19. If m is in filterMergeMultiArrows(map(λms.[:: m1&ms],mss)) then

m = m1 or

exists ms in mss s.t. mergeMultiArrows(ms) is in filterMergeMultiArrows(mss)

20. If for all ((srcsi , tgti ),coveredi ) in [:: ((srcs, tgt),covered)&splits] :

tgti ≤
⋂︂

Ai∈coveredi

Ai and

for all A in toCover : A ≤ tgti

then tgt ≤ ⋂︂
Ai∈

toCover and

for all A in toCover : tgt ≤ A implies A is in covered

21. If (partitionCover(covered,toCover)).1 = [::] then

(partitionCover(covered,toCover)).2 = toCover

22. If (partitionCover(covered,toCover)).2 = [::] then

(partitionCover(covered,toCover)).1 = toCover

23. If for all m1 in [:: m&ms]: for all m2 in [:: m&ms]: lsize(m1) = lsize(m2) and

not ms = [::] then

lsize((mergeMultiArrows([:: m&ms])).1) = lsize((mergeMultiArrows(ms)).1)

24. If A is in toCover then

A is in (partitionCover(covered,toCover)).1++(partitionCover(covered,toCover)).2

25.
⋂︁

Ai∈(partitionCover(covered,toCover)).1++(partitionCover(covered,toCover)).2 Ai ≤⋂︁
Ai∈toCover Ai

26. If for all Ai in toCover: A ≤ Ai implies B is in covered and

A ≤⋂︁
Ai∈toCover Ai then

(partitionCover(covered,toCover)).1 = [::]
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27. If (s1, p1)↝ (s2, p2) and

for all i in p1:

instruction_covered(i ) and

toCover_prime(i ) and

currentResultNotDone(i )
then for all i in p2: currentResultNotDone(i )

28. If not toCover = [::] and for all A in toCover: not tgt ≤ A then

not tgt ≤⋂︁
Ai∈toCover Ai

29. filterMergeMultiArrows(map(λms.[:: m1&ms],map(λms.[:: m2&ms],mss))) =
filterMergeMultiArrows(map(λms.[:: mergeMultiArrow(m1,m2)&ms],mss))

30. for all (src1, src2) in zip(srcs, (mergeMultiArrow(m, (srcs, tgt))).1): src2 ≤ src1

31. A∩B ≤ A ⋔B

32. A ⋔B ≤ A∩B

33. (mergeMultiArrow(m, (srcs, tgt))).1 = map(λsrcs.srcs.1⋔ srcs.2,zip(srcs,m.1))

34. If for all ((srcs, tgt),covered) in splits:

tgt ≤ ⋂︂
Ai∈covered

Ai and

for all A in toCover : tgt ≤ A implies A is in covered
and for all A in toCover: isPrimeComponent(A) and

not stillPossible(splits, toCover) and

m is in filterMergeMultiArrows(subseqs(map(λmc.mc.1,splits))) then

not m.2 ≤⋂︁
Ai∈toCover Ai

35. If (s1, p1)↝ (s2, p2) and

suffix(s2, s) and

for all i in p1:

arity_equal(i ) and

not_omega_instruction(i ) and

instruction_covered(i ) and

toCover_prime(i ) and

currentResultNotDone(i )
and for all i in p2: complete(s, i ) then

for all i in p1: complete(s, i )
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36. If (s1, p1)↝∗ (s2, [::]) and

for all i in p1:

arity_equal(i ) and

not_omega_instruction(i ) and

instruction_covered(i ) and

toCover_prime(i ) and

currentResultNotDone(i )
then for all i in p1: complete(s2, i )

PROOF Statement 36 is the interesting property to show. The complete-predicate is applied

to all the initial instructions and the final state. For each instruction it ensures that the state

includes a multi arrow sufficient to represent all possible merged solution subsets of multi

arrows specified in the instruction, including the current result if present. Merged multi arrow

subsets are only possible solutions if their merged target meets the goal, i.e., it has to be a

subtype of all the types to cover by the instruction. A multi arrow is sufficient to represent a

merged subset multi arrow, if its sources are greater or equal and the target is enough to meet

the goal. For example multi arrow ([::a],b) is sufficient to represent ([::a ∩ c],b ∩d) if only b

is to cover: sources of resulting multi arrows will eventually become recursive inhabitation

targets and the terms inhabiting a include all the terms inhabiting a ∩b. Just like the proof

for soundness, the proof for statement 36 requires induction, decomposition of the first step

and then reasoning backwards. Statements 5, 6, 7, 17, and 27 make it possible to apply the

induction hypothesis by showing that invariants still hold after the first step. Each of them is

proven by case-analysis on the derivation. Backwards reasoning is provided by statement 35.

It requires a detailed and careful case analysis on the many possibilities to derive (s1, p1)↝

(s2, p2).

During this analysis all the invariants have to be taken into account. Invariant arity_equal

ensures, that all multi arrows in an instruction have the same number of sources: type (a →
b → c)∩ (d → e) can be used to inhabit c and (b → c)∩e but not c ∩e which would require the

multi arrows ([:: b&[::a]],c) and ([::d ],e) with different numbers of sources. Late termination

is prevented by not_omega_instruction and currentResultNotDone. Late termination would

occur if the target of the current result in an instruction is smaller or equal than all of the types

to cover (invariant currentResultNotDone). Alternatively, if there is no current target, there

could be no types to cover. Both situations would lead to unnecessarily specialized sources,

restricting recursive inhabitation targets to types too small. Invariant not_omega_instruction

asserts that normal operation of the machine will stop before the targets to cover by an

instruction are empty. Also targets greater than ω have to be sorted out before starting the

machine. This is because subtype rule (→ω) converts any such target to an arrow of arbitrary

length, which is incompatible with invariant arity_equal. Machine operations also rely on the

possibility to discharge targets in toCover by adding multi arrows one-by-one. This is possible

if the targets are prime (asserted by invariant toCover_prime): for a prime target tgt and multi

arrows m1 and m2, m1.2∩m2.2 ≤ tgt if m1.2 ≤ tgt or m2.2 ≤ tgt and no distribution across m1
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and m2 has to be taken into account. When processing a single multi arrow, its covered targets

are classified by partitionCover according to their relevance for the remaining targets to cover.

In splits each multi arrow is paired with its covered targets, allowing partitionCover to test for

equality instead of performing costly subtype checks. Invariant instruction_covered ensures

multi arrows are exactly paired with targets they cover. Inclusion of too few targets would

render CHECK and SKIP-steps incomplete by triggering premature exclusion of possibilities.

For the other steps, too many covered targets for a single multi arrow exclude future choices

by removing too many elements from the targets yet to cover.

The rest of the statements of Lemma 24 are technical necessities that simplify backward

reasoning in statement 35 and maintaining the invariants across steps. None of them are

particularly difficult if they are proven in the order presented. ■

There is another important soundness property, which will be proven next.

Lemma 25 (Target Soundness) Target soundness is defined as a Boolean predicate on states

s ∈ (T∗×T)∗ and programs p ∈ I∗Cover:

tgt_sound(s, p) =
for all (srcs, tgt) in s :

there exists i i n p s.t. tgt ≤ ⋂︂
Ai∈∆

Ai

for ∆=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[:: currentResult.2&toCover]

for i = ContinueCover splits toCover currentResult or

i = CheckContinueCover splits toCover currentResult

toCover

for i = Cover splits toCover or

i = CheckCover splits toCover

For i ∈ ICover, and p1, p2 ∈ I∗Cover, and s1, s2 ∈OCover the following statements are true:

1. If (s1, p1)↝ (s2, p2) and for all i in p1: instruction_covered(i ) then

tgt_sound(take(lsize(s2)− lsize(s1), s2), p1)

2. If (s1, [::i ])↝ (s2, p2) and instruction_covered(i ) and tgt_sound(s, p) then

tgt_sound(s, [::i ])

3. If (s1, p1)↝∗ (s2, p2) and for all i in p1: instruction_covered(i ) then

tgt_sound(take(lsize(s2)− lsize(s1), s2), p1)

PROOF Target soundness ensures that the target of every multi arrow in the result state s

covers at least one of the sets specified in an instruction (and the associated intermediate

result if it exists). The proof is similar to the proofs of Lemma 24.36 and Lemma 23.5. It again
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combines forwards and backwards reasoning after an induction on the machine steps and de-

composition of state and programs using the machine stack behavior established in Lemma 22.

Forward and backward steps are proven by case analysis on the derivation, where the back-

wards reasoning in statement 2 has been further simplified to account for just one instruction

(decomposition with Lemma 22 is strong enough for this). Invariant instruction_covered again

prevents the final state from becoming too small because of premature result exclusion. ■

The five preconditions for completeness in Lemma 24.36 make proper initialization mandatory.

Additionally types in context Γ have to be preprocessed into multi arrows to be accepted in

instructions. This preprocessing is performed by function splitTy defined next.

Definition 26 (Preprocessing Types into Multi Arrows) The list of lists of all multi arrows of

equal length for a given type A is computed by splitTy :T→ ((T∗×T)∗)∗

splitTy(A) =
⎧⎨⎩[::] for isOmega(A)

[:: ([::], A)&splitRec(A, [::], [::])] otherwise

splitRec(A, srcs,∆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[:: [:: ([:: A1&srcs], A2)&∆1]&splitRec(A2, [:: A1&srcs],∆2)]

for A = A1 → A2 and (∆1,∆2) = safeSplit(∆)

splitRec(A2, srcs,∆) for A = A1 ∩ A2 and isOmega(A1)

splitRec(A1, srcs,∆)

for A = A1 ∩ A2 and isOmega(A2) and not isOmega(A2)

splitRec(A1, srcs,splitRec(A2, srcs,∆))

for A = A1 ∩ A2 and not isOmega(A2) and not isOmega(A2)

∆ otherwise

safeSplit(∆) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
([::], [::]) for ∆= [::]

(∆′, [::]) for ∆= [::∆′]

(∆1,∆2) for ∆= [::∆1&∆2]

□

Function splitTy first sorts out types equal to ω and then proceeds recursively on the type

structure. During recursion the sources of the multi arrow currently under construction and a

list ∆ of computed results are maintained. For constructor symbols and products recursion

stops, returning the computed results. These already include the current type as target from

a previous step. Intersections are processed component-wise, again filtering out all types

equal to ω. For arrows the result list is split into a head and tail list. The head list contains all

results with lsize(srcs)+1 sources and a new multi arrow constructed from the current arrow is
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inserted into it. The remaining arrows of the current arrow target are recursively constructed

from the tail list, which contains the results with more sources. The current source is added to

the sources for arrows under construction.

Lemma 26 (Properties of Type Preprocessing) Define the recursive Boolean predicate

arity_increasing(n,∆) =⎧⎪⎪⎨⎪⎪⎩
true for ∆= [::]

arity_increasing(n +1,∆2) and

for all (srcs, tgt) in ∆1 : n = lsize(srcs)

for ∆= [::∆1&∆2]

For c ∈ C, n ∈N, and srcs,srcs1, srcs2 ∈T∗, and A,B ∈ T y pes, and ∆,∆1,∆2,∆3 ∈ ((T∗×T)∗)∗,

and f : (T∗×T)∗ → (T∗×T)∗ the following statements are true:

1. arity_increasing(n,∆1 ++∆2) iff

arity_increasing(n,∆1) and arity_increasing(n + lsize(∆1),∆2)

2. If arity_increasing(lsize(srcs)+1,∆) then

arity_increasing(lsize(srcs)+1,splitRec(A, srcs,∆))

3. arity_increasing(0,splitTy(A))

4. For all ms in ∆: for all (srcs1, tgt1) in ms: for all (srcs2, tgt2) in ms:

lsize(srcs1) = lsize(srcs2)

5.
⋂︁

mi∈nth([::],splitRec(A,srcs,∆),n) mkArrow(mi ) ≤⋂︁
mi∈nth([::],∆,n) mkArrow(mi )

6. If lsize(∆1) = lsize(∆2) then lsize(splitRec(A, srcs,∆1)) = lsize(splitRec(A, srcs,∆2))

7. If lsize(∆1) = lsize(∆2) and⋂︁
mi∈nth([::],∆1,n) mkArrow(mi ) ≤⋂︁

mi∈nth([::],∆2,n) mkArrow(mi ) then⋂︁
mi∈nth([::],splitRec(A,srcs,∆1),n) mkArrow(mi ) ≤⋂︁

mi∈nth([::],splitRec(A,srcs,∆2),n) mkArrow(mi )

8. If B ≤⋂︁
mi∈nth([::],splitRec(A,srcs,nseq(lsize(∆),[::])),n) mkArrow(mi ) and

B ≤⋂︁
mi∈nth([::],∆,n) mkArrow(mi ) then

B ≤⋂︁
mi∈nth([::],splitRec(A,srcs,∆),n) mkArrow(mi )

9. If mkArrow(srcs, A) ≤⋂︁
mi∈nth([::],∆,n) mkArrow(mi ) then

mkArrow(srcs, A) ≤⋂︁
mi∈nth([::],splitRec(A,srcs,∆),n) mkArrow(mi )

10. A ≤⋂︁
mi∈nth([::],splitTy(A),n) mkArrow(mi )
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Define

• merge(∆1,∆2) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
[:: ms1 ++ms2&merge(∆′

1,∆′
2)] for ∆1 = [:: ms1&∆′

1] and ∆2 = [:: ms2&∆′
2]

∆2 for ∆1 = [::]

∆1 for ∆2 = [::]

• splitTy_slow(A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[::] for isOmega(A)

[:: [::([::], A1 → A2)]&map(λms.map(λm.(rcons(m.1, A1),m.2),ms),splitTy_slow(A2)]

for A = A1 → A2 and not isOmega(A)

[:: [::([::], A1 ∩ A2)]&behead(merge(splitTy_slow(A1),splitTy_slow(A2)))]

for A = A1 ∩ A2 and not isOmega(A)

[::[::([::], A)]] for not isOmega(A)

then:

11. merge(merge(∆1,∆2),∆3) = merge(∆1,merge(∆2,∆3))

12. merge(∆, [::]) =∆

13. merge([::],∆) =∆

14. splitRec(A, srcs,∆) = merge(splitRec(A, srcs, [::]),∆)

15. If for all ms1,ms2 ∈ (T∗×T)∗: f (ms1 ++ms2) = f (ms1)++ f (ms2) then

map( f ,merge(∆1,∆2)) = merge(map( f ,∆1),map( f ,∆2))

16. splitRec(A, srcs1 ++srcs2, [::]) =
map(λms.map(λm.(m.1++srcs2,m.2),ms),splitRec(A, srcs1, [::]))

17. splitTy(A) = splitTy_slow(A)

18. If isOmega(A) then splitTy_slow(A) = [::]

19. nth([::],merge(mss1,mss2),n) = nth([::],mss1,n)++nth([::],mss2,n)

20. nth([::],splitTy_slow(A2),n +1) ⊑ nth([::],splitTy_slow(A1 ∩ A2),n +1)

21. If c(A) ≤ mkArrow(srcs,B) then

(mergeMultiArrows(

filter(

λm. lsize(m.1) = lsize(srcs) and for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2,

nth([::],splitTy(c(A)), lsize(srcs))))).2 ≤ B
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22. If A1⋆ A2 ≤ mkArrow(srcs,B) then

(mergeMultiArrows(

filter(

λm. lsize(m.1) = lsize(srcs) and for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2,

nth([::],splitTy(A1⋆ A2), lsize(srcs))))).2 ≤ B

23. If ω≤ mkArrow(srcs,B) then

(mergeMultiArrows(

filter(

λm. lsize(m.1) = lsize(srcs) and for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2,

nth([::],splitTy(ω), lsize(srcs))))).2 ≤ B

24. If A ≤ mkArrow(srcs,B) then

(mergeMultiArrows(

filter(

λm. lsize(m.1) = lsize(srcs) and for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2,

nth([::],splitTy(A), lsize(srcs))))).2 ≤ B

25. If A ≤ mkArrow(srcs,B) and not isOmega(mkArrow(srcs,B)) then

exists m in filterMergeMultiArrows(subseqs(nth([::],splitTy(A), lsize(srcs)))), s.t.

lsize(m.1) = lsize(srcs) and

for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2 and

m.2 ≤ B

PROOF Statements 1-10 prove soundness of splitTy with respect to its specification. The

resulting multi arrows are ordered increasing by their source count (statement 3). After re-

combination with mkArrow, type A is less than each of the multi arrows it includes (statement

10). When done in the order presented, proofs are unsurprising and follow by induction on

the first context mentioned in statement 1 and 2, and structural induction on the type that is

split in the other statements. Completeness is specified in statement 25 and requires a less

straight-forward proof. The main difficulty is to find invariants for the accumulated result

state ∆ in the definition of splitRec. Instead the proof strategy is to replace splitTy by a slower

version splitTy_slow with linear overhead for list concatenation instead of constant overhead

for manipulating the head of the lists. Some easy proofs show that this slower version produces

equal results (statements leading up to 17) and behaves well with ω, distribution of multi

arrows, and intersections (statements 18 - 20). Finally, the completeness proof in statement

25 follows from its alternative representation in 24, which constructs the desired multi arrow

selection to provide completeness instead of postulating its existence. The proof of statement

24 proceeds by structural induction on A. The easier cases for constructors, products and

omega are managed by 21, 22, and 23. The case for ω, 23, is immediate, while for the other

cases reverse induction on the list of sources has to be performed. Then splitTy is replaced by

splitTy_slow, which can be evaluated one step before replacing it again with splitTy to be able
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to use induction hypotheses which are otherwise not applicable to the evaluated recursive

calls to splitTyRec. ■

Preprocessing types allows for proper calls to the cover machine.

Lemma 27 (Proper Cover Machine Calls) For ms ∈ (T∗ ×T)∗, srcs ∈ T∗, and A,B ∈ T, and

s ∈OCover, with B s = primeFactors(B), and mss = splitTy(A) the following statements are true:

1. for all i in map(λms.map(λm.(m,filter(λB.m.2 ≤ B ,B s)),ms),mss):

instruction_covered(i )

2. If A ≤ mkArrow(srcs,B) and not isOmega(B) and

([::],map(λms.Cover (map(λm.(m,filter(λB.m.2 ≤ B ,B s)),ms)) B s,mss))↝∗ (s, [::]) then

there exists m in s, s.t.

lsize(m.1) = lsize(srcs) and

for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2 and

m.2 ≤ B

3. If for all m1 in ms: for all m2 in ms: lsize(m1) = lsize(m2) then⋂︁
mi∈ms mkArrow(mi ) ≤ mkArrow(mergeMultiArrows(ms))

4. If not isOmega(B) and

([::],map(λms.Cover (map(λm.(m,filter(λB.m.2 ≤ B ,B s)),ms)) B s,mss))↝∗ (s, [::]) then

for all m in s: A ≤ mkArrow(m)

5. If ([::],map(λms.Cover (map(λm.(m,filter(λB.m.2 ≤ B ,B s)),ms)) B s,mss))↝∗ (s, [::])

then for all m in s: m.2 ≤ B

PROOF Statement 1 establishes the instructionsCovered invariant later used for Lemma 24.36

in statement 2 and Lemma 25.3 in statement 5. It easily follows from the definitions of map

and filter. Statement 2 proves completeness: for any multi arrow (srcs,B) greater or equal

than A, a subtype compatible multi arrow with the same number of sources can be found

in the final state of the cover machine. The proof uses Lemma 24.36. Its preconditions

are provided using Lemma 26.3 with Lemma 26.4, Lemma 9.17, statement 1, Theorem 2.3,

and observing that no intermediate results are present in the initial input. Statement 3 is

proven by induction on ms. The soundness proof in statement 4 proceeds by instantiating

Lemma 23.9 and Lemma 26.10, induction on s, and combining the instantiated lemmas with

subtype transitivity and statement 3. Finally, target soundness in statement 5 follows from

Theorem 2.1, Lemma 25.3 with statement 5, and transitivity of subtyping. ■

A final post processing step is applied to the results of the cover machine. Sometimes indepen-

dent choices can lead to redundancy, e.g. in (a∩b → c∩d)∩(a → c)∩(b → d) with target c∩d

the machine has to independently inspect possibilities for (a → c)∩ (b → d) for an execution

branch not choosing a ∩b → c ∩d . This leads to duplicated inclusion of a ∩b → c ∩d in the

results. Fortunately, these duplicates can easily be removed.
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Definition 27 (Cover Machine Result Reduction) The result reduction function defined re-

cursively on its input list:

reduceMultiArrows : (T∗×T)∗ → (T∗×T)∗

reduceMultiArrows(ms) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

msr

for ms = [:: m1&ms′] and

msr = reduceMultiArrows(ms′) and

exists (srcs, tgt) in msr s.t.

lsize(srcs) = lsize(m1.1) and

for all (src1, src2) in zip(m1.1,srcs) : src1 ≤ src2

[:: m1&ms′r ]

for ms = [:: m1&ms′] and

msr = reduceMultiArrows(ms′) and

not exists (srcs, tgt) in msr s.t.

lsize(srcs) = lsize(m1.1) and

for all (src1, src2) in zip(m1.1,srcs) : src1 ≤ src2

and ms′r = filter(λm2.not ( lsize(m2.1) = lsize(m1.1) and

for all (src1, src2) in zip(m2.1,m1.1) :

src1 ≤ src2),msr )

[::] otherwise

Lemma 28 (Cover Machine Result Reduction Properties) For ms ∈ (T∗×T)∗, srcs ∈T∗, and

A,B , tgt ∈T function reduceMultiArrows has the following properties:

1. reduceMultiArrows(ms) ⊑ ms

2. If for all m in ms: A ≤ mkArrow(m) then

for all m in reduceMultiArrows(ms): A ≤ mkArrow(m)

3. If for all m in ms: m.2 ≤ B then

for all m in reduceMultiArrows(ms): m.2 ≤ B

4. If for all m in ms: m.2 ≤ B and

exists m in ms, s.t.

lsize(m.1) = lsize(srcs) and

for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2 and

m.2 ≤ B
then exists m in reduceMultiArrows(ms), s.t.

lsize(m.1) = lsize(srcs) and

for all (src1, src2) in zip(srcs,m.1) : src1 ≤ src2 and

m.2 ≤ B

64



2.5. Verified Enumerative Type Inhabitation in FCL

PROOF Statement 1 is shown by induction on ms and the (target) soundness preservation

properties of statements 2 and 3 immediately follow from it. Completeness preservation,

which is stated in 4, is proven by induction on ms and case analysis on the conditions checked

by reduceMultiArrows. ■

2.5.2 Generation of Tree Grammars

Results of the cover machine are combined into tree grammars, which allow for easy enumer-

ation. This section discusses an algorithm, which grows these tree grammars in a step-wise

way. Its correctness properties are specified and proven. Specifically the set of inhabitants of a

requested type coincides with the language of the resulting grammar.

