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Abstract

Clinical trials often aim to compare a new drug with a reference treatment in terms

of efficacy and/or toxicity depending on covariates such as, for example, the dose level

of the drug. Equivalence of these treatments can be claimed if the difference in average

outcome is below a certain threshold over the covariate range. In this paper we assume

that the efficacy and toxicity of the treatments are measured as binary outcome variables

and we address two problems. First, we develop a new test procedure for the assessment

of equivalence of two treatments over the entire covariate range for a single binary end-

point. Our approach is based on a parametric bootstrap, which generates data under the

constraint that the distance between the curves is equal to the pre-specified equivalence

threshold. Second, we address equivalence for bivariate binary (correlated) outcomes by

extending the previous approach for a univariate response. For this purpose we use a

2-dimensional Gumbel model for binary efficacy-toxicity responses. We investigate the

operating characteristics of the proposed approaches by means of a simulation study and

present a case study as an illustration.

Keywords and Phrases: binary data, dose response, logistic regression, Gumbel model, boot-

strap

1 Introduction

Equivalence tests are used in clinical drug development to assess similarity of a test treatment

with a reference treatment. Considering continuous data with covariates, the effect of a drug
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is described as a function of the covariates and equivalence is claimed is these function are

in some sense similar. Several authors use confidence bands for the difference between the

response functions to construct equivalence tests (see, for example Liu et al. (2009); Gsteiger

et al. (2011); Bretz et al. (2018)). Alternatively, Dette et al. (2018); Möllenhoff et al. (2018)

proposed more powerful tests by estimating a distance between the two functions, such as

the the squared integral of the difference or the maximal deviation between the curves. They

claim equivalence if the estimated distance is small. All these approaches assume continuous

outcomes. However, in some situations drug efficacy is measured using a binary outcome (for

some examples see Chow and Liu (1992); Cox (2018)). For example, a patient is considered to

be a responder, that is the efficacy response is 1, if the drug effect is as desired. This can be

for example the shrinkage of a tumor or the curing of any disease. Equivalence tests have been

proposed in these settings by, for example, Nam (1997) and Chen et al. (2000), who derive

methodology for comparing the treatments in response probabilities. These authors investigate

different types of test statistics and perform sample size determination in several situations but

they do not include any covariates such as, for example, the dose.

Many clinical trials involve the measurement of a second endpoint (e.g. to assess toxicity)

and hence bivariate outcomes are considered which are likely to be correlated, see for example

Murtaugh and Fisher (1990); Heise and Myers (1996); Thall and Cook (2004); Dragalin and

Fedorov (2006) and Gaydos et al. (2006). This is, for instance, the case when observing efficacy

and toxicity of a drug. The toxicity response is 1 if a side-effect (e.g. fatigue or nausea) is

observed. Several methods for modelling multivariate binary outcomes have been proposed, see

for example, Glonek and McCullagh (1995). Considering efficacy-toxicity responses, Murtaugh

and Fisher (1990) and Heise and Myers (1996) investigate bivariate binary responses and derive

optimal designs for this situation by fitting the data to a bivariate logistic model and a Cox

model (see also Cox (2018)). Deldossi et al. (2019) propose Copula functions to model these

types of outcomes. Further, Thall and Cook (2004) and Dragalin and Fedorov (2006) develop

adaptive designs for identifying the optimal safe dose. Finally several authors investigate the

modeling and design of phase I/II dose-finding trials incorporating bivariate outcomes using

Bayesian methods, see for instance Nebiyou Bekele and Shen (2005); Zhang et al. (2006); Yin

et al. (2006).

Different to the literature reviewed above, we investigate equivalence tests with The purpose to

assess similarity of a reference and a test treatment for efficacy and toxicity. Equivalence can

only be claimed if the differences of both outcomes are below prespecified thresholds over the

complete range of covariates. Accordingly, we first develop a new test for assessing equivalence

in case of a single binary endpoint over the range of covariates. Second, we address equiva-

lence for bivariate binary (correlated) outcomes and develop an equivalence test for comparing

simultaneously efficacy and toxicity of a reference to a test treatment. For this purpose we use
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a 2-dimensional Gumbel model (see Gumbel (1961)) for bivariate logistic regression to model

correlated bivariate binary endpoints. Our approach is based on a non-standard parametric

bootstrap, which generates data under the constraint that the distances between the curves

are precisely equal to the thresholds. We investigate finite sample properties and illustrate the

procedures with a clinical trial example.

2 Comparing curves for binary outcomes

In this section we introduce a model-based approach for the investigation of equivalence be-

tween the efficacy of two treatments assuming binary endpoints. We consider models with co-

variates and assume for simplicity a one-dimensional covariate, although the proposed method-

ology applies more broadly. For both treatment groups we choose the covariate space as a

(log-transformed) dose range D and assume that treatments are conducted at k` dose levels

d`,1, . . . , d`,k` , ` = 1, 2, where the index ` = 1 corresponds to the reference and ` = 2 to the test

treatment. At dose level d`,i we observe n`,i patients, i = 1, . . . , k`. Let Y`,i,j denote the binary

outcome for the jth patient allocated to the ith dose level receiving treatment `. If a patient

responds to the drug, we have Y`,i,j = 1, otherwise Y`,i,j = 0. More precisely, Y`,i,j follows a

Bernoulli distribution with parameter p`(d`,i) modelling the probability of success under treat-

ment ` with dose level d`,i, i = 1, . . . k`, ` = 1, 2. We use regression techniques to model the

dose-response relationship. More precisely, the probability of the jth patient allocated to dose

level d`,i responding to treatment ` is given by

p`(d`,i) = P(Y`,i,j = 1 | d`,i) = ηE` (d`,i, β`, γ`), ` = 1, 2, (2.1)

where ηE` is a known distribution function determined by parameters β`, γ`. Hence the curve

ηE` (d, β`, γ`) models the probability of efficacy over the entire dose range.

