Andreas Vogelsang

Feature Dependencies in Automotive
Software Systems: Extent, Awareness,
and Refactoring

Journal article | Accepted manuscript (Postprint)
This version is available at https://doi.org/10.14279/depositonce-9234

Vogelsang, A. (2019). Feature Dependencies in Automotive Software Systems: Extent, Awareness, and
Refactoring. Journal of Systems and Software, 110458. https://doi.org/10.1016/j.jss.2019.110458

Terms of Use

This work is licensed under a CC BY-NC-ND 4.0 License (Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International). For WISSEN IM ZENTRUM .l Technische
more information see https://creativecommons.org/licenses/by-nc-nd/4.0/. R U""’;'::f:

Feature Dependencies in Automotive Software Systems:
Extent, Awareness, and Refactoring

Andreas Vogelsang®

% Technische Universitdt Berlin, Germany

Abstract

Many automotive companies consider their software development process to be
feature-oriented. In the past, features were regarded as isolated system parts
developed and tested by developers from different departments. However, in
modern vehicles, features are more and more connected and their behavior
depends on each other in many situations. In this article, we describe how
feature-oriented software development is conducted in automotive companies
and which challenges arise from that. We present an empirical analysis of fea-
ture dependencies in three real-world automotive systems. The analysis shows
that features in modern vehicles are highly interdependent. Furthermore, the
study reveals that developers are not aware of these dependencies in most cases.
For the three examined cases, we show that less than 12% of the components
in the system architecture are responsible for more than 90% of the feature de-
pendencies. Finally, we propose a refactoring approach for implicit communal
components, which makes them explicit by moving them to a dedicated platform
component layer.

Keywords: feature interaction, automotive, requirements engineering,
software architecture, technical debt, empirical study

1. Introduction

Software development in automotive companies is strongly influenced by ex-
isting legacy systems, organizational constraints, and complex OEM /supplier
relationships [1]. Nevertheless, automotive companies are forced to quickly de-
liver increasingly complex software to keep up with their competitors and other
digital products with shorter development life-cycles. In this context, like in

Email address: andreas.vogelsang@tu-berlin.de (Andreas Vogelsang)
IThis is the Accepted Manuscript of:
Vogelsang, A. (2019): Feature Dependencies in Automotive Software Systems: Extent, Aware-
ness, and Refactoring. Journal of Systems and Software. https://doi.org/10.1016/j.jss.
2019.110458
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, http://creativecommons.org/licenses/by-nc-nd/4.0/.

many others, short-term goals, such as the delivery of a feature, frequently
trump long-term objectives like maintainability or extensibility [2].

The development of the software system in an automobile is characterized by
a decomposition into vehicle domains such as powertrain, body, chassis, driver
assistance, and infotainment. Within these vehicle domains, subsystems group
and structure several vehicle features that provide functionality to the driver
or other external systems [3]. Examples for vehicle features are airbag, cruise
control, or start-stop system.

Automotive companies try to keep features as independent as possible from
each other because they usually structure their organization and resources based
on features (e.g., airbag and cruise control can be developed in completely
different departments). However, in the past years, the different features of a
vehicle got more and more interconnected to provide innovative behavior [1].
For example, the central locking system integrates the pure functionality of
locking and unlocking car doors with comfort features (such as adjusting seats,
mirrors, and radio tuners according to the specific key used during unlocking),
with safety/security features (such as locking the car beyond a minimum speed,
arming a security device when the car is locked, and unlocking the car in case
of a crash), and with human-machine-interface features, such as signaling the
locking and unlocking using the car’s interior and exterior lighting system.

A feature is implemented through a network of communicating components.
Technically, a component is a piece of software deployed to a hardware execution
unit, which is connected to one or more bus systems that provide signals from
all kinds of other components. The signals on a bus system are available to
all components connected to that bus. Therefore, it is a common practice of
developers to (re)use any signal that is available on the bus system to implement
or adapt a feature, regardless of the origin of that signal. This practice leads
to behavioral dependencies between features, some of which are intended and
some of which are unintended.

Behavioral dependencies between features (a.k.a. feature interactions [4])
have been observed and addressed first in telecommunication systems [5] fol-
lowed by studies on Internet applications [6], service systems [7], automotive
systems [8], software product lines [9], computational biology [10], and in many
other fields outside of computer science. Several studies show that feature de-
pendencies have a negative impact on maintenance efforts [11, 12], increase the
likelihood of integration failures [13], and prevent modular reasoning [14].