Definition 28 (Regular Normalized Tree Grammar and their Language) In [42], chapter 2,

regular normalized tree grammars are defined by G = (S, N ,F ,R), where

• S ∈ N is an axiom (start symbol)

• N is a set of non terminal symbols

• F is a set of terminal symbols disjoint from N

• R is a set of rules of shape A ↦→ f (A1, A2, . . . , An) or A ↦→ f

where f ∈F , and A, A1, A2, . . . An ∈ N

• Arities are used consistently, i.e. if f ∈F occurs in r1,r2 ∈ R then either there exists some

n ∈N and for i ∈ 1,2 and 1 ≤ k ≤ n: Ai , Ai
k ∈ N s.t. either r1 = A1 ↦→ f (A1

1, A1
2, . . . , A1

n) and

r2 = A2 ↦→ f (A2
1, A2

2, . . . , A2
n) or there exist A1, A2 ∈ N s.t. r1 = A1 ↦→ f and r2 = A2 ↦→ f .

Language L(G , A) for start symbol A is the least set closed under the following rules:

A ↦→ f ∈ R

f ∈ L(G , A)

A ↦→ f (A1, A2, . . . , An) ∈ R tk ∈ L(G , Ak ) for k ∈ {1,2, . . . ,n}

f (t1, t2, . . . , tn) ∈ L(G , A)

Additionally language L(G) is defined to be L(G ,S). □

Tree Grammars are well-studied concepts with good formal properties. These include efficient

decision procedures for emptiness, uniqueness, and infinity of their associated languages,

as well as an equivalent machine model, non-deterministic finite tree-automata (NFTA) [42].

Note that the associated NFTA model can express the same languages but is algorithmically

weaker than the alternating tree-automata constructed in [165]: transforming a given alter-

nating automaton into an automaton without alternation introduces exponential blowup.
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Rehof and Urzyczyn [165] state that this blowup occurring in addition to the already expo-

nential worst-case size prevents the alternating automaton construction from being a good

solution for deciding inhabitation with subtyping. The tree grammar approach does not intro-

duce double exponential blowup: for input size n there exist polynomial functions p1, p2, p3

such that there can be up to 2p1(n) calls to the cover machine, which by Lemma 21.2 takes

at most 2p2(n) steps, adding at most p3(n) many recursive targets (multi arrow sources) per

step. The resulting tree grammar only contains rules for those targets, so its size is bound

by 2p1(n) ·2p2(n) ·p3(n) ≤ 2p1(n)+p2(n)+log(p3(n)). Intuitively, the reason for the performance im-

provement compared to the alternating automaton approach is that alternation elimination is

oblivious of the fact that the task of the cover machine is independent from the main algorithm

loop. It computes the powerset of main loop and cover computation states, instead of their

Cartesian product.

The main algorithm and its helper functions are defined next. The behavior is specified as a

machine performing step-wise transformations of rule lists for tree grammars.

Definition 29 (Inhabitation Machine) For Γ : B →T define:

• The preprocessed multi arrow context Γ′ : B → ((T∗×T)∗)∗

Γ′(c) = splitTy(Γ(c))

• The set of all possible rules

R ∋ r ::= A ↦→⊥ | A ↦→ c | A ↦→ @(B ,C )

for c ∈ B, and A,B ,C ∈T

• Function computeFailExisting :R∗×T→B×B

computeFailExisting(G , A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(true,true) for G = [:: A ↦→⊥&G ′]

(true, exists A ↦→⊥ in G ′) for G = [:: B ↦→⊥&G ′] and not A = B and A ≤ B

computeFailExisting(G ′, A) for G = [:: B ↦→⊥&G ′] and not A = B and not A ≤ B

computeFailExisting(G ′, A) for G = [:: B ↦→ c&G ′]

(false, true) for G = [:: B ↦→ @(C , A)&G ′]

computeFailExisting(G ′, A) for G = [:: B ↦→ @(C ,D)&G ′] and not A = D

(false, false) otherwise
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• Function commitMultiArrow :R∗×B× (T∗×T) →R∗

commitMultiArrow(G ,c, (srcs, tgt)) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
commitMultiArrow([:: tgt ↦→ @(src → tgt,src)&G],c, (srcs′, src → tgt))

for srcs = [:: src&srcs′]

[:: tgt ↦→ c&G] otherwise

• Function commitUpdates :R∗×T×B× (T∗×T)∗ →R∗

commitUpdates(G , tgt,c,covers) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
commitUpdates(commitMultiArrow(G ,c, srcs, (srcs, tgt)), tgt,c,covers′)

for covers = [:: (srcs, tgt′)&covers′]

G otherwise

• Function dropTargets :R∗ →R∗

dropTargets(G) =⎧⎨⎩dropTargets(G ′) for G = [:: A ↦→ @(B ,C )&G ′] or G = [:: A ↦→⊥&G ′]

G otherwise

• Function accumulateCovers : (B → (T∗×T)∗)×T×T∗× (R∗×B)×B →R∗×B

accumulateCovers(Γ′, tgt, toCover,(G , failed),c) =
(commitUpdates(G , tgt,c, reduceMultiArrows(covers)), failed and covers = [::])

for p = map(λms.Cover (map(λm.(m,filter(λB.m.2 ≤ B , toCover)),ms)) toCover,

Γ′(c)) and

([::], p)↝∗ (covers, [::])

• Function inhabit_cover : (B → (T∗×T)∗)×R∗×T→B×R∗

inhabit_cover(Γ′,G , tgt) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(false,G ++ G′)

for (false,G ′) = foldl(λs c.accumulateCovers(Γ′, tgt,primeFactors(tgt), s,c),

([::], true),

enum(B))

(true,G) otherwise
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• Function Gω :T→R∗

Gω(A) = [:: A ↦→ @(A, A)&map(λc.A ↦→ c,enum(B))]

• The machine state transition function

inhabitation_step : (B → (T∗×T)∗)×R∗×R∗ →R∗×R∗

inhabitation_step(Γ′,Gstable,Gtargets) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1⃝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Gstable,G ′
targets)

for A ↦→ c in Gstable

([:: A ↦→ c&Gstable],G ′
targets)

for not A ↦→ c in Gstable

for Gtargets = [:: A ↦→ c&G ′
targets]

2⃝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Gstable,G ′
targets)

for A ↦→ @(B , tgt) in Gstable

3⃝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

([:: tgt ↦→⊥&Gstable],dropTargets(G ′
targets))

for computeFailExisting(Gstable, tgt) = (true, false)

(Gstable,dropTargets(G ′
targets))

for computeFailExisting(Gstable, tgt) = (true,true)

([:: A ↦→ @(B , tgt)&Gstable],G ′
targets)

for computeFailExisting(Gstable, tgt) = (false, true)

4⃝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

([:: A ↦→ @(B , tgt)&Gω(tgt)++Gstable],G ′
targets)

for isOmega(tgt)

5⃝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

([:: tgt ↦→⊥&Gstable],dropTargets(G ′
targets))

for inhabit_cover(Γ′,G ′
targets, tgt) = (true,G ′′

targets)

([:: A ↦→ @(B , tgt)&Gstable],G ′′
targets)

for inhabit_cover(Γ′,G ′
targets, tgt) = (false,G ′′

targets)

for not isOmega(tgt)

for computeFailExisting(Gstable, tgt) = (false, false)

for not A ↦→ @(B , tgt) in Gstable

for Gtargets = [:: A ↦→ @(B , tgt)&G ′
targets]

6⃝(Gstable,dropTargets(G ′
targets))

for Gtargets = [:: A ↦→⊥&G ′
targets]

7⃝(Gstable, [::])

for Gtargets = [::]
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Within preprocessed context Γ′ the inhabitation machine transforms lists of rules into lists of

rules . Its behavior is specified by the step relation induced by inhabitation_step:

Γ′ ⊢ (Gstable,Gtargets)↝ inhabitation_step(Γ′,Gstable,Gtargets)

The n-step closure of ↝ is the least relation closed under the rules:

Γ′ ⊢ (Gstable,Gtargets)↝0 (Gstable,Gtargets)

1 Γ′ ⊢ (G1
stable,G1

targets)↝ (G2
stable,G2

targets) 2 Γ′ ⊢ (G2
stable,G2

targets)↝n (G3
stable,G3

targets)

Γ′ ⊢ (G1
stable,G1

targets)↝n+1 (G3
stable,G3

targets)

By definition the n-step closure coincides with transtive reflexive closure:

Γ′ ⊢ (Gstable,Gtargets)↝∗ (G ′
stable,G ′

targets) iff

there exists n, s.t. Γ′ ⊢ (Gstable,Gtargets)↝n (G ′
stable,G ′

targets).

In proof trees t for Γ′ ⊢ (Gstable,Gtargets)↝n+1 (G ′
stable,G ′

targets) the first and second premise are

selected using t .1 and t .2. □

The inhabitation machine with all of its helper functions may seem daunting at first, but its

core idea is simple. Each step transforms two rule lists. The first list Gstable represents rules

of the tree grammar under construction. It is stable because it will only grow by addition of

new rules, while its contents will never be deleted or modified. The second list Gtargets is a

queue of rules under consideration for inclusion into the stable list. When there are no more

entries in Gtargets inhabitation stops and Gstable is completed (case 7⃝). Then the resulting

grammar is G = (A,T, {@}⊎B,R) for rules R = {r | r is in Gstable and not exists A s.t. r = A ↦→⊥}

and the request type A from Γ⊢? : A. There are three options for rules r ∈R. Nonterminals are

types T and used without subtyping. Terminals are combinators B or the apply symbol "@".

Rules always use combinators without arguments and the apply symbol with two arguments.

List Gstable can also include rules of form A ↦→ ⊥, which are not considered for the resulting

grammar. They encode the absence of words (inhabitants) for nonterminal (type) A and allow

the algorithm to abort inhabitation early in certain situations. In each step, the machine

makes a decision based on the first rule in Gtargets. The cases grouped under 1⃝ describe

how to add a combinator rule, which is just copied to the stable grammar if it is not yet

present. The target rule queue Gtargets has an additional internal order. If the cover machine

finds multi arrow m = ([:: A2&[::A1]],B) for target B and combinator c, then Gtargets includes

[:: A1 → A2 → B ↦→ c&[:: A2 → B ↦→ @(A1 → A2 → B , A1)&[:: B ↦→ @(A2 → B , A2)&G ′
targets]]]

where G ′
targets is either empty or starts with a combinator rule of shape C ↦→ d . Whenever the
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machine detects that an intermediate nonterminal (type) such as A2 is unproductive (has

no inhabitants), all of the targets up to the next combinator are discarded using function

dropTargets (case 7⃝ and multiple subcases of 2⃝). In the example, this aborts inhabitation of

B using m and thereby avoids redundant work for A1. If the first rule on the target queue has

shape A ↦→ @(B , tgt) it is an application rule and processed by case 2⃝. Again, rules which have

already been processed are skipped. Otherwise (case 3⃝) computeFailExisting(Gstable, tgt)

analyzes if enough information has been collected about the next target tgt in Gstable to

continue without extra effort. Function computeFailExisting(Gstable, tgt) returns a tuple of

Booleans. The first Boolean indicates if type tgt or a greater or equal type has been marked

as uninhabited. By FCL rule (≤) type tgt cannot have inhabitants in this case, because they

would also be inhabitants of the marked type. The second Boolean is true if tgt has previously

been used in target position or been directly marked as unproductive. In case 3⃝ unproductive

target types are discarded with the rest of the entries from their multi arrows, and they are

marked unproductive in Gstable unless they have been directly marked before. If tgt has been

previously used and not marked, the current rule A ↦→ @(B , tgt) is added to Gstable and no

further targets are generated. Otherwise, in case 4⃝ the machine checks if ω is a subtype of tgt.

Remember that the cover machine from Definition 21 only works correctly with inputs not

greater or equal than ω (Lemma 27.2, Lemma 27.4). Every combinator c can inhabit Γ(c) ≤ω
and therefore by rule (≤) also tgt. Additionally, the subtype rules can derive tgt ≤ω≤ω→ω

resulting in inhabitants of tgt being applicable to other inhabitants of type tgt. The rules in

Gω(tgt) express both of these facts, which is why they and the current rule are added to Gstable.

Every applicative term is derivable by Gω(tgt) and no additional targets are required. Finally,

in case 5⃝ the cover machine is invoked to compute additional inhabitation targets. Functions

inhabit_cover and accumulateCovers generate proper cover machine calls (c.f. Lemma 27)

for the split multi arrows of every combinator, which are precomputed in Γ′. Results of the

cover machine are postprocessed (c.f. Definition 27) and converted for future addition to

Gtargets using commitUpdates and commitMultiArrow. Function commitUpdates adds all

cover machine results for one combinator and commitMultiArrow adds a single result multi

arrow in the order described above. Both inhabit_cover, and accumulateCovers also keep

track of a Boolean to indicate if no cover machine call yielded any results for any combinator.

If this is the case, no inhabitants for tgt can be found. The inhabitation machine then marks

tgt as unproductive and again discards entries from the target queue. Otherwise, the current

rule is added to Gstable and the newly computed targets are enqueued. Note that using a stack

instead of a queue would lead to depth first instead of breadth first search.

Correctness of the inhabitation machine requires a fairly complex proof presented next. There

are two main sources of complexity. The first is the requirement to reuse information from

Gstable to avoid loops caused by cyclic grammar entries (e.g. from type A → A). The other

complex part is reasoning about the partially constructed list Gstable, taking into account

potential future inhabitants from Gtargets which can grow or shrink in any step, potentially

even discarding multiple scheduled targets at once. The easiest part, soundness, is proven first.

Again, the relational machine specification enables reasoning about soundness, completeness,
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and termination independently. Also, the initial call to the machine can be constructed after

preconditions for its correct execution have been established.

For the following proofs, membership in the language of the grammar computed by the

inhabitation machine is replaced by a Boolean predicate. This avoids the clumsy notation to

distinguish between the grammar and its rules.

Definition 30 (Boolean Predicate deciding Language Membership) Let G ∈R∗ be rules com-

puted by the subtype machine for some requested type B ∈ T. Then for all types A ∈ T,

and terms M ∈ A the Boolean predicate word : R∗ ×T×A → B is by definition the same

as membership in the computed grammar, i.e. word(G , A, M) iff M ∈ L((B ,T, {@} ⊎ B, {r |
r is in G and not exists C s.t. r =C →⊥}, A)):

word(G , A, M) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
true for M = c and A ↦→ c is in G

true for M = @(M1, M2) and exists A ↦→ @(B ,C ) in G s.t.

word(G ,B , M1) and word(G ,C , M2)

false otherwise

Lemma 29 (Inhabitation Machine Soundness) For context Γ : B →T define the Boolean pred-

icate FCL_sound :R∗ →B by

FCL_sound(G) = for all r in G :⎧⎪⎪⎪⎨⎪⎪⎪⎩
A ≤ Γ(c) for r = A ↦→ c

B ≤C → A for r = A ↦→ @(B ,C )

true otherwise

then the following statements are true for all G ,G1,G2,Gstable,Gtargets,G ′
stable,G ′

targets ∈R∗, and

A,B ,C , tgt ∈T, srcs ∈T∗, ms ∈ (T∗×T)∗, c ∈ B, M ∈A, and b ∈B:

1. If FCL_sound(G) and word(G , A, M) then Γ⊢ M : A

2. suffix(dropTargets(G),G)

3. If suffix(G1,G2) and word(G1, A, M) then word(G2, A, M)

4. If suffix(G1,G2) and FCL_sound(G2) then FCL_sound(G1)

5. If FCL_sound(G1) and FCL_sound(G2) then FCL_sound(G1 ++G2)

6. If FCL_sound(G) and Γ(c) ≤ mkArrow((srcs, tgt)) and tgt ≤ A then

FCL_sound(commitMultiArrow(G ,c, srcs, A)
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7. If FCL_sound(G) and

for all m in ms :

Γ(c) ≤ mkArrow(m) and

m.2 ≤ A then
FCL_sound(commitUpdates(G , A,c,ms)

Additionally in the preprocessed context Γ′ : B → ((T∗×T)∗)∗ from Definition 29:

8. If FCL_sound(G) and not isOmega(A) then

FCL_sound(accumulateCovers(Γ′, A,primeFactors(A), (G ,b),c).1)

9. If FCL_sound(G) and not isOmega(A) then

FCL_sound(

(foldl(λ s c.accumulateCovers(Γ′, A,primeFactors(A), s,c), (G ,b),enum(B))).1)

10. If FCL_sound(G) and not isOmega(A) then

FCL_sound((inhabit_cover(Γ′,G , A)).2)

11. If isOmega(A) then FCL_sound(Gω(A))

12. If FCL_sound(Gstable) and FCL_sound(Gtargets) then

FCL_sound((inhabitation_step(Γ′,Gstable,Gtargets)).1) and

FCL_sound((inhabitation_step(Γ′,Gstable,Gtargets)).2)

13. If FCL_sound(Gstable) and FCL_sound(Gtargets) and

Γ′ ⊢ (Gstable,Gtargets)↝∗ (G ′
stable,G ′

targets) then

FCL_sound((inhabitation_step(Γ′,G ′
stable,G ′

targets)).1) and

FCL_sound((inhabitation_step(Γ′,G ′
stable,G ′

targets)).2)

PROOF The crucial trick is to define FCL_sound and to prove proposition 1 by induction on

M . This predicate is term-independent and statements 2 - 5, which are easy to prove, enable

compositional reasoning for all the intermediate rule lists created in the other statements.

These cover the different decisions made by inhabitation_step and in the order presented

their proofs follow by unsurprising case-analysis or induction. ■

A total function for the inhabitation machine step relation is constructed next.

Lemma 30 (Functionality of the Inhabitation Machine)

For all preprocessed contexts Γ′ : B → ((T∗ × T)∗)∗ and rule lists G1
stable,G1

targets,G2
stable,

G2
targets,G3

stable,G3
targets ∈R∗ the step relation is functional:

If (G1
stable,G1

targets)↝ (G2
stable,G2

targets) and (G1
stable,G1

targets)↝ (G3
stable,G3

targets) then

(G2
stable,G2

targets) = (G3
stable,G3

targets)

PROOF Direct consequence of the definition via inhabitation_step. ■
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Definition 31 (Inhabitation Machine Termination Certificate)

For all preprocessed contexts Γ′ : B → ((T∗×T)∗)∗ and input rule lists Gstable,Gtargets ∈ R∗

termination certificate DomΓ′(Gstable,Gtargets) is a proof tree constructed from the rules of

Γ′ ⊢ (Gstable,Gtargets)↝∗ (G ′
stable, [::]) for some G ′

stable ∈R∗. □

Just as for the cover machine (c.f. Definition 24) a tail recursive procedure can now be stated

as implementation of the inhabitation machine.

Definition 32 (Procedure implementing the Inhabitation Machine)

inhabitationMachine(Γ′,Gstable,Gtargets) :

DomΓ′(Gstable,Gtargets) → {G ∈R∗ | Γ′ ⊢ (Gstable,Gtargets)↝∗ (G , [::])}

inhabitationMachine(Γ′,Gstable,Gtargets)(d) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
G for Gtargets = [::]

inhabitationMachine(Γ′,G ′
stable,G ′

targets)(d .2)

for inhabitation_step(Γ′,Gstable,Gtargets) = (G ′
stable,G ′

targets)

□

Termination certificates d ∈ DomΓ′(Gstable,Gtargets) always exist because the growth of Gstable

is limited.

