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ABSTRACT: Pesticide risk and impact assessment models
critically rely on and are sensitive to information describing
dissipation from plants. Despite recent progress, experimental
data are not available for all relevant pesticide−plant
combinations, and currently no model predicting plant
dissipation accounts for the influence of substance properties,
plant characteristics, temperature, and study conditions. In this
study, we propose models to estimate half-lives for pesticide
dissipation from plants and provide recommendations for how
to use our results. On the basis of fitting experimental
dissipation data with reported average air temperatures, we
estimated a reaction activation energy of 14.25 kJ/mol and a temperature coefficient Q10 of 1.22 to correct dissipation from plants
for the influence of temperature. We calculated a set of dissipation half-lives for 333 substances applied at 20 °C under field
conditions. Half-lives range from 0.2 days for pyrethrins to 31 days for dalapon. Parameter estimates are provided to correct for
specific plant species, temperatures, and study conditions. Finally, we propose a predictive regression model for pesticides
without available measured dissipation data to estimate half-lives based on substance properties at the level of chemical substance
class. Estimated half-lives from our study are designed to be applied in risk and impact assessment models to either directly
describe dissipation or as first proxy for describing degradation.

1. INTRODUCTION

Phase partitioning, intermedia transport, and degradation
mainly drive pesticide dissipation and relate to the magnitude
of residues in agricultural food crops and other plants. In
addition to experimental data, deterministic models can help to
predict residues in harvested plants as an integral part of risk
and impact assessments.1−4 Assessment models critically rely
on and are highly sensitive to estimates of rate coefficients or
corresponding half-lives describing pesticide dissipation from
plants.5−8 Half-lives for individual fate processes in plants are
often not available, but are instead aggregated into overall
dissipation half-lives.9 Such dissipation half-lives are either
estimated from individual experimental data per pesticide or
derived from other parameters, such as soil half-lives.5

However, both approaches fail to provide estimates that
account for the variability of dissipation from plants.
Measurement-based half-lives generally refer to overall

dissipation from plants, with degradation and intermedia
exchange, such as uptake from soil into roots, as contributing
mechanisms. Two studies reviewed measured pesticide
dissipation from plants. Willis and McDowell (1987)10

reviewed half-lives reported for 79 pesticides in the leaves of
53 plant species. Fantke and Juraske (2013)11 reviewed half-

lives reported for 346 pesticides in various parts of 183 plant
species. Nevertheless, experimental data are not available for all
pesticide−plant combinations and, when available, show large
variation in half-lives reported per pesticide. Accordingly,
attempts have been made to predict dissipation from plants
based on half-lives in soil using generic extrapolation factors
across pesticides ranging from 2 to 16 depending on the
assessed pesticide−plant combinations, that is, some pesticides
are estimated to dissipate 2 to 16 times faster from certain
plants than from soil.5,12−14 In a more recent study, the
accuracy of using generic coefficients was questioned and,
instead, a regression model was proposed for comparing soil
and plant surface half-lives for 53 substances.15 However, soil
half-lives may vary by several orders of magnitude as a function
of site-specific conditions,16,17 whereas variation of half-lives in
plants under field conditions is reported to be less than a factor
of 30 across 1489 pesticide−plant combinations.11 Hence, only
using soil half-lives is not necessarily appropriate to estimate
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plant half-lives. Instead, dissipation processes in plants depend
on a combination of substance properties,7,18 plant character-
istics,3,10,19 and environmental conditions,10,20,21 of which
temperature plays a predominant role.19,20 Furthermore, half-
lives might differ between plant types (trees, cereals, root/tuber
crops, etc.) as well as between components, such as leaves
(surface), fruit pulp (interior), and roots (interior, below-
ground). Juraske et al. (2008)5 for example show that for
bromopropylate and α-cypermethrin applied to tomato,
dissipation from the plant interior is four times faster than
from the plant surface assuming that enzymatic activity in
plants is quicker than photodegradation on plant surfaces.
However, it remains unclear whether this holds true for other
pesticide−plant combinations as both enzymatic transforma-
tion and photodegradation are influenced by highly variable
aspects like substance vapor pressure, plant surface roughness,
and air temperature.19,22

As a result, estimated dissipation from plants remains highly
uncertain with dominant influences not being explicitly
represented. In this study, we present a sophisticated method
for estimating pesticide dissipation half-lives in plants from
substance properties, plant characteristics, study conditions, and
temperature with focus on three objectives: (1) to characterize
4442 measured pesticide dissipation half-lives in plants by
describing their distribution and by estimating the influence of
temperature from a subset of 1030 data points with reported
growth season average air temperatures; (2) to estimate
geometric means and 95% confidence intervals of dissipation
half-lives at 20 °C under field conditions for 333 reported
pesticides, using multiple imputations to accommodate missing
temperatures associated with reported half-lives; (3) to propose
a regression-based model to predict dissipation half-lives for
pesticides as a function of temperature, chemical class, selected
substance properties, and plant characteristics, and evaluate
model prediction performance using sums of squares of leave-
one-out residuals for excluded data points. Our models and
estimated half-lives are designed to be ultimately used as input
in risk and impact assessments models.

2. MATERIALS AND METHODS
2.1. Characterizing Reported Dissipation Half-Lives in

Plants. As a starting point, we use a recently published review
of measured dissipation half-lives for a combination of 346
pesticides and 183 plants.11 Excluding substances where
information regarding chemical substance class (e.g., carba-
mates, triazoles), substance properties, or plant type was
insufficient or unclear, 4442 data points (reported half-lives) for
333 pesticides are used. We investigated the distribution of half-
lives including testing for normality and log-normality for each
pesticide. We calculated pesticide-specific geometric mean half-
lives and analyzed their distribution across pesticides. The
results are summarized in probability distribution and quantile-
quantile plots. SAS 9.4 was used as statistical analysis software
throughout.
We first assessed the widely recognized influence of

temperature T (K) on dissipation half-lives HLreported,T° (day)
based on a subset of data points with reported average air
temperature during growth (n = 1030, indicated by super-
scripted open circle ○) using a log−linear regression model
(Model I). Besides temperature, we included as predictors in
this model indicator variables for substance, plant, and cold
storage, where cold storage refers to reduced light and
temperature conditions after harvest:

α β β

β β

= + × + ×

+ × + × −

◦ ◦ ◦ ◦

◦ ◦

HL X X

X T T

log

( )

T i i j j

T

reported, subst, subst, plant, plant,

storage storage ref

(1)

with intercept α°, estimates to account for substances βsubst,i° ,
plants βplant,j° , cold storage conditions βstorage° , and air temper-
ature βT° (K−1), where Tref = 293.16 K (20 °C) is set as
reference air temperature. Xsubst,i, Xplant,j, and Xstorage are
categorical variables for substance, plant, and cold storage
coded to represent two-category factors, X → {0,1},23 with
Xstorage = 1 for data points referring to cold storage conditions
and with Xstorage = 0 for all other data points. Correspondingly,
Xsubst,i and Xplant,j are column vectors of zeros except for the ith
substance and jth plant, respectively. Plant components (e.g.,
leaves) are tested, but finally excluded from the list of
predictors because of nonsignificance and autocorrelation
between certain plant−plant component combinations (see
Supporting Information (SI), section S-3).
Of special interest is the temperature estimate βT° (K−1),

which serves as input for analyzing the full set of reported
dissipation half-lives in plants. We used βT° to calculate three
components used by several risk and impact assessment
models, namely (a) reaction activation energy Ea (kJ/mol):

β= − × × ×◦E R T T( )Ta ref (2)

where R (kJ/mol/K) is the molar gas constant, (b) temperature
coefficient Q10:

β= − × Δ◦Q Texp( )T10 (3)

where ΔT = 10 K, and (c) Arrhenius temperature correction
factor cf T relating different dissipation rate constants to
temperature:

β= − ◦cf exp( )T T (4)

Details how to derive Ea, Q10, and cf T from βT° are given in the
SI, section S-1.