Since the development of automotive systems is structured according to fea-
tures, our research goal is to analyze the extent and awareness of feature depen-
dencies in practice empirically. We are interested in how many feature depen-
dencies actually exist in real-world automotive systems, whether the developers
are aware of these, and whether the dependencies play a role in the way the
systems are built.

To answer these questions, we had the chance to examine three automotive
software systems from practice. More specifically, each system was character-
ized by a set of features that it provides, a set of components with interface
descriptions that implement the features, and a feature-component mapping

that indicates which components contribute to the implementation of which
features. Since there was no notion of feature dependencies in the datasets (nor
in any other artifact of the company), we developed an algorithm to extract
feature dependencies from the component architecture.

With this algorithm, we found numerous feature dependencies that crosscut
the whole system. In a follow-up interview study, we found that the respective
developers were unaware of almost 50% of the dependencies. Moreover, we were
able to show that feature dependencies are not considered systematically when
it comes to restructuring the system’s architecture although implicit feature
dependencies can be considered as technical debt [15]. Therefore, we propose a
dependency-based refactoring approach that suggests shifting components from
features to a dedicated platform component layer if they are strongly affected
by feature dependencies.

In summary, we describe the following contributions in this paper:

1. We propose an algorithmic approach for extracting feature dependencies
from component architectures.

2. By analyzing three automotive software systems from practice, we show
that feature dependencies are numerous and crosscut the whole system.

3. By confronting developers with these dependencies and analyzing so-called
service features, we show that feature dependencies are hardly known and
considered in the development of the system’s architecture.

4. We propose a dependency-based refactoring approach for system compo-
nents, which is able to reduce the number of feature dependencies by 90%
by refactoring less than 12% of the components in the examined systems.

Structure of the paper: This paper is structured along the questions
of extent, awareness, and refactoring of feature dependencies. After provid-
ing some background information and introducing the dependency extraction
algorithm in Section 2, we analyze the study object systems with respect to ex-
tent of feature dependencies (Section 3) and awareness of feature dependencies
(Section 4). In Section 5, we introduce our refactoring approach and show its
application to the three systems. In Section 7, we present alternative solutions
to ours before concluding the paper with a discussion and summary.

Relation to previous work: This article summarizes and extends the
work of previous publications [15, 16, 8]. We extend the previous work by the
following contributions:

e We extend the analysis of RQs 1-2 and 5-6, which have already been
addressed in previous work, by an additional dataset that is larger than
the existing two datasets. By this, we enhance the external validity of our
previous work. In addition, we provide a more in-depth discussion of the
results.

o We extend RQ2 with a new analysis that correlates the number of feature
dependencies associated with a component with the position of a that

component in a feature processing chain. This analysis shows details about
the role of dependencies in different architectural stages of a feature (e.g.,
sensing, processing, actuation).

o We address a new research question RQ4 in the context of the new dataset.
In this RQ, we examine the relation between feature dependencies and
so-called service features that developers defined in the new dataset. The
purpose of these service features is that they provide platform functionality
available for use in other features of the vehicle. The explicit definition of
service features in the new dataset allowed us to examine whether feature
dependencies are more frequent in service features compared with regular
features. This analysis provides an additional viewpoint to the question
of how aware developers are of feature dependencies.

e We explain the dependency extraction algorithm in more detail and pro-
vide a characterization as pseudo code. In addition, we publish the tool
that we developed to perform the feature dependency analysis. This in-
creases the reproducibility and transparency of our analysis and allows
other researchers to reuse the analysis.

2. Background

2.1. Features and Feature Dependencies

The term feature is associated with a great variety of meanings and interpre-
tations in research and industry. Additional terms that are often mentioned in
this context are the terms function or service. Depending on the focus, the term
feature may be used to describe distinctive characteristics of a system [17, 18],
elements of a functional specification [19, 20], or increments and configuration
options in a design or implementation [21, 22].

In this article, we focus on features as elements of a functional specification
for a multifunctional system (cf. [23, 24]). This means features are used to struc-
ture the functionality of a system with the goal to decompose the specification.
Decomposition into completely independent features is usually not possible and
also not desirable in many cases. The goal is to break down the functionality
into features with small and clear interfaces to each other to allow for a mod-
ular and distributed development. For our work, it is not important whether a
feature also represents a configuration option. Our analysis focuses on features
and their dependencies that are part of one specific product.