Lemma 31 (Totality of the Inhabitation Machine) For context Γ : B →T and the preprocessed

context Γ′ : B → ((T∗×T)∗)∗ define

• A projection to the parameter types of rules by function parameterTypes :R∗ →T∗

parameterTypes(G) = pmap

⎛⎝λr.

⎧⎨⎩Some(C ) for r = A ↦→ @(B ,C )

None otherwise
,G

⎞⎠
• All types in rules generated for a multi arrow via grammarTypes :T∗×T→T∗

grammarTypes(srcs, tgt) =⎧⎨⎩[:: src&[:: tgt&grammarTypes(srcs′, src → tgt)]] for srcs = [:: src&srcs′]

tgt otherwise

• All possible parameter types for an initial target by maxParameterTypes :T→T∗

maxParameterTypes(A) =
[:: A&flatten(map(λc.flatten(map(λms.flatten(map(λm.

grammarTypes(m)++grammarTypes(m.1, A),

filterMergeMultiArrows(subseqs(ms)))),Γ′(c))),enum(B)))]
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Then for all r ∈R, and G ,Gstable,Gtargets ∈R∗, c ∈ B, and A, src, tgt, tgt′ ∈T, and srcs,∆, toCover ∈
T∗, ms ∈ (T∗×T)∗, cs ∈ B∗, b ∈B, and n ∈N the following statements are true:

1. If src is in srcs then src is in grammarTypes(srcs, tgt)

2. mkArrow(take(n, srcs), tgt) is in grammarTypes(srcs, tgt)

3. If for all A in undup(parameterTypes(G)): A is in ∆ and

for all A in srcs: A is in ∆ then

for all A in undup(parameterTypes(commitMultiArrow(G ,c, srcs, tgt))): A is in ∆

4. If for all A in undup(parameterTypes(G)): A is in ∆ and

for all A in srcs: A is in ∆ and

for all m in ms: for all src in m.1: src is in ∆ then

for all A in undup(parameterTypes(commitUpdates(G , tgt,c,ms))): A is in ∆

5. If for all A in undup(parameterTypes(G)): A is in maxParameterTypes(tgt) then

for all A in (accumulateCovers(Γ′, tgt,primeFactors(tgt), (G ,b),c)).1:

A is in maxParameterTypes(tgt)

6. tgt is in maxParameterTypes(tgt)

7. If for all A in undup(parameterTypes(G)): A is in maxParameterTypes(tgt) then

for all A in

undup(parameterTypes(

(foldl(λ s c.accumulateCovers(Γ′, tgt′,primeFactors(tgt′), s,c), (G ,b),enum(B))).1)) :
A is in maxParameterTypes(tgt)

8. If for all A in undup(parameterTypes(G)): A is in maxParameterTypes(tgt) then

for all A in undup(parameterTypes((inhabitCover(Γ′,G , tgt)).2)):

A is in maxParameterTypes(tgt)

9. For all A in parameterTypes(Gω(tgt)): A = tgt

10. If tgt′ is in maxParameterTypes(tgt) then

for all A in undup(parameterTypes(Gω(tgt′))): A is in maxParameterTypes(tgt)

11. If for all A in undup(parameterTypes(Gtargets)): A is in maxParameterTypes(tgt) and

for all A in undup(parameterTypes(Gstable)): A is in maxParameterTypes(tgt) then

for all A in undup(parameterTypes((inhabitation_step(Γ′,Gstable,Gtargets)).1)) :

A is in maxParameterTypes(tgt)

and for all A in undup(parameterTypes((inhabitation_step(Γ′,Gstable,Gtargets)).2)) :

A is in maxParameterTypes(tgt)

74



2.5. Verified Enumerative Type Inhabitation in FCL

Define the measured lexicographic product inhabit_step_reltgt ⊂ (R∗×R∗)× (R∗×R∗) as the

least relation closed under the rules:

lsize(maxParameterTypes(tgt))+1− lsize(undup(parameterTypes(Gstable))) <
lsize(maxParameterTypes(tgt))+1− lsize(undup(parameterTypes(G ′

stable)))

inhabit_step_reltgt((Gstable,Gtargets), (G ′
stable,G ′

targets))

undup(parameterTypes(Gstable)) = undup(parameterTypes(G ′
stable))

lsize(undup(parameterTypes(Gtargets))) < lsize(undup(parameterTypes(G ′
targets)))

inhabit_step_reltgt((Gstable,Gtargets), (G ′
stable,G ′

targets))

Also assert that relation R(x, y) is well-founded [154], written WF(R), if all x are accessible,

written Acc(x), where Acc(x) is the least set closed under the rule:

for all y: if R(y, x) then Acc(y)
Acc(x)

Continue with the proof of the following statements:

12. WF(inhabit_step_reltgt)

13. If inhabit_step_reltgt((Gstable,Gtargets), (G ′
stable,G ′

targets)) and

for all A in undup(parameterTypes(Gstable)): A is in maxParameterTypes(tgt) then

inhabit_step_reltgt(([:: r &Gstable],Gtargets), (G ′
stable,G ′

targets))

14. lsize(dropTargets(Gtargets)) ≤ lsize(Gtargets)

15. If ms = [::] then Gtargets = commitUpdates(Gtargets, tgt,c,ms)

16. If ms = [::] then reduceMultiArrows(ms) = [::]

17. If (accumulateCovers(Γ′, tgt, toCover,(G , true),c)).2 then

G = (accumulateCovers(Γ′, tgt, toCover,(G , true),c)).1

18. If (accumulateCovers(Γ′, tgt, toCover,(G ,b),c)).2 then b = true

19. If (foldl(λs c.accumulateCovers(Γ′, tgt, toCover, s,c), (G ,b),cs)).2 then b = true

20. If (foldl(λs c.accumulateCovers(Γ′, tgt, toCover, s,c), (G ,b),cs)).2 then

G = (foldl(λs c.accumulateCovers(Γ′, tgt, toCover, s,c), (G ,b),cs)).1

21. If (inhabit_cover(Γ′,Gtargets, tgt)).1 then (inhabit_cover(Γ′,Gtargets, tgt)).2 =Gtargets

22. If not (computeFailExisting(G , A)).1 and not (computeFailExisting(G , A)).2 then

A is not in parameterTypes(G)
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23. If for all A in undup(parameterTypes(Gstable)): A is in maxParameterTypes(tgt) and

for all A in undup(parameterTypes(Gtargets)): A is in maxParameterTypes(tgt) and

not Gtargets = [::] then

inhabit_step_reltgt(inhabitation_step(Γ′,Gstable,Gtargets), (Gstable,Gtargets))

24. A finite proof tree DomΓ′([::], (inhabit_cover(Γ′, [::], tgt)).2) can always be constructed

PROOF The first part establishes the maximal list of parameter types that will ever occur

in position C in rules of shape A ↦→ @(B ,C ). These will always stem from the filtered and

merged combination of some multi arrows drawn from Γ′, possibly with their targets replaced

by the initial request type. Function grammarTypes allows all sources and targets of these

multi arrows in the generated set. Statements 1–11 establish the properties of the auxiliary

inhabitation machine functions with respect to the maximal parameters. Their proofs are

by straight-forward induction and/or case analysis. Statement 11 is the most important part

and shown by case analysis on the options considered by the inhabitation machine transition

function inhabitation_step.

Well-foundedness from statement 11 is used to construct the proof tree in statement 24. With

the rule for Acc well-foundedness generates the induction principle

If for all x :

if for all y : R(y, x) implies P (y)

then P (x)

then forall x : P (x)

where P is chosen to be DomΓ′ and statement 23 satisfies the precondition R(y, x) for con-

structing the tree via the induction hypothesis. Statement 11 uses that inhabit_step_rel is the

lexicographic product of two well founded relations (less than on natural numbers), which

is again well-founded [154]. Statements 13–22 break down the proof of 11, which is by case-

analysis on the options of inhabitation_step, into easy to show steps. ■

The initial remark about the upper bound on the number of machine steps and thereby

the size of the grammar can also be clarified further at this point. It is easy to show that

the number of multi arrows in Γ′(c) = splitTy(Γ(c)) is bound by size(A) · length(A). Func-

tion subseqs computes exponentially many subsequences. The subsequences are passed to

filterMergeMultiArrows, which invokes mergeMultiArrows for each subsequence. Function

mergeMultiArrows calls mergeMultiArrow linear many times, which then combines multi

arrows in polynomial time of their size using the quadratic subtyping algorithm. Results are

passed to grammarTypes and processed in linear time. Therefore maxParameterTypes(A) is

overall in 2p(size(A)·length(A)) for some polynomial p. Relation inhabit_step_reltgt bounds the

number of possible steps by (lsize(maxParameterTypes(A))+1)2 because Lemma 31.11 places

all parameters in Gstable and Gtargets within maxParameterTypes(A). There is only one call to

the cover machine per step and its arguments are polynomial in the input size, hence the

overall single-exponential running time of the algorithm.
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The final part of the correctness proof, completeness, requires two additional invariants.

Lemma 32 (Inhabitation Machine Invariants) For context Γ : B →T, a list of rules G ∈R∗

• is soundly marked for failures, FailSoundΓ(G), if for all A ∈T s.t. there exists A ↦→⊥ in G

there does not exist M ∈A s.t. Γ⊢ M : A

• is a target list without fail rules, noTargetFailures(G), if there does not exist A ∈T s.t. there

exists A ↦→⊥ in G

Additionally for the preprocessed contextΓ′(c) = splitTy(Γ(c)) as well as all G1,G2,Gstable,Gtargets,

G ′
targets ∈R∗, c ∈ B, srcs ∈T∗, and A, tgt ∈T the following statements are true:

1. If FailSoundΓ(G1) and FailSoundΓ(G2) then FailSoundΓ(G1 ++G2)

2. If FailSoundΓ(G1 ++G2) then FailSoundΓ(G1) and FailSoundΓ(G2)

3. If FailSoundΓ(G) and (computeFailExisting(G , A)).1 = true then

FailSoundΓ([:: A ↦→⊥&G])

4. If (accumulateCovers(Γ′, tgt,primeFactors(tgt), (G , true),c)).2 = true and

not isOmega(tgt) then

not Γ⊢ c : mkArrow(srcs, tgt)

5. If (inhabit_cover(Γ′,G , tgt)).1 = true and not isOmega(tgt) then

not exists M ∈A s.t. Γ⊢ M : tgt

6. FailSoundΓ(Gω(A))

7. If FailSoundΓ(Gstable) then FailSoundΓ((inhabitation_step(Γ′,Gstable,Gtargets)).1)

8. If noTargetFailures(Gtargets) and suffix(G ′
targets,Gtargets) then noTargetFailures(G ′

targets)

9. If noTargetFailures(Gtargets) then noTargetFailures((inhabit_cover(Γ′,Gtargets, tgt)).2)

10. If noTargetFailures(Gtargets) then

noTargetFailures((inhabitation_step(Γ′,Gstable,Gtargets)).2)

PROOF Statements 1 and 2 follow from the definition of FailSound, while 3 is shown by

induction on G and case analysis of the first rule. The proof for statement 4 uses that Γ(c)

is the minimal type of c (Lemma 16), and completeness of the cover machine (Lemma 24)

after unfolding the definition of accumulateCovers (Definition 29). Statement 5 is shown

by inversion of Γ⊢ M : tgt using Lemma 15.2 and induction on the finite combinator set B.

Statement 6 follows from the definition of Gω(A). Statement 7, sound failure marking, follows

by case analysis on the first rule in Gtargets in combination with the previous statements.

Statement 8 follows from the definition of noTargetFailures, statement 9 by unfolding the

definition of inhabit_cover and induction on the finite combinator set B, and then by use of

statement 10 in the case analysis of the first rule of Gtargets and the prior statements. ■
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Lemma 33 (Inhabitation Machine Completeness) For context Γ : B →T define:

• Function updateGroups : (R∗)∗×R→ (R∗)∗ to group a single rule together with the rules

of the multi arrow it was generated from:

updateGroups(groups,r ) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
[:: [::A ↦→ c]&groups] for r = A ↦→ c

[:: rcons(g ,r )&groups′] for groups = [:: g &groups′] and not r = A ↦→ c

[::[::r ]] for groups = [::] and not r = A ↦→ c

• Function group :R∗ → (R∗)∗ to group rules by the multi arrow they were generated from:

group(G) = rev(foldl(λ s r.updateGroups(s,r ), [::],G))

• A projection to the target (left hand side) of a rule lhs :R→T

lhs(r ) = A for r = A ↦→⊥ or r = A ↦→ c or A ↦→ @(B ,C )

• A projection to the targets of a list of rules targetTypes :R∗ →T∗

targetTypes(G) = map(lhs,G)

• Potential future derivability of a term as the least relation future_word ⊆R∗×R∗×T×A
closed under the rules:

A ↦→ c is in Gstable

future_word(Gstable,Gtargets, A,c)

g is in group(Gtargets)

A ↦→ c is in g

for all B in parameterTypes(g ):

exists M s.t. Γ⊢ M : B

future_word(Gstable,Gtargets, A,c)

A ↦→ @(B ,C ) is in Gstable

future_word(Gstable,Gtargets,B , M)

future_word(Gstable,Gtargets,C , N )

future_word(Gstable,Gtargets, A,@(M , N ))

g is in group(Gtargets)

A ↦→ @(B ,C ) is in g

future_word(Gstable,Gtargets,B , M)

Γ⊢ N : C

for all B in parameterTypes(g ):

exists M s.t. Γ⊢ M : B

future_word(Gstable,Gtargets, A,@(M , N ))
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• An intermediate machine state (Gstable,Gtargets) ∈ R∗×R∗ to be partially complete for

initial type tgt ∈T, written FCL_complete(tgt,Gstable,Gtargets), if:

for all A ∈T s.t. A = tgt or

A is in parameterTypes(Gstable) or

A is in targetTypes(pmap(λg .ohead(rev(g )),group(Gtargets))) :

for all M ∈A : Γ⊢ M : A implies future_word(Gstable,Gtargets, A, M)

Then for the preprocessed context Γ′(c) = splitTy(Γ(c)) and all G ,Gstable,Gtargets,G ′
stable,G ′

targets,

g ,nextTargets ∈ R∗, groups ∈ (R∗)∗, r ∈ R, and A,B ,C ,D, tgt ∈T, srcs ∈T∗, covers,ms ∈ (T∗×
T)∗, c ∈ B, cs ∈ B∗, M ∈A, b ∈B, n ∈N the following statements are true:

1. flatten(group(G)) =G

2. updateGroups([::],r ) = [::[::r ]]

3. If for all r in G: not exists A ∈T and c ∈ B s.t. r = A ↦→ c then

foldl(λ s r.updateGroups(s,r ), [:: g &groups],G) = [:: g ++G&groups]

4. foldl(λ s r.updateGroups(s,c),groups,[:: A ↦→ c&G]) =
foldl(λ s r.updateGroups(s,c), [::], [:: A ↦→ c&G])++groups

5. If Gtargets =G ++dropTargets(Gtargets) then

for all r in G: not exists A ∈T and c ∈ B s.t. r = A ↦→ c

6. Either dropTargets(G) = [:: A ↦→ c&G ′] for some A ∈T, c ∈ B, and G ′ ∈R∗ or

dropTargets(G) = [::]

7. If Gtargets =G ++dropTargets(Gtargets) then

group([:: r &Gtargets]) = [:: [:: r &G]&group(dropTargets(Gtargets))]

8. If A = tgt or A is in parameterTypes(Gstable) and

FCL_complete(tgt,Gstable, [::]) and Γ⊢ M : A then

word(Gstable, A, M)

9. If future_word(Gstable, [::], A, M) then word(Gstable, A, M)

10. If future_word(Gstable,Gtargets, A, M) and for all r in Gstable: r is in G ′
stable then

future_word(G ′
stable,Gtargets, A, M)

11. If A ↦→ c is in Gstable and future_word(Gstable, [:: A ↦→ c&Gtargets],B , M) then

future_word(Gstable,Gtargets,B , M)

12. If future_word(Gstable, [:: A ↦→ @(B ,C )&Gtargets],D, M) and

not exists N ∈A s.t. Γ⊢ N : C then

future_word(Gstable,dropTargets(Gtargets),D, M)
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13. If FailSound(Gstable) and

(computeFailExisting(Gstable,C )).1 = true and

FCL_complete(tgt,Gstable, [:: A ↦→ @(B ,C )&Gtargets]) then

FCL_complete(tgt,G ′
stable,dropTargets(Gtargets)) where

G ′
stable =

⎧⎨⎩Gstable for (computeFailExisting(Gstable,C )).2 = true

[:: C ↦→⊥&Gstable] otherwise

14. If A ↦→ @(B ,C ) is in Gstable and

FCL_complete(tgt,Gstable, [:: A ↦→ @(B ,C )&Gtargets]) and

future_word(Gstable, [:: A ↦→ @(B ,C )&Gtargets],D, M) then

future_word(Gstable,Gtargets,D, M)

15. If computeFailExisting(G , A) = (false, true) then A is in parameterTypes(G)

16. If isOmega(C ) then future_word(Gω(C )++Gstable,Gtargets,C , M)

17. If future_word(Gstable, [:: A ↦→ @(B ,C )&Gtargets],D, M) and

for all N ∈A: Γ⊢ N : C implies future_word([:: A ↦→ @(B ,C )&Gstable],Gtargets,C , N ) then

future_word([:: A ↦→ @(B ,C )&Gstable],Gtargets,D, M)

18. If isOmega(C ) and FCL_complete(tgt,Gstable, [:: A ↦→ @(B ,C )&Gtargets]) then

FCL_complete(tgt, [:: A ↦→ @(B ,C )&Gω(C )++Gstable],Gtargets)

19. (accumulateCovers(Γ′,C ,primeFactors(C ), (G ,b),c)).1 =
(accumulateCovers(Γ′,C ,primeFactors(C ), ([::],b),c)).1++G

20. (foldl(λ s c.accumulateCovers(Γ′,C ,primeFactors(C ), s,c), ([::], true),enum(B))).1 =
flatten(map(

λ c.(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),c)).1,

rev(enum(B))))

21. If

(foldl(λ s c.accumulateCovers(Γ′,C ,primeFactors(C ), s,c), ([::], true),enum(B))).2 = true

then

(foldl(λ s c.accumulateCovers(Γ′,C ,primeFactors(C ), s,c), ([::], true),enum(B))).1 = [::]

22. commitMultiArrow(G ,c, (srcs, A)) = commitMultiArrow([::],c, (srcs, A))++G

23. commitUpdates(G , A,c,covers) =
rev(map(λm. rev(commitMultiArrow([::],c, (m.1, A))),covers))++G

24. lsize(commitMultiArrow([::],c, srcs, tgt)) = 1+ lsize(srcs)
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25. nth(tgt ↦→ @(mkArrow(take(lsize(srcs)− (n −1),srcs), tgt),nth(tgt,srcs, lsize(srcs)−n)),

commitMultiArrow([::],c, (srcs, tgt)),n) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
mkArrow(srcs, tgt) ↦→ c for n = 0

mkArrow(take(lsize(srcs)−n, srcs), tgt) ↦→ otherwise

@(mkArrow(take(lsize(srcs)− (n −1),srcs), tgt),nth(tgt,srcs, lsize(srcs)−n))

26. If GnextTargets = rev(flatten(map(λ m.commitMultiArrow([::],c, (m.1,C )),ms))) then

GnextTargets = A ↦→ d for some A ∈T and d ∈ B or GnextTargets = [::]

27. If GnextTargets =
flatten(map(λ c.(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),c)).1,cs)) then

GnextTargets = A ↦→ d for some A ∈T and d ∈ B or GnextTargets = [::]

28. group(commitMultiArrow([::],c, srcs, tgt)) = [::commitMultiArrow([::],c, srcs, tgt)]

29. If future_word([::],Gtargets,D, M) and exists N ∈A s.t. Γ⊢ N : C then

future_word([::],Gtargets ++[::A ↦→ @(B ,C )],D, M)

30. parameterTypes(commitMultiArrow([::],c, srcs, tgt)) = rev(srcs)

31. If future_word(Gstable,Gtargets, A, M) and

G ′
targets = [:: A ↦→ c&G] or G ′

targets = [::] then

future_word(Gstable,Gtargets ++G ′
targets, A, M)

32. If future_word(Gstable,G ′
targets, A, M) and

G ′
targets = [:: A ↦→ c&G] or G ′

targets = [::] then

future_word(Gstable,Gtargets ++G ′
targets, A, M)

33. If Γ⊢ M : C and not isOmega(C ) then

future_word([::],

flatten(map(λ c.(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),c)).1,rev(enum(B))))

C , M)