Common examples of (2.1) include the logistic regression model P(Y`,i,j = 1 | d`,i) = 1

1+e
−β`−γ`·d`,i

and the probit regression model P(Y`,i,j = 1 | d`,i) = Φ(β` + γ` · d`,i), ` = 1, 2, where Φ is the

distribution function of the standard normal distribution (see for example Long and Freese

(2006)). Assuming independent observations, the likelihood of the observed data in treatment

group ` = 1, 2 is

L`(β`, γ`|y`,1,1, . . . , y`,k`,1, . . . , y`,k`,n`,k` ) =

k∏̀
i=1

n`,i∏
j=1

p`(d`,i)
y`,i,j(1− p`(d`,i))(1−y`,i,j)

=

k∏̀
i=1

p`(d`,i)
ζ`,i(1− p`(d`,i))n`,i−ζ`,i ,
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where ζ`,i :=
∑n`,i

j=1 y`,i,j, i = 1, . . . , k`, ` = 1, 2. Taking the logarithm yields

l`(β`, γ`) := logL(β`, γ`|y1,1, . . . , yk,1, . . . , yk,nk)

=

k∑̀
i=1

ζ`,i log p`(d`,i) + (n`,i − ζ`,i) log (1− p`(d`,i)) (2.2)

and corresponding Maximum-Likelihood-estimates (MLE) are obtained by maximizing the

function (2.2).

In order to investigate the difference in efficacy between the reference and the test treatment

we consider the maximal deviation between the two curves in (2.1) and define the equivalence

hypotheses by

HE
0 : max

d∈D

∣∣ηE1 (d, β1, γ1)− ηE2 (d, β2, γ2)
∣∣ ≥ εE vs. HE

1 : max
d∈D

∣∣ηE1 (d, β1, γ1)− ηE2 (d, β2, γ2)
∣∣ < εE,

(2.3)

where εE denotes a prespecified margin of equivalence in efficacy between the two curves, which

has to be carefully chosen by clinicians in advance. The choice of these thresholds is a common

issue and there are no general recommendations available. However, according to guidelines

(U.S. Food and Drug Administration (2003)) equivalence margins between 0.1 and 0.2, that is

a deviation of the two products between 10% to 20%, seem to be reasonable.

The following algorithm provides a bootstrap test for the hypotheses (2.3), which keeps its

nominal level, say α, and is consistent. It is derived by adapting the methodology developed

in Dette et al. (2018) to binary data.

Algorithm 2.1. (parametric bootstrap for testing equivalence of binary outcomes)

(1) Calculate the MLE (β̂`, γ̂`), ` = 1, 2, by maximizing for each group the log-likelihood

given in (2.2). The test statistic is obtained by

d̂E := max
d∈D

∣∣∣ηE1 (d, β̂1, γ̂1)− ηE2 (d, β̂2, γ̂2)
∣∣∣ .

(2) Define estimators of the parameters β`, γ`, ` = 1, 2, so that the corresponding curves

fulfill the null hypothesis (2.3), that is

( ˆ̂
β`, ˆ̂γ`

)
=

 (β̂`, γ̂`) if d̂E ≥ ε

(β̄`, γ̄`) if d̂E < ε
` = 1, 2,

where (β̄1, γ̄1) and (β̄2, γ̄2) minimize the same objective function as defined in (2.2), but

under the constraint

dE = max
d∈D

∣∣ηE1 (d, β1, γ1)− ηE2 (d, β2, γ2)
∣∣ = εE. (2.4)

4



We discretize the dose range D to get a feasible optimization problem by fixing r nodes

d1, . . . , dr and use the smooth approximation (as λ→ 0)

r
max
i=1

di ≈ λ log
r∑
i=1

exp di
λ

for the calculation of the maximum in (2.4). Finally the optimization procedure is per-

formed by running the auglag() function implemented in the R package alabama by

Varadhan (2014). The algorithm implemented in this function is based on the augmented

Lagrangian minimization algorithm, which is typically used for solving constrained opti-

mization problems.

(3) Proceed as follows:

(i) Generate bootstrap data under the null hypothesis (2.3), that is, create binary data

specified by the parameters
( ˆ̂
β`, ˆ̂γ`

)
, ` = 1, 2. More precisely, calculate ηE` (d`,i,

ˆ̂
β`, ˆ̂γ`),

i = 1, . . . , k`, ` = 1, 2 yielding the probabilities of success p(d`,i) at each dose level

d`,i.

(ii) From the bootstrap data calculate the MLE (β̂∗` , γ̂
∗
` ) as in step (1) and the test

statistic

d̂E∗ = max
d∈D

∣∣∣ηE1 (d, β̂∗1 , γ̂
∗
1)− ηE2 (d, β̂∗2 , γ̂

∗
2).
∣∣∣ (2.5)

(iii) Repeat the steps (i) and (ii) nboot times to generate replicates d̂E∗∞,1, . . . , d̂
E∗
∞,nboot of

d̂E∗. Let d̂E∗(1) ≤ . . . ≤ d̂E∗(nboot) denote the corresponding order statistic. The

estimator of the α-quantile of the distribution of d̂∗ is defined by d̂E∗(bnbootαc). Reject

the null hypothesis (2.3), if

d̂E < d̂E∗(bnbootαc). (2.6)

Further we obtain the p-value by F̂nboot(d̂
E), where F̂nboot(x) = 1

nboot

∑nboot
i=1 I{d̂E∗∞,i ≤

x} denotes the empirical distribution function of the bootstrap sample.

Note that the bootstrap quantile d̂E∗(bnbootαc) depends on the number of bootstrap replicates

nboot and the threshold εE given in the hypotheses (2.3), but we do not reflect this dependence

in our notation. The test proposed in Algorithm 2.1 has asymptotic level α and is consistent.

More precisely, note that d̂E∗(bnbootαc) → q̂α as nboot → ∞, where q̂α denotes the α-quantile of

the distribution of the statistic (2.5). It can then be shown that under HE
0

lim sup
n1,n2→∞

PHE
0

(d̂E < q̂α) ≤ α (2.7)
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and that under HE
1

lim
n1,n2→∞

PHE
1

(d̂E < q̂α) = 1. (2.8)

These results follow from the well-known fact that under suitable conditions of regularity the

MLE converge weakly to a normal distribution (see Bradley and Gart (1962)), that is

√
n`

(
(β̂`, γ̂`)− (β`, γ`)

)
D−→ N (0, I−1` ), ` = 1, 2, (2.9)

where the asymptotic variance-covariance matrix I` is the Fisher Information Matrix corre-

sponding to treatment group `. The weak convergence (2.9) is the essential ingredient to apply

the proof of Dette et al. (2018) to the situation considered in this paper and (2.7) and (2.8)

follow.