Based on the different notions of a feature, the notion of feature dependencies
also differs. In the context of software product lines, feature dependencies are
understood as constraints over the possible configuration space of the product
line [25]. The constraints may be specified by logic relations between features
such as requires or excludes. We do not focus on this interpretation of feature
dependencies in this article. Several researchers focus on code-level implemen-
tations of software product lines and the challenges of feature dependencies for
the development process. Cafeo et al. define: “In the source code, a feature
dependency occurs whenever one or more program elements within the bound-
aries of a feature depend on elements external to that feature, such as a method

defined in one feature and called by another feature” [12]. The effects of such
dependencies have been extensively studied in preprocessor-based implementa-
tions [14]. Ribeiro et al. [11] and Cafeo et al. [12] show that maintenance effort
propagates along feature dependencies in code implementations.

Another interpretation of feature dependencies is related to the term feature
interaction [4]. A feature interaction is “some way in which a feature or features
modify or influence another feature in defining overall system behavior.” [4] In
most cases, feature interaction is seen as “unwanted” in the sense that the side-
by-side integration of two (or more) features into one system leads to system
behavior that has not been foreseen and is unwanted in most cases, although all
features work as specified. In our work, we focus on this kind of behavioral de-
pendencies between features although we do not care about whether the feature
interaction is wanted or unwanted. In fact, for the three cases that we analyze
in this article, we assume that most feature interactions contribute to wanted
behavior because the analyzed systems are in a state where they already have
been extensively reviewed and tested. The more interesting question for this
article is whether the developers are aware of all the feature interactions and
how the interactions are used to shape the system’s architecture.

Instances of the feature interaction problem have been observed and ad-
dressed first in telecommunication systems [5] followed by studies on Internet
applications[6], service systems [7], automotive systems [8], software product
lines [9], computational biology [10], and in many other fields outside of com-
puter science.

2.2. Features and Component Architectures in the Automotive Domain

As already mentioned in the introduction, automotive software systems are
decomposed into vehicle domains, subsystems within these domains, and finally
vehicle features within the subsystems. The vehicle features describe coherent
behavior that the vehicle provides to its users and external systems. That means
a feature describes end-to-end behavior that relates system stimuli to desired
system reactions. The implementation of vehicle features is described in terms
of communicating components.

Components describe the implementation of vehicle features in a purely log-
ical fashion, i.e., without considering the underlying hardware structure. A
network of components describes the processing steps that are necessary to
transform the input data into the desired output data. An example of a system
that consists of 3 features, which are realized by a network of 6 components, is
illustrated in Figure 1. Components are later implemented as software compo-
nents, which are executed on electronic computing units (ECUs).

The relation between a feature and a component in the context of this study
is the following: A feature is implemented by a set of components that are
arranged in a dataflow network. A component can contribute to the implemen-
tation of a set of features. Thus, there is an n : m relation between features and
components. The set of all components and their connections form a component
architecture of the entire system (cf. [26]). The vehicle features crosscut this

I \ . b o b o— m— — — — — — —

I
> |

: I

|Fs S mmm e m e m— o I

P m— m— — m— 0 — m— 0 — 5 — 0 — 5 o2 3 _ s | 5 v 8]

A 4

(@]
w

=

A 4

(@]
o

Figure 1: The components (rectangles) are connected by data channels (black arrows) and
form a component architecture of the system (outer rectangle). The vehicle features crosscut
this architecture by the set of components that contribute to their implementation (dashed
forms).

architecture by the set of components that contribute to their realization (see
Figure 1).

2.8. Feature Dependency Extraction From Component Architectures

We want to identify feature dependencies by analyzing the structure of the
underlying component architecture and the mapping between features and com-
ponents. Our initial informal definition states that a feature F; depends on
another feature F» if its behavior is influenced not only by its primary inputs
but also by the state or data of Fy. Therefore, if a feature depends on another,
there must be some kind of communication relation between the two.

We use the following definition of feature dependency within this paper:

Definition 1 (Feature Dependency). A feature depends on another feature
if at least one component associated with the feature reads a signal that originates
from a component associated with the other feature.

In Figure 1, F; depends on F» (because Cy reads a signal that originates from
(s, which is associated with Fb).

Based on this definition of a dependency between vehicle features, we can ex-
tract a vehicle feature graph from the component architecture, where each node
is a feature and a directed edge indicates a dependency between two features.
The resulting vehicle feature graph for the example of Figure 1 is illustrated in
Figure 2.

The corresponding extraction algorithm is listed in Algorithm 1. The al-
gorithm takes a set of features, a set of components, and a feature-component

et -y,

e s Y4 \

F < [

ol
\2/
/“

Figure 2: The vehicle feature graph extracted from the component architecture of Figure 1.

D

»

.
.