34. If future_word(Gstable, [:: A ↦→ @(B ,C )&Gtargets],D, M) and not isOmega(C ) then

future_word([:: A ↦→ @(B ,C )&Gstable],

Gtargets ++
flatten(map(λ c.(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),c)).1,rev(enum(B))),

D, M)

35. If B is in targetTypes(pmap(λ g .ohead(rev(g )),group(targets))) then

B is in targetTypes(pmap(λ g .ohead(rev(g )),group([:: r &targets])))

36. If reduceMultiArrows(covers) = [::] then covers = [::]
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37. If (foldl(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),enum(B)))).1 = [::] then

(foldl(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),enum(B)))).2 = true

38. For all A in targetTypes(pmap(

λ g .ohead(rev(g )),

group(flatten(map(λ c.(accumulateCovers(Γ′,C ,primeFactors(C ), ([::], true),c)).1,

rev(enum(B)))))) :
A =C

39. If not isOmega(C ) and FCL_complete(tgt,Gstable, [:: A ↦→ @(B ,C )&Gtargets]) and

(G ′
stable,G ′

targets) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
([:: A ↦→ @(B ,C )&Gstable],GnextTargets)

for inhabit_cover(Γ′,Gtargets,C ) = (false,GnextTargets)

([:: C ↦→⊥&Gstable],dropTargets(Gtargets)) otherwise

then FCL_complete(tgt,G ′
stable,G ′

targets)

40. If FailSoundΓ(Gstable) and noTargetFailures(Gtargets) and

FCL_complete(tgt,Gstable,Gtargets) then

for (G ′
stable,G ′

targets) = inhabitation_step(Γ′,Gstable,Gtargets):

FCL_complete(tgt,G ′
stable,G ′

targets)

41. If FailSoundΓ(Gstable) and noTargetFailures(Gtargets) and

FCL_complete(tgt,Gstable,Gtargets) and

Γ′ ⊢ (Gstable,Gtargets)↝∗ (G ′
stable,G ′

targets) then

FCL_complete(tgt,G ′
stable,G ′

targets)

PROOF The most important trick is to define potential future derivability by future_word. It

extends the language definition of Tree Grammars (Definition 29) to consider rules sched-

uled in Gtargets. If at some point of the derivation of an applicative term list Gstable does

not yet include enough rules, the derivation can be suspended. This suspension is only

possible if Gtargets includes a rule that will – in later machine steps – ensure Gstable is suffi-

cient to continue. The rule is identified by regrouping subsequent Gtargets entries accord-

ing to the multi arrow they originated from. Remember that the cover machine uses [::

A1 → A2 → B ↦→ c&[:: A2 → B ↦→ @(A1 → A2 → B , A1)&[:: B ↦→ @(A2 → B , A2)&G ′
targets]]]

for multi arrow m = ([:: A2&[::A1]],B), target B , and combinator c with a split type Γ′(c)

including m. Function group isolates multi arrow entries into separate lists, resulting in

[:: [:: A1 → A2 → B ↦→ c&[:: A2 → B ↦→ @(A1 → A2 → B , A1)&[::B ↦→ @(A2 → B , A2)]]]&groups′].
If all the types in parameter positions, i.e. A1 and A2, are inhabited, the group will not

be discarded and its rules can be used to resume suspended derivations of A1 → A2 → B ,

A2 → B , and B . Property FCL_complete(tgt,Gstable,Gtargets) characterizes machine states

Gstable and Gtargets which in future derive all terms M s.t. Γ ⊢ M : tgt. For this additionally

all terms with types in parameter positions of Gstable have to be derivable in future, guaran-

teeing that all choices for N will be considered when Γ ⊢ @(c, N ) : tgt for any c. Moreover,
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terms for some of the target types in Gtargets need to be future derivable. Suppose Gstable

includes A ↦→ @(B ,C ) and rules with target type C are not yet included in Gstable, then rules

for all multi arrows with type C are required to be scheduled for future consideration in

Gtargets. However, simply requiring that all terms with target types of rules in Gtargets are fu-

ture derivable is too restrictive. Suppose type A1 in the previous example is uninhabited.

Then group [:: A1 → A2 → B ↦→ c&[:: A2 → B ↦→ @(A1 → A2 → B , A1)&[::B ↦→ @(A2 → B , A2)]]]

does not contribute to future derivability and it will be discarded after encountering rule

A2 → B ↦→ @(A1 → A2 → B , A1). Yet, terms N with Γ ⊢ N : A2 → B might exist (e.g. us-

ing a combinator d : A′
2 → B with A2 ≤ A′

2) but not be (future) derivable. For them, rules

[:: A′
2 → B ↦→ d&[::B ↦→ @(A′

2 → B , A′
2)]] would derive N from non-terminal A′

2 → B instead.

In fact, only terms of the last target type of a group have to be derivable. By the definition

of future_word these terms only exist if all of the parameter types in the group are inhabited

and therefore the group will not be discarded. In the definition of FCL_complete, the part

pmap(λg .ohead(rev(g )),group(Gtargets)) projects all non-empty groups exactly to their last

target types.

Keeping the illustration above in mind, statements of the lemma break down its proof into

manageable components, individually proven by case analysis, induction and use of the

previously established propositions. Statements 1–7 make it possible to reason about func-

tion group used in the definitions of future_word and FCL_complete. Statement 9 is evident

from the definitions of word and future_word. It shows that future derivability is a sufficient

condition for derivability in the final machine state where Gtargets is empty. The direct conse-

quence, proposition 8, justifies to prove FCL_complete(tgt,Gstable, [::]) instead of Γ⊢ M : tgt

implies word(Gstable, M , tgt) to obtain completeness. Proposition 10 allows weakening of fu-

ture derivability from Gstable, showing that future_word is closed under subset membership

of stable rule lists. Statement 11 is the first of multiple absorption properties (c.f. 14, 17, 34)

incorporating rules form Gtargets into Gstable. Specifically, with statement 11 combinator rules

can be removed from Gtargets if they are included in Gstable, possibly because of application

of the prior weakening property. This is in correspondence to case 1⃝ of inhabitation_step

in Definition 29. Statements 12 and 13 justify to discard target rule groups because of unin-

habited parameters identified by computeFailExisting. The previously established invariant

FailSound (Lemma 32) is required to ensure completeness is not lost due to conflicting rules in

Gstable. Absorption rule 14 can remove applicative rules from the targets. It has FCL_complete

as precondition to ensure derivations of the removed rule A ↦→ @(B ,C ), which previously

succeeded in suspended state from Gtargets without further derivation for C , do not get stuck

when replaced by derivations from Gstable that do require C . Rule 14 is used for the last two

situations of case 3⃝, Definition 29. In the first situation the rule to move already existed in

Gstable and this fact is checked by computeFailExisting. Statement 15 proves soundness of the

decision made by computeFailExisting. The other situation is grouped together under 4⃝ and

again subdivided into two cases. Statements 16, 17, and their consequence statement 18 dis-

patch the first case of 4⃝ in which ω is a subtype of the parameter type of the next applicative

rule. For the other situation, 5⃝, function inhabit_cover has to be studied in more depth. The
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analysis proceeds with the auxiliary functions. Statements 19 and 20 allow separate reasoning

about the new entries in Gtargets for individual combinators. By proposition 21 the Boolean

that detects if there are no updates to Gtargets is computed soundly. Statements 22–30 help to

reason about adding multi arrows to the target queue. Analogous to statement 10, the target

queue can grow whilst weakening future_word to include at least the same derivable terms,

which is shown in 31 and 32. This is then used to prove the absorption rule 34 in combination

with future derivability of the terms for its parameter type C in statement 33. Propositions

35–38 provide more properties of grouping collected targets. They relate the target type of

freshly collected grouped rules to the requested parameter type (statement 38) and establish

(statement 37) the other part of correctness for the emptyness detection Boolean previously

addressed in statement 21. Results for case 5⃝ in Definition 29 are combined in proposition 39.

The final statements 40, and 41 are the main properties to show. They establish FCL_complete

as an invariant across machine steps. The poof of 40 is by case analysis on all of the branches

of inhabitation_step, dispatching each branch with the facts proven above. The proof of 41 is

by induction on the machine steps using 40, Lemma 32.7, and Lemma 32.10 for progress. ■

The proof of Lemma 33 is, together with that of Lemma 24, the most intricate of this text

and the interested reader is encouraged to interactively step through the Coq formalization

for all of its details (possibly starting in reverse from Lemma 33.40 to see where which part

becomes necessary). Both proofs have revealed subtle mistakes in initial attempts to define the

machines characterized by their lemmas. Spotting these mistakes would have been impossible

or at least improbable without the aid of Coq as a formal verification system. Also tuning the

delicate definitions of future_word and FCL_complete required multiple attempts, and being

able to automatically re-check which parts were affected by the changes was of great value

during development.

Finally the initial call to the inhabitation machine can be constructed and correctness of the

type inhabitation algorithm can be proven.

Theorem 6 (Type Inhabitation Correctness)

For applicative terms A formed over any finite enumerable combinator base B, and intersection

types T formed over any ≤C-preordered countable set C of type constructor symbols define:

inhabit : (B →T)×T→R∗

inhabit(Γ, A) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gω(A) for isOmega(A) = true

inhabitationMachine(λc. splitTy(Γ(c)), [::],Gtargets)(d)

for isOmega(A) = false and

inhabit_cover(λc. splitTy(Γ(c)), [::], A) = ( false,Gtargets) and

d constructed by Lemma 31.24

A ↦→⊥ otherwise
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with the following properties for all A ∈T and M ∈A:

1. If word(inhabit(Γ, A), A, M) then Γ⊢ M : A

2. If Γ⊢ M : A then word(inhabit(Γ, A), A, M)

PROOF By case distinction following the branches of inhabit and use of the invariants estab-

lished in Lemma 29, Lemma 32, and Lemma 33. ■
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2.6 Algebraic Interpretation of Results

Terms of the tree grammar computed in Theorem 6 are of little use by themselves. This section

discusses a general algebraic framework to interpret them in different target languages.

2.6.1 Subsorted Σ-Algebra Families

Signatures are a common language for interfaces and connect combinatory logic with synthe-

sis target languages. Families of subsorted signatures allow to model interfaces parametric

and subtype polymorphism.

Definition 33 (Subsorted Signature Families) I -indexed ≤S-subsorted signature families Σ

are defined by Σi∈I = (S,O,arityi ,domi , rangei ) where

• I is a set of indexes

• S is a set of sorts ordered by a preorder (reflexive, transitive) relation ≤S⊆S×S

• O is a finite set of operations

• arity : (O→N)i∈I is a family of functions, assigning an arity to each operation

• dom :

(︄(︄
arityi (o)∏︂

n=1
S

)︄
o∈O

)︄
i∈I

is a family of families of vectors, assigning a domain, which is

a vector of arityi (o) sorts, to each operation

• range : ((S)o∈O)i∈I is a family of families of sorts, assigning a range to each operation. □

Restricting I to a singleton set yields traditional subsorted signatures described in [83]. Further,

the restriction ≤S= {(s, s) | s ∈S} results in many-sorted signatures [70; 71; 150]. Less trivial

restrictions on the parameter set I and their implications on the equations that can be imposed

on interpretations have been investigated in [148]. Signatures where S is a singleton have also

been studied [109]. Avoiding any meta-theoretic issues and simplifying the Coq formalization,

from now on all sort sets S are additionally assumed to be countable and ≤S is assumed to

be decidable. The following example illustrates the roles of the different components of a

signature.
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Example 2 (Signature family for even and odd natural numbers) Even and odd natural num-

bers can be constructed using

ΣN = (SN,ON,arityNi ,domN
i , rangeNi )i∈{0,1,2}

where:

• The sorts SN = {Nat,Even,Odd} are ordered by:

≤SN= {(Nat,Nat), (Even,Nat), (Odd,Nat), (Even,Even), (Odd,Odd)}

This ordering describes compatibility, indicating that everyN sorted interpretation of

the signature is compatible with using an Even or Odd sorted interpretation instead.

• The operations are ON = {zero,succ} for computing zero and the successor of a number.

• The arities are given by arityNi = {zero ↦→ 0,succ ↦→ 1} for every i , i.e. zero needs no

arguments and succ needs one argument, both independent of the signature index.

• The domains are given by

domN
0 = {zero ↦→ (),succ ↦→N}

domN
1 = {zero ↦→ (),succ ↦→ Even}

domN
2 = {zero ↦→ (),succ ↦→ Odd}.

This means in ΣN0 operation succ takes any natural number, in ΣN1 operation succ takes

even numbers, and in ΣN2 it takes odd numbers.

• The ranges are given by

rangeN0 = {zero ↦→N, succ ↦→N}

rangeN1 = {zero ↦→ Even,succ ↦→ Odd}

rangeN2 = {zero ↦→ Even,succ ↦→ Even}.

So, with the prior definition of domains, operation succ takes natural numbers to natural

numbers, even numbers to odd numbers, and odd numbers to odd numbers, while

zero produces a natural number in ΣN0 and an even number for the signature indexes 1

and 2. Note that ΣN0 is just the standard single sorted signature for natural numbers [70].

Wittgenstein used an earlier notation for the single sorted signature in the Tractatus,

sentence 6.02 [202]. □

Every signature family gives rise to a functor F, which describes the inputs required for inter-

preting operations.
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Definition 34 (Subsorted Signature Family Functor) Given an I -indexed ≤S-subsorted sig-

nature family Σi∈I = (S,O,arityi ,domi , rangei ), its functor FΣ is defined by:

FΣ : SetS→ SetS

FΣ(C) =
(︄⨁︂

i∈I

⨁︂
o∈ranged(i ,s)

arityi (o)∏︂
n=1

Cπn (domi (o))

)︄
s∈S

FΣ( f )s(i ,o, (x1, x2, . . . , xarityi (o))) =
(i ,o, ( fπ1(domi (o))(x1), fπ2(domi (o))(x2), . . . , fπarityi (o)(domi (o))(xarityi (o))))

where

• C is a S-indexed family of sets

• ranged(i , s) = {o ∈O | rangei (o) ≤S s} collects all operations that have ranges compatible

with s

• f : (Cs →Ds)s∈S is a morphism in SetS

The functorial equations FΣ(id) = id and FΣ( f ◦ g ) = FΣ( f )◦FΣ(g ) follow immediately from the

categorical equations of Set. □

Example 3 (Functor for the signature family of even and odd natural numbers) Let theSN-

indexed family of sets CSN be defined by:

C
SN
Nat =N

C
SN
Even = {0,2,4,6, . . . }

C
SN
Odd = {1,3,5,7, . . . }

For Example 2 and sort Odd, signature ΣN has functor FΣ
N

(CSN)Odd. It is the set of all triples of

indexes, operations and arguments usable to obtain odd numbers. Only operation succ from

ΣN1 with an even numbered input can produce odd numbers, and so it follows that

FΣ
N

(CSN)Odd = {(1,succ, x) | x ∈ΣNEven}.

What does it mean to interpret, or in other words execute, an operation? Mathematically,

FΣ-Algebras answer this question.

Definition 35 (FΣ-Algebra) Given an indexed ≤S-subsorted signature familyΣ, an FΣ-Algebra

A Σ = (C,h) is defined by

• A carrier C, which is a S-indexed family of sets, and

• An action h :
(︁
FΣ(C)s →Cs

)︁
s∈S, which is a S-indexed family of functions □
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Example 4 (An algebra for the signature family of even and odd natural numbers) Continuing

Example 3, A ΣN

CΣ
N = (CΣ

N

,hΣ
N

) is an algebra defined by CΣ
N

and its action

hΣ
N

:
(︂
FΣ

N

(CΣ
N

)s →CΣ
N

s

)︂
s∈S

hΣ
N

s (i ,zero,()) = 0

hΣ
N

s (i , succ, x) = x +1

For each index, operation and argument-vector, the action computes the result of inter-

preting that operation. Signatures are interfaces, which can have different implementa-

tions. This is expressed by different algebras for the same signature. An alternative algebra

A ΣN

Mod2 = (Mod2, gΣ
N

) can be defined by the carrier

Mod2Nat = {0,1} Mod2Even = {0} Mod2Odd = {1}

and action gΣ
N

:
(︂
FΣN(Mod2)s → Mod2s

)︂
s∈S

gΣ
N

s (i ,zero,()) = 0 gΣ
N

Nat(0,succ,0) = 1

gΣ
N

Nat(0,succ,1) = 0

gΣ
N

Odd(1,succ,0) = 1

gΣ
N

Even(2,succ,1) = 0

In contrast to A ΣN

CΣ
N , algebra A ΣN

Mod2 forgets all information about the constructed numbers,

except for their parity. □

The problem of automatic program construction can be reformulated to automatic enumera-

tion of the image of the action of an algebra. Suppose each sort describes a desired program

property, and the carrier set Cs of some FΣ-algebra (C,h) is the set of programs with that

property. Now each operation in Σ is necessarily interpreted by h as a program transformation,

mapping source programs with properties specified by its domain to target programs with the

properties specified by its range. Enumerating the range of hs for a given sort s then produces

all programs with property s that are constructed using the transformations specified inΣ. The

notion of being constructed by operations in Σ is made precise using the following definition.

Definition 36 (Algebraically Generated Objects) Let Σ be an indexed ≤S-subsorted signa-

ture family, and A Σ = (C,h) be an FΣ-algebra. An object is algebraically generated iff it is

contained in any set in the family AlgGenA Σ

. For any sort s, AlgGenA Σ

s ⊆ Cs is the least set

closed under the rule:

If (i ,o, (x1, x2, . . . , xarityi (o))) ∈ FΣ(C)s

and for all i ∈ {1,2, . . . ,arityi (o)} : xi ∈ AlgGenA Σ

πi (domi (o))

then hs(i ,o, (x1, x2, . . . , xarityi (o))) ∈ AlgGenA Σ

s
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2.6.2 Undecidability of Sort Emptiness with infinite Index Sets

The sort emptiness problem of algebraically generated sets is the following: Given an index

set I , an I -indexed ≤S-subsorted signature family Σ, an FΣ-algebra A Σ = (C,h) and a sort s,

is AlgGenA Σ

s =∅? This problem is interesting in two ways: it turns out to be undecidable if

I is an arbitrary set and the undecidability proof is inspired by the undecidability proof for

Combinatory Logic with Hilbert Schematism presented in [163]. The proof idea is to reduce

the halting problem of 2-Counter Automata, which are a well-known Turing complete machine

model [140; 77; 117], to the emptiness problem by equating AlgGenA Σ

s with counter values

for which the configuration represented by s halts. It immediately follows, that enumerating

algebraically generated sets for program construction implicitly includes a programming

language to control the enumeration process – a point which has been made before for

Combinatory Logic [163].

Definition 37 (2-Counter Automata)

Following the definition in [163], a 2-Counter Automaton is defined by (S, s0, s f ,c0
1 ,c0

2 ,R) where

• S is a finite set of states

• s0 ∈ S is the initial state

• s f ∈ S is the final state

• c0
1 ,c0

2 ∈N are the initial counter values

• R ⊂R is a finite set of commands for the transition relation drawn from

R ∋ t ::= Addi (s1, s2) | Subi (s1, s2) | Tsti (s1, s2, s3)

with i ∈ {1,2} and s1, s2, s3 ∈ S

Automaton configurations are triples in C = S ×N×N containing a state and two counters.