3 Equivalence tests for efficacy-toxicity responses

3.1 The Gumbel model for efficacy-toxicity outcomes

In this section we extend the approach of Section 2 to equivalence tests for correlated bivariate

binary outcomes. We consider the bivariate Gumbel model (see for example Murtaugh and

Fisher (1990); Heise and Myers (1996)) based on the bivariate logistic function derived by

Gumbel (1961), which is given by

FU,V (u, v) =
1

1 + e−u
1

1 + e−v
·
(

1 +
νe−u−v

(1 + e−u)(1 + e−v)

)
. (3.1)

Note that the marginal distributions are logistic and that the parameter ν ∈ (−1, 1) represents

the dependence of U and V . In particular the case ν = 0 corresponds to independent margins

and in this case two separate logistic models for efficacy and toxicity can be fitted separately

to the data.

We make the same assumptions as in the univariate case and further let Y = (Y E, Y T ) ∈ {0, 1}2

denote the bivariate outcome for a patient allocated to the dose level d, where Y E denotes the

efficacy and Y T the toxicity response. We follow Murtaugh and Fisher (1990) and formulate

the model by deriving the four cell probabilities

p00(d) := P(Y E = 0, Y T = 0| d) = 1− 1
1+e−u1(d)

− 1
1+e−u2(d)

+ 1
1+e−u1(d)

1
1+e−u2(d)

+
νe−u1(d)−u2(d)

(1 + e−u1(d))2(1 + e−u2(d))2
,

p01(d) := P(Y E = 0, Y T = 1| d) = 1
1+e−u2(d)

− 1
1+e−u1(d)

1
1+e−u2(d)

− νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2
,

p10(d) := P(Y E = 1, Y T = 0| d) = 1
1+e−u1(d)

− 1
1+e−u1(d)

1
1+e−u2(d)

− νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2
,

p11(d) := P(Y E = 1, Y T = 1| d) = 1
1+e−u1(d)

1
1+e−u2(d)

+ νe−u1(d)−u2(d)

(1+e−u1(d))2(1+e−u2(d))2
. (3.2)
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Here, u1(d) = β1 + γ1 · d and u2(d) = β2 + γ2 · d denote the transformed doses for efficacy

and toxicity, respectively (see Heise and Myers (1996)). Consequently, the Gumbel model is

determined by the 5-dimensional parameter θ := (β1, γ1, β2, γ2, ν) ∈ R5. The individual curves

for efficacy and toxicity are obtained by the marginal probabilities

ηE(d, θ) := P(Y E = 1| d) = p11(d) + p10(d) =
1

1 + e−u1(d)
,

ηT (d, θ) := P(Y T = 1| d) = p11(d) + p01(d) =
1

1 + e−u2(d)
. (3.3)

Note that for simplicity we do not display the dependence on θ in the cell probability func-

tions (3.2). We further denote by η(d, θ) :=
(
ηE(d, θ), ηT (d, θ)

)
the vector of bivariate response

probabilities at dose d. Note that the correlation parameter ν is part of the model but not

displayed explicitly. We also note that the restrictions on ν depend on the other model pa-

rameters β1, γ1, β2, γ2 such that all cell probabilities in (3.2) vary between 0 and 1 for all doses

d ∈ D. Because the correlation of Y E and Y T is given by

corr(Y E, Y T | d) =
ν

(eu1(d)/2 + e−u1(d)/2)(eu2(d)/2 + e−u2(d)/2)
(3.4)

the upper bound of ν is at most 4.

For the estimation of the model parameters we use again MLE. Therefore the likelihood for

one observation y = (yE, yT ) ∈ {0, 1}2 modelled by the Gumbel model is given by

L(θ|y) = p11(d)y
EyT p01(d)(1−y

E)yT p10(d)y
E(1−yT )p00(d)(1−y

E)(1−yT ). (3.5)

3.2 The test procedure

Now assume that we have two groups with bivariate (efficacy/ toxicity) outcomes corresponding

to the new (` = 1) and reference (` = 2) treatment and we want to compare two treatment

groups with respect to their efficacy and toxicity response.

Let Y`,i,j = (Y E
`,i,j, Y

T
`,i,j) ∈ {0, 1}

2 denote the bivariate outcome for the jth patient allocated

to the ith dose level d`,i of treatment group `. We observe the data Y`,i,j = (Y E
`,i,j, Y

T
`,i,j) and

denote by

ζ`,ipq :=

n`,i∑
j=1

I{(yE`ij, yT`ij) = (p, q)}

the number of responses with outcome (p, q) at dose level d`,i in group ` = 1, 2, i = 1, . . . , k`.

We use the Gumble model as introduced in Section 3.1. According to (3.5) the likelihood of
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the Gumbel model for group ` is given by

L`(θ`|y`,1,1, . . . , y`,1,n`,1 , . . . , y`,k`,n`,k` )

=

k∏̀
i=1

n`,i∏
j=1

p11(d`,i)
yE`ijy

T
`ijp01(d`,i)

(1−yE`ij)y
T
`ijp10(d`,i)

yE`ij(1−y
T
`ij)p00(d`,i)

(1−yE`ij)(1−y
T
`ij)

=

k∏̀
i=1

p11(d`,i)
ζ`,i11 p01(d`,i)

ζ`,i10 p10(d`,i)
ζ`,i10 p00(d`,i)

ζ`,i00 .

Taking the logarithm yields

l`(θ`) := logL`(θ`|y`,1,1, . . . , y`,1,n`,1 , . . . , y`,k`,n`,k` )

=

k∑̀
i=1

ζ`,i11 log p11(d`,i) + ζ`,i01 log p01(d`,i) + ζ`,i10 log p10(d`,i) + ζ`,i00 log p00(d`,i) (3.6)

and the estimate θ̂` for the parameter θ` of the Gumbel model is obtained by maximizing this

function over the parameter space (` = 1, 2). Note that the model estimates β̂`,1, γ̂`,1 are the

same as the ones obtained by maximizing the likelihood function in the univariate case (2.2) if

ν = 0.