Fl :'

J F3

mapping as input. The feature-component mapping is a total function that
maps all features to a non-empty set of components that contribute to the real-
ization of the feature. We assume that all features that are not associated with
any component are removed beforehand. The algorithm iterates over all pairs
of different features (line 2) to look for dependencies between them. Afterward,
the algorithm iterates over the disjoint sets of components associated with each
feature (lines 3 and 4). If there is a signal flow from a component of the first
feature to a component of the second feature, the second feature is added to
the set of dependent features of the first feature (line 6). Line 5 refers to a
function signalFlow(cy, cg) that determines if there is a signal flow between ¢;
and cy. This may be implemented differently depending on how the compo-
nent architecture is represented. In the context of the studies presented in this
paper, each component is associated with a set of ports. A signal flow exists
between an output and an input port with the same name. Other architecture
representations may contain more explicit definitions of signal flow.

Algorithm 1 Feature Dependency Extraction Algorithm
Input: Set of features F,
Set of components C,
Feature-component mapping: fem : F' — CT
Output: Feature dependency mapping: fd : F' — F*

1: procedure EXTRACTFEATUREDEPENDENCIES(F, fcm)

2 for all f1, fo€ F: f1 # fo do > no self-dependencies
3: for all ¢; € fem(f1), ca € fem(f2) do

4: if ¢1 ¢ fem(f2) Aca ¢ fem(f1) then > no shared components
5: if signalFlow(cy,c2) then

6 fd(fr) < fd(f1) U f2

return fd

1 1 1
LRy LR Fa :
1 1 1 1
L] LS
i 7} ! c] 7} H
1 : 5 1 :
! ! | :
: G [| |
1 1 1 » 1
o LG |
: v | :
A | !
o]
r"—————'——'l——— _____ — 1
I Cq C > C, [¢— |
[pcL |_f |

Figure 3: A layered component architecture with a dedicated platform component layer (PCL)
for communal components.

2.4. Layered Component Architectures and Communal Components

Research and industry have noticed that features and component architec-
tures for embedded systems may become complex and hard to maintain [27].
Therefore, layered architectures are adopted more frequently for embedded sys-
tems to structure software components into layers. The most prominent example
of a layered architecture for automotive software is probably AUTOSAR [28],
which decouples application software components from base software compo-
nents within an ECU. However, also within the application software, there
is a trend towards structuring the application software components with re-
spect to different dedications (e.g., sensor fusion, controllers, service functional-
ity) [29, 30]. Figure 3 shows an example of an application software component
architecture that has a dedicated platform component layer (PCL).

Definition 2 (Platform Component Layer (PCL)). A platform component
layer is a dedicated layer within the application software that contains compo-
nents that are designed to be used in several features.

The question of which components should be part of the PCL and which
should be associated with one specific feature is one of the general challenges
in designing good software architectures. To support this challenge, we are
interested in identifying components that are candidates for the PCL. For this
purpose, we characterize specific components as communal components.

Definition 3 (Communal Component). A communal component is a com-
ponent that exchanges signals (sending or receiving) with components of features
different from the feature of the communal component.

Thus, a communal component is the origin of a feature dependency (see
Definition 1). From an architectural point of view, it makes sense to cut out

communal components from the context of one specific feature at some point.
To acknowledge and leverage the communal character of these components, it
is better to treat them as dedicated platform services that are associated with
the platform component layer and not with a specific feature. In a former
publication [15], we reported on evidence collected from developer interviews
that communal components cause extra costs for several development activities
if they are “hidden” in a specific feature in contrast to an explicit consideration
as part of a dedicated platform component layer. Therefore, we distinguish
between implicit and explicit communal components depending on whether the
component is associated with a feature or with the platform component layer.

Definition 4 (Implicit Communal Component). An implicit communal com-
ponent is a communal component associated with a feature and not with the
PCL. This means that the component contributes to a feature dependency by
exchanging signals with a component that is associated with another feature.

Note that this definition includes both the source component of a feature depen-
dency and the target component. In Figure 3, C5 and C7 are implicit communal
components.

In contrast, we call a communal component ezplicit if it is associated with
the PCL.

Definition 5 (Explicit Communal Component). An explicit communal com-
ponent is a communal component that is not associated with a specific feature
but with a dedicated platform component layer.

The purpose of the platform component layer is to bundle components that
implement functionality important for a number of features. This may include
components that provide some general signals (e.g., vehicle speed) but also com-
ponents that collect and process signals for one specific actuator (e.g., different
brake demands). In Figure 3, Cy, Cs and Cy are explicit communal components.