2.2. Temperature Imputation and 333 Recommended
Half-Lives at Reference Conditions. Temperature is
considered one of the main predictors for estimating dissipation
half-lives in plants for all reported pesticides. Since air
temperatures were reported for only 23% of the data, we
imputed missing values using information on optimal air
temperature ranges for reported plants and techniques to
substitute temperatures of arbitrary missing pattern (see SI,
section S-2). We used multiple imputations to replace each
missing temperature with a set of 10 plausible values
representing the uncertainty of the imputation.24 The multiply
imputed data sets were each analyzed using linear regression,
and results were combined by taking the average of regression
estimates and a combination of the within- and between-
regression variances. This procedure yields valid statistical
inferences properly reflecting the uncertainty due to missing
temperature data.24−26

Each reported half-life is now associated with a specific
temperature, either reported or imputed when missing, yielding
a combined set of 4442 half-lives HLreported,T

• (indicated by
superscripted filled circle, ●). To account for imputation-
related uncertainty, we provide for each half-life the relative
increase in variance due to missing temperatures. Our second
regression model estimates the half-life of a pesticide along with
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plant-specific and cold storage correction factors (Model II),
where all coefficients are based on the combined data set:

HLref,i
• (day) denotes the geometric mean pesticide half-life

corrected for an application to an average plant (average of 30
plant estimates) under reference conditions (field conditions,
Tref = 293.16 K), and βplant,j

• , βstorage
• , and βT

• = βT° (K
−1) denote

the multiplicative plant, cold storage, and temperature
correction factors. As a sensitivity study, we tested our model
with and without cold storage data to ensure that cold storage
does not bias the regression. For each HLref,i

• we also provide
the 95% confidence interval obtained from t-distributions and
standard error accounting for covariance between parameter
estimates. Model prediction performance is evaluated using
predicted leave-one-out residual sums of squared errors
(PRESS), that is, each observation is predicted using all other
n − 1 observations.27

2.3. Regression Model for Predicting Dissipation Half-
Lives from Pesticide Properties. We finally want to predict
half-lives of pesticides without reported dissipation data, based
on their physicochemical properties. From the analysis of
reported data, we hypothesize the following qualitative
dependencies: (i) Higher temperature triggers microbial and
chemical degradation in plants, thereby shortening half-
lives.10,18,20 (ii) Cold storage has additional effects beyond
low temperature due to reduced light conditions, which
diminishes dissipation.28,29 (iii) Plant-specific characteristics
like growth, transpiration, uptake mechanisms, location of
fruits/tubers, and size and shape of leafy foliage are all likely to

distinctly influence pesticide dissipation.3,30,31 (iv) Molecular
weight, phase partition coefficients, and saturation vapor
pressure have been reported as important physicochemical
properties affecting environmental fate processes of chem-
icals.7,21,32 (v) Pesticides within the same substance class, such
as carbamates, show similar patterns in terms of half-life
dependencies. (vi) Finally, aspects like degradation in soil and
air may additionally correlate with dissipation from
plants,10,18,31 along with ionization potential, polarity, stereo-
selectivity, and other substance-specific properties. We used this
set of hypotheses in a final generic log−linear model (Model
III) for predicting dissipation half-lives of pesticides belonging
to a certain substance class (e.g., triazoles, carbamates) applied
to a particular plant under specific conditions and temperature,
HLpredicted,T° (day), as

∑

α β

β β

β β

= ′° + ′ ×

+ ′ × + ′ ×

+ ′ × − + ′ ×

◦
‐

◦
‐

◦ ◦

◦

=

◦

HL X

X X

T T p

log

( )

T k k

j j

T
l

n

l l

predicted, subst class, subst class,

plant, plant, storage storage

ref
1

(6)

with intercept α′°, estimates for substance class β′subst‑class,k° ,
plant β′plant,j° , cold storage conditions β′storage° , temperature β′T° ≜
βT° (K−1; defined from temperature estimate of Model I), and
substance-specific properties β′l°, as well as variables with
information about substance class Xsubst‑class,k, plant Xplant,j, and
cold storage Xstorage, average air temperature T (K), reference air
temperature Tref (K), and substance properties pl.

Model Selection. We start from eq 6 to select and fit
parameters of the final predictive Model III. Because of the
difficulty of model selection in our settings, we used more than
one selection method with the minimum Akaike information

Figure 1. Probability distribution and quantile−quantile plots for assessing the normality and log-normality of the distribution of reported dissipation
half-lives in plants for endosulfan (A1−A3) and of geometric means of reported dissipation half-lives in plants of all pesticides (B1−B3).
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criterion (AIC) statistic as major criterion,33,34 and with
separately considering significance levels. Model III is applied
to the subset of 1030 data points with reported temperature.
We only considered plants with n ≥ 8 reported temperatures
and substance classes with n ≥ 3 reported substances per class
to ensure reliability of estimates as a function of number of data
points (see Figure 4). The minimum number of reported
temperatures per plant is set to 8 to yield variances of less than
a factor 2, whereas 3 substances per substance class are chosen
as minimum in order not to overfit classes. Remaining plants
and substance classes are pooled into categories other plants and
other substance classes, respectively.

3. RESULTS
3.1. Variation of Reported Dissipation Half-Lives in

Plants. Figure 1 (A1) presents the probability distribution of
dissipation half-lives in plants for endosulfan as example
substance with the largest number of data-points (n = 135).
For endosulfan, 95% of half-lives fall in the range between 0.5
and 9 days. The shortest half-life (0.43 days) was reported in
tomato foliage (27 °C, field conditions)35 and the longest half-
life (20.1 days) in cherry tomato fruits (17.5 °C, greenhouse).36

Half-life distributions for other pesticides show skewed
distributions similar to endosulfan. Figure 1 (B1) presents
the distribution of geometric means of half-lives of all
considered substances (n = 333). Interestingly, the variation
across geometric means of half-lives of all substances is not
much larger than the variation of reported half-lives for
endosulfan, showing that 95% fall in the range between 0.5 and
13 days. This may be explained by the influence of limited
dissipation through plant growth dilution, since plant mass can
double within a few days. Half-lives greater than 30 days are
mostly reported for cold storage conditions (not shown in
Figure 1).11 The large variation of reported half-lives for the
same substance emphasizes the need for carefully analyzing
these half-lives before reporting recommended values based on
experimental data. Thus, we follow an iterative approach by
introducing the different regression models (Models I, II, III).
Figure 1 also shows quantile−quantile plots for normality (A2,
B2) and log-normality (A3, B3) of reported half-lives,
indicating a log-normal trend across data points per substance
and across substances.
3.2. Coefficients for Temperature Correction. Qual-

itatively assessing the relationship between reported dissipation
half-lives and air temperatures shows that they are inversely
correlated (Figure 2). The remaining variability for each
temperature is mainly influenced by substance properties, plant
characteristics, and environmental conditions.
The first regression (Model I) on the subset of 1030 data

points with reported air temperature supports that temperature
and additionally study conditions (field, cold storage) and plant
species are important predictors to estimate pesticide
dissipation. Model I yields an adjusted coefficient of
determination of Radj

2 = 0.638 and a root-mean-squared error
of RMSE = 0.27 for a temperature estimate βT° = −1.995 × 10−2

K−1 (p-value < 0.0001) with estimated half-lives plotted against
reported half-lives in Figure 3 (Model I). The RMSE of Model
I corresponds to 95% of predicted half-lives falling within a
factor 3 of reported half-lives. Excluding cold storage data
influences βT° less than 3%. The variance in dissipation half-lives
is explained by each predictor individually and with combined
predictors for temperature (23.2% individually/combined),
substance (52% individually, 36% combined), plant (26.8%

individually, 6.3% combined), and study conditions (21%
individually, 5.2% combined). Parameter estimates, standard
errors, and p-values used in Model I are given in Table S2 (SI).
From βT° we obtain a reaction activation energy Ea = 14.25 kJ/
mol, a temperature coefficient Q10 = 1.22, and an Arrhenius
temperature correction factor cf T = 1.02.