Let

η`(d, θ`) =
(
ηE` (d, θ`), η

T
` (d, θ`)

)
=
( 1

1 + e−β`,1−γ`,1·d
,

1

1 + e−β`,2−γ`,2·d

)T
denote the vector of efficacy and toxicity curves for group ` = 1, 2. We now want to ensure

that claiming equivalence of both treatment groups guarantees that both, efficacy and toxicity

response, do not deviate more than a certain prespecified threshold ε = (εE, εT ). Consequently

the global hypotheses are given by

H0 : max
d∈D

∣∣ηE1 (d, θ1)− ηE2 (d, θ2)
∣∣ ≥ εE or max

d∈D

∣∣ηT1 (d, θ1)− ηT2 (d, θ2)
∣∣ ≥ εT (3.7)

against the alternative

H1 : max
d∈D

∣∣ηE1 (d, θ1)− ηE2 (d, θ2)
∣∣ < εE and max

d∈D

∣∣ηT1 (d, θ1)− ηT2 (d, θ2)
∣∣ < εT . (3.8)

This problem can be solved by simultaneously testing the individual hypotheses

HE
0 : max

d∈D

∣∣ηE1 (d, θ1)− ηE2 (d, θ2)
∣∣ ≥ εE vs. HE

1 : max
d∈D

∣∣ηE1 (d, θ1)− ηE2 (d, θ2)
∣∣ < εE (3.9)

and

HT
0 : max

d∈D

∣∣ηT1 (d, θ1)− ηT2 (d, θ2)
∣∣ ≥ εT vs. HT

1 : max
d∈D

∣∣ηT1 (d, θ1)− ηT2 (d, θ2)
∣∣ < εT . (3.10)

As the global null in (3.7) is the union of HE
0 and HT

0 we can apply the Intersection-Union-

Principle (see Berger (1982)). Only if both individual null hypotheses in (3.9) and (3.10) can
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be rejected, the global null in (3.7) is rejected and equivalence of the two responses can be

claimed. Each of the two individual tests for (3.9) and (3.10) is performed by extending the

parametric bootstrap approach in Algorithm 2.1, as described in the following algorithm.

Algorithm 3.1. (parametric bootstrap for testing equivalence for bivariate binary outcomes)

(1) Calculate the MLE θ̂` = (β̂`,1, γ̂`,1, β̂`,2, γ̂`,2, ν̂`), ` = 1, 2, by maximizing the log-likelihood

given in (3.6) for each group. The test statistics are obtained by

d̂E = dE(θ̂1, θ̂2) = max
d∈D

∣∣ηE1 (d, θ̂1)− ηE2 (d, θ̂2)
∣∣

and

d̂T = dT (θ̂1, θ̂2) = max
d∈D

∣∣ηT1 (d, θ̂1)− ηT2 (d, θ̂2)
∣∣

(2) For each individual test for (3.9) and (3.10) we perform a constrained optimization as de-

scribed in Algorithm 2.1, yielding estimates
ˆ̂
θ`, ` = 1, 2. Note that this procedure is done

separately for each individual test because the constraints and hence the generation of

the bootstrap data differ. Thus we generate bootstrap data for each individual test sepa-

rately and obtain replicates d̂E∗∞,1, . . . , d̂
E∗
∞,nboot for the comparison of the efficacy curves and

d̂T∗∞,1, . . . , d̂
T∗
∞,nboot for the comparison of the toxicity curves. Let d̂E∗(1) ≤ . . . ≤ d̂E∗(nboot)

and d̂T∗(1) ≤ . . . ≤ d̂T∗(nboot) denote the corresponding order statistics and let d̂E∗(bnbootαc)

and d̂T∗(bnbootαc) denote the corresponding empirical level α quantiles.

(3) Reject the global null hypothesis (3.7) if

d̂E < d̂E∗(bnbootαc) and d̂T < d̂T∗(bnbootαc). (3.11)

Note that according to the Intersection-Union-Principle we use the α-quantile and there is

no need of adjusting the level of the two individual tests. The technical difficulty of the

implementation of this algorithm consists in generating bivariate correlated binary data in

Step (2), which is explained in more detail in the following section.

3.3 Generation of bivariate correlated binary data

The bootstrap test described in Algorithm 3.1 requires the simulation of bivariate binary data.

Due to the dependency of the outcomes this is a technical difficulty investigated by several

authors (see for example Emrich and Piedmonte (1991); Lunn and Davies (1998); Leisch et al.

(1998) among many others). We used the algorithm developed by Emrich and Piedmonte

(1991), as implemented with the function generate.binary in the R package MultiOrd (see

Amatya and Demirtas (2015)). For this purpose, we use expression (3.4) for the correlation
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and the marginal distributions in (3.3) to generate the data at each dose level as long as the

correlation does not exceed the boundaries specified by the model parameter θ given by

max

(
−
√

p1(d)p2(d)
(1−p1(d))(1−p2(d)) ,−

√
(1−p1(d))(1−p2(d))

p1(d)p2(d)

)
≤ corr(Y E, Y T | d) (3.12)

and

corr(Y E, Y T | d) ≤ min

(√
p1(d)(1−)p2(d))
(1−p1(d))p2(d) ,

√
(1−p1(d))p2(d)
p1(d)(1−p2(d))

)
. (3.13)

Here, p1(d) = ηE(d, θ1) and p2(d) = ηT (d, θ2) denote the marginal probabilities of efficacy and

toxicity, respectively. These restrictions have to be fulfilled at each dose in order to guarantee

that a joint distribution of Y E and Y T can exist. We impose these inequality constraints in

the optimization step in addition to the constraint described in (2.4) such that the estimates
ˆ̂
θ1 and

ˆ̂
θ2 generate a distribution and bootstrap data can be obtained.