The transition relation ▷⊂C ×C is the least relation closed under the following rules:

Add1(s1, s2) ∈ R
(s1,c1,c2)▷ (s2,c1 +1,c2)

Add2(s1, s2) ∈ R
(s1,c1,c2)▷ (s2,c1,c2 +1)

Sub1(s1, s2) ∈ R
(s1,c1 +1,c2)▷ (s2,c1,c2)

Sub2(s1, s2) ∈ R
(s1,c1,c2 +1)▷ (s2,c1,c2)

Tst1(s1, s2, s3) ∈ R
(s1,0,c2)▷ (s2,0,c2)

Tst2(s1, s2, s3) ∈ R
(s1,c1,0)▷ (s2,c1,0)

Tst1(s1, s2, s3) ∈ R
(s1,c1 +1,c2)▷ (s3,c1 +1,c2)

Tst2(s1, s2, s3) ∈ R
(s1,c1,c2 +1)▷ (s3,c1,c2 +1)

The reflexive transitive closure of ▷ is denoted by ▶ and for k ∈C , notation k ▶ is short for

there exists c1,c2 ∈N s.t. k ▶ (s f ,c1,c2). □
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Definition 38 (Signatures for 2-Counter Automata) For the 2-Counter Automaton A = (S, s0,

s f ,c0
1 ,c0

2 ,R) signature family Σ2Aut(A) = (SA ,OA ,arityA
i ,domA

i , rangeA
i )i∈N×N is defined by

• The sorts SA =C = S ×N×N ordered by ≤SA= {(k,k) | k ∈C }

• The operations OA = {s f }⊎ {Addi (s1, s2) | Addi (s1, s2) ∈ R}⊎
{Subi (s1, s2) | Subi (s1, s2) ∈ R}⊎
{Tst0

n(s1, s2, s3) | Tsti (s1, s2, s3) ∈ R}⊎
{Tst+n (s1, s2, s3) | Tsti (s1, s2, s3) ∈ R}

• The arities arityA
i (o) =

⎧⎨⎩0 for o = s f

1 otherwise

• The domains domA
(c1,c2)(o) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

() for o = s f

(s2,0,c2) for o = TstZ
1 (s1, s2, s3)

(s2,c1,0) for o = TstZ
2 (s1, s2, s3)

(s3,c1 +1,c2) for o = Tst+1 (s1, s2, s3)

(s3,c1,c2 +1) for o = Tst+2 (s1, s2, s3)

(s2,c1 +1,c2) for o = Add1(s1, s2)

(s2,c1,c2 +1) for o = Add2(s1, s2)

(s2,c1,c2) for o = Subn(s1, s2)

• The ranges rangeA
(c1,c2)(o) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s f ,c1,c2) for o = s f

(s1,0,c2) for o = TstZ
1 (s1, s2, s3)

(s1,c1,0) for o = TstZ
2 (s1, s2, s3)

(s1,c1 +1,c2) for o = Tst+1 (s1, s2, s3)

(s1,c1,c2 +1) for o = Tst+2 (s1, s2, s3)

(s1,c1,c2) for o = Addn(s1, s2)

(s1,c1 +1,c2) for o = Sub1(s1, s2)

(s1,c1,c2 +1) for o = Sub2(s1, s2)

□

Similar to the type signatures in [163], the idea in the definition of Σ2Aut is to traverse au-

tomaton states backwards from the accepting state s f to the initial state s0. Each possible

automaton transition is implemented by an operation and there exists an additional initial

operation s f without parameters. The signature index controls counter states. Note, that

the sorts SA directly represent automaton configurations without any need for additional

encodings and that no theory of substitutions into sorts is required. This illustrates express-

ibility of native implementation-specific concerns without the requirement of mappings into

approach specific type-structures necessary in [163]. Now an algebra for machine traces can

be constructed.
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Lemma 34 (Machine Trace Algebra) For the 2-Counter Automaton A = (S, s0, s f ,c0
1 ,c0

2 ,R),

signature family Σ2Aut(A) = (SA ,OA ,arityA
i ,domA

i , rangeA
i )i∈N×N, and o ∈OA , i ∈N×N, s ∈SA

the following statements are true

1. If o ̸= s f then rangeA
i (o)▷domA

i (o)

Define algebra A Σ2Aut(A)

CΣ
2Aut(A)

= (CΣ
2Aut(A),hΣ

2Aut(A)) with

CΣ
2Aut(A)

s = {(c1,c2) ∈N×N | s ▶ (s f ,c1,c2)}

hΣ
2Aut(A)

s ((c1,c2),o, x) =
⎧⎨⎩(c1,c2) for o = s f

x otherwise

then

2. If exists (c1,c2) ∈CΣ2Aut(A)
s0

then (s0,c0
1 ,c0

2)▶ (s f ,c1,c2)

3. If exists (c1,c2) ∈N×N s.t. (s0,c0
1 ,c0

2)▶ (s f ,c1,c2) then (c1,c2) ∈ AlgGen
A Σ2Aut(A)

CΣ
2Aut(A)

s0

PROOF Proposition 1 is proven by case analysis on o matching range and domain with the

rules of ▷. It is used to ensure that hΣ
2Aut(A) is well-defined for o ̸= s f . Soundness of the carrier

CΣ
2Aut(A) and thereby the algebraically generated set is guaranteed by statement 2, which

immediately follows from the definition of CΣ
2Aut(A). Finally, proposition 3 states completeness

and follows by induction on the steps in (s0,c0
1 ,c0

2)▶ (s f ,c1,c2).

The existence of (c1,c2) ∈ N×N s.t. (s0,c0
1 ,c0

2) ▶ (s f ,c1,c2) is undecidable and so is the by

statements 2 and 3 equivalent question for emptiness of AlgGen
A Σ2Aut(A)

CΣ
2Aut(A)

s0
. ■

2.6.3 Finite Index Sets and Combinatory Logic

Undecidability for infinite index sets does not render the algebraic approach useless. In

fact, whenever the index set is finite, type inhabitation in FCL can be used to enumerate

AlgGenA Σ

of any algebra A Σ for any signature Σ. The result follows from some abstract

algebraic properties, which require further definitions and proofs. The first two definitions are

extensions of the standard notions for F-CoAlgebras and algebra morphisms [52].

Definition 39 (FΣ-CoAlgebras) Given an indexed ≤S-subsorted signature family Σ, an FΣ-

CoAlgebra A Σ = (C,h) is defined by

• A carrier C, which is a S-indexed family of sets, and

• A co-action h :
(︁
Cs → FΣ(C)s

)︁
s∈S, which is a S-indexed family of functions □
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Definition 40 (Algebra Morphism Families) Given an indexed ≤S-subsorted signature fam-

ily Σ, and FΣ-Algebras A Σ
C
= (C,h), A Σ

D
= (D, g ), family f : (Cs →Ds)s∈I is an algebra morphism

family, if it makes the following diagram commute

FΣ(C)s FΣ(D)s

Cs Ds

hs

FΣ( f )s

gs

fs

i.e. for all s ∈S: fs ◦hs = g ◦FΣ( f )s □

The next lemma extends the work of Paulson [154] to structures with polymorphic indexes.

Lemma 35 (Well-Founded Fixpoint Families) Let M be a set and R ⊆ M×M be a well-founded

relation (c.f. Lemma 31). Remember that the accessibility predicate of R is the least predicate

closed under rule:

for all y: if R(y, x) then Acc(y)
Acc(x)

For any y s.t. R(y, x), let Acc−1
x (ax , y) be the proof tree of Acc(y) in the premise of any given proof

tree ax of Acc(x) . Observe that the proof tree Acc−1
x (ax , y) is always strictly smaller than the

proof tree ax .

Given an index set S, an S-indexed family of sets C, a family of sets P indexed over members of

C, and a measuring map m :
∏︁

s∈SCs → M, define for all s1, s2 ∈S and x ∈Cs1 :

↓ (x, s2) = {y ∈Cs2 | R(m(s2, y),m(s1, x))}

Then given a morphism F :
∏︁

s1∈S
∏︁

x∈Cs1

(︁∏︁
s2∈S

∏︁
y∈↓(x,s2) Py

)︁→ Px the fixpoint morphism

FixAccF :
∏︂
s∈S

∏︂
x∈C

Acc(m(s, x)) → Px

FixAccF (s1, x, am(s1,x)) = F (s1, x,λ(s2, y).FixF (s2, y,Acc−1
m(s1,x)(am(s1,x),m(s2, y))))

can be constructed because of the prior observation on proof tree sizes.

F is extensional in its third argument if for all s1 ∈S, x ∈Cs1 , and g , g ′ :
∏︁

s2∈S
∏︁

y∈↓(x,s2) Py , s.t.

for all s2 ∈S, and y ∈Cs2 : g (s2, y) = g ′(s2, y), the statement F (s1, x, g ) = F (s2, x, g ′) is true. This

always holds in extensional set-theory, but has to be shown on a per-case basis in intensional

type theory.
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For any F that is extensional in its third argument, s1 ∈S, x ∈Cs1 , proof trees am(s1,x), a′
m(s1,x) of

Acc(m(s1, x)), and morphisms G :
∏︁

s∈S
∏︁

y∈Cs
Py morphism FixAccF is:

1. Invariant in its proof tree argument: FixAccF (s1, x, am(s1,x)) = FixAccF (s1, x, a′
m(s1,x))

2. A unique solution to the fixpoint equation: if for all s2 ∈S, y ∈Cs2 : G(s2, y) = F (s2, y,G)

then FixAccF (s1, x, am(s1,x)) =G(s1, x)

This justifies to write

Fix(F )(s, x) = FixAccF (s, x, am(s,x)) = F (s, x,Fix(F ))

where am(s,x) is any proof tree of Acc(m(s, x)) and always exists because R is well-founded. It

also yields the well-founded family induction principle:

If for all s1, x :

if for all s2, y : R(m(s2, y),m(s1, x)) implies Q(y)

then Q(x)

then forall s, x : Q(x)

where Q is a predicate on elements of C.

PROOF Statements 1 and 2 are both proven by using the well-founded induction principle (c.f.

Lemma 31) on am(s,x) and then follow by simple unfolding of definitions. In the constructive

logic of Coq, the well-founded family induction principle exists because propositions are

types and recursion and induction coincide. In classical logic the principle is generated

by instantiating Fix with P = ({y ∈ Cs | y = x and Q(y)}x∈Cs )s∈S and F (s, x, f ) = x. Whenever

F has a non-empty domain, its argument f exists. Now for any given s1, x and s2, y with

R(m(s2, y),m(s1, x)), f computes an element of P , which implies Q(y). Therefore the induction

hypothesis is applicable, and Q(x) is true, which means x is an element of P . Thus F is well-

defined and existence of Fix(F )(s, x) as an element of P proves Q(x). ■

Lemma 36 (Canonical Algebra Morphism) Given an I -indexed ≤S-subsorted signature fam-

ily Σ, FΣ-Algebras A Σ
1 = (C,h), A Σ

2 = (C, g ), FΣ-CoAlgebra A Σ
1 = (C,h−1), a set M, well-founded

relation R ⊆ M ×M, and a measuring map m :
∏︁

s∈SCs → M decreasing on h−1 s.t.

for all s ∈S, x ∈Cs , (i ,o,args) = h−1
s (x),n ∈ 1,2, . . . ,arityi (o) :

R(m(πn(domi (o)),πn(args)),m(s, x))

define the canonical algebra morphism family

interpret : (Cs →Ds)s∈S
interprets(x) = Fix(λ(s, x, f ).(gs ◦FΣ( f )s ◦h−1

s )(x))(s, x)

94



2.6. Algebraic Interpretation of Results

Now, if h and h−1 cancel out, i.e. for all s ∈ S, x ∈ Cs , and y ∈ FΣ(C)s : hs(h−1
s (x)) = x and

h−1
s (hs(y)) = y, the following diagram commutes for all sorts s ∈S:

FΣ(C)s FΣ(D)s

Cs Ds

hs

FΣ(interpret)s

gsh−1
s

interprets

In detail this means the following statements are true:

1. interprets = gs ◦FΣ(interpret)s ◦h−1
s

2. interpret is an algebra morphism family, i.e. interprets ◦hs = gs ◦FΣ(interpret)s

Thereby the canonical algebra morphism family is:

3. Unique, i.e. if m : (Cs →Ds)s∈S is an algebra morphism family for h and g then

m = interpret

4. Sound, i.e. for all x ∈Cs : interprets(x) ∈ AlgGen
A Σ

2
s

5. Complete, i.e. for all y ∈ AlgGen
A Σ

2
s : exists x ∈Cs , s.t. interprets(x) = y

PROOF Statement 1 follows from unfolding the definition of interpret and Lemma 35.1. State-

ment 2 is proven by applying Statement 3 and using that h and h−1 cancel out. Statement 3, is

shown by replacing interpret using statement 1. The new goal is proven by the well-founded

family induction principle. Using the algebra morphism property of m, and cancelation of

h and h−1, it is sufficient to show FΣ(interpret)s ◦h−1
s (x) = FΣ(m)s ◦h−1

s (x). This follows from

commutativity of the canonical morphism family (statement 1), the induction hypothesis, and

the decreasing property of m. In the Coq formalization, statements 1 – 3 are slightly weaker and

only claim intensional (the functions cannot be distinguished by their input/output behavior)

equality. Practically, this means their may always be faster or slower implementations, but

they all produce the same results. In traditional Set theory this distinction cannot be made and

is therefore omitted in the statement. Statement 4, is again shown by replacing interpret using

statement 1 and application of the well-founded family induction principle. It then follows by

another application of statement 1, the induction hypothesis, and the decreasing property of

m. The carrier element for statement 5 is constructed by induction on the derivation of the

proof that x is algebraically generated. An element of y ∈ FΣ(C)s with x = gs(FΣ(interpret)s(y))

is constructed from the index and operation of the FΣ(D)s element given in the inductive

case. Its arguments are provided by the induction hypothesis. Now by the algebra morphism

property shown in statement 2, interprets(hs(y)) = gs(FΣ(interpret)s(y)), and so hs(y) is the

carrier element for which existence needed to be proven. ■
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At this point, category theory proficient readers will find Lemma 36 reminiscent of Lambek’s

Lemma [121] and its applications [84]. However, the construction does the opposite. Lambek’s

Lemma proves that functors with an initial algebra (there is a unique algebra morphism to any

other algebra) are fixpoints [1]. Here, conversely, a (family of) fixpoint(s) is used to prove that a

given algebra is initial by providing the (family of) canonical algebra morphism(s). The algebra

is chosen to have terms typable by Combinatory Logic as its carrier, and the algebra morphism

translates them to terms of any algebraically generated language. Meyer [138] clarifies the

notion of models for Combinatory Logic with combinators S and K as their base. Inversely,

the next construction finds a base for a given model (signature and algebra).

Lemma 37 (Finite Combinatory Logic (Co)Algebra) Given a ≤S-subsorted signature family

Σi∈I = (S,O,arityi ,domi , rangei ) indexed over a finite set I , define:

• The set of applicative terms A formed over combinator base B ∋ x ::= o | idxi for all i ∈ I

and o ∈O

• The set of types intersection types T formed over constructors C ∋ c ::= s | idxi for all i ∈ I

and s ∈S preordered by ≤C=≤S ⊎{(idxi , idxi ) | i ∈ I }

• The index context ΓI : I →T by ΓI (i ) = idxi (ω)

• The sort embedding function embed :S→T by embed(s) = s(ω)

• The sort unembedding function unembed(A) =
⎧⎨⎩(1, s) for A = s(ω) and s ∈S

(0, ()) otherwise

• Function typeAtIndex :O× I →T by

typeAtIndex(o, i ) =
ΓI (i ) → mkArrow(rev(map(λn.embed(πn(domi (o))),enum({1,2, . . . ,arityi (o)}))),

embed(rangei (o)))

• Function ΓΣ :O→T by ΓΣ(o) =⋂︁
i∈enum(I ) typeAtIndex(o, i )

• Context Γ : B →T by Γ(x) =
⎧⎨⎩ΓI (i ) for x = idxi

ΓΣ(x) otherwise

• The Combinatory Logic carrier Cs = {M ∈A | Γ⊢ M : embed(s)}

• The Combinatory Logic FΣ-Algebra A Σ
FCL = (Cs ,h) with action

hs(i ,o,args) = revApply(@(o, idxi ), rev(map(λn.πn(args),enum({1,2, . . . ,arityi (o)}))))
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• The Combinatory Logic FΣ-CoAlgebra A Σ
FCL = (Cs ,h) with co-action

h−1
s (M) = (i ,o, (arg1,arg2, . . . ,argarityi (o)))

for unapply(M) = (o, N s) and rev(N s) = [:: idxi &[:: arg1 &[:: arg2 &.. . [::arityi (o)]]]]

Which is possible because the following statements are true for all i ∈ I , o ∈O, and s, s1, s2 ∈S,

M ∈A, and N s, N s′ ∈A∗, Ms ∈Cs , t ∈ FΣ(C)s , and A1, A2 ∈T, and c1,c2 ∈ C, and srcs1, srcs2 ∈
T∗
π:

1. unembed(embed(s)) = (1, s)

2. If s1 ≤S s2 then embed(s1) ≤ embed(s2)

3. Γ⊢ hs(t ) : embed(s)

4. unapply(Ms).1 ̸= idxi

5. If mkArrow(srcs2,c2(A2)) ≤ mkArrow(srcs1,c1(A1)) then

c2(A2) ≤ c1(A1) and lsize(srcs1) = lsize(srcs2) and

for all (src1, src2) in zip(srcs1, srcs2): src1 ≤ src2

6. If Γ⊢ M : idxi (ω) then M = idxi

7. If rev((unapply(Ms)).2) = [:: N &N s] then there exists i ∈ I s.t. N = idxi

8. If unapply(Ms) = (o, N s) and rev(N s) = [:: idxi &N s′] then lsize(N s′) = arityi (o)

9. If unapply(Ms) = (o, N s) and rev(N s) = [:: idxi &N s′] then

for all 1 ≤ n ≤ lsize N s′: Γ⊢ nth(N s′,n −1) :πn(domi (o))

10. If unapply(Ms) = (o, N s) and rev(N s) = [:: idxi &N s′] then rangei (o) ≤S s

PROOF Statements 1 and 2 immediately follow from the definitions. Statement 3 guarantees

that the algebra action hs is well-defined and follows from the subtype rule (≤) of FCL Def-

inition 12 and generalized application (Lemma 15.1). The other statements are required to

ensure that the co-action h−1
s is well defined. Statement 4 follows from inverse application

(Lemma 15.2), minimal type correctness (Lemma 16), subtype machine corretness (Theo-

rem 1), and case-analysis on the subtype machine rules (Definition 5). The proof of statement

5 is by inverse induction on the sources srcs1 and srcs2, again followed by case-analysis on

the subtype machine rules. Statement 6 is shown by normalized induction (Lemma 10) on

the derivation and inverse application, minimal type correctness, primality (c.f. Lemma 8)

of types in Γ, and statement 5 are used to discharge the applicative case. An analogous proof

is used for statements 7, just with inverse application instead of normalized induction. This

is repeated for the other statements 8–10, additionally using statements 4 and 7 in inverse

induction on N s followed by inverse induction on the types obtained by applying the inverse

application lemma. ■
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It remains to show, that A Σ
FCL and A Σ

FCL give rise to a canonical algebra morphism family into

any other algebra.

Lemma 38 (Finite Combinatory Logic Algebra Morphism Conditions) For A Σ
FCL and A Σ

FCL

from Lemma 37 define the forgetful measure map

measureFCL :
∏︂
s∈S

Cs →A

measureFCL(s, M) = M

and the least relation IsChild ⊂A×A closed under rule

M is in (unapply(N )).2

IsChild(M , N )

Then for all predicates P on applicative terms, M ∈ A, s ∈ S, Ms ∈ Cs , o ∈ O, i ∈ I ,

xs ∈∏︁arityi (o)
n=1 πn(domi (o)), and t ∈ FΣ(C)s the following statements are true:

1. If for all c ∈ B and N s in A∗ :

for all N in N s : P (N )implies P (revApply(c, N s))

then P (M)

2. Relation IsChild is well-founded: WF(IsChild)

3. If h−1
s (Ms) = (i ,o, xs) then

IsChild(measureFC L(πn(domi (o)),πn(xs)),measureFC L(s, Ms))

4. h−1
s (hs(t )) = t

5. hs(h−1
s (Ms)) = Ms

PROOF Statement 2 is an induction principle on applicative terms, which is proven by rewrit-

ing the result P (M) to P (revApply(M , [::])) using Lemma 14.2 and then generalizing to "if N

in [::] implies P (N ), then P (revApply(M , [::]))" and further to "if N in N s implies P (N ), then

P (revApply(M , N s))" for arbitrary N s ∈A∗. Induction on M is now enough to show the result,

using Lemma 14.1 in the case for applications. Statement 2 easily follows from the induc-

tion principle in statement 2 and Lemma 14.3. The other statements follow by unfolding

the definition of the (co-)action with an additional inverse induction on N s computed by

h−1
s (Ms) = (i ,o, N s) to prove the last statement. ■

With the measure map into the well-founded IsChild relation and the cancelation properties,

everything is set up to show the final theorem about uniqueness, soundness and completeness

of the translation from Combinatory Logic into the algebraically generated set of any given

algebra for any given signature.
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Theorem 7 (Canonical Algebra Morphism for the Combinatory Logic (Co)Algebra) Given a

≤S-subsorted signature family Σi∈I = (S,O,arityi ,domi , rangei ) indexed over a finite set I , and

a target language implementation of Σ in form of an algebra A Σ = (D, g ), let interpretFCL :

(C→D)s∈S be the canonical algebra morphism family constructed for A Σ
FCL and A Σ

FCL from

Lemma 37 and the well-founded relation IsChild, and measure map measureFCL from Lemma 38.

Now for all s ∈S, Ms ∈ Cs , Ts ∈ AlgGenA Σ

s , and m : (C→D)s∈S the algebra morphism family

interpretFCL is

1. Unique:

if m is an algebra morphism family ms ◦hs = gs ◦FΣ(m)s , then m = interpretFCL.

2. Sound:

interpretFCL(Ms) ∈ AlgGenA Σ

s .

3. Complete:

There exists Ns ∈Cs , s.t. interpretFC L
s (Ns) = Ts .

PROOF Immediate consequences of the abstract canonical algebra morphism properties

shown in Lemma 36. Uniqueness is again intensional in the Coq formalization. ■

Theorem 7 enables the following workflow for language-agnostic synthesis:

1. Define a code generator for some target language D by an interface Σ and its implemen-

tation A Σ.