3.3. Dissipation Half-Lives for 333 Reported Pesti-
cides at 20 °C. Our regression Model II provides the
corrected geometric means of half-lives for 333 pesticides
applied to an average plant under reference conditions, HLref,i

• .
These half-lives calculated from intercept and substance
estimates of eq 5 are listed in Table 1 and shown in Figure 3
(Model II). Half-lives range from 0.21 days for plant-derived
pyrethrins to 30.8 days for dalapon with 95% of all half-lives
falling in the range between 0.9 and 18 days. While on average
13 reported half-lives were available per substance with a
maximum for endosulfan (nHL = 135), imidacloprid (nHL =
130), and methomyl (nHL = 122), only 6 temperatures were
reported on average per substance (nT = 36 for endosulfan, nT =
16 for imidacloprid, and nT = 19 for methomyl, respectively).
Across substances, temperature imputation contributes with
5.1% to standard errors of half-lives. Minimal contribution is
found for substances with temperatures being reported for each
half-life, such as for propamocarb hydrochloride, ziram, and
fluazinam (contribution of temperature imputation to half-life
standard errors < 0.1%), while maximal contribution is
associated with substances, for which no reported temperatures
are available, such as for propargite, nicotine, and dalapon
(contribution to standard error between 1% and 17%). For
calculating HLref,i

• from the combined data set of 4442 data
points including imputed temperatures, we slightly increased
the RMSE by 2% compared to the restricted data set with
reported temperatures. The higher number of reported half-
lives in the combined data set nevertheless enables a strong
reduction in the uncertainty of our half-lives per substance as
shown in Figure S3 (SI). Additionally, we consider more
substances, plants, and data points per substance and plant in
the combined data set and in Model II. Excluding cold storage
from Model II yields an average deviation of less than 0.2%, and
for 95% of the data yields deviations of less than 3.8%. For five
substances, deviations are greater than 10% (indicated in Table
1); for those substances, half-lives estimated without cold
storage data are given in Table S4 (SI).
Model II shows Radj

2 = 0.458 and a root-mean-squared error
of RMSE = 0.3; that is, 95% of predicted half-lives fall within a

Figure 2. Reported pesticide dissipation half-lives in plants plotted as a
function of reported average air temperatures (n = 1030),
disaggregated according to field, greenhouse, and cold storage
conditions.
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factor 3.4 of reported half-lives. In addition to dissipation half-
lives for average plant and reference air temperature, Model II
provides estimates for the influence of specific plants and for
cold storage conditions (Table S3, SI). These estimates can be
used to correct reference half-lives in Table 1 for pesticides

applied to specific plants under given study conditions and
temperature. For example, we can calculate the half-life of
acetamiprid applied to Chinese cabbage under field conditions
at 291.16 K (18 °C). We start from the log of the half-life for
acetamiprid in Table 1, log HLref,acetamiprid = α• + βacetamiprid

• =
0.595 + 0.16 = 0.755. We then combine log HLref,acetamiprid in eq
5 with plant estimates taken from Table S3 (SI) and with
temperature estimate βT

• multiplied by the temperature
difference to the reference air temperature, yielding log

HLacetamiprid
Chinese cabbage,18 °C = log HLref,acetamiprid + βChinese cabbage

• + βT
•

× (291.16 K − Tref) = 0.755 − 0.05 − 1.995 × 10−2 K−1 ×
(291.16 K − 293.16 K) = 0.745, and thus a corrected half-life of
100.745 = 5.56 days. This half-life is 2.3% shorter than the
reference half-life of 5.69 days at 20 °C (Table 1), which is
explained by the influence of plant counteracting the influence
of temperature in this example. Half-life corrections from plant
correction parameter estimates range between 10−0.70 = 0.2
days for zucchini and 100.36 = 2.3 days for lemon.
Standard errors of substance and plant parameter estimates

(Figure 4) for 333 pesticides and 30 plants approximately
follow a decrease proportional to 1/√n. Both graphs in Figure
4 show that with a minimum of 20 data points, we get a
standard error of 0.08, implying deviations between reported
and predicted half-lives of a factor 100.08×Student’s t. For a
Student’s t-value of 2.086 corresponding to 20 data points as
degree of freedom,37 we get a factor 1.5 deviation. Standard
errors are slightly higher for grass, wheat, and rice, which might
be attributable to the wide range of grass species aggregated
into a single plant estimate, the ubiquitous geographical
distribution of wheat grown under diverse environmental
conditions, and the different cultivation methods of rice (paddy
fields, dryland farming, etc.).

3.4. Estimated Dissipation Half-Lives from Pesticide
Classes and Properties. Model III aims at predicting half-
lives of pesticides without measured dissipation data, as a
function of their chemical class and properties. Stepwise
regression is applied to the subset of 1030 data points with
reported average air temperatures to ensure maximum accuracy,
yielding the following final log−linear model (Model III):

α β

β β

β β

β β

= ′ + ′ ×

+ ′ × + ′ ×

+ ′ × − + ′ ×

+ ′ × + ′ ×

◦ ◦
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j j
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OW VOW V (7)

with intercept α′°, estimates for substance class β′subst‑class,k° ,
plant β′plant,j° , cold storage conditions β′storage° , temperature β′T°
(K−1), substance molecular weight β′MW° (mol/g), octanol/
water partition coefficient β′KOW

° , and saturation vapor pressure

β′PV° (Pa−1), variables with information about substance class
Xsubst‑class,k, plant Xplant,j, and cold storage Xstorage with all X →
{0,1}, average air temperature T (K), reference air temperature
Tref (K), molecular weight MW (g/mol), octanol/water
partition coefficient log KOW, and saturation vapor pressure
PV (Pa). All other tested substance properties (air/water and
soil organic carbon/water partition coefficients, half-lives in air
and soil) that are not included in Model III either did not
significantly improve the model or showed strong correlation
with another included variable. Model III shows Radj

2 = 0.465, an
Akaike information criterion AIC = −960.4, and a root-mean-

Figure 3. Reported vs predicted pesticide dissipation half-lives in
plants disaggregated according to different temperature ranges: Model
I, initial regression model fitted on n = 1030 data points with reported
average air temperatures to yield temperature estimate; Model II,
regression model fitted on n = 4442 data points to estimate dissipation
half-lives under reference field conditions for 333 reported substances;
Model III, predictive regression model to estimate dissipation half-lives
for 14 substance classes from chemical properties of n = 1030 data
points with reported average air temperatures. Root-mean-squared
errors RMSE are given for the log of half-lives as fitted in Models I−
III.
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Table 1. Target Class (TC), CAS Number, Predicted Geometric Mean of Dissipation Half-Life HLref,i
• (day), with Lower and

Upper 95% Confidence Interval (CI) Limits in Parentheses, Relative Increase in Standard Error by Including Data with
Imputed Average Air Temperatures θimp (%), Total Number of Reported Data Points nHL, and Number of Data Points with
Reported Average Air Temperatures nT for 333 pesticides

pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

2,4,5-T 93-76-5 H 9.90 (3.72−26.30) 1.75 3 2
2,4-D 94-75-7 H 2.92 (2.10−4.04) 1.68 9 5
2,4-D-dimethylammonium 2008-39-1 H 2.20 (1.06−4.56) 12.86 4 −
3-hydroxycarbofuran 16655-82-6 M 9.96 (6.13−16.17) 8.24 6 −
abamectin 71751-41-2 I 3.81 (3.59−4.04) 4.01 50 1
acephate 30560-19-1 I 4.64 (4.39−4.90) 4.85 54 14
acetamiprid 135410-20-7 I 5.69 (5.26−6.15) 6.57 38 14
acetochlor 34256-82-1 H 1.86 (0.90−3.86) 8.65 4 −
acrinathrin 101007-06-1 I 3.01 (1.98−4.56) 2.95 7 5
aldicarb 116-06-3 I 6.08 (5.12−7.22) 8.06 17 1
aldoxycarb 1646-88-4 I 10.28 (7.15−14.79) 5.05 8 −
aldrin 309-00-2 I 1.98 (0.11−36.30) 0.11 1 1
alpha-cypermethrin 67375-30-8 I 5.15 (3.73−7.12) 6.82 9 −
alpha-endosulfan 959-98-8 I 1.66 (1.30−2.12) 8.15 12 4
aminocarb 2032-59-9 I 4.34 (3.11−6.04) 1.76 9 7
amitraz 33089-61-1 I 3.83 (0.89−16.40) 7.60 2 −
anabasine 494-52-0 I 1.23 (0.59−2.53) 1.57 4 −
anilofos 64249-01-0 H 2.46 (1.37−4.42) 6.32 5 −
aramite 140-57-8 A 2.40 (1.16−4.96) 8.03 4 −
azadirachtin 11141-17-6 I 1.60 (1.50−1.69) 2.71 57 6
azimsulfuron 120162-55-2 H 3.35 (1.27−8.84) 9.44 3 −
azinphos-methyl 86-50-0 I 4.47 (4.21−4.74) 2.10 59 18
azoxystrobin 131860-33-8 F 3.53 (3.30−3.78) 8.35 42 5
benalaxyl 71626-11-4 F 2.26 (1.73−2.94) 4.03 11 −
bendiocarb 22781-23-3 I 5.70 (4.37−7.43) 9.64 11 −
benfuracarb 82560-54-1 I 4.64 (1.08−19.87) 8.09 2 −
benodanil 15310-01-7 F 6.99 (5.06−9.66) 6.60 9 −
benomyl 17804-35-2 F 4.26 (2.62−6.91) 1.27 6 4
beta-cypermethrin 65731-84-2 I 5.08 (1.92−13.38) 7.56 3 −
bifenthrin 82657-04-3 I 3.39 (3.22−3.57) 2.91 59 8
bitertanol 55179-31-2 F 4.90 (3.55−6.78) 9.40 9 1
boscalid 188425-85-6 F 6.63 (4.08−10.77) 4.09 6 −
bromomethane 74-83-9 I 16.91 (3.95−72.45) 2.44 2 −
bromopropylate 18181-80-1 A 4.01 (2.90−5.55) 4.73 9 −
bromoxynil 1689-84-5 H 1.97 (0.75−5.20) 0.26 3 3
bromoxynil octanoate 1689-99-2 H 2.85 (1.38−5.89) 4.38 4 1
buprofezinb 69327-76-0 I 6.42 (5.69−7.26) 1.61 24 13
cadusafos 95465-99-9 I 22.99 (11.11−47.56) 4.32 4 −
captan 133-06-2 F 4.45 (4.06−4.88) 3.61 33 16
carbaryl 63-25-2 I 4.05 (3.85−4.26) 4.44 59 6
carbendazim 10605-21-7 F 5.79 (5.32−6.29) 4.52 35 5
carbofuran 1563-66-2 I 4.62 (4.21−5.08) 3.52 31 4
carbophenothion 786-19-6 I 3.78 (3.23−4.42) 10.18 19 −
carbosulfan 55285-14-8 I 2.11 (1.85−2.42) 4.96 22 6
carfentrazone-ethyl 128639-02-1 H 6.31 (1.47−27.04) 4.55 2 −
chinomethionat 2439-01-2 F 3.58 (0.83−15.32) 0.28 2 2
chlorantraniliprole 500008-45-7 I 3.38 (2.23−5.12) 9.14 7 −
chlordane 57-74-9 I 5.74 (2.18−15.13) 11.68 3 −
chlordimeform 6164-98-3 A 0.91 (0.51−1.62) 1.65 5 2
chlorfenapyr 122453-73-0 I 3.38 (2.35−4.86) 5.23 8 1
chlorfenson 80-33-1 A 2.77 (0.15−50.64) 5.10 1 −
chlorfenvinphos 470-90-6 I 10.20 (4.92−21.16) 5.66 4 −
chlorfluazuron 71422-67-8 I 5.33 (4.09−6.95) 6.75 11 5
chlorimuron 99283-00-8 H 5.57 (2.11−14.73) 5.20 3 −
chlormequat 7003-89-6 P 6.05 (2.92−12.53) 7.01 4 −
chlorobenzilate 510-15-6 I 6.57 (5.15−8.40) 1.72 12 8
chloroneb 2675-77-6 F 16.87 (9.43−30.18) 6.66 5 −
chlorothalonil 1897-45-6 F 5.02 (4.74−5.31) 5.26 58 7
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Table 1. continued

pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

chlorphoxim 14816-20-7 I 1.31 (0.07−23.99) 4.22 1 −
chlorpyrifos 2921-88-2 I 4.01 (3.90−4.12) 7.20 107 29
chlorpyrifos-methyl 5598-13-0 I 3.27 (2.89−3.70) 12.73 24 −
chlorsulfuron 64902-72-3 H 0.30 (0.07−1.27) 4.99 2 −
chlozolinate 84332-86-5 F 7.93 (4.88−12.88) 9.85 6 −
cinerin I 25402-06-6 I 1.83 (0.43−7.82) 0.09 2 2
cinerin II 121-20-0 I 1.95 (0.46−8.35) 0.09 2 2
clopyralid 1702-17-6 H 4.15 (2.00−8.58) 3.23 4 −
clothianidin 210880-92-5 I 8.27 (5.46−12.54) 2.10 7 −
cyanazine 21725-46-2 H 3.36 (2.29−4.94) 10.50 8 −
cyanofenphos 13067-93-1 I 17.52 (0.96−320.98) 9.14 1 −
cyanophos 2636-26-2 I 1.46 (0.08−26.75) 2.87 1 −
cyantraniliprole 736994-63-1 I 10.84 (4.11−28.58) 0.30 3 3
cyazofamid 120116-88-3 F 8.16 (3.10−21.52) 9.68 3 −
cycloheximide 66-81-9 F 1.12 (0.54−2.32) 0.20 4 4
cycloprate 54460-46-7 A 8.18 (4.57−14.64) 11.20 5 −
cyfluthrin 68359-37-5 I 2.39 (2.24−2.54) 3.46 47 5
cyhalofop-butyl 122008-85-9 H 5.00 (1.17−21.38) 4.13 2 1
cyhalothrin 68085-85-8 I 4.77 (4.31−5.29) 5.40 29 4
cymoxanil 57966-95-7 F 1.61 (0.38−6.90) 9.13 2 −
cypermethrin 52315-07-8 I 4.24 (4.10−4.38) 5.84 108 53
cyproconazole 94361-06-5 F 6.28 (3.51−11.23) 4.15 5 −
cyprodinil 121552-61-2 F 5.70 (5.21−6.23) 5.70 33 13
cyromazine 66215-27-8 I 21.63 (10.45−44.78) 4.83 4 −
dalapon 75-99-0 H 30.80 (7.20−131.81) 15.21 2 −
DDT 50-29-3 I 10.78 (9.78−11.89) 3.32 30 4
deltamethrin 52918-63-5 I 3.76 (3.65−3.89) 8.30 93 25
demeton 8065-48-3 I 7.59 (5.83−9.89) 2.44 11 7
desmethylformamide pirimicarb 27218-04-8 I 1.37 (0.49−3.83) 5.02 2 −
diafenthiuron 80060-09-9 I 3.56 (2.47−5.13) 7.44 8 −
dialifos 10311-84-9 I 14.92 (10.79−20.62) 5.18 9 1
diazinon 333-41-5 I 2.16 (1.93−2.42) 1.82 26 10
dicamba 1918-00-9 H 6.30 (3.04−13.08) 2.94 4 2
dichlofluanid 1085-98-9 F 9.81 (6.04−15.95) 3.69 6 −
dichlorvos 62-73-7 I 1.12 (0.81−1.55) 4.32 9 −
diclofop-methyl 51338-27-3 H 1.53 (0.36−6.53) 2.64 2 −
dicloran 99-30-9 F 23.78 (14.61−38.70) 7.62 6 −
dicofol 115-32-2 A 3.45 (2.87−4.14) 5.45 16 −
dieldrin 60-57-1 I 5.13 (4.02−6.54) 10.48 12 2
diethofencarb 87130-20-9 F 2.55 (0.59−10.89) 0.10 2 2
difenoconazole 119446-68-3 F 5.02 (4.65−5.43) 8.55 38 2
diflubenzuron 35367-38-5 I 9.76 (7.99−11.92) 4.00 15 8
dimefox 115-26-4 I 12.92 (8.53−19.57) 8.70 7 −
dimetachlone 24096-53-5 F 6.85 (3.31−14.16) 9.09 4 −
dimethoate 60-51-5 I 3.61 (3.50−3.72) 6.52 94 20
dimethomorph 110488-70-5 F 5.14 (3.57−7.40) 6.97 8 1
diniconazole 83657-24-3 F 4.25 (2.38−7.61) 6.95 5 −
dinocap 39300-45-3 F 8.28 (5.09−13.46) 6.25 6 2
dinotefuran 165252-70-0 I 10.06 (3.82−26.53) 2.86 3 −
dioctyldiethylenetriamine 57413-95-3 B 9.75 (4.70−20.20) 4.41 4 −
dioxabenzophos 3811-49-2 I 1.38 (0.32−5.89) 3.50 2 −
dioxathion 78-34-2 I 2.82 (1.36−5.84) 6.89 4 −
dithianon 3347-22-6 F 11.65 (4.41−30.73) 0.19 3 3
dithiopyr 97886-45-8 H 5.03 (2.43−10.41) 3.42 4 −
dodine 2439-10-3 F 3.32 (1.85−5.95) 8.22 5 −
emamectin benzoate 155569-91-8 I 1.83 (1.21−2.77) 4.43 7 3
endosulfan 115-29-7 I 3.81 (3.72−3.89) 1.62 135 36
endosulfan sulfate 1031-07-8 M 3.69 (1.40−9.73) 8.28 3 −
endrin 72-20-8 I 2.48 (0.94−6.55) 3.40 3 1
EPN 2104-64-5 I 2.55 (2.00−3.25) 1.76 12 9
epoxiconazole 133855-98-8 F 13.31 (9.95−17.82) 5.07 10 4
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pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