2.5. Study Objects

In this article, we answer our research question based on an analysis of three
real-world automotive systems from industry. Table 1 summarizes the charac-
teristics of the three examined systems. Before applying the analyses presented
in this article, we cleaned the datasets by removing components without any in-
puts or outputs first and afterward removing all features without any associated
components. The numbers presented in Table 1 reflect both the state before
(original) and after this preprocessing step (cleaned). In the cleaning step, we
removed around 30% of the features from System 2 and System 3. We were told
that incomplete data records, such as components without interfaces or features
without components, are either legacy /dummy records or the object is not yet
fully specified. Therefore, we think it is reasonable to exclude them from our
analysis.

The first system we analyze is a vehicle system from MAN Truck & Bus AG,
which describes the entire software architecture of a compact truck. The sys-
tem contains 57 fully specified vehicle features that are realized by an overall of

Table 1: Overview of the study objects.

Characteristics System 1 System 2 System 3
Type of vehicle Compact Truck SUV n/a
Vehicle features
Original 57 133 217 (155+62)
Cleaned 57 94 144 (116+28)
Components
Original 270 349 959 (882+77)
Cleaned 269 325 909 (832+77)

269 components (after cleaning). The second system is a vehicle system from
the BMW Group. Within the component architecture, we focused on the driv-
ing dynamics and driver assistance domain. The system comprised 94 vehicle
features and 325 components (after cleaning). The third system is also a vehi-
cle system from the BMW Group. The focus of this system is similar to the
one of the second system (driving dynamics and driver assistance domain) but
the third system is more recent and therefore also more complex. The system
contains 144 vehicle features and 909 components (after cleaning).

None of the analyzed systems contained any information about architectural
layers. In System 3, however, the system architects distinguish between regular
features and so-called service features. With the concept of service features,
the architects acknowledge the fact that some features only exist to provide
functionality that is used in other features. This resembles our idea of a platform
component layer (see Definition 2) in the sense that all components associated
with a service feature can be considered as explicit communal components. We
were able to identify the service features in System 3 because the names of the
service features start with the prefix “SER”. The system consists of 28 service
features and 116 regular features.

Figure 4 shows the distribution of components per feature. We see that
in all systems, the majority of features contains less than 10 components (for
System 1 and System 2 even less than 5). The larger the systems, the larger
single features are. The largest feature in System 3 consists of 99 components.

Inspired by the work of Dajsuren et al. [27, 31], we report basic metrics on
coupling and cohesion of features in the three examined systems in Table 2.
Dajsuren et al. proposed these metrics (besides others) for assessing the mod-
ularity of an automotive architecture [31]. More specifically, the Subsystem
Cohesion Metric (SCM) measures the inter-relation of the blocks within a sub-
system (see [31] for the exact definition). Coupling Between Subsystems (CBS),
on the other hand, measures the number of subsystems that is influenced by
a subsystem or that influences the subsystem. Dajsuren et al. applied these
metrics in the context of Simulink models [27] and provided results for ten
models that they analyzed. The measurements of these ten reference systems

10

- — [
o a1 o

Number of Components per Feature
[6)]

System 1 System 2 System 3
40 100
95
35 90
85
80
30 75
70
65
25 60
55
20 50
45
15 o
30
10 25
20
: I 15 .
10
L 5 -
0 0
Components System 1 System 2 System 3
per feature (57 features) (94 features) (116 features)
Maximum 21 39 99
Median 4 4.5 9
Std. Dev. 5.3 7.6 20.0
Minimum 1 1 1

Figure 4: Distribution of components per feature

11

Table 2: Coupling and cohesion of features in the study objects and in reference systems based
on metrics defined by Dajsuren et al. [27, 31]

Metric System 1 System 2 System 3 [27]
Subsystem Cohesion Metric
Max 1.00 1.00 1.00 0.20
Mean 0.21 0.27 0.16 0.08
Min 0.00 0.00 0.01 0.03
Coupling Between Subsystems
Max 30 91 157 3
Mean 4.7 30.8 64.3 1.6
Min 0 0 0 0

are provided in the last column of Table 2. From the table, we see that the
feature cohesion in our examined systems is similar, yet much higher than in
the Simulink models examined by Dajsuren et al. There are large differences
in the coupling of features as the systems that we examine have many more
dependencies than the subsystems considered in the Simulink models.

The companies that provided the systems manage the features and com-
ponents of their systems in a company-specific tool. We were able to export
the relevant data from this tool to use it for further processing and applying
our dependency extraction algorithm. In all three cases, the exports contained
the set of features, the set of components associated with each feature, and a
description of the interface of each component in terms of input and output
ports.

We performed our analysis in close collaboration with the companies and
discussed our results with them.

3. Extent of Feature Dependencies in Automotive Systems

In this section, we answer the question of how many feature dependencies
exist in the analyzed systems and how the dependencies are distributed among
the features. We structure this section by two research questions.