2. Convert the interface into a repository using the algorithm from Lemma 37.

3. Optionally add another semantic domain of discourse using the methods described in

Section 2.4.2.

4. Perform type inhabitation according to Theorem 6 with the desired (embedded) sort

(and an optional semantic domain type) as target.

5. Now any term in the language of the resulting Tree Grammar can mapped back using

interpretFCL from Theorem 7.

Uniqueness, soundness, and completeness from Theorem 7 guarantee that the Tree Grammar

computed by inhabit is a finite and exact representation of all solutions to the synthesis

problem. Emptiness of Tree Grammars is decidable in linear time [42], which means the above

procedure also solves the sort emptiness problem. A fully materialized example, which is

adapted from [18], can be found in file Labyrinth.v of the accompanying formalization [15].

If desired, language specific proofs can be added to ensure coincidence of AlgGenΣ with some

set. This is illustrated for the 2-Counter Automata reachability in Lemma 34. If the semantic

domain requires formal reasoning, it can also be created from a translated signature family.

Note, that A Σ = (D, g ) is freely chosen. Therefore, the target languageD and the meta-language

implementing g are parameters, which makes the procedure truly language-agnostic.
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Chapter 3

The (CL)S Framework

The (CL)S Framework implements the theoretical results described in Section 2. At the time of

writing the framework has been under development for over 7 years. The earliest prototype

has been implemented in Prolog and a subsequent incarnation was ported to F#, mainly for

performance and maintainability reasons [56; 55]. This implementation has been continued

evaluating multiple ideas including availability as a web-service and modal intersection types

[59; 20]. Dudenhefner [61] describes the development of its latest incarnation, cls-fsharp [62],

with a focus on performance optimizations, mainly by making smart choices when substituting

type variables, implementing and extending the theoretical results presented in [58; 67]. The

ideas presented in [20] also lead to another branch of development, cls-scala [111], that is

implemented in Scala and described in this section. In contrast to cls-fsharp, which is built for

evaluating performance gains from different inhabitation strategies, its focus is on practical

concerns of software composition synthesis. These include an embedded domain specific

language (EDSL) to develop components, built-in support for automatically translating and

executing synthesized applicative terms, features to enable language-independent meta-

programming, versioned hosting of synthesized artifacts, seamless integration into the Scala

ecosystem via standard build-system dependencies, model driven development capabilities,

and most recently [18] the capability to visually inspect the synthesis process in order to debug

specifications. The architecture of cls-scala is modular and separated into multiple projects.

It is described in Section Section 3.1. All of its components are open source and available

online together with evolving ecosystem of related projects [27]. Notably, some of these just

make use of the metaprogramming features without using inhabitation, e.g. EpCoGen [97],

a framework for generating and studying approaches to solve the expression problem [199].

The extension to Scala with an EDSL for specifying software components (Section 3.2), meta-

programming support mechanisms and features for versioned artifact hosting have been

developed (Section 3.3) in step with the requirements arising from work on software product

lines [96; 21; 60; 95; 164]. The implementation is closely connected to its theory described in

Chapter 2 and accompanied by a suite of tests is described in Section 3.4. Finally it should

not go unmentioned that the proven Coq formalization [15] of Chapter 2 can be extracted
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to executable Haskell or OCaml code. It can thus serve as a verified baseline to investigate

future bugs of cls-scala. Additionally, if an increased level of confidence is required for some

application, it can be used to formally prove correctness of synthesis results.

The Coq formalization is an independent work of the author of this text. Most code of the

cls-scala framework has been created by the author, with some contributions from others.

The most notable other direct contributors of source code are George T. Heineman and Anna

Vasileva. Many design decisions were also made in team with Boris Düdder, whose prior

experience developing earlier versions of the framework was invaluable. All projects are

publicly available [27] and their source commit history can be traced author by author.
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3.1 Architecture Overview

AST Manipulation
Combinators

AST Node Type and
Semantic Concept Generated Code

Signature and
Implementation

Repository
(Type Context)

Request for Scala- and
Semantic Type

Tree Grammar Stream of
Trees

Stream of
Values

Website and
Git Branches

Framework

Application

reflection reflection

type
inhabitation

enumeration
using FEAT

runtime
compilation

presentation
to user

Figure 3.1: Data flow in cls-scala

Figure 3.1 shows the typical data flow when using cls-scala. An application implements com-

ponents in Scala as combinators that provide or manipulate fragments of abstract syntax trees

(ASTs) of a target language. Problem instance specific boxes are drawn in white: combinators

can manipulate any Scala objects, and ASTs are just one use-case that is often encountered.

The signature of components and their semantic types are collected using reflection and

translated into a single type context. A request is made, typically for the type of an AST node

and a semantic type. Type inhabitation creates a Tree Grammar describing all applicative

solution terms. The Tree Grammar is enumerated as a continuous stream of data using the

functional enumeration of algebraic types (FEAT) technique by Duregård et al. [68]. Upon re-

quest each inhabitant is translated to Scala using the canonical algebra morphism constructed

in Section 2.6.3. The translated term is then runtime-compiled and injected back into the

JVM where it is executed. Results are available as a stream. If the results can be serialized,

infrastructure is provided to store them in a Git [189] repository and to inspect and control

their creation via a website.

cls-scala cls-scala-presentation-play-git cls-scala-templating

shapeless-feat

Figure 3.2: Projects in the cls-scala framework and their dependencies

Figure 3.2 shows the main projects of the framework with arrows indicating their interdepen-

dencies. Stages above the dotted line of Figure 3.1 are implemented in the cls-scala project. Its

implementation of FEAT is separated into a different project. The shapeless-feat project is a

port of the original Haskell library [68] with additional integration into the shapeless frame-

work [169], which provides data-type generic programming [128] features beyond the scope
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of this text. Separation into a different project enables reuse independent of (CL)S. Similarly,

the template-based metaprogramming infrastructure is provided as a separate project. Type

inhabitation and its algebraic interpretation works independently of any metaprogramming

support, so there is no direct dependency of cls-scala on cls-scala-templating. Vice versa, the

templating support is generic enough not to depend on cls-scala. If results are source code

artifacts that can be serialized to disk, the cls-scala-presentation-play-git project can host

them. It uses the Play framework [33] and its integrated web-server to present users with a

website to manage repositories. Git access and hosting is provided using EGit [203].

All projects are built using the sbt build system [93]. Continuous integration provided by

Travis [80] automatically builds each project, executes its test-suite and triggers the early

release [198] build target. This pushes a snapshot of every successfully tested master branch

commit to maven central [11], from where the project can be immediately included as a jar-file

dependency into other projects. The sbt build system has cross building support to create,

test and publish jar-files for different Scala versions. At the time of writing Scala 2.11 and 2.12

are supported. The coveralls service [137] automatically collects test coverage reports from

each build and publishes them with a detailed analysis.

The Software and sources are released under a permissive open source Apache 2 license [4].

This allows free and commercial, open and closed-source projects to include all or parts of the

software with limited warranty, liability and possibility of patent-claims against the authors.
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3.2 Scala Extensions and their Relation to the Coq-Formalization

The most obvious user-facing extension Scala by cls-scala is an EDSL to specify components

used in synthesis. It consists of two parts. The first is a syntax extension to specify (semantic)

intersection types in a notation close to the way they are denoted in math. This way type

Map(Person∩Owner⋆Pair(Cat⋆Dog)) →Person∩Owner→ Either(ω⋆Pair(Cat⋆Dog))

can be written

’Map(’Person :&: ’Owner , ’Pair(’Cat <∗> ’Dog)) =>:
’Person :&: ’Owner =>:
’Either (Omega , ’Pair(’Cat <∗> ’Dog))

The syntax extensions are activated by importing the implicit conversions defined in pack-

age org.combinators.cls.types.syntax. Symbol literals in Scala are converted into type

constructors. Without arguments, constructor ’C will be interpreted as type C (ω), just like

in the mathematical notation convention. Constructors with one or more argument will be

desugared to the binary product of the arguments. Alternatively, the binary product operator

’Cat <∗> ’Dog can be used directly to specify Cat⋆Dog. Arrows A → B are represented by ’A
=>: ’B and intersections A∩B by ’A :&: ’B. Type constant ω is the constant Omega in Scala.

All binding rules of Section 2.2 Definition 3 apply. Users not fond of operator overloading (e.g.

because of working within a code generator) can alternatively define types manually instan-

tiating case classes Constructor(String, Type), Product(Type, Type), Arrow(Type, Type),

and Intersection(Type, Type).

The constructor subtype relation ≤C is constructed from case class SubtypeEnvironment(Map
[String, Set[String]]). The map passed as argument stores all smaller constructors for a

given constructor name. Instances of SubtypeEnvironment compute the transitive reflexive

closure of their argument relation. Their contents are imported to add extension methods to

trait Type, which is implemented by all intersection types. These allow types to be compared

according to the BCD subtype ≤ relation induced by ≤C. A builder pattern [81] is used to

provide some sugar for constructing the ≤C relation map. Practically, constructor preorder

≤C= {(Cat,Animal), (Garfield,Cat), (Dog,Animal), (Odie,Dog),

(Animal,Animal), (Cat,Cat), (Garfield,Garfield), (Odie,Odie), (Garfield,Animal), (Odie,Animal)}

is defined by

val env =
SubtypeEnviroment (

Taxonomy (" Animal "). addSubtype ("Cat"). addSubtype ("Dog")
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.merge( Taxonomy ("Cat"). addSubtype (" Garfield "))

.merge( Taxonomy ("Dog"). addSubtype ("Odie")). underlyingMap )

after which variable results in

import env._
val results =

(’Pair(’Garfield <∗> ’Odie). isSubtypeOf (’Pair(’Cat <∗> Animal )),
’Pair(’Garfield <∗> ’Odie)

. isSupertypeOf (’Pair(’Animal <∗> Animal )))

contains (true, false). The subtype algorithm is implemented using the machine from

Section 2.3 Definition 9.

The Scala implementation allows for finite type schematism. Types are extended with variables

and a finite set of well-formed substitutions is declared. When a combinator uses ownerType
declared in

val alpha = Variable ("alpha")
val beta = Variable ("beta")
val substitutionSpace =

Kinding (alpha). addOption (’Garfield ). addOption (’Odie)
.merge( Kinding (beta). addOption (’Jon))

val ownerType = ’FeedsWithLasagna (alpha , beta)

its use will be expanded to

’FeedsWithLasagna (’Garfield , ’Jon)
:&: ’FeedsWithLasagna (’Odie , ’Jon)

Well-formed substitution spaces can be any finite collection of Scala functions Variable =>
Type and Kinding again implements a builder pattern to simplify their construction.

The most basic way to perform type inhabitation is to use an instance of InhabitationAlgorithm
according to the following type definitions from package org.combinators.cls.inhabitation

type Repository = Map[String , Type]
type TreeGrammar = Map[Type , Set [( String , Seq[Type ])]]
type InhabitationAlgorithm =

( FiniteSubstitutionSpace , SubtypeEnvironment , Repository ) =>
Seq[Type] => TreeGrammar

Inhabitation algorithms take a finite substitution space, a subtype environment, a repository,

and a sequence of types to inhabit. They then produce a Tree Grammar representing all

requested inhabitants. Substitutions spaces and subtype environments have been described

before. Repositories are just maps assigning each combinator a type. In contrast to the Coq

formalization, Tree Grammars in the Scala implementation use uncurried representations
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(c(M , N ) instead of @(@(c, M), N )) of applicative terms. This is equivalent except for target

type ω, which cannot be represented. Behavior of the Scala implementation is, at the time

of writing, undefined for this case, which is rare enough that it only became apparent during

the rigorous formalization. The Scala implementation can schedule multiple inhabitation

targets in a batch job, resulting in one big Tree Grammar. This is justified by Section 2.5

Lemma 29.5, and the various weakening properties in Lemma 33. It can lead to perfor-

mance improvements, if the recursive target types in batched inhabitation requests overlap,

allowing the algorithm to reuse parts of the previously constructed Tree Grammar. There

are two implementations of type InhabitationAlgorithm, both contained in package org.
combinators.cls.inhabitation. The first one by class BoundedCombinatoryLogic performs

all substitutions and then dispatches to the second one by class FiniteCombinatoryLogic,

which performs inhabitation for a context without type variables. Implementations of splitTy

(c.f. Section 2.5 Definition 26) and the cover machine (c.f. Section 2.5 Definition 21) match

the Coq formalization up to minor language differences. The function for inhabitation_step,

additionally to using uncurried applicative terms, accumulates covers (c.f. Section 2.5 Defi-

nition 29) for multiple combinators in parallel by turning the foldl into a map-reduce [122]

operation. The resulting performance benefit has been discussed at length by Düdder [55] and

Scala has parallel collections in its standard library [161], which allow the algorithm to be kept

almost unchanged. The implementation as a state machine operating with single invocations

of inhabitation_step makes it possible to debug the inhabitation process for a given repository

in order to find out, which targets are dropped for being uninhabited. See [18] for a detailed

description of a debugger implemented on top of cls-scala.

The extensions described up to this point are similar to the capabilities of cls-fsharp and earlier

incarnations of the (CL)S framework. The cls-scala implementation is made unique by the

second extension, which builds upon the algebraic theory of Section 2.6. It allows to specify

Section 2.4.2 Example 1 as shown in Listing 3.1.

1 class MotivationRepository {
2 val performer : Variable = Variable (" performer ")
3 val defaultPerformerSpace =
4 Kinding ( performer ). addOption (’Springsteen )
5

6 @ combinator object motivationSong {
7 def apply (): LilyPond [Music] =
8 LilyPond . loadMusic (" noretreat .ly")
9 val semanticType : Type = ’Springsteen

10 }
11 @ combinator object addLyrics {
12 def apply(music: LilyPond [Music],
13 lyrics : String ): LilyPond [Song] =
14 music. setLyrics ( lyrics )
15 val semanticType : Type = performer =>: performer =>: performer
16 }
17 class LyricsCombinator ( lyrics : String , performerName : String ) {
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18 def apply (): String = lyrics
19 val semanticType : Type = Constructor ( performerName )
20 }
21

22 def reflectedRepository :
23 ReflectedRepository [ MotivationRepository ] = {
24 val crawler = CrawlerDemo
25 val ( performerSpace , lyricsCombinators ) =
26 crawler
27 . findLyrics (" surrender ")
28 . foldLeft (( defaultPerformerSpace ,
29 Seq.empty[ LyricsCombinator ])) {
30 case ((s, cs), (lyrics , performerName )) =>
31 (s. addOption ( Constructor ( performerName )),
32 cs :+ new LyricsCombinator (lyrics , performerName ))
33 }
34 lyricsCombinators . foldLeft (
35 ReflectedRepository [ MotivationRepository ](
36 substitutionSpace = performerSpace ,
37 inst = this ,
38 classLoader = this. getClass . getClassLoader )) {
39 case (repo , combinator ) => repo. addCombinator ( combinator )
40 }
41 }
42

43 def results : InhabitationResult [ LilyPond [Song ]] =
44 reflectedRepository . inhabit [ LilyPond [Song ]]( ’Springsteen )
45 }

Listing 3.1: Definition of Section 2.4.2 Example 1 in cls-scala

Each synthesis component is declared in a combinator object. Combinator objects have a

single apply-method and an optional field semanticType. They can either be static objects

belonging to a class and carrying the annotation @combinator (e.g. motivationSong in line

6) or classes (e.g. LyricsCombinator in line 17). Methods in combinators may contain arbi-

trary code. This is especially useful when, as shown here, program sources of some target

programming language are manipulated. Method reflectedRepository uses reflection to

construct a context for inhabitation. The results of a web-crawler searching for lyrics are

converted into new combinators and substitution space options in lines 25–33. Newly added

substitution space options allow the semantic type of combinator addLyrics to grow with

each new performer (c.f. line 15). The inhabitation context is created in lines 34–40. First, a

ReflectedRepository for the current instance of class MotivationRepository is constructed

with the extended substitution space. The Java Virtual Machine class loader is used to obtain

reflection information about static combinators belonging to the instance reflected upon.

An algebraic signature gets extracted from this information according to the signatures of

all apply methods in @combinator annotated inner objects. Scala types become sorts of the
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C InhabitationResult
T

grammar : TreeGrammar
target : Type

resultInterpreter : Tree =>T
terms : feat.Enumeration[Tree]
interpretedTerms: feat.Enumeration[T]

InhabitationResult(grammar: TreeGrammar, target: Type, resultInterpreter: Tree =>T)
isEmpty : Boolean
isInfinite : Boolean
size : Option[BigInt]

Figure 3.3: Class to encapsulate inhabitation results

signature, which are ordered by their language native subtype relation. Additionally, the

semantic type information is included (Section 2.4.2 explains how and why native and se-

mantic types may be freely mixed). If required, semantic types can also be ordered by a

subtype environment passed to the ReflectedRepository constructor. Webcrawler results

cannot be known statically at compile time. Their combinators are added dynamically to

the repository at run time (line 39). Signature operations for static combinators are just their

object names, while dynamic combinators are suffixed with a unique identifier, which al-

lows to have multiple instances of the same class inserted as multiple different combinators.

Standard Scala objects and classes are used for component specifications. Therefore, combi-

nator implementations can be shared using inheritance and other object-oriented features,

and the learning curve for users not familiar with algebra or Combinatory Logic is reduced.

Line 44 shows the request for all inhabitants that have native type LilyPond[Song] and the

semantic type Springsteen. Results are encapsulated in class InhabitationResult shown in

Figure 3.3. It includes the Tree Grammar, the requested target type, and in the constructor

ReflectedRepository also passes the canonical algebra morphism for Combinatory Logic

(Section 2.6 Theorem 7), which translates applicative Terms of type Tree to the native type

T. The Scala algebra for this morphism is implemented by creating calls to the combinator

objects collected by ReflectedRepository. Code for these calls is compiled, injected back into

the class loader and then executed. Field InhabitationResult.terms stores a lazily computed

enumeration of all terms that are words of the Tree Grammar for the target non-terminal (c.f.

Section 2.5.2 Definition 28). Terms in this enumeration are ordered ascending by their number

of terminal symbols. The InhabitationResult.interpretedTerms field stores the result of

lazily mapping the translation to Scala over InhabitationResult.interpretedTerms. Addi-

tionally, the class offers methods to check if the Tree Grammar is empty, infinite, or if it is finite

to compute the number of results. See [42] for the algorithms used in these computations.
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3.3 Metaprogramming Support Mechanisms

C Java

fullText: String

compilationUnit(): CompilationUnit
statement(): Statement
expression[T <: Expression](): T
tpe(): Type
...

I
«trait»

Persistable

type T

rawText(elem: T): Array[Byte]
path(elem: T): Path
fullPath(basePath: Path, elem: T): Path
persistOverwriting(basePath: Path, elem: T): File
persist(basePath: Path, elem: T): File

«object»

Java

apply(source: String): Java

Figure 3.4: Main components of project templating for target language Java

The templating project adds lightweight metaprogramming support. Figure 3.4 shows the

main components for this (exemplified for the target language Java). Class Java is a wrapper

around a string to provide extension methods to invoke a parser. They are implemented

using the JavaParser project [195], which offers parsing, pretty printing and AST manipulation

support for Java. The most useful syntactic sorts in the AST are accessible via these methods.

Together with the apply method defined in its companion object and the automatic string

interpolation support of Scala, this allows to write

val exp = Java("42"). expression ()
val stmt = Java(s" System .out. println ($exp);"). statement ()

which will cause variable stmt to reference an AST-representative of the Java statement

"System.out.println(42);". For the syntactic sort CompilationUnit, the project offers an

instance of the trait Persistable, with type T = CompilationUnit. This instance helps to

persist the java file represented by the CompilationUnit on disk. The trait offers method

rawText to convert an element of its type T to a serialized byte array, method fullPath to

determine the path of an element relative to some location, and methods to persist an element,

optionally overwriting previously existing files. For Java CompilationUnit elements the de-

fault instance can automatically determine paths, because Java source file names and their

contents are linked. For other languages, such as Python, where the source file name is not

clear from the contents, type T has to be instantiated as a pair which includes enough informa-

tion to find the file-system destination of elements. Currently, Java and Python are supported

languages, but users can add their own implementations on demand in their projects. The

aforementioned EpCoGen [97] has instances for Haskell, C++, and even an old Java dialect

called Generic Java. The language specific extension method provider classes do not have to

contain all AST elements. In fact, they can just wrap target language strings. It is up to the user

to decide on the trade-off between usage comfort and implementation effort for parsers.