4 Finite sample properties

We now investigate the finite sample properties of the two tests based on Algorithms 2.1

and 3.1. Following Murtaugh and Fisher (1990) we consider the (log-transformed) dose range

D = [−3, 3] and 7 dose levels −3,−2, . . . , 2, 3. We assume 7, 14, 21, 28 and 50 patients per

dose level and group, that is n`,i = 7, 14, 21, 28 and 50 for ` = 1, 2, i = 1, . . . 7, resulting in

n` = 49, 98, 147, 196 and 350, ` = 1, 2. The significance level is α = 0.05 throughout. Following

Nam (1997) and Chen et al. (2000) we assume three different equivalence thresholds, 0.1, 0.15

and 0.2. All simulations are performed using 1000 simulation runs and nboot = 400 bootstrap

replications. The binary data are generated as described in Section 3.3. We set ν = 0 for the

univariate case.

4.1 Univariate efficacy outcomes

We consider a logistic regression in (2.1). The reference model is specified by (β1,1, γ1,1) = (0, 1)

yielding ηE1 (d, β1,1, γ1,1) = 1
1+e−d

. We choose the parameters (β2,1, γ2,1) of the second model as

ηE2 (d, β2,1, γ2,1) =
1

1 + e−β2,1−γ2,1d
,

such that the maximum deviations dE between the two efficacy curves ηE1 and ηE2 are 0, 0.05, 0.1, 0.15, 0.2

and 0.3, attained at the doses 1.11, 0.99, 0.78, 0.65 and 0.26, respectively. This leads to the

configurations

(β2,1, γ2,1) = (0, 1), (β2,1, γ2,1) = (0.1, 1.2), (β2,1, γ2,1) = (0.2, 1.4),

(β2,1, γ2,1) = (0.4, 1.6), (β2,1, γ2,1) = (0.6, 1.9) and (β2,1, γ2,1) = (1.3, 2.1). (4.1)
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Note that for ηE1 = ηE2 the difference between the curves is zero at all doses. Figure 1 displays

the reference curve ηE1 and the curve ηE2 determined by the parameters described in (4.1).
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Figure 1: The reference efficacy curve ηE1 (d, β1,1, γ1,1) = 1
1+e−d

(solid line) and the curves

ηE2 (d, β2,1, γ2,1) = 1

1+e−β2,1−γ2,1d
(dashed lines) for different choices of the parameters (β2,1, γ2,1),

as defined in (4.1). The scenarios correspond to a maximum absolute deviation dE =

0, 0.05, 0.1, 0.15, 0.2, 0.3 attained at the open dots (from right to left).

Table 1 displays the simulated type I error rates of the bootstrap test (2.6) for the equivalence

of efficacy responses with margins εE = 0.1, 0.15, 0.2. The numbers in bold face indicate the

scenarios where simulations have been run on the margin of the null, that is dE = εE = 0.1, 0.15

and 0.2. Note that the configuration dE = 0.15 and εE = 0.2 falls under the alternative (as

dE < εE) and is therefore omitted from Table 1. We conclude that the test controls its level in

all cases under consideration. The approximation of the level is very precise at the margin of

the null hypothesis (that is, dE = εE) and this accuracy increases with increasing sample sizes.

Moreover, in the interior of the null hypothesis (that is dE ≥ εE) the number of rejections is

close to zero in all scenarios, indicating that the type I error rate is well below α in these cases.
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Table 2 displays the power of the test (2.6). We conclude that for sufficiently large sample

sizes the procedure has reasonable power. For instance, for n`,i = 28, i = 1, . . . 7, ` = 1, 2,

the maximum power attained at dE = 0 is 0.785 for an equivalence threshold of εE = 0.2. For

larger sample sizes of 50 patients per dose level, the test achieves more than 80% power, namely

0.803 for εE = 0.15 and 0.976 for εE = 0.2. In general we observe that the power increases with

increasing sample sizes. Note that the case dE = εE = 0.1 falls under the null hypothesis and

results are therefore shown in Table 1.

n`,i (β2,1, γ2,1) dE εE = 0.1 εE = 0.15 εE = 0.2

7

(1.3,2.1) 0.3 0.005 0.014 0.018
(0.6,1.9) 0.2 0.020 0.022 0.055
(0.4,1.6) 0.15 0.036 0.037 -
(0.2,1.1) 0.1 0.060 - -

14

(1.3,2.1) 0.3 0.002 0.001 0.003
(0.6,1.9) 0.2 0.005 0.014 0.055
(0.4,1.6) 0.15 0.020 0.038 -
(0.2,1.1) 0.1 0.042 - -

21

(1.3,2.1) 0.3 0.000 0.000 0.002
(0.6,1.9) 0.2 0.004 0.007 0.052
(0.4,1.6) 0.15 0.010 0.042 -
(0.2,1.1) 0.1 0.036 - -

28

(1.3,2.1) 0.3 0.000 0.000 0.001
(0.6,1.9) 0.2 0.000 0.012 0.062
(0.4,1.6) 0.15 0.008 0.040 -
(0.2,1.1) 0.1 0.036 - -

50

(1.3,2.1) 0.3 0.000 0.000 0.000
(0.6,1.9) 0.2 0.002 0.011 0.057
(0.4,1.6) 0.15 0.006 0.052 -
(0.2,1.1) 0.1 0.034 - -

Table 1: Simulated type I error rates of the bootstrap test (2.6) for the equivalence of efficacy

responses. Bold numbers indicate simulations at the margin of the null hypothesis.

4.2 Bivariate efficacy-toxicity outcomes

We now consider bivariate efficacy-toxicity outcomes using a Gumbel model for both treatment

groups as defined in Section 3.1. The reference model is defined by the parameter

θ1 = (β1,1, γ1,1, β1,2, γ1,2, ν1) = (0, 1, 0, 0.5, ν1) (4.2)

and we assume two different levels of dependence representing a moderate (ν1 = 1) and a rather

strong dependence (ν1 = 3) between the efficacy and toxicity outcomes. According to (3.4),

the correlation of Y E
1 and Y T

1 at dose d ∈ D is given by

corr(Y E
1 , Y

T
1 | d) =

ν1
(ed/2 + e−d/2)(ed/4 + e−d/4)

, (4.3)
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n`,i (β2,1, γ2,1) dE εE = 0.1 εE = 0.15 εE = 0.2