8.1. Research Questions

RQ1: To what extent do dependencies between vehicle features exist?

We focus on dependencies in the sense that the behavior of a vehicle feature
is not solely dependent on its primary inputs but also on the input of another
vehicle feature (see Section 2).

RQ2: How are dependencies distributed over the vehicle features?

We are interested in whether dependencies are equally distributed over all vehi-
cle features or if there are vehicle features that are more central with respect to

12

dependencies. In addition, we want to know whether the position of a compo-
nent in a feature has an impact on the number and type of associated feature
dependencies. By position, we refer to the position in the chain of processing
within a feature (e.g., components related to sensing, processing, or actuation).

3.2. Data Collection

To answer the research questions, we extracted the vehicle feature graphs
for the three analyzed systems as defined in Section 2 by means of a simple tool,
written in JavaZ. The tool parses the exported dataset from the company’s data
backbone containing a list of vehicle features associated with a set of compo-
nents. The tool extracts the feature dependencies according to the definition
given in Section 2 and outputs a .csv file with the found dependencies. The
extraction is fully automated and the complexity of the algorithm is quadratic
in the number of vehicle features and components. For the observed systems,
the extraction took less than 3 seconds on a standard laptop.

3.8. Analysis Procedures

To answer the research questions, we collected the following measures:

For RQ1, we analyzed the vehicle feature graph to assess the ratio of vehicle
features that depend on another vehicle feature and to count the number of
incoming and outgoing dependencies between vehicle features. This gives an
impression of the extent of feature dependencies in realistic systems.

For RQ2, we measured the dependency fan-in and fan-out for all vehicle fea-
tures of the vehicle feature graph to see whether dependencies are distributed
equally or if certain vehicle features are more central than others. Thus, we
obtain information about the distribution of feature dependencies in real auto-
motive software systems. In addition, we relate the number of feature depen-
dencies associated with a single component to the position of this component in
the processing chain of a feature. For this purpose, we compute the longest dis-
tance from a component to any input and output of the associated feature. We
add the distances for each component and compute a normalized position indi-
cator by dividing the input distance to the maximum sum of input and output
distance of any component in the considered feature. A component without any
input or output channel within the considered feature is considered as source
or sink respectively and the distance is set to 0. Table 3 shows the results of
this position determination for the architecture given in Figure 1. The resulting
positions indicate a kind of topological order of the components within the pro-
cessing chain of a feature. Small values point to components at the beginning of
a feature processing chain (e.g., sensor processing) while values close to 1 point
to output-oriented components (e.g., actuation).

2The tool is available: https://github.com/andivogelsang/FeatureDependencyAnalyzer

13

Table 3: Positions of components in features from Figure 1.

F. C. Input Distance Output Distance Sum Position
Py —Cq: 1 Ci—Cy—: 2 3 1/320.33
Cy —C; — 042 2 04 —: 1 3 2/3:0.66
F2 CQ — Cﬁ — Cg — CQS 3 CQ —: 1 4 3/4:075
OG — 06: 1 C@ — C3 — CQ —: 3 4 1/420.25
F3 CQ — 05 — CQZ 2 CQ —: 1 3 2/3:066
Cs —Cs5: 1 Cs - Cg —: 2 3 1/3=0.33
C@ — 05 — CGI 2 C() —: 1 3 2/3:066

3.4. Validity Procedures

To ensure internal validity for System 1, we analyzed the system under inves-
tigation at a stage where it had already been subject to an architectural review.
Thus, design flaws and misconceptions within the analyzed model should be re-
duced. Additionally, we presented and discussed the results with the developers,
who assured that our results are valid and reasonable.

We analyzed System 2 at a final stage of the development process where
it was already subject to several architectural reviews and testing procedures.
Therefore, errors and misconceptions in the component architecture can nearly
be ruled out. To further ensure validity, we presented and discussed the results
with experts from the company, who assessed the dependencies we found with
respect to their plausibility.

We did not have the chance to present and discuss our results for System 3
with the actual developers. However, we analyzed the system at a stage where
it had already been subject to several architectural reviews. In addition, we
only considered the features of System 3 that were not characterized as service
features.

3.5. Study Results

In this section, we present the study results. They are structured according
to the defined research questions.

3.5.1. Extent of Dependencies (RQ1)

Table 4 summarizes the results of the analysis concerning the extent of de-
pendencies in the three analyzed systems.

Analyzing the vehicle feature graph of System 1, we found 136 dependencies
between the 57 vehicle features. 17 out of the 57 vehicle features were completely
independent of any other vehicle feature and did not have any influence on other
vehicle features. 37 vehicle features depend on other vehicle features (i.e., they
have incoming dependencies) and 30 vehicle features influence other vehicle
feature (i.e., they have outgoing dependencies).