110



3.3. Metaprogramming Support Mechanisms

For the versioned hosting of artifacts, it is enough to setup a standard Play application [33]

and to configure a Play webserver route to a class inheriting from org.combinators.cls.git
.InhabitationController and trait org.combinators.cls.git.RoutingEntries, which are

both part of cls-scala-presentation-play-git. The class has to override three fields. Listing

Listing 3.2 shows the implementation for class MotivationRepository from Listing 3.1

1 class MotivationController @ Inject ()( webJars : WebJarsUtil ,
lifeCycle : ApplicationLifecycle )

2 extends InhabitationController (webJars , lifeCycle )
3 with RoutingEntries {
4 lazy val repository = new MotivationRepository
5 lazy val Gamma = repository . reflectedRepository
6 override lazy val combinatorComponents :
7 Map[String , CombinatorInfo ] = Gamma. combinatorComponents
8 override lazy val results : Results =
9 EmptyResults ().add( repository . results )

10 override lazy val controllerAddress : String = " motivation "
11 }

Listing 3.2: Definition of a controller to host generated MotivationRepository (Listing 3.1)

solutions

After the built-in Play webserver has been started, results are accessible via the address

specified in field controllerAddress relative to the route configured in Play. For a default con-

figuration and class MotivationController, the address is http://localhost:9000/motivation/.

The website shows an overview of the types in the reflected repository Gamma. Types for the

overview are provided via field combinatorComponents. Results are added to the website using

field results. Its type is another class implementing a builder pattern, which can collect

any InhabitationResult[T] type for which an implicit instance of Persistable for type T is

available in the declaration context. Multiple calls to the add method compute the Cartesian

product of results to combine all possibilities. Additionally, external artifacts which have not

been synthesized can be added. This is used in EpCoGen. The full code for the example,

including a Persistable instance for class LilyPond, is available online [16]. When running,

Play detects any changes to the source code, and subsequently recompile and restart the appli-

cation. This speeds up the development process, because refreshing the browser is enough to

obtain updates on the result website. For every computed code artifact, a link to a Git branch

with instructions on how to obtain it is available with the results.
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3.4 Software Tests

The cls-scala, shapeless-feat, and templating projects come with tests that achieve above

90% code coverage. The cls-scala-presentation-play-git project has above 65% test coverage.

A continuous integration pipeline triggers builds and tests on every commit to the project

code-base. Commits that result in decreasing test coverage are by default rejected. This

enforces increasing test coverage over time. Tests are implemented using a mixture of unit,

integration, and regression testing embedded into the ScalaTest framework [197]. Some tests

in shapeless-feat use ScalaCheck [144] for randomized property based testing, which pushes

its test coverage above 96%. The comparatively low coverage in cls-scala-presentation-play-git

is due to the side-effects associated with running a webserver and git to host solutions. In

contrast to the other projects this makes cls-scala-presentation-play-git stateful, which is

inherently harder to test than the otherwise purely functional implementations. The practice

to turn all reported bugs into integration tests has proven to be very useful, both for debugging

and future developments, which sometimes repeated old mistakes. Future implementation

plans include further convergence of the Scala implementation with its Coq counterpart. At

some point this may lead to a situation, where the lemmas in this text can be used for property

based testing. All tests and coverage reports are publicly available with the source code [27].

The extracted Coq code for Labyrinth.v has been tested manually and found to produce the

desired results.

Ongoing independent third-party use of cls-scala has been useful for finding bugs in the past.

Usage scenarios, which have been implemented are discussed in the next section.
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Chapter 4

Applications and Impact

The work presented in this text has been used by other researchers, who were able to develop

multiple successful applications. Some of these will be discussed in this chapter. Applications

are grouped into three categories with one section per category. These are: research which has

been conducted in tight collaboration with the author, work done in student projects, some of

which have been advised by the author, and research that has been conducted independently

from the author. Each of the categories adds confidence to the validity and usefulness of the

overall approach.

4.1 Work done in collaboration with the Author

An ongoing research effort with Boris Düdder, George Heineman, and Jakob Rehof investigates

applications of (CL)S to software product lines [95; 21; 96; 26]. A large scale application of this

work to a software product line of solitaire games is available online [98]. At the time of writing,

the product line has 17 families of solitaire games, where each family has up to 9 sub-variations.

The whole product line is generated from just under 13500 lines of code including test cases.

The individual games are implemented in Java and some have an additionally synthesized

Python implementation. In comparison, the older F# version of (CL)S required approximately

4500 lines of code to synthesize 4 variations that were only available as Java implementations.

The results show two things about cls-scala. On the one hand, the framework is scalable to

larger code-bases than most related synthesis approaches (e.g. the largest example in [160] is

a single red-black-tree balancing function). This effect is mainly due to the larger building

blocks, where each combinator can generate arbitrary amounts of code instead of just a

single component of a functional expression. On the other hand, cls-scala has improved over

previous implementations by allowing a massive scale-down in the amount of specification

required to generate code. This has two reasons. The first reason is the possibility to share code

by implementing combinators in regular Scala classes with inheritance and programmatic
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C Solitaire

name : String

layout : Layout
moves : Seq[Move]
...

C Klondike C Spider

C Scorpion C Gigantic

Figure 4.1: Simplified Solitaire Domain Model

access to them, instead of just relying on static text file fragments written in a domain specific

Lambda Calculus like language. The second reason is reuse and structuring from domain

modeling. An abstract domain model M is a set of classes to abstractly describe the application

domain without containing information about how it is implemented. Figure 4.1 shows a

highly simplified version of the solitaire domain. Every instance of the base-class Solitaire

has a name, a layout to specify how cards are placed, and a sequence of possible moves.

Klondike has no sub variations, while the family of Spider solitaire games has the subvariations

Scorpion and Gigantic. For simplicity, subvariations are modeled by inheritance, but more

flexible models using delegation are also possible. When presented with an instance of the

Solitaire class, the implementation will create a repository with combinators specifically

selected and instantiated for that instance. This shrinks the search space, which now does not

include combinators for arbitrary other variations. It also motivates designing combinators

that are parameterized over instance properties, so they can work for arbitrary instead of

specific instances. Families can share model components by instantiating them as soon as

they become available in the model class-hierarchy (e.g. Spider solitaire games might all fix

a certain card layout). Algebraically, if M is a set specifying all allowed domain models, the

implementation provides a family of algebras (A Σ(m))m∈M , where each model instance m ∈ M

gives rise to a signature Σ(m) and its implementation in form of an algebra A Σ(m). Exactly the

same happened for the machine trace algebra in Lemma 34, where the model are 2-Counter

automaton specifications. In earlier implementations of (CL)S, it was impossible to determine

why a specific combinator was included in the repository. This question can now be answered

by finding the model component for which the combinator was instantiated.
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4.2. Work done by Students

Another line of work done is developed in collaboration with Anna Vasileva, and Moritz Roidl.

It aims to investigate how to help experts in non-synthesis related domains with using and

understanding cls-scala. A prototype implementation of the labyrinth example from [18]

is provided together with an MQTT [107] based interface to externally control inhabitation.

This interface is accessed by the Unity game engine [192], which then controls a laser based

visualization installation to optically illustrate solutions. The code and a demonstration video

are available online [29]. The use-case illustrates that first steps have been taken to make the

framework usable, even by non experts in computer science.

4.2 Work done by Students

Various applications of cls-scala have been successfully explored by students in bachelor’s

and master’s thesis projects. In [173] Docker container [54] configurations are synthesized

based on a state machine model. Configuration data collected from a user interface is used

by the inhabitation algorithm to generate transition inputs for a state machine, which then

generates code in form of docker configurations and shell scripts. These are used to setup a

distributed system with replicated databases and variable topologies for redundancy. Results

have been further refined in [204], where additional constraint-solver scripts are synthesized

for computing job-to-node-assignments within a cluster. In [155] the idea of directly integrat-

ing computations into the search process of synthesis, which is illustrated by the 2-Counter

machine trace Algebra in Lemma 34, is implemented for various examples in cls-scala. These

include deterministic and non-deterministic finite automata and the word problem Tree

Grammars. Multiple better implementation strategies for the robot control programs gener-

ated in [23] are realized with cls-scala in [170]. One of them controls robot behaviors with

arrows, which most recently has spawned some research interest [76]. In particular [170] also

illustrates how abstract types in Scala can facilitate reusing the same signature structure for

multiple independent implementation strategies. A tool for the design of flexible electronic

business processes is developed on top of cls-scala in [48]. While traditional business process

modeling needs pre-designed branches for every possible eventuality, the idea in [48] is to

synthesize a custom-tailored process per use-case. This process is smaller and thereby easier

to understand and maintain. Block diagrams for numeric processing are synthesized in [183].

Language-agnostic synthesis is not restricted to computer executed code, which is illustrated

in [187], where variations of net-plan structures are generated for factory production steps

carried out by humans. The metaprogramming support of (CL)S is soon to be enhanced by

two successful projects which implement parsers, pretty printers, and AST manipulation tools

for Coq [205] and Python [142].

At the time of writing, a project group of 13 master students has started to evaluate possibilities

for synthesizing cyber physical systems. Their goal is to create different configurations of

intelligent plant management systems and their project is limited to one year. One preliminary

success is tool integration of ASTs for 3D-printable OpenSCAD [114] models.
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Beyond applicability of cls-scala to specific problems, two observations can be made: Most

of the students involved in the projects mentioned above did not have prior formal training

in type theory. This illustrates, that the framework is usable without expert knowledge. The

second observation concerns the scope of applicability. It includes abstract machine models,

configuration files and shell scripts, 3D printer models, and human executed factory pro-

duction plans. This is strong evidence, that the main goal of this work, language-agnostic

synthesis, has been achieved.

4.3 Work done by other Researchers

There exists externally peer-reviewed evidence for successful applications of the work pro-

vided in this text. These applications have been implemented, investigated and reviewed

independently of any involvement of the author.

An earlier version of the Coq formalization for the BCD subtyping algorithm is used by Honsell

et al. [103] to investigate different variations of intersection type systems in the ∆-Framework.

The authors were able to add union types to the subtype relation and still obtain a working

verified decision procedure.

In [172] business processes to model clinical path-ways are synthesized using cls-scala. The

authors manage to develop a structured methodology for the flexible generation of patient

individualized healthcare workflows. Their results are evaluated using a case-study, which

comes to a positive conclusion on applicability of the framework. Domain experts on clinical

business processes and logistics have been involved in the investigation.

Another independent investigation with involvement of domain experts shows, that the cls-

scala framework can be used to synthesize plans for building factories [201]. A case-study

based on a real-world scenario is used to show how generated plans can help to identify

bottle-necks, which would cause the build process to stall. The authors conclude that manual

planning labor can be automated, which leads to a better informed planning process.

The above findings indicate theoretical usefulness of the formalized proofs, and practical

usefulness of the implementation. Again, language-agnosticism is crucial to allow for the

vastly different domains of application.
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Conclusions and Future Work

The journey took a long formal proof, but in the end this text has shown that synthesis can

be understood in a general language-agnostic way by going back to the first principles of

Combinatory Logic and abstract algebra. The 100 year old statement 6.002 of Wittgenstein’s

Tractatus [202] proved to be adequate for software synthesis: all programming language

statements can be constructed by applying (algebraic) operations to other statements. The

author hopes that this insight, together with the perspective it can give on the discussion of

related work in Section 1.1, helps to bring some clarity into the sometimes confusing state of

software synthesis.

Along the way to a fully formalized mechanically checked proof, many results about inter-

section types, Combinatory Logic and abstract algebra have been formalized. The outline of

novelties is given in Section 1.2 and maybe some of these results can be used beyond this text.

At least the analysis in Chapter 4 seems to indicate that there is some hope, that the theoretical

results of Chapter 2 and the practical results of Chapter 3 have brought some benefit other the

author’s pleasure to develop them.

All that remains to discuss at this point are some of the boundaries of knowledge, which are

salient points of future work.

It is natural to ask, if there is a lower bound on the complexity of the sort emptiness problem

for signature families. The answer to this question has not been mechanically formalized yet.

It is therefore not included in the main results of this text. The following proof sketch should

be seen as a conjecture to be elaborated in future work:

Given a number n and n Tree Grammars Gn = (Sn , Nn ,F ,Rn), the problem of deciding⋂︁
1≤i≤n L(Gi ) ̸= ∅ is EXPTIME-complete [42; 196] and sort-emptiness can be reduced to it.

Let f k ∈ F be a non-terminal consistently used with k (including k = 0) arguments, then a

signature family can be specified with Σi∈I = (S,O,arityi ,domi , rangei ), where
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• I is a set of binary numbers s.t.

i ∈ I iff decode(i ) ∈ (N1 ×N2 ×·· ·×Nn)1+max{k| f k∈F }

• S= I ⊎ {•,◦} ordered by ≤S= {(s, s) | s ∈S}

• O=F

• arityi ( f k ) = k

• ok(decode(i ), f k ) iff for all 1 ≤ m ≤ n there exists

πm(πk+1(decode(i ))) ↦→
f k (πm(π1(decode(i ))),πm(π2(decode(i ))), . . . ,πm(πk (decode(i )))) ∈ Rm

• domi ( f k ) =

⎧⎪⎪⎨⎪⎪⎩
(π1(decode(i )),π2(decode(i )), . . . ,πk (decode(i ))) for ok(decode(i ), f k )

(•,•, . . . ,•)⏞ ⏟⏟ ⏞
k−times

otherwise

• rangei ( f k ) =
⎧⎨⎩πk+1(decode(i )) for ok(decode(i ), f k )

◦ otherwise

The idea is to have operations for each terminal f k matching the product of the gram-

mar rules for that operation. Non-determinism of rules is encoded into the choice of i ∈
I . Invalid constellations are filtered by setting inputs to •, which cannot be produced by

any operation. Family Σ is polynomial in the input size, because the cardinality of the set

(N1 ×N2 ×·· ·×Nn)1+max{k| f k∈F } is less or equal to nmax{|N j ||1≤m≤n}·(1+max{k| f k∈F }) and I there-

fore can be specified by stating the amount of bits required for its elements, which is a number

less than
log2(max{|N j | | 1 ≤ m ≤ n} · (1+max{k | f k ∈F }))

log2(n)
. Computing decode and ok is also

possible in polynomial time because both are simple lookup functions. Now the algebra A Σ∩

• with carrier

Cs =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{t | t ∈ L(G1, A1)∩L(G2, A2)∩·· ·∩L(Gn , A3)}

for s ∈ I and π1(decode(i )) = (A1, A2, . . . , An)

1 for s = ◦
∅ for s = •

• and action

hs(i , f k , t s) =
⎧⎨⎩ f k (t s) for ok(decode(i ), f k )

() otherwise

118



generates AlgGen
A Σ

∩
s =⋂︁

1≤i≤n L(Gi ) for sort s with decode(s) = (S1,S2, . . . ,Sn). Deciding empti-

ness of AlgGen
A Σ

∩
s therefore solves the intersection problem of Tree Grammars and sort-

emptiness is EXPTIME-hard.

From a practical standpoint, the conjecture above raises the question of when scalability limits

of the approach will be reached. When they are reached at some point, a possible idea is to

try to overcome the compositionaly limitations of machine learning discussed in Section 1.1.

Insights from the CoqHammer project [44] show, that a major problem for constructing proofs

(or programs) out of large knowledge bases is preimse selection. In Combinatory Logic, this

could be addressed by giving more structure to the context Γ. It would be interesting to

investigate adding a rule such as

CanReach(Γ1,Γ2) PlausibleFor(Γ2, A) Γ2 ⊢ M : A
Γ1 ⊢ M : A

where predicate CanReach(Γ1,Γ2) is a user-defined or machine-learned relation on contexts,

and PlausibleFor(Γ2, A) is a machine-learned predicate on contexts and types, that limits the

search space.

A current drawback of the completely language-agnostic approach is that sometimes irrelevant

terms can be generated. An example is id(. . . id(id(x)) . . . ) where x is the only interesting

inhabitant. Some of the equational methods used in SyGus might be applicable for filtering

these irrelevant results. Most authors in literature equip algebraic signatures with equations

and so it seems obvious that the work presented here should be extended in this direction.

Finally many more practical applications of language-agnostic synthesis remain to be found.

The promising successes regarding synthesis problems in software product lines and the initial

steps toward more usability, even by non-experts, should be a start, rather than an end of a

journey.
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Appendix A

Appendix

Section/Statement File Name in Coq

1 2.3/Lemma 1 Types.v Semantics_functional
2 2.3/Lemma 2 Types.v subtype_total
3 2.3/Lemma 3.1 Types.v bcd_cat_bigcap_f
4 2.3/Lemma 3.2 Types.v bigcap_omega
5 2.3/Lemma 3.3 Types.v bigcap_cast__ctor
6 2.3/Lemma 3.4 Types.v bigcap_cast__Arr
7 2.3/Lemma 3.5 Types.v bigcap_cast__Prod
8 2.3/Lemma 3.6 Types.v bcd__Arr
9 2.3/Lemma 3.7 Types.v bcd__ProdDist

10 2.3/Lemma 3.8 Cover.v bcd_subset_f
11 2.3/Lemma 4 Types.v subty__sound
12 2.3/Lemma 5.1 Types.v subty__omega
13 2.3/Lemma 5.2 Types.v check__tgt__subseq
14 2.3/Lemma 5.3 Types.v Omega__tgts
15 2.3/Lemma 5.4 Types.v Omega__subty
16 2.3/Lemma 5.5 Types.v weaken_check_tgt
17 2.3/Lemma 5.6 Types.v subty__weaken
18 2.3/Lemma 5.7 Types.v subty__cat
19 2.3/Lemma 5.8 Types.v subty__CtorTrans
20 2.3/Lemma 5.9 Types.v omegaDoneTgt
21 2.3/Lemma 5.10 Types.v subty__Refl
22 2.3/Lemma 5.11 Types.v split_tgts_for_srcs_gte
23 2.3/Lemma 5.12 FCL.v tgt_for_srcs_gte_cat
24 2.3/Lemma 5.13 Types.v subty__left, subty__right
25 2.3/Lemma 5.14 Types.v can_cast_trans__Ctor,

can_cast_trans__Prod
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26 2.3/Lemma 5.15 Types.v subty__Trans
27 2.3/Lemma 5.16 Types.v subty__CtorDist
28 2.3/Lemma 5.17 Types.v subty__Idem
29 2.3/Lemma 6 Types.v subty_complete
30 2.3/Theorem 1 Types.v subtype_machine_correct,

subtypeMachineP
31 2.3/Lemma 7 Types.v Domain_size
32 2.3/Lemma 8 Types.v primeComponentPrime
33 2.3/Lemma 9.1 Types.v addAndFilterLeq__A
34 2.3/Lemma 9.2 Types.v addAndFilterLeq__DeltaA
35 2.3/Lemma 9.3 Types.v addAndFilter_has_le_weaken
36 2.3/Lemma 9.4 Types.v addAndFilter_in
37 2.3/Lemma 9.5 Types.v bigcap_has_le
38 2.3/Lemma 9.6 Types.v addAndFilter_monotonic
39 2.3/Lemma 9.7 FCL.v all_addAndFilter
40 2.3/Lemma 9.8 Types.v primeFactors_rec_prime
41 2.3/Lemma 9.9 Types.v primeFactors_monotonic
42 2.3/Lemma 9.10 Types.v primeFactors_rec_leq
43 2.3/Lemma 9.11 Types.v addAndFilterGeq__Delta
44 2.3/Lemma 9.12 Types.v bcd_all_ge
45 2.3/Lemma 9.13 Types.v addAndFilterGeq
46 2.3/Lemma 9.14 Types.v primeFactors_rec_geq
47 2.3/Lemma 9.15 Types.v addAndFilter_nosubdup
48 2.3/Lemma 9.16 Types.v primeFactors_nosubdup
49 2.3/Lemma 9.17 Types.v primeFactors__notOmega
50 2.3/Lemma 9.18 Types.v desubdup_nosubdupb
51 2.3/Lemma 9.19 Types.v desubdup_all
52 2.3/Lemma 9.20 Types.v desubdup_leq
53 2.3/Lemma 9.21 Types.v desubdup_geq
54 2.3/Lemma 9.22 Types.v addAndFilter_size
55 2.3/Lemma 9.23 Types.v desubdup_size
56 2.3/Lemma 9.24 Types.v desubdup_notOmega
57 2.3/Lemma 9.25 Types.v bcd_prime_ge_all
58 2.3/Lemma 9.26 Types.v prime_filter_le
59 2.3/Lemma 9.27 Types.v nosubdup_unique
60 2.3/Lemma 9.28 Types.v nosubdup_prime_injective
61 2.3/Lemma 9.29 Types.v nosubdup_prime_bijective
62 2.3/Lemma 9.30 Types.v nosubdup_weaken
63 2.3/Lemma 9.31 Types.v bcd_prime_strengthen
64 2.3/Lemma 9.32 Types.v nosubdup_everywhere
65 2.3/Lemma 9.33 Types.v nosubdup_prime_perm
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66 2.3/Lemma 9.34 Types.v PermUpToSubtyping_size
67 2.3/Theorem 2.1 Types.v primeFactors_leq
68 2.3/Theorem 2.2 Types.v primeFactors_geq
69 2.3/Theorem 2.3 Types.v primeFactors_prime
70 2.3/Theorem 2.4 Types.v primeFactors_minimal
71 2.4/Lemma 10.1 FCL.v FCL_ind

(automatically generated by Coq)