7
(0.2,1.4) 0.1 - 0.082 0.090
(0.1,1.2) 0.05 0.058 0.076 0.145

(0,1) 0 0.076 0.171 0.232

14
(0.2,1.4) 0.1 - 0.137 0.247
(0.1,1.2) 0.05 0.075 0.142 0.391

(0,1) 0 0.101 0.226 0.418

21
(0.2,1.4) 0.1 - 0.166 0.434
(0.1,1.2) 0.05 0.090 0.344 0.547

(0,1) 0 0.134 0.356 0.603

28
(0.2,1.4) 0.1 - 0.203 0.474
(0.1,1.2) 0.05 0.103 0.367 0.690

(0,1) 0 0.179 0.470 0.785

50
(0.2,1.4) 0.1 - 0.303 0.729
(0.1,1.2) 0.05 0.184 0.640 0.905

(0,1) 0 0.363 0.803 0.976

Table 2: Simulated power of the bootstrap test (2.6) for the equivalence of efficacy responses.

which ranges from 0.08 to 0.25 for ν1 = 1 and 0.25 to 0.75 for ν1 = 3. Note that the highest

correlation is always attained at the dose level 0. The left panel of Figure 2 displays the

probability of efficacy without toxicity response, that is P(Y E = 1, Y T = 0| d) = p10(d). The

right panel displays the correlation for different choices of ν in dependence of the dose. In order

to investigate different situations under the null and the alternative, we vary the parameters

of the second model resulting in seven scenarios for each choice of ν1; see Table 3. We assume

the same correlations as for the reference model, that is ν2 = ν1. As an illustration, we show

the efficacy and toxicity curves for three scenarios and ν1 = 1 in Figure 3.

θ1 θ2 d = (dE , dT )

Alternative

(0, 1, 0, 0.5, ν2) (0, 1, 0, 0.5, ν2) (0, 0)

(0, 1, 0, 0.5, ν2) (0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05)

(0, 1, 0, 0.5, ν2) (0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1)

Null hypothesis

(0, 1, 0, 0.5, ν2) (0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15)

(0, 1, 0, 0.5, ν2) (0, 1, 0.4, 0.8, ν2) (0, 0.15)

(0, 1, 0, 0.5, ν2) (0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2)

(0, 1, 0, 0.5, ν2) (0, 1, 0.5, 1, ν2) (0, 0.2)

Table 3: Different scenarios corresponding to the null hypothesis (3.7) and the alternative (3.8).

For the Type I error rate simulations we counted the number of individual and simultaneous

rejections of both null hypotheses in (3.9) and (3.10), allowing us to reject the global null

hypothesis in (3.7). All simulation results are displayed in Tables 4 and 5, where the numbers

in brackets correspond to the proportion of rejections for the individual tests on efficacy and

toxicity. For the sake of brevity we assume only two different thresholds ε = (εE, εT ) =

(0.15, 0.15) and (0.2, 0.2), thus allowing for a deviation of 15% and 20%, respectively, for efficacy
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Figure 2: Left panel: Probability P(Y E = 1, Y T = 0) = p10(d) in dependence of the dose for the

reference model (4.2) for different choices of the correlation parameter ν. Right panel: Correlation of

efficacy and toxicity response for different choices of ν in dependence of the dose.

and toxicity in order to claim equivalence. In general, we observe that the global bootstrap test

according to Algorithm 3.1 is rather conservative as the Type I error rates are very small. For

example, for n`,i = 21, ν1 = ν2 = 1 and ε = (0.2, 0.2) the individual proportions of rejection

are 0.041 for efficacy and 0.050 for toxicity, whereas the Type I error rate for the global test

is 0.005, which is well below the nominal level. This is a common feature of the Intersection-

Union-Principle for the problem of testing bioequivalence in multivariate responses (see, for

example Berger and Hsu (1996)).

In general, we conclude that the individual tests on efficacy and toxicity yield rejection proba-

bilities that are very close to 0.05 when simulating on the margin of the global null hypothesis

(that is d = ε) and hence the global Type I error rates are well below α in these cases. However,

there are some scenarios where the Type I error rate is too large when ν1 = ν2 = 3. For in-

stance, we observe a proportion of rejections of the global null hypothesis of 0.129 for n`,i = 28,

ε = (0.2, 0.2) and d = (0, 0.2). Note that the values of ν1 and ν2 do not influence the curves

obtained by the marginal densities in (3.3) and hence do not directly impact the proportions of

rejections obtained for the individual tests. However, the choice of ν` affects the estimation of

the parameter θ` of the Gumbel model, which explains the different results for the individual

tests for ν` = 1 and ν` = 3, ` = 1, 2, resulting in higher Type I error rates for the global test in

settings with ν` = 3. For example, the choice d = (0.2, 0) and ε = (0.2, 0.2) corresponds to the

14
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Figure 3: Efficacy curves (solid lines) and toxicity curves (dashed lines) derived in (3.3). The black

lines correspond to the reference model, the blue lines to the second model, specified by θ2. The scenarios

shown correspond to a maximum absolute deviation (indicated by the arrows) of dE = dT = 0.2, 0.1

and 0 (from left to right).

global null hypothesis (3.7), as dE = 0.2 = εE. However, due to the fact that we are far under

the alternative for toxicity (dT = 0) and due to the high correlation (ν` = 3) we observe a Type

I error rate inflation for the individual test on efficacy and consequently for the global test as

well, for all sample sizes. There are two reasons causing this effect: on the one hand the high

correlation results in difficulties to estimate the curves properly, even for large sample sizes.

On the other hand, the asymptotic distribution of the maximum absolute deviation of the two

curves is different and more complex in case of dT = 0, which also affects the test results; see

Dette et al. (2018) for further numerical and theoretical details on this issue.

A similar argument also holds for the power results shown in Table 5. It turns out that the

global test achieves reasonable power for sufficiently large sample sizes. For example a maximum

power (always attained at d = (0, 0)) of 0.817 is achieved for the global test for a choice of

n`,i = 28, ν1 = ν2 = 3 and ε = (0.2, 0.2). For a lower threshold, that is ε = (0.15, 0.15), the

maximum power is smaller, but still increasing with growing sample sizes, reaching for instance

0.830 for n`,i = 50 and ν1 = ν2 = 3.