esfenvalerate 66230-04-4 I 1.60 (0.77−3.31) 5.90 4 −
ethametsulfuron-methyl 97780-06-8 H 5.44 (3.04−9.73) 0.24 5 5
ethion 563-12-2 I 3.76 (3.25−4.35) 6.97 20 2
ethirimol 23947-60-6 F 5.02 (0.27−91.88) 7.72 1 −
Ethofumesate 26225-79-6 H 2.62 (0.61−11.20) 3.66 2 1
ethylenethiourea 96-45-7 F 8.44 (4.08−17.47) 9.57 4 −
ethylicin 682-91-7 F 2.56 (1.78−3.70) 8.29 8 −
etofenprox 80844-07-1 I 2.63 (1.62−4.27) 3.73 6 −
etoxazole 153233-91-1 A 3.77 (2.10−6.74) 5.59 5 −
famoxadone 131807-57-3 F 5.63 (4.32−7.35) 3.45 10 4
fenamidone 161326-34-7 F 7.14 (3.45−14.79) 2.50 4 1
fenamiphos 22224-92-6 N 6.74 (3.26−13.93) 8.77 4 −
fenarimol 60168-88-9 F 5.65 (0.31−103.43) 4.56 1 −
fenazaquin 120928-09-8 A 3.74 (3.07−4.54) 5.90 15 −
fenbuconazole 114369-43-6 F 7.75 (2.94−20.45) 2.31 3 −
fenhexamid 126833-17-8 F 7.70 (5.08−11.67) 4.55 7 −
fenitrothion 122-14-5 I 3.73 (3.49−4.00) 2.37 43 17
fenobucarb 3766-81-2 I 5.50 (3.07−9.85) 3.63 5 3
fenoprop 93-72-1 H 4.05 (0.94−17.42) 5.51 2 1
fenoxanil 115852-48-7 F 7.72 (5.08−11.74) 7.50 7 −
fenoxaprop-P-ethyl 71283-80-2 H 2.19 (1.44−3.34) 3.74 7 −
fenoxycarb 79127-80-3 I 7.48 (2.84−19.72) 2.00 3 −
fenpropathrin 39515-41-8 I 3.46 (2.28−5.24) 4.85 7 3
fenpropidin 67306-00-7 F 4.17 (0.97−17.89) 6.05 2 −
fenpropimorph 67564-91-4 F 1.59 (0.60−4.20) 1.05 3 2
Fenpyroximate 134098-61-6 A 1.51 (0.73−3.13) 5.35 4 −
fensulfothion 115-90-2 I 2.83 (0.66−12.11) 2.06 2 −
fenthion 55-38-9 I 2.49 (2.14−2.90) 2.92 20 5
fenthion sulfoxideb 3761-41-9 M 12.85 (7.17−23.02) 4.17 5 3
fenvalerate 51630-58-1 I 4.71 (4.50−4.94) 8.52 64 23
fipronil 120068-37-3 I 5.76 (4.74−6.99) 6.29 15 −
florasulam 145701-23-1 H 0.66 (0.37−1.19) 1.68 5 4
fluazinam 79622-59-6 F 3.77 (0.21−69.10) 0.06 1 1
flubendiamide 272451-65-7 I 2.25 (2.00−2.55) 7.12 24 −
flucythrinate 70124-77-5 I 5.78 (3.23−10.34) 4.87 5 2
fludioxonilb 131341-86-1 F 5.24 (4.55−6.03) 4.60 21 11
flufenoxuron 101463-69-8 I 15.32 (10.10−23.22) 2.97 7 2
fluometuron 2164-17-2 H 4.10 (2.52−6.65) 4.93 6 −
fluopicolide 239110-15-7 F 8.16 (1.91−34.94) 5.62 2 −
fluopyram 658066-35-4 F 5.51 (1.29−23.61) 5.55 2 −
fluoroxypyr 69377-81-7 H 6.08 (2.93−12.61) 4.99 4 −
fluoroxypyr-meptyl 81406-37-3 H 3.13 (1.19−8.27) 4.96 3 −
flurprimidol 56425-91-3 P 11.60 (4.40−30.56) 8.30 3 −
flusilazole 85509-19-9 F 4.89 (2.73−8.75) 5.35 5 −
fluvalinate 69409-94-5 I 2.92 (1.80−4.74) 2.86 6 −
folpet 133-07-3 F 5.19 (4.45−6.07) 1.14 19 17
forchlorfenuron 68157-60-8 P 3.28 (2.52−4.27) 11.40 11 4
formothion 2540-82-1 I 1.80 (0.42−7.69) 7.46 2 −
glyphosate 1071-83-6 H 3.98 (3.28−4.84) 5.24 15 −
halofenozide 112226-61-6 I 9.24 (3.51−24.36) 6.96 3 −
halosulfuron-methyl 100784-20-1 H 0.82 (0.19−3.52) 4.61 2 −
haloxyfop-P-methyl 72619-32-0 H 5.98 (0.33−109.44) 0.97 1 −
HCH 608-73-1 I 6.86 (5.13−9.18) 3.69 10 −
heptachlor 76-44-8 I 3.34 (2.49−4.47) 4.01 10 1
hexachlorobenzene 118-74-1 F 11.15 (7.73−16.10) 4.44 8 −
hexaconazole 79983-71-4 F 3.96 (3.45−4.56) 2.84 21 −
hexaflumuron 86479-06-3 I 4.08 (2.69−6.19) 1.36 7 4
hexazinone 51235-04-2 H 8.90 (4.30−18.40) 4.32 4 −
hymexazol 10004-44-1 F 3.56 (1.72−7.37) 2.42 4 −
imazalil 35554-44-0 F 5.72 (3.50−9.33) 0.71 6 6
imazapyr 81334-34-1 H 23.86 (5.58−102.09) 10.98 2 −
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pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

imazaquin 81335-37-7 H 10.72 (7.07−16.25) 5.83 7 −
imazethapyr 81335-77-5 H 15.51 (10.23−23.52) 2.10 7 5
imidacloprid 138261-41-3 I 3.70 (3.61−3.78) 1.62 130 16
imidaclothiz 105843-36-5 I 5.14 (1.95−13.56) 2.69 3 2
indoxacarb 173584-44-6 I 2.99 (2.35−3.82) 7.16 12 4
iodosulfuron-methyl-sodium 144550-36-7 H 5.49 (1.28−23.55) 8.88 2 −
iprodione 36734-19-7 F 6.92 (6.35−7.53) 5.37 34 6
iprovalicarb 140923-17-7 F 9.47 (5.83−15.38) 5.12 6 −
isazofos 42509-80-8 I 6.58 (4.58−9.47) 6.30 8 −
isocarbophos 24353-61-5 A 2.45 (1.92−3.12) 13.18 12 −
isofenphos 25311-71-1 I 3.75 (1.81−7.76) 3.96 4 −
isoproturon 34123-59-6 H 5.40 (2.04−14.29) 4.41 3 −
isoxaben 82558-50-7 H 5.92 (2.86−12.25) 8.58 4 −
jasmolin II 1172-63-0 I 3.51 (0.82−15.05) 0.09 2 2
kresoxim-methyl 143390-89-0 F 7.33 (5.90−9.11) 2.51 13 1
lambda-cyhalothrin 91465-08-6 I 2.86 (2.60−3.14) 11.75 30 6
leptophos 21609-90-5 I 6.78 (5.51−8.35) 5.43 14 −
lindane 58-89-9 I 3.68 (3.24−4.18) 5.27 23 5
lufenuron 103055-07-8 I 8.46 (6.31−11.34) 11.61 9 −
malathion 121-75-5 I 2.48 (2.40−2.56) 3.65 92 23
mancozeb 8018-01-7 F 4.69 (4.29−5.13) 2.80 33 12
mandipropamid 374726-62-2 F 3.46 (1.31−9.12) 8.33 3 −
maneb 12427-38-2 F 4.55 (3.57−5.80) 8.63 12 −
MCPA 94-74-6 H 3.89 (2.97−5.10) 5.49 11 −
mecarbam 2595-54-2 I 3.34 (2.61−4.27) 5.21 12 −
mecoprop 7085-19-0 H 3.89 (1.88−8.05) 9.43 4 −
mepanipyrim 110235-47-7 F 6.07 (2.30−15.99) 6.31 3 1
mepronil 55814-41-0 F 2.60 (1.45−4.66) 2.98 5 −
meptyldinocap 131-72-6 F 2.93 (2.02−4.24) 1.28 8 8
mesotrione 104206-82-8 H 1.13 (0.26−4.83) 6.15 2 −
metalaxyl 57837-19-1 F 5.81 (5.09−6.63) 5.14 22 5
metalaxyl-M 70630-17-0 F 3.74 (3.12−4.49) 7.75 16 2
metaldehyde 108-62-3 M 2.30 (1.52−3.50) 5.93 7 3
methamidophos 10265-92-6 I 5.28 (5.01−5.57) 5.19 55 18
methidathion 950-37-8 I 2.86 (2.43−3.37) 3.61 18 5
methiocarb 2032-65-7 I 3.68 (2.99−4.54) 1.08 14 11
methomyl 16752-77-5 I 2.04 (1.98−2.10) 5.92 122 19
methoprene 40596-69-8 I 1.88 (0.91−3.88) 4.36 4 −
methoxychlor 72-43-5 I 3.20 (0.75−13.67) 2.01 2 1
methoxyfenozide 161050-58-4 I 6.86 (1.60−29.36) 3.57 2 −
metolachlor 51218-45-2 H 19.91 (12.25−32.38) 2.14 6 4
metsulfuron-methyl 74223-64-6 H 5.75 (2.18−15.18) 5.53 3 −
mevinphos 7786-34-7 I 1.01 (0.78−1.32) 5.53 11 −
mexacarbate 315-18-4 I 1.58 (1.44−1.73) 9.08 33 −
milbemectin 51596-10-2 A 12.05 (5.82−24.94) 8.30 4 −
monocrotophos 6923-22-4 I 3.47 (3.00−4.01) 1.93 20 5
monosodium methylarsonate 2163-80-6 H 2.98 (2.07−4.29) 0.38 8 8
myclobutanil 88671-89-0 F 4.35 (4.05−4.68) 3.65 42 16
nicosulfuron 111991-09-4 H 0.64 (0.15−2.75) 11.59 2 −
nicotine 54-11-5 I 2.51 (1.88−3.36) 16.51 10 −
norflurazon 27314-13-2 H 7.91 (5.22−11.98) 3.99 7 −
nornicotine 494-97-3 I 2.19 (0.83−5.77) 6.05 3 −
novaluron 116714-46-6 I 2.15 (1.69−2.74) 4.07 12 −
oxadiazon 19666-30-9 H 2.45 (1.18−5.06) 3.40 4 −
oxamyl 23135-22-0 I 3.83 (1.45−10.09) 2.09 3 2
oxaziclomefone 153197-14-9 H 4.82 (1.13−20.65) 4.70 2 −
oxidemeton-methyl 301-12-2 I 4.43 (0.24−81.20) 6.00 1 −
oxyfluorfen 42874-03-3 H 1.27 (0.61−2.63) 8.09 4 −
paclobutrazol 76738-62-0 P 1.63 (1.21−2.18) 3.69 10 −
parathion 56-38-2 I 2.81 (2.73−2.91) 5.11 96 28
parathion-methyl 298-00-0 I 1.61 (1.51−1.72) 2.33 46 29
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pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