72 2.4/Lemma 10.2 FCL.v FCL_Var_le
73 2.4/Lemma 10.3 FCL.v FCL_MP_inv
74 2.4/Lemma 10.4 FCL.v FCL_normalized_ind
75 2.4/Lemma 11 FCL.v FCL_II, FCL_Omega
76 2.4/Lemma 12 FCL.v FCL_weaken
77 2.4/Lemma 13.1 Cover.v mkArrow_arrow
78 2.4/Lemma 13.2 Cover.v mkArrow_rcons
79 2.4/Lemma 13.3 Cover.v mkArrow_arity
80 2.4/Lemma 13.4 Cover.v mkArrow_tgt_le
81 2.4/Lemma 13.5 Cover.v omega_mkArrow_tgt
82 2.4/Lemma 13.6 Cover.v mkArrow_prime
83 2.4/Lemma 13.7 Cover.v mkArrow_dist
84 2.4/Lemma 13.8 Cover.v mkArrow_srcs_ge
85 2.4/Lemma 14.1 Algebra.v revApply_rcons
86 2.4/Lemma 14.2 Algebra.v revApply_nil
87 2.4/Lemma 14.3 FCL.v revApply_unapply
88 2.4/Lemma 14.4 FCL.v unapply_revApply
89 2.4/Lemma 15.1 FCL.v FCL__App
90 2.4/Lemma 15.2 FCL.v FCL__invApp
91 2.4/Lemma 16.1 FCL.v minimalArrowType_le
92 2.4/Lemma 16.2 FCL.v minimalType_sound
93 2.4/Lemma 16.3 FCL.v minimalArrowType_minimal
94 2.4/Lemma 16.4 FCL.v minimalType_minimal
95 2.4/Theorem 3 FCL.v fclP
96 2.4.2/Lemma 17.1 FCL.v inPartition1_bigcap
97 2.4.2/Lemma 17.2 FCL.v inPartition2_bigcap
98 2.4.2/Lemma 17.3 FCL.v inPartition1_minimalType
99 2.4.2/Lemma 17.4 FCL.v inPartition2_minimalType

100 2.4.2/Lemma 17.5 FCL.v minimalType_partitioned
101 2.4.2/Theorem 4 FCL.v FCL__split
102 2.4.2/Lemma 18.1 FCL.v bigcap_hom
103 2.4.2/Lemma 18.2 FCL.v hom_arrow_cast
104 2.4.2/Lemma 18.3 FCL.v minimalType_hom
105 2.4.2/Lemma 18.4 FCL.v FCL__hom
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106 2.4.2/Lemma 19.1 FCL.v lift_arrow_hom
107 2.4.2/Lemma 19.2 FCL.v lift_inter_hom
108 2.4.2/Lemma 19.3 FCL.v lift_arrow_preimage
109 2.4.2/Lemma 19.4 FCL.v lift_omega_hom
110 2.4.2/Lemma 19.5 FCL.v unlift_lift
111 2.4.2/Lemma 19.6 FCL.v lift_map_bigcap
112 2.4.2/Lemma 19.7 FCL.v lift_cast_ctor
113 2.4.2/Lemma 19.8 FCL.v isOmega_lift
114 2.4.2/Lemma 19.9 FCL.v lift_cast_arr
115 2.4.2/Lemma 19.10 FCL.v lift_cast_prod
116 2.4.2/Lemma 19.11 FCL.v lift_cast_inter_prod
117 2.4.2/Lemma 19.12 FCL.v lift_subtype_hom
118 2.4.2/Lemma 19.13 FCL.v inPartition_lift1,

inPartition_lift2
119 2.4.2/Lemma 19.14 FCL.v dist_arr_inPartition
120 2.4.2/Lemma 19.15 FCL.v dist_inter_inPartition
121 2.4.2/Lemma 19.16 FCL.v omega_inPartition
122 2.4.2/Lemma 19.17 FCL.v inPartition_cast_ctor
123 2.4.2/Lemma 19.18 FCL.v st_omega_inPartition
124 2.4.2/Lemma 19.19 FCL.v primeComponents_inPartition
125 2.4.2/Lemma 19.20 FCL.v st_irrel_check_inPartition
126 2.4.2/Theorem 5 FCL.v canonicalCoproductLifted
127 2.5.1/Lemma 20.1 Cover.v coverMachineFunctional_step
128 2.5.1/Lemma 20.2 Cover.v coverMachineFunctional
129 2.5.1/Lemma 21.1 Cover.v stepSize
130 2.5.1/Lemma 21.2 Cover.v maxSteps
131 2.5.1/Lemma 21.3 Cover.v Domain_total
132 2.5.1/Lemma 22.1 Cover.v step_programStack
133 2.5.1/Lemma 22.2 Cover.v step_stateMonotonic
134 2.5.1/Lemma 22.3 Cover.v steps_stateMonotonic
135 2.5.1/Lemma 23.1 Cover.v filterMergeMultiArrows_cat
136 2.5.1/Lemma 23.2 Cover.v filterMergeMultiArrows_subseq
137 2.5.1/Lemma 23.3 Cover.v filterMergeMultiArrows_map_cons
138 2.5.1/Lemma 23.4 Cover.v step_mergeComponents
139 2.5.1/Lemma 23.5 Cover.v step_sound
140 2.5.1/Lemma 23.6 Cover.v splitsTail
141 2.5.1/Lemma 23.7 Cover.v step_mergeComponents_in
142 2.5.1/Lemma 23.8 Cover.v sound_reverse
143 2.5.1/Lemma 23.9 Cover.v semantics_mergeComponents
144 2.5.1/Lemma 24.1 Cover.v partitionCover_subset
145 2.5.1/Lemma 24.2 Cover.v partitionCover_notSubset
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146 2.5.1/Lemma 24.3 Cover.v partitionCover_subseq1
147 2.5.1/Lemma 24.4 Cover.v partitionCover_subseq2
148 2.5.1/Lemma 24.5 Cover.v instructions_covered_step
149 2.5.1/Lemma 24.6 Cover.v not_omega_instruction_step
150 2.5.1/Lemma 24.7 Cover.v arity_equal_step
151 2.5.1/Lemma 24.8 Cover.v mergeMultiArrows_arity
152 2.5.1/Lemma 24.9 Cover.v mergeMultiArrow_tgt_le
153 2.5.1/Lemma 24.10 Cover.v mergeMultiArrow_tgt_ge
154 2.5.1/Lemma 24.11 Cover.v mergeMultiArrow_srcs_le
155 2.5.1/Lemma 24.12 Cover.v mergeMultiArrow_srcs_ge
156 2.5.1/Lemma 24.13 Cover.v mergeMultiArrows_tgt_le
157 2.5.1/Lemma 24.14 Cover.v mergeMultiArrows_tgt_ge
158 2.5.1/Lemma 24.15 Cover.v mergeMultiArrows_srcs_le
159 2.5.1/Lemma 24.16 Cover.v mergeMultiArrows_srcs_ge
160 2.5.1/Lemma 24.17 Cover.v toCover_prime_step
161 2.5.1/Lemma 24.18 Cover.v partitionCover_prime
162 2.5.1/Lemma 24.19 Cover.v filterMergedArrows_in_cons
163 2.5.1/Lemma 24.20 Cover.v covered_head_tgt
164 2.5.1/Lemma 24.21 Cover.v partitionCover_drop1
165 2.5.1/Lemma 24.22 Cover.v partitionCover_drop2
166 2.5.1/Lemma 24.23 Cover.v mergeMultiArrows_cons_arity
167 2.5.1/Lemma 24.24 Cover.v partitionCover_complete
168 2.5.1/Lemma 24.25 Cover.v partition_cover_both
169 2.5.1/Lemma 24.26 Cover.v complete_partitionCover
170 2.5.1/Lemma 24.27 Cover.v currentResultNotDone_step
171 2.5.1/Lemma 24.28 Cover.v notDone_incomplete
172 2.5.1/Lemma 24.29 Cover.v filterMergeMultiArrows_map_cons2
173 2.5.1/Lemma 24.30 Cover.v mergeMultiArrow_srcs_monotonic
174 2.5.1/Lemma 24.31 Cover.v cap_dcap
175 2.5.1/Lemma 24.32 Cover.v dcap_cap
176 2.5.1/Lemma 24.33 Cover.v mergeMultiArrow_srcs_map_zip
177 2.5.1/Lemma 24.34 Cover.v impossible_notSubtype
178 2.5.1/Lemma 24.35 Cover.v complete_reverse
179 2.5.1/Lemma 24.36 Cover.v steps_complete
180 2.5.1/Lemma 25.1 Cover.v step_tgt_sound
181 2.5.1/Lemma 25.2 Cover.v step_tgt_sound_reverse
182 2.5.1/Lemma 25.3 Cover.v steps_tgt_sound
183 2.5.1/Lemma 26.1 Cover.v arity_increasing_cat
184 2.5.1/Lemma 26.2 Cover.v splitRec_arity
185 2.5.1/Lemma 26.3 Cover.v splitTy_arity
186 2.5.1/Lemma 26.4 Cover.v arity_increasing_arity_equal
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187 2.5.1/Lemma 26.5 Cover.v splitRec_monotonic
188 2.5.1/Lemma 26.6 Cover.v splitRec_context_size_eq
189 2.5.1/Lemma 26.7 Cover.v splitRec_context_monotonic
190 2.5.1/Lemma 26.8 Cover.v splitRec_split_context
191 2.5.1/Lemma 26.9 Cover.v splitRec_sound
192 2.5.1/Lemma 26.10 Cover.v splitTy_sound
193 2.5.1/Lemma 26.11 Cover.v merge_assoc
194 2.5.1/Lemma 26.12 Cover.v merges0
195 2.5.1/Lemma 26.13 Cover.v merge0s
196 2.5.1/Lemma 26.14 Cover.v splitRec_merge
197 2.5.1/Lemma 26.15 Cover.v map_merge
198 2.5.1/Lemma 26.16 Cover.v splitRec_rcat
199 2.5.1/Lemma 26.17 Cover.v splitTy_slow_splitTy
200 2.5.1/Lemma 26.18 Cover.v splitTy_slow_omega
201 2.5.1/Lemma 26.19 Cover.v nth_merge
202 2.5.1/Lemma 26.20 Cover.v splitTy_slow_inter_subseq2
203 2.5.1/Lemma 26.21 Cover.v splitTy_complete_ctor
204 2.5.1/Lemma 26.22 Cover.v splitTy_complete_prod
205 2.5.1/Lemma 26.23 Cover.v splitTy_complete_omega
206 2.5.1/Lemma 26.24 Cover.v splitTy_complete_alternative
207 2.5.1/Lemma 26.25 Cover.v splitTy_complete
208 2.5.1/Lemma 27.1 Cover.v splitTy_instructionsCovered
209 2.5.1/Lemma 27.2 Cover.v coverMachine_splitTy_complete
210 2.5.1/Lemma 27.3 Cover.v bcd_multiArrow_Dist
211 2.5.1/Lemma 27.4 Cover.v coverMachine_splitTy_sound
212 2.5.1/Lemma 27.5 Cover.v coverMachine_splitTy_tgt_sound
213 2.5.1/Lemma 28.1 Cover.v reduction_subseq
214 2.5.1/Lemma 28.2 Cover.v soundnessPreserving
215 2.5.1/Lemma 28.3 Cover.v tgt_soundnessPreserving
216 2.5.1/Lemma 28.4 Cover.v completenessPreserving
217 2.5.2/Lemma 29.1 FCL.v FCL_sound_sound
218 2.5.2/Lemma 29.2 FCL.v dropTargets_suffix
219 2.5.2/Lemma 29.3 FCL.v suffix_word
220 2.5.2/Lemma 29.4 FCL.v suffix_sound
221 2.5.2/Lemma 29.5 FCL.v cat_sound
222 2.5.2/Lemma 29.6 FCL.v commitMultiArrow_sound
223 2.5.2/Lemma 29.7 FCL.v commitUpdates_sound
224 2.5.2/Lemma 29.8 FCL.v accumulateCovers_sound
225 2.5.2/Lemma 29.9 FCL.v foldl_accumulateCovers_sound
226 2.5.2/Lemma 29.10 FCL.v inhabit_cover_sound
227 2.5.2/Lemma 29.11 FCL.v OmegaRules_sound
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228 2.5.2/Lemma 29.12 FCL.v inhabitation_step_sound
229 2.5.2/Lemma 29.13 FCL.v inhabit_multistep_sound
230 2.5.2/Lemma 30 FCL.v InhabitationSemantics_functional_step
231 2.5.2/Lemma 31.1 FCL.v grammarTypes_src_mem
232 2.5.2/Lemma 31.2 FCL.v grammarTypes_tgt_mem
233 2.5.2/Lemma 31.3 FCL.v commitMultiArrow_parameterTypes_subset
234 2.5.2/Lemma 31.4 FCL.v commitUpdates_parameterTypes_subset
235 2.5.2/Lemma 31.5 FCL.v accumulateCovers_parameterTypes_subset
236 2.5.2/Lemma 31.6 FCL.v maxParameterTypes_initialTarget
237 2.5.2/Lemma 31.7 FCL.v foldl_accumulateCovers_

parameterTypes_subset
238 2.5.2/Lemma 31.8 FCL.v inhabit_cover_parameterTypes_subset
239 2.5.2/Lemma 31.9 FCL.v OmegaRules_params
240 2.5.2/Lemma 31.10 FCL.v OmegaRules_subset
241 2.5.2/Lemma 31.11 FCL.v inhabitation_step_subset
242 2.5.2/Lemma 31.12 FCL.v inhabit_step_rel_wf
243 2.5.2/Lemma 31.13 FCL.v inhabit_step_rel_cons
244 2.5.2/Lemma 31.14 FCL.v dropTargets_size
245 2.5.2/Lemma 31.15 FCL.v commitUpdates_nil_eq
246 2.5.2/Lemma 31.16 FCL.v reduceMultiArrows_nil
247 2.5.2/Lemma 31.17 FCL.v accumulateCovers_failed_targets_eq
248 2.5.2/Lemma 31.18 FCL.v accumulateCovers_failed_rev
249 2.5.2/Lemma 31.19 FCL.v foldl_accumulateCovers_failed_rev
250 2.5.2/Lemma 31.20 FCL.v foldl_accumulateCovers_

failed_targets_eq
251 2.5.2/Lemma 31.21 FCL.v inhabit_cover_failed_targets_eq
252 2.5.2/Lemma 31.22 FCL.v computeFailExisting_notFound
253 2.5.2/Lemma 31.23 FCL.v inhabitation_step_sizes
254 2.5.2/Lemma 31.24 FCL.v domain_start
255 2.5.2/Lemma 32.1 FCL.v FailSound_cat
256 2.5.2/Lemma 32.2 FCL.v cat_FailSound
257 2.5.2/Lemma 32.3 FCL.v computeFailExisting_FailSound
258 2.5.2/Lemma 32.4 FCL.v accumulateCovers_FailSound
259 2.5.2/Lemma 32.5 FCL.v inhabit_cover_FailSound
260 2.5.2/Lemma 32.6 FCL.v OmegaRules_FailSound
261 2.5.2/Lemma 32.7 FCL.v inhabit_step_FailSound
262 2.5.2/Lemma 32.8 FCL.v noTargetFailures_suffix
263 2.5.2/Lemma 32.9 FCL.v inhabit_cover_noTargetFailures
264 2.5.2/Lemma 32.10 FCL.v inhabitation_step_noTargetFailures
265 2.5.2/Lemma 33.1 FCL.v cancel_group_flatten
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266 2.5.2/Lemma 33.2 FCL.v updateGroups0
267 2.5.2/Lemma 33.3 FCL.v group_notComb
268 2.5.2/Lemma 33.4 FCL.v group_comb
269 2.5.2/Lemma 33.5 FCL.v dropTargets_notCombinator
270 2.5.2/Lemma 33.6 FCL.v dropTargets_combinatorOrEmpty
271 2.5.2/Lemma 33.7 FCL.v group_split
272 2.5.2/Lemma 33.8 FCL.v FCL_complete_emptyTargets
273 2.5.2/Lemma 33.9 FCL.v future_word_word
274 2.5.2/Lemma 33.10 FCL.v future_word_weaken
275 2.5.2/Lemma 33.11 FCL.v rule_absorbl
276 2.5.2/Lemma 33.12 FCL.v future_word_dropFailed
277 2.5.2/Lemma 33.13 FCL.v computeFailExisting_failed_complete
278 2.5.2/Lemma 33.14 FCL.v rule_absorbl_apply
279 2.5.2/Lemma 33.15 FCL.v computeFailExisting_existing
280 2.5.2/Lemma 33.16 FCL.v OmegaRules_future_word
281 2.5.2/Lemma 33.17 FCL.v rule_MP
282 2.5.2/Lemma 33.18 FCL.v FCL_Omega_complete
283 2.5.2/Lemma 33.19 FCL.v accumulateCovers_cat
284 2.5.2/Lemma 33.20 FCL.v inhabit_cover_flatten
285 2.5.2/Lemma 33.21 FCL.v inhabit_cover_empty
286 2.5.2/Lemma 33.22 FCL.v commitMultiArrow_cons
287 2.5.2/Lemma 33.23 FCL.v commitUpdates_flatten
288 2.5.2/Lemma 33.24 FCL.v commitMultiArrow_size
289 2.5.2/Lemma 33.25 FCL.v commitMultiArrow_nth
290 2.5.2/Lemma 33.26 FCL.v commitMultiArrows_combinatorOrEmpty
291 2.5.2/Lemma 33.27 FCL.v nextTargets_combinatorOrEmpty
292 2.5.2/Lemma 33.28 FCL.v group_commitMultiArrow
293 2.5.2/Lemma 33.29 FCL.v future_word_weaken_inhabapply
294 2.5.2/Lemma 33.30 FCL.v commitMultiArrow_parameters
295 2.5.2/Lemma 33.31 FCL.v future_word_weaken_targets1
296 2.5.2/Lemma 33.32 FCL.v future_word_weaken_targets2
297 2.5.2/Lemma 33.33 FCL.v future_word_covers
298 2.5.2/Lemma 33.34 FCL.v rule_absorbl_apply_covers
299 2.5.2/Lemma 33.35 FCL.v prefix_target_groups
300 2.5.2/Lemma 33.36 FCL.v nil_reduceMultiArrows
301 2.5.2/Lemma 33.37 FCL.v empty_inhabit_cover
302 2.5.2/Lemma 33.38 FCL.v cover_targets
303 2.5.2/Lemma 33.39 FCL.v inhabit_cover_complete
304 2.5.2/Lemma 33.40 FCL.v inhabit_step_complete
305 2.5.2/Lemma 33.41 FCL.v inhabit_multistep_complete
306 2.5.2/Theorem 6.1 FCL.v inhabit_sound
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307 2.5.2/Theorem 6.2 FCL.v inhabit_complete
308 2.6.2/Lemma 34.1 TwoCounter.v sound_Sigma__Aut
309 2.6.2/Lemma 34.2 TwoCounter.v sound
310 2.6.2/Lemma 34.3 TwoCounter.v complete
311 2.6.3/Lemma 35.1 DependentFixpoint.v Fix_F_inv
312 2.6.3/Lemma 35.2 DependentFixpoint.v isFix_unique
313 2.6/Lemma 36.1 Algebra.v canonical_morphism_commutes
314 2.6/Lemma 36.2 Algebra.v canonical_morphism_alg_morphism
315 2.6/Lemma 36.3 Algebra.v canonical_morphism_unique
316 2.6/Lemma 36.4 Algebra.v canonical_morphism_sound
317 2.6/Lemma 36.5 Algebra.v canonical_morphism_complete
318 2.6/Lemma 37.1 Algebra.v embed_unembed
319 2.6/Lemma 37.2 Algebra.v embed_le
320 2.6/Lemma 37.3 Algebra.v proofAction_FCL
321 2.6/Lemma 37.4 Algebra.v unapplyNotIndex
322 2.6/Lemma 37.5 Algebra.v arrow_le
323 2.6/Lemma 37.6 Algebra.v indexType_sound
324 2.6/Lemma 37.7 Algebra.v unapplyIsIndex
325 2.6/Lemma 37.8 Algebra.v termCoAction_size
326 2.6/Lemma 37.9 Algebra.v proofCoAction__FCL
327 2.6/Lemma 37.10 Algebra.v range_coAction
328 2.6/Lemma 38.1 Algebra.v Term_unapply_ind
329 2.6/Lemma 38.2 Algebra.v IsChild_wf
330 2.6/Lemma 38.3 Algebra.v dec_coAction__FCL
331 2.6/Lemma 38.4 Algebra.v cancel_action_coAction__FCL
332 2.6/Lemma 38.5 Algebra.v cancel_coAction__FCL_action
333 2.6/Theorem 7.1 Algebra.v unique
334 2.6/Theorem 7.2 Algebra.v sound
335 2.6/Theorem 7.3 Algebra.v complete

Table A.1: Statements and where to find their Coq formalization in [15]
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