14

Table 4: Extent of dependencies in the vehicle feature graph.

System 1 System 2 System 3

(57 features) (94 features) (116 features)
Features. .. # % # % # %
with incoming dependencies 37 64.9 81 86.2 110 94.8
with outgoing dependencies 30 52.6 72 76.6 101 87.1
with incoming and outgoing 27 474 68 72.3 98 84.5
dependencies
without dependencies 17 298 9 9.6 3 2.6

Analyzing the vehicle feature graph of System 2, we found 1,451 dependen-
cies between the 94 vehicle features. Only 9 out of the 94 vehicle features were
completely independent of any other vehicle feature. 81 vehicle features depend
on other vehicle features and 72 vehicle features influenced other vehicle feature.

Analyzing the vehicle feature graph of System 3, we found 3,728 dependen-
cies between the 116 regular vehicle features. Only 3 out of the 116 vehicle
features were completely independent of any other vehicle feature. 110 vehicle
features depend on other vehicle features and 101 vehicle features influenced
other vehicle features.

We did not find any specific patterns in the features without any dependen-
cies. Some features were related to display functionality, others were related
to lighting functions. The features with most feature dependencies included
complex driver assistance features such as Adaptive Cruise Control (ACC) or
traffic jam assistant (ACC + lane keeping) and engine-related features such as
the start-stop feature.

3.5.2. Distribution of Dependencies (RQ2)

The extent of the dependencies shows that dependencies between vehicle
features are distributed all over the system. However, some vehicle features are
more central in the sense that they have a large number of dependencies to other
vehicle features. Figure 5 illustrates this result in violin plots and minimum,
maximum, and median in a table. The figure shows that, for System 1, vehi-
cle features have a maximum of 23 other vehicle features that they influence,
whereas one vehicle feature depends on up to 10 other vehicle features. On
average (median), each vehicle feature depends on one other vehicle feature and
influences one other vehicle feature.

For System 2, these numbers are higher. A vehicle feature in this system
depends on up to 48 other vehicle features, whereas one vehicle feature has a
maximum of 53 other vehicle features that it influences, which accounts for 56%
of the vehicle features. Most of the features have at least 3 features they depend
on and at least 11 features they influence.

15

System 1

System 2

System 3

Number of Feature Dependencies
nN W B (4] D ~ (o] (<]
o o o o o o o o

-
o

AN

i

o

Incoming Outgoing

Incoming

Outgoing

Incoming

Outgoing

Feature

System 1

Dependencies (57 features)

System 2
(94 features)

System 3
(116 features)

In Out In Out In Out
Maximum 10 23 48 53 76 92
Median 1 1 3 11 30.5 27.5
Std. Dev. 2.7 3.8 17.2 14.9 20.7 26.6
Minimum 0 0 0 0 0 0

Figure 5: Distribution of feature dependencies per feature

16

7,
e
"N\\\~ ~

(a) System 1 (b) System 2 (c) System 3

Figure 6: Features dependencies visualized as Bundled Edge View. The outer ring represents
the hierarchy of features. Each dot on the inside of the outer ring represents a feature. The
edges indicate a dependency between two features.

We found the largest variance of feature dependencies in System 3. A vehicle
feature in this system depends on up to 76 other vehicle features, whereas one
vehicle feature influences up to 92 other vehicle features, which accounts for
79% of all vehicle features. On average (median), each vehicle feature depends
on 30 other vehicle features and influences 27 other vehicle features.

The distributions of dependencies in the three systems do not indicate to
follow a certain statistical distribution. While for System 1, the distribution
of feature dependencies fits a classical long-tail distribution (i.e., it is right-
skewed), the distribution of feature dependencies for System 2 looks more like a
bimodal distribution, and the distribution in System 3 is almost uniform (with
a slight right-skew). We take this as an indication that there is not an implicit
underlying working principle that constitutes a reason for feature dependencies.

The intermeshed structure of the features becomes particularly visible when
illustrating the dependencies in a Bundled Edge View [32] (see Figure 6).

Figure 7 shows the positions of components in a feature and the associated
number of incoming and outgoing dependencies. As explained before, a position
indicator close to 0 indicates components at the beginning of a feature processing
chain, whereas values close to 1 indicate a position at the end of the processing
chain. The figure shows that the distribution is different in the three systems,
however, we can still observe some common trends.