penconazole 66246-88-6 F 8.06 (6.44−10.08) 2.60 13 2
pencycuron 66063-05-6 F 2.91 (1.79−4.74) 0.38 6 6
pendimethalin 40487-42-1 H 6.73 (5.54−8.18) 4.65 15 −
penoxsulam 219714-96-2 H 1.56 (0.59−4.12) 0.15 3 3
pentachloroaniline 527-20-8 M 18.06 (11.10−29.40) 12.26 6 −
permethrin 52645-53-1 I 5.84 (5.20−6.57) 3.56 25 11
phenazine-1-carboxylic acid 2538-68-3 B 4.12 (1.99−8.52) 7.83 4 −
phenothrin 26002-80-2 I 4.93 (2.75−8.84) 3.40 5 2
phenthoate 2597-03-7 I 4.13 (2.99−5.72) 1.51 9 2
phorate 298-02-2 I 6.51 (4.53−9.36) 5.80 8 −
phosalone 2310-17-0 I 4.72 (3.62−6.15) 6.22 11 1
phosmet 732-11-6 I 2.10 (1.68−2.63) 4.87 13 −
phosphamidon 13171-21-6 I 3.96 (2.86−5.47) 6.06 9 −
phoxim 14816-18-3 I 1.61 (1.06−2.44) 9.08 7 −
picloram 1918-02-1 H 6.97 (3.36−14.46) 5.97 4 2
piperonyl butoxide 51-03-6 S 10.42 (5.82−18.67) 0.51 5 5
pirimicarb 23103-98-2 I 4.55 (3.90−5.31) 3.23 18 4
pirimiphos-methyl 29232-93-7 I 2.16 (1.87−2.51) 5.21 19 −
probenazole 27605-76-1 F 2.39 (0.56−10.22) 7.59 2 −
prochloraz 67747-09-5 F 5.81 (4.04−8.36) 4.39 8 3
procymidone 32809-16-8 F 9.89 (8.03−12.19) 7.81 14 6
profenofos 41198-08-7 I 2.24 (2.12−2.38) 1.84 51 3
propamocarb hydrochloride 25606-41-1 F 1.10 (0.06−20.06) 0.04 1 1
propargite 2312-35-8 A 3.77 (2.73−5.21) 17.35 9 −
propiconazole 60207-90-1 F 5.44 (4.75−6.22) 11.22 22 −
propineb 12071-83-9 F 3.50 (3.17−3.87) 6.87 30 4
Propisochlor 86763-47-5 H 2.95 (1.82−4.79) 10.69 6 −
propoxur 114-26-1 I 0.83 (0.31−2.19) 4.45 3 −
pymetrozine 123312-89-0 I 2.94 (2.19−3.93) 4.53 10 1
pyraclostrobin 175013-18-0 F 3.90 (1.88−8.07) 3.22 4 1
pyrazophos 13457-18-6 F 4.65 (3.37−6.43) 4.83 9 4
pyrethrin I 121-21-1 I 1.06 (0.59−1.89) 0.51 5 5
pyrethrin II 121-29-9 I 2.20 (1.23−3.94) 0.51 5 5
pyrethrins 8003-34-7 I 0.21 (0.10−0.44) 4.51 4 2
pyribenzoxim 168088-61-7 H 5.92 (2.24−15.64) 8.69 3 −
pyridaben 96489-71-3 I 4.84 (3.98−5.88) 1.70 15 7
pyridafenthion 119-12-0 I 8.06 (3.05−21.29) 0.20 3 3
Pyrimethanil 53112-28-0 F 5.35 (4.62−6.19) 5.59 20 2
pyriproxyfenb 95737-68-1 I 27.55 (16.93−44.82) 3.42 6 4
pyroxsulam 422556-08-9 H 1.03 (0.64−1.68) 6.35 6 −
quinalphos 13593-03-8 I 2.48 (2.19−2.82) 9.02 23 1
quinclorac 84087-01-4 H 3.42 (1.91−6.13) 5.79 5 −
quinoxyfen 124495-18-7 F 6.01 (0.33−110.11) 0.06 1 1
quintozene 82-68-8 F 14.74 (11.72−18.54) 7.85 13 −
quizalofop-ethyl 76578-14-8 H 1.30 (0.63−2.69) 0.89 4 4
quizalofop-P-tefuryl 119738-06-6 H 0.92 (0.44−1.90) 5.02 4 −
rimsulfuron 122931-48-0 H 0.75 (0.50−1.14) 9.64 7 −
rotenone 83-79-4 I 2.06 (1.27−3.36) 3.14 6 2
schradan 152-16-9 I 7.90 (3.82−16.35) 5.35 4 −
s-metolachlor 87392-12-9 H 9.63 (5.93−15.64) 9.09 6 −
spinosad 168316-95-8 I 4.42 (3.94−4.97) 5.63 24 4
spiromesifen 283594-90-1 I 2.75 (2.41−3.14) 2.71 22 4
spiroxamine 118134-30-8 F 10.20 (5.70−18.25) 0.89 5 4
sulfometuron-methyl 74222-97-2 H 6.18 (1.44−26.43) 4.79 2 −
sulfosulfuron 141776-32-1 H 4.42 (2.13−9.18) 1.05 4 4
sulfotep 3689-24-5 I 1.67 (0.39−7.17) 4.72 2 −
sulprofos 35400-43-2 I 1.30 (0.80−2.12) 1.62 6 5
Tau-fluvalinate 102851-06-9 I 1.87 (1.23−2.84) 0.45 7 7
tebuconazole 107534-96-3 F 7.67 (6.46−9.11) 4.23 17 5
tebufenozide 112410-23-8 I 17.73 (15.79−19.90) 1.91 26 24
tebufenpyrad 119168-77-3 A 5.09 (2.46−10.54) 3.36 4 2
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squared error RMSE = 0.36; that is, 95% of predicted half-lives
fall within a factor 4.5 of reported half-lives. From Model III we
obtain estimates to correct for cold storage conditions, β′storage°
= 0.69, substance molecular weight, β′MW° = −3.9 × 10−4 mol/g,
log KOW, β′KOW