5 Case study

To illustrate the proposed methodology, we consider an example that is inspired by a recent

consulting project of one of the authors. A nonsteroidal anti-inflammatory drug is to be in-

vestigated for its ability to attenuate dental pain after the removal of two or more impacted

third molar teeth. Dental pain is a common and inexpensive setting for analgesic proof of

concept, recruitment being fast and the end-point being available within a few hours. It is
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ε = (εE , εT ) n`,i θ2 d = (dE , dT ) ν` = 1 ν` = 3

(0.15, 0.15)

7
(0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15) 0.004 (0.051/0.050) 0.021 (0.078/0.063)

(0, 1, 0.4, 0.8, ν2) (0, 0.15) 0.009 (0.142/0.056) 0.029 (0.180/0.087)

14
(0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15) 0.005 (0.052/0.056) 0.006 (0.041/0.044)

(0, 1, 0.4, 0.8, ν2) (0, 0.15) 0.007 (0.212/0.051) 0.025 (0.256/0.071)

21
(0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15) 0.005 (0.032/0.055) 0.011 (0.042/0.050)

(0, 1, 0.4, 0.8, ν2) (0, 0.15) 0.029 (0.364/0.056) 0.049 (0.395/0.091)

28
(0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15) 0.004 (0.036/0.044) 0.014 (0.055/0.065)

(0, 1, 0.4, 0.8, ν2) (0, 0.15) 0.017 (0.648/0.044) 0.064 (0.610/0.098)

50
(0.4, 1.6, 0.4, 0.8, ν2) (0.15, 0.15) 0.004 (0.050/0.047) 0.035 (0.096/0.071)

(0, 1, 0.4, 0.8, ν2) (0, 0.15) 0.053 (0.831/0.062) 0.112 (0.866/0.128)

(0.2, 0.2)

7
(0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2) 0.002 (0.061/0.038) 0.021 (0.062/0.064)

(0, 1, 0.5, 1, ν2) (0, 0.2) 0.018 (0.209/0.060) 0.029 (0.253/0.077)

14
(0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2) 0.007 (0.033/0.042) 0.009 (0.042/0.046)

(0, 1, 0.5, 1, ν2) (0, 0.2) 0.015 (0.417/0.038) 0.053 (0.465/0.088)

21
(0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2) 0.005 (0.041/0.050) 0.018 (0.060/0.057)

(0, 1, 0.5, 1, ν2) (0, 0.2) 0.025 (0.431/0.034) 0.074 (0.612/0.093)

28
(0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2) 0.008 (0.068/0.072) 0.021 (0.070/0.050)

(0, 1, 0.5, 1, ν2) (0, 0.2) 0.044 (0.796/0.055) 0.129 (0.817/0.144)

50
(0.6, 1.9, 0.5, 1, ν2) (0.2, 0.2) 0.009 (0.076/0.067) 0.043 (0.103/0.083)

(0, 1, 0.5, 1, ν2) (0, 0.2) 0.053 (0.968/0.059) 0.223 (0.972/0.267)

Table 4: Simulated Type I error rates of the global bootstrap test (3.11) for different choices of

ν`, ` = 1, 2. The numbers in brackets show the proportion of rejections for the individual tests according

to the hypotheses (3.9) and (3.10).

common to measure the pain intensity on an ordinal scale at baseline and several times after

the administration of a single dose. The pain intensity difference from baseline (PID), averaged

over several hours after drug administration, may then be compared with a clinical relevance

threshold to create a binary success variable for efficacy. In this particular setting, side effects

such as nausea and sedation after dosing were anticipated, resulting in a binary toxicity vari-

able whether the patient experienced any such adverse events. As approved analgesics with an

identified dosing range and a known dose-response relationship for tolerability are available,

the objective of the study at hand was to demonstrate equivalence with a marketed product

for the bivariate efficacy-toxicity outcome in a proof of concept setting.

This was a randomized double-blind parallel group trial with a total of 300 patients being

allocated to either placebo or one of four active doses coded as 0.05, 0.20, 0.50, and 1 (for the

new treatment) and 0.10, 0.30, 0.60, and 1 (for the marketed product), resulting in n = 30

per group (assuming equal allocation). To maintain confidentiality, the actual doses have been

scaled to lie within the [0, 1] interval. Since the study has not been completed yet, we use a

hypothetical data set to illustrate the proposed methodology.

We fit two Gumbel models as defined in Section 3.1 to the data, one for the marketed product

(` = 1) and one for the new product (` = 2). The estimated model parameters are

θ̂1 = (−0.971, 2.254,−2.497, 1.806,−0.030), θ̂2 = (−1.585, 2.963,−2.162, 1.287, 1.003), (5.1)
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ε = (εE , εT ) n`,i θ2 d = (dE , dT ) ν` = 1 ν` = 3

(0.15, 0.15)

7
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.005 (0.076/0.088) 0.020 (0.089/0.092)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05,0.05) 0.010 (0.117/0.109) 0.047 (0.168/0.142)

(0, 1, 0, 0.5, ν2) (0, 0) 0.015 (0.120/0.133) 0.061 (0.179/0.148)

14
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.008 (0.144/0.119) 0.042 (0.137/0.116)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.027 (0.156/0.159) 0.097 (0.236/0.204)

(0, 1, 0, 0.5, ν2) (0, 0) 0.040 (0.234/0.182) 0.152 (0.296/0.263)

21
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.023 (0.153/0.157) 0.088 (0.197/0.189)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.067 (0.270/0.271) 0.207 (0.387/0.326)

(0, 1, 0, 0.5, ν2) (0, 0) 0.126 (0.380/0.308) 0.259 (0.462/0.363)

28
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.029 (0.204/0.161) 0.150 (0.262/0.266)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.113 (0.319/0.353) 0.344 (0.536/0.473)

(0, 1, 0, 0.5, ν2) (0, 0) 0.230 (0.502/0.441) 0.437 (0.646/0.526)

50
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.103 (0.313/0.332) 0.281 (0.426/0.416)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.401 (0.615/0.624) 0.650 (0.792/0.727)

(0, 1, 0, 0.5, ν2) (0, 0) 0.678 (0.811/0.827) 0.830 (0.943/0.856)