Components with incoming dependencies are mostly located in the middle
of a feature processing chain. This may indicate that information from other
features is needed in the central “business logic” of a feature (e.g., to validate
results or to check side-conditions of other features). Components with outgoing
dependencies are located more towards the beginning of a feature processing
chain. This makes sense to some degree as components at the beginning of a
feature are often related to sensor handling and data preprocessing. Both tasks
may also be of interest in other features.

In System 3, the extent of outgoing dependencies in components at the be-
ginning of a feature is not as large as in the other systems. A reason for this

17

Incoming Incoming Incoming
System 1 System 2 60 System 3
' 45 : 55
5
n
.0
o
C
[}
'g 0 —tor-t . HIR H
8 0.00.20.40.60.81.0 0.00.20406081.0 0.00.204060.81.0
8 Outgoing Outgoing Outgoing
5 System 1 System 2 System 3
S . 55 .
815 35
S
> 30
10 25
| 20
15
5{. :
: 10
5
ol R

0.00.20.40.60.81.0 0.00.20.406081.0 0.00.20.40.60.81.0
Position in Feature

Figure 7: Number of dependencies per component in relation to its position in the processing
chain of a feature.

18

phenomenon could be the introduction of service features in System 3 (see Sec-
tion 2.5). Since the service features are excluded from the analysis of System 3,
it is possible that mostly components from the beginning of a feature processing
chain have been transferred to service features. As a result, the number of de-
pendencies related to early components is reduced in System 3. We investigate
this effect in more detail in RQ4.

3.6. Conclusion

Our analysis shows that the majority of features in the examined systems
cannot be considered in isolation. The larger the systems are, the more inter-
meshed and dependent the features become. Especially for System 3, it is hard
to consider the feature structure as a proper functional breakdown because most
features rely on more than one-quarter of all features and influence similarly
many other features. In addition, our analysis shows that components at the
beginning a feature processing chain are more subject to outgoing dependencies,
while components in the middle and towards the end of a feature are stronger as-
sociated with incoming dependencies. An interesting case is System 3, in which
the architects have started to define service features. This may have already
impacted the observed distribution of dependencies. We investigate this in more
detail in RQ4. From our results, we conclude that feature dependencies are a
phenomenon that developers should be aware of when they develop features and
design the overall architecture of automotive software systems. Whether this is
the case is subject to the next section.

4. Awareness of Feature Dependencies in Automotive Systems

As explained in the introduction of this article, automotive organizations
are largely structured with respect to features and their domains. Given the
large number of feature dependencies that we found in the examined systems,
we are interested in the question whether the developers of the features are
aware of these dependencies and how dependencies influence the development
of the features and the component architecture. We address this objective by
answering two questions that emerged from the specifics of the cases that we
considered.

4.1. Research Questions

RQ3: To what extent are developers aware of feature dependencies?
Developers of automotive systems are not necessarily aware of existing depen-
dencies. We want to identify existing feature dependencies that are unknown to
developers. For System 2, we had the chance to examine and discuss a subset
of the extracted feature dependencies with the developers in detail. Therefore,
we addressed this research question in the context of System 2.

19

RQ4: Are feature dependencies more frequent in service features compared with
other features?

As described in Section 2.5, System 3 contains regular features and so-called
service features. We expect that feature dependencies appear more frequently
in service features compared with the regular features because service features
are designed to support other features. We were told that the definition of ser-
vice features is done based on expert opinions and experience.

Both research questions help us to understand the awareness of feature de-
pendencies in current working practices.

4.2. Data Collection

To answer RQ3, we performed interviews with four engineers from the com-
pany of System 2, who are involved in the development of features and compo-
nent architectures. We confronted the experts with a sample of feature depen-
dencies that we found in our analysis and that matched their area of respon-
sibility. In order to get representative results from the interview partners, we
selected one expert from each area within the domain of driving dynamics and
driver assistance. These areas are lateral, longitudinal, and vertical dynamics
as well as driver assistance features. The experts each were responsible for a
number of 12-46 vehicle features.

We let the experts classify each dependency into the following categories:

e plausible/implausible: A dependency is considered as plausible if the
expert finds a functional or physical explanation for this dependency. If
the expert has no functional or physical explanation for this dependency,
it is considered as implausible.

e known/unknown: A dependency is considered as known if the expert
was aware of this dependency prior to the interview. If the expert was
not aware of this dependency prior to the interview, it is considered as
unknown.

In total, we discussed 100 feature dependencies in depth (i.e., 6.7% of all de-
pendencies).

To answer RQ4, we included the service features into our analysis of feature
dependencies and treated them as if they were regular features. We performed
the same feature dependency analysis as presented in Section 3 on the set of all
features (regular and