° = 0.02, and saturation vapor pressure, β′PV° =

−0.09 Pa−1, (all p-values < 0.05). Estimates for 14 substance
classes and 31 plants are given in Table 2 and resulting
predicted half-lives plotted against reported half-lives are shown
in Figure 3 (Model III).
Model III is designed to calculate from pesticide properties

half-lives for individual pesticides, for which no reference half-

lives are available (i.e., not in Table 1). This model targets all
pesticides of substance classes listed in Table 2 and applied to
specific plants under given conditions and temperatures. For
example, except for some unpublished residue studies,38 there is
no reported dissipation half-life available for tefluthrin (CAS,
79538-32-2; substance class, pyrethroids) authorized in the
European Union.39 To calculate its half-life when applied to, for
example, wheat at 295.16 K (22 °C) under field conditions, we
use eq 7 with estimates for study condition, substance class,
substance-specific properties, and plant taken from Table 2
along with β′T°. We get log HLpredicted,T° = α′° + β′pyrethroids° +

Table 1. continued

pesticide CAS RN TCa HLref,i
• (95% CI) (day) θimp(%) nHL nT

teflubenzuron 83121-18-0 I 21.07 (10.19−43.60) 4.30 4 2
tepraloxydim 149979-41-9 H 3.43 (0.80−14.69) 11.74 2 −
tetraconazole 112281-77-3 F 5.27 (4.52−6.15) 3.31 19 7
tetradifon 116-29-0 A 6.13 (2.96−12.69) 3.45 4 −
thiacloprid 111988-49-9 I 3.76 (3.43−4.12) 3.71 32 7
thiamethoxam 153719-23-4 I 3.97 (2.76−5.72) 13.80 8 −
thidiazuron 51707-55-2 P 4.17 (0.98−17.87) 4.57 2 −
thifensulfuron-methyl 79277-27-3 H 11.11 (5.37−22.97) 4.89 4 −
thiophanate-methyl 23564-05-8 F 9.07 (7.25−11.35) 7.05 13 −
thiram 137-26-8 F 4.70 (3.10−7.12) 7.48 7 −
tolclofos-methyl 57018-04-9 F 1.81 (1.54−2.13) 3.59 18 −
tolylfluanid 731-27-1 F 6.85 (3.30−14.20) 0.53 4 4
toxaphene 8001-35-2 I 6.81 (5.53−8.39) 4.49 14 5
tralkoxydim 87820-88-0 H 6.34 (1.48−27.20) 8.65 2 −
tralocythrin 66841-26-7 I 1.64 (0.62−4.33) 9.71 3 −
tralomethrin 66841-25-6 I 5.37 (3.73−7.73) 8.68 8 4
triadimefon 43121-43-3 F 4.41 (3.99−4.88) 2.02 29 4
triadimenol 55219-65-3 F 10.42 (2.43−44.66) 0.28 2 2
triazophos 24017-47-8 I 6.05 (5.29−6.92) 7.00 22 −
tribufos 78-48-8 H 6.07 (4.00−9.20) 2.82 7 −
trichlorfon 52-68-6 I 2.71 (2.36−3.10) 1.65 21 2
triclopyr 55335-06-3 H 2.54 (1.23−5.26) 2.69 4 −
tricyclazole 41814-78-2 F 10.63 (4.03−28.06) 4.82 3 −
trifloxystrobin 141517-21-7 F 3.72 (1.80−7.70) 7.01 4 1
triflumuronb 64628-44-0 I 10.10 (7.27−14.03) 2.23 9 6
trifluralin 1582-09-8 H 2.66 (1.85−3.82) 3.12 8 −
triflusulfuron 135990-29-3 H 0.69 (0.39−1.24) 5.91 5 −
triforine 26644-46-2 F 4.36 (2.44−7.80) 2.46 5 −
vinclozolin 50471-44-8 F 3.03 (2.75−3.34) 3.21 31 26
zineb 12122-67-7 F 4.25 (3.72−4.85) 3.27 22 1
ziram 137-30-4 F 10.40 (0.57−190.43) 0.05 1 1

aNotation: A, acaricide; B, bactericide; F, fungicide; H, herbicide; I, insecticide; M, metabolite; N, nematicide; P, plant growth regulator; S, pesticide
synergist. bEstimated half-lives differ > 10% when excluding cold storage data; half-lives without cold storage data are given in Table S4 (SI).

Figure 4. Standard errors of parameter estimates per substance (left) and plant (right) as a function of the number of reported dissipation half-lives
for 333 pesticides and 30 plants (Model II).
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Table 2. Predictor Variables with Associated Parameter Estimates (Intercept, α′°; Air Temperature, β′T° (K−1); Cold Storage
Conditions, β′storage° ; Substance Class, β′subst‑class,k° ; molecular weight, β′MW° (mol/g); log KOW, β′KOW

° ; saturation vapor pressure,

β′PV
° (Pa−1); and Plant, β′plant,j° ; in Line with eq 7), Standard Errors SE, Numbers of Data Points with Reported Average Air

Temperatures nT for Substance Classes and Plants, and p-Values (Variable Significant, if p-Value <0.05) as Used in the Final
Model to Estimate Dissipation Half-Lives for 14 Substance Classes Applied to 31 Plants (Model III)

symbol variable name parameter estimate SE nT p-value

α′° intercept 1.35 0.11 <0.0001
β′T° air temperature −1.995 × 10−2 3.1 × 10−3 <0.0001
β′storage° study conditions (cold storage) 0.69 0.09 <0.0001
β′subst‑class° substance class: anilinopyrimidines 0.18 0.12 16 0.5005

substance class: benzoylureas 0.07 0.11 27 0.0818
substance class: botanical insecticides −0.24 0.12 22 <0.0001
substance class: carbamates −0.19 0.08 66 <0.0001
substance class: dithiocarbamates 0.03 0.11 19 0.0439
substance class: imidazoles 0.30 0.14 10 0.7134
substance class: morpholines 0.16 0.16 7 0.5403
substance class: neonicotinoids 0.09 0.10 39 0.0954
substance class: organochlorines −0.05 0.08 65 0.0003
substance class: organophosphates −0.08 0.07 260 <0.0001
substance class: pyrethroids −0.08 0.08 158 <0.0001
substance class: strobilurins 0.20 0.15 8 0.7262
substance class: triazoles 0.25 0.07 43 <0.0001
substance class: other substance classesa 0.09 0.07 290 0.0142

β′MW° molecular weight −3.9 × 10−4 1.7 × 10−4 0.0228
β′KOW
° log Kow 0.02 0.01 0.0127

β′PV° saturation vapor pressure −0.09 0.03 0.0083

β′plant° plant: alfalfa −0.04 0.10 19 0.6134
plant: apple 0.07 0.08 29 0.4927
plant: cabbage −0.07 0.09 28 0.3172
plant: cauliflower 0.04 0.13 9 0.8642
plant: Chinese cabbage −0.001 0.08 31 0.8593
plant: cotton −0.20 0.06 94 0.0006
plant: cucumber −0.06 0.13 10 0.5778
plant: eggplant 0.07 0.07 42 0.4728
plant: elm 0.20 0.09 32 0.0299
plant: grape 0.13 0.08 108 0.0002
plant: grass 0.27 0.13 10 0.0417
plant: green bean −0.25 0.09 22 0.0039
plant: lemon 0.26 0.12 11 0.0397
plant: lettuce −0.33 0.12 12 0.0033
plant: mango −0.22 0.12 12 0.0455
plant: okra 0.10 0.12 12 0.4526
plant: olive 0.13 0.11 13 0.3232
plant: onion −0.53 0.12 11 <0.0001
plant: orange 0.23 0.08 32 0.0075
plant: peach 0.29 0.09 31 0.0015
plant: pear 0.23 0.11 16 0.0363
plant: pepper fruit 0.04 0.07 55 0.6328
plant: potato −0.23 0.15 8 0.1004
plant: rice 0.12 0.07 36 0.1543
plant: strawberry −0.004 0.08 34 0.8263
plant: tea 0.06 0.09 26 0.6191
plant: tomato −0.03 0.08 36 0.5345
plant: wheat −0.18 0.12 12 0.1096
plant: white spruce 0.55 0.09 27 <0.0001
plant: zucchini −0.81 0.12 12 <0.0001
plant: other plantsb −0.04 0.05 200 0.3128

aSubstance classes with n < 3 reported substances per class. bPlant species with n < 8 reported average air temperatures.
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β′wheat° + β′T° × (T − Tref) + β′MW° × MW + β′KOW
° × log KOW +

β′PV° × PV = 1.35 − 0.08 − 0.18 − 1.995 × 10−2 K−1 × (195.16
K − 193.16 K) − 3.9 × 10−4 mol/g × 418.7 g/mol + 0.02 × 6.4
− 0.09 Pa−1 × 8.4 × 10−3 Pa = 1.014, and thus a predicted half-
life for tefluthrin dissipation from wheat at 22 °C of 101.014 =
10.3 days. MW, KOW, and PV are taken from EFSA.38 Half-life
corrections from substance class parameter estimates of Model
III vary between 10−0.24 = 0.58 days for botanical insecticides
(e.g., pyrethrins, nicotine) and 10−0.19 = 0.65 days for
carbamates (e.g., methomyl, pirimicarb) at the low end and
100.25 = 1.78 days for triazoles (e.g., myclobutanil, difenocona-
zole) and 100.3 = 2 days for imidazoles (e.g., prochloraz,
imazalil) at the high end. Half-life corrections from plant
parameter estimates vary between 10−0.81 = 0.15 days for
zucchini and 100.55 = 3.55 days for white spruce. For 8 out of 14
substance classes and for 14 out of 31 plants, p-values < 0.05.