(0.2, 0.2)

7
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.010 (0.127/0.113) 0.060 (0.176/0.169)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05,0.05) 0.037 (0.199/0.133) 0.067 (0.236/0.177)

(0, 1, 0, 0.5, ν2) (0, 0) 0.050 (0.230/0.186) 0.099 (0.264/0.218)

14
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.067 (0.197/0.239) 0.191 (0.354/0.322)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.144 (0.351/0.353) 0.249 (0.495/0.409)

(0, 1, 0, 0.5, ν2) (0, 0) 0.198 (0.442/0.407) 0.324 (0.560/0.439)

21
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.137 (0.317/0.365) 0.311 (0.476/0.453)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.286 (0.532/0.535) 0.495 (0.683/0.578)

(0, 1, 0, 0.5, ν2) (0, 0) 0.418 (0.676/0.613) 0.601 (0.828/0.666)

28
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.253 (0.483/0.478) 0.460 (0.634/0.574)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.451 (0.637/0.706) 0.723 (0.870/0.775)

(0, 1, 0, 0.5, ν2) (0, 0) 0.650 (0.798/0.791) 0.817 (0.942/0.843)

50
(0.2, 1.4, 0.2, 0.7, ν2) (0.1, 0.1) 0.511 (0.702/0.700) 0.745 (0.853/0.804)
(0.1, 1.2, 0.1, 0.6, ν2) (0.05, 0.05) 0.826 (0.906/0.910) 0.964 (0.999/0.966)

(0, 1, 0, 0.5, ν2) (0, 0) 0.961 (0.979/0.980) 0.985 (1.000/0.987)

Table 5: Simulated power of the global bootstrap test (3.11) for different choices of ν`, ` = 1, 2.

The numbers in brackets show the proportion of rejections for the individual tests according to the

hypotheses (3.9) and (3.10).

see Figure 4 for the corresponding efficacy and toxicity curves.

The maximum distances are d̂E = 0.106 and d̂T = 0.039, attained at dose 0.08 and the maximum

dose 1, respectively. We perform an equivalence test at a significance level of α = 0.05, as defined

in Algorithm 3.1, for three different sets of hypotheses as we vary the equivalence thresholds

ε = (εE, εT ) in (3.9) and (3.10). Table 6 displays the critical values obtained by nboot = 1000

bootstrap replications for the different choices of ε.

We now test the global null hypothesis (3.7) against the alternative (3.8). For ε = (0.2, 0.2) we

have d̂E = 0.106 < 0.111 = q̂E0.05 and d̂T = 0.039 < 0.054 = q̂T0.05. According to (3.9) and (3.10),

we can therefore reject (3.7) at level α = 0.05 and for ε = (0.2, 0.2). However, we cannot reject

(3.7) for the other choices of ε. For example, d̂E = 0.106 > 0.073 = q̂E0.05 for εE = 0.1 and we

cannot reject (3.7) according to (3.9).
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Figure 4: Efficacy and toxicity curves corresponding to the fitted Gumbel model (5.1). The black lines

correspond to the marketed product, the blue lines to the new product respectively, where solid lines

display the efficacy and dashed lines the toxicity response. The arrows indicate the maximum absolute

distances.

Quantile ε = (0.1, 0.1) ε = (0.15, 0.15) ε = (0.2, 0.2)

q̂E0.05 0.042 (0.327) 0.073 (0.160) 0.111 (0.040)

q̂T0.05 0.026 (0.094) 0.037 (0.061) 0.054 (0.030)

Table 6: Critical values of the two individual bootstrap tests on the hypotheses (3.9) and (3.10) for

three different equivalence thresholds ε. The numbers in brackets correspond to the p-values of the

individual tests.

We obtain the same conclusions based on the observed p-values reported in brackets in Table 6.

These p-values were obtained from the empirical distribution functions of the bootstrap sample

according to Step (iii) of Algorithm 2.1. In general, we reject the null hypothesis (3.7) at level

α if the maximum of the two individual p-values for (3.9) and (3.10) is smaller than or equal

to α. In our example, this only holds for ε = (0.2, 0.2) since the individual p-values are given
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by F̂E
nboot

(d̂E) = 0.04 and F̂ T
nboot

(d̂T ) = 0.03 such that max (0.03, 0.04) = 0.04 < 0.05 = α.

6 Conclusions and discussion

In the first part of this paper we investigated a single efficacy response given by a binary

outcome and derived a test procedure for the equivalence of the corresponding dose-response

curves, which can be modelled, for instance, by a parametric logistic regression or a probit

model. We developed a parametric bootstrap test and decide for equivalence if the maximum

deviation between the estimated dose response profiles is sufficiently small. We also considered

the situation of an additional second toxicity endpoint to model the joint efficacy-toxicity

responses. For this purpose we assumed efficacy and toxicity to be observed simultaneously

resulting in bivariate (correlated) binary outcomes and used a Gumbel model to fit the data.

The bootstrap test was extended to this situation by combining two individual tests through

the Intersection-Union-Principle.

In the second part of this paper we investigated the operating characteristics by means of an

extensive simulation study. We demonstrated that the resulting procedures control their level

and achieve reasonable power. The choice of the equivalence threshold ε has a major impact

on the performance of the test. The explicit choice has to be made on an individual basis and

under consideration of clinical experts.

In certain settings the efficacy or toxicity responses are not modelled by binary outcomes, but

rather by a continuous response. In case of two continuous outcomes, Fedorov and Wu (2007)

considered normally distributed correlated responses which are dichotomized due to binary

utility and the methodology proposed in this paper can be adapted to the situation considered

by these authors. A further interesting situation occurs in case of mixed outcomes, where one

of the response variables is continuous and the other a binary one. Modelling these types of

responses is a challenging problem and not much work has been done on this topic in the

literature. Tao et al. (2013) investigated this situation by modelling these multiple endpoints

by a joint model constructed with archimedean copula. An equivalence test for these types of

outcomes is an interesting topic which we leave for future research.

7 Software

Software in the form of R code together with a sample input data set and complete documen-

tation is available online at https://github.com/kathrinmoellenhoff/Efficacy_Toxicity.
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