4. DISCUSSION

4.1. Applicability and Limitations. We developed from
Model II, which is controlled for plants, conditions, and
temperature, a set of 333 comparative pesticide dissipation half-
lives in plants under reference conditions represented by the
average of 30 plant-specific parameter estimates, field
conditions, and an air temperature of 20 °C (Table 1). For
arriving at this set, just taking the geometric mean of all
available measured half-lives per substance11 would have led to
biased estimates. Instead, correcting predicted half-lives for
temperature, plant species, and study conditions, imputing
missing temperatures, identifying a temperature coefficient in
Model I, and finally studying the variability for each pesticide
reduces the uncertainty around each presented half-life and
much better reflects reference conditions. Half-lives in Table 1
are designed for direct use in risk and impact assessment
models and can be combined with eq 5 to further correct for
scenario-specific plants, conditions, and temperatures. Our final
Model III (eq 7) is designed to estimate dissipation half-lives
from properties of individual pesticides of 14 substance classes,
for which no reference half-lives could be obtained in our study
due to missing reported data.
We acknowledge that the predictive ability of leave-one-out

cross validation can be too optimistic, since data perturbation
may be insignificant when only omitting one data point.40

Substance classes with less than three reported substances per
class and plants with less than eight reported air temperatures
were pooled into single categories other substance classes and
other plants, respectively (see Table 2). Comparatively small
standard errors for these two categories refer to the mean
category estimate, whereas for each substance class and plant
within these categories the standard error is generally higher.
This is because these two categories are much more
heterogeneous than categories for individual substance classes
and plants (increases uncertainty per category component), but
also contain more data points than individual substance classes
and plants (decreases uncertainty of mean category estimate).
Hence, half-lives based on these two categories generally have
higher uncertainty than half-lives based on individual substance
classes and plants.
4.2. Comparison with Other Temperature Coeffi-

cients. Temperature coefficients Q10 for metabolic processes
in plants and other media are typically between 2 and 3,41,42

while Q10 for physical processes are often much lower.42−45

Our Q10 = 1.22 is at the very low end of Q10 for individual

processes. This can be explained by the fact that there is more
than one process contributing to overall dissipation from plants
and that these processes go in a counter-direction. More
specifically, overall dissipation results from the combination of
temperature-dependent degradation as predominant removal
process in plants as well as leaf and root uptake as temperature-
dependent processes counter-acting removal from plants.6,8

The combined effects of these processes with their distinct
influence on residue dynamics3,30,31 reduce the temperature-
dependency of overall dissipation. This is in line with other
studies, where a change from high to low Q10 has been
observed when going from pure degradation to overall plant
dissipation.46,47

4.3. Future Research Needs. Risk and impact assessment
models often need information on individual processes
contributing to dissipation. For that, additional research is
required to systematically assess the contribution of processes
like degradation or root uptake to overall pesticide dissipation
from plants. Furthermore, reporting guidelines for measuring
dissipation from plants need to be improved with respect to
providing sufficient information on environmental study
conditions (most importantly by reporting temperature, but
also humidity, soil type, etc.) and residues in plants (providing
enough data points to account for measurement variability and
to effectively perform curve fitting for estimating dissipation
kinetics). Finally, the specific and significant coefficient
obtained for cold storage primarily shows that the temperature
correction obtained on field crops cannot be directly applied for
cold storage conditions. Targeted experiments are required to
further analyze the influence of temperature and the character-
istics of cold storage conditions on dissipation and contributing
mechanisms, thereby increasing input data quality when using
experimentally derived half-lives in modeling studies.
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Ecophysiology; Schröder, P.; Collins, C. D., Eds.; Springer Press:
Dordrecht, The Netherlands, 2011; pp 3−16.
(31) Coats, J. R.; Yamamoto, H. Environmental Fate and Effects of
Pesticides; American Chemical Society: Washington, D.C., 2003.
(32) Hollander, A.; Pistocchi, A.; Huijbregts, M. A. J.; Ragas, A. M. J.;
van de Meent, D. Substance or space? The relative importance of
substance properties and environmental characteristics in modelling
the fate of chemicals in Europe. Environ. Toxicol. Chem. 2009, 28, 44−
51.
(33) Burnham, K. P.; Anderson, D. R. Model Selection and Multimodel
Inference: A Practical Information−Theoretic Approach. 2nd ed.;
Springer Press: New York, 2002.
(34) Al-Subaihi, A. A. Variable selection in multivariable regression
using SAS/IML. J. Stat. Software 2002, 7, 1−20.
(35) Ntow, W. J.; Ameyibor, J.; Kelderman, P.; Drechsel, P.; Gijzen,
H. J. Dissipation of endosulfan in field-grown tomato (Lycopersicon
esculentum) and cropped soil at Akumadan, Ghana. J. Agr. Food Chem.
2007, 55, 10864−10871.
(36) Aguilera-del Real, A.; Valverde-García, A.; Fernandez-Alba, A.
R.; Camacho-Ferre, F. Behaviour of endosulfan residues in peppers,
cucumbers, and cherry tomatoes grown in greenhouse: Evaluation by
decline curves. Pestic. Sci. 1997, 51, 194−200.
(37) Hamburg, M.; Young, P. Statistical analysis for decision making;
6th ed.; Dryden Press: Fort Worth, London, 1994.
(38) Draf t Assessment Report (DAR): Tef luthrin; European Food
Safety Authority: Parma, 2006; Vol. 1−3.
(39) Commission Implementing Regulation (EU) No 800/2011 of 9
August 2011 approving the active substance tefluthrin. Commission of
the European Communities: Brussels, 2011.
(40) Guidance Document on the Validation of (Quantitative)Structure-
Activity Relationships [(Q)SAR] Models; Organisation for Economic
Co-operation and Development: Paris, 2007.
(41) European Food Safety Authority. Opinion on a request from
EFSA related to the default Q10 value used to describe the temperature
effect on transformation rates of pesticides in soil. Eur. Food. Saf. Auth.
J. 2007, 622, 1−32.
(42) Atwell, B.; Kriedemann, P.; Turnbull, C. Plants in Action:
Adaptation in Nature, Performance in Cultivation, 1st ed.; MacMillian
Publishers Australia Pty Ltd: South Yarra, Australia, 1999.
(43) O’Leary, A. L.; Jones, A. L. Factors influencing the uptake of
fenarimol and flusilazol by apple leaves. Phytopathology 1987, 77,
1564−1568.
(44) Atkin, O. K.; Zhang, Q.; Wiskich, J. T. Effect of temperature on
rates of alternative and cytochrome pathway respiration and their
relationship with the redox poise of the quinone pool. Plant Physiol.
2002, 128, 212−222.
(45) Tjoelker, M. G.; Oleksyn, J.; Reich, P. B. Modelling respiration
of vegetation: evidence for a general temperature-dependent Q10. Glob.
Change Biol. 2001, 7, 223−230.
(46) Yu, X.-Z.; Trapp, S.; Zhou, P.-H.; Chen, L. Effect of temperature
on the uptake and metabolism of cyanide by weeping willows. Int. J.
Phytoremediat. 2007, 9, 243−255.

Environmental Science & Technology Article

dx.doi.org/10.1021/es500434p | Environ. Sci. Technol. 2014, 48, 8588−86028601



(47) Xu, X.-M.; Murray, R. A.; Salazar, J. D.; Hyder, K. The effects of
temperature, humidity and rainfall on captan decline on apple leaves
and fruit in controlled environment conditions. Pest Manage. Sci. 2008,
64, 296−307.

Environmental Science & Technology Article

dx.doi.org/10.1021/es500434p | Environ. Sci. Technol. 2014, 48, 8588−86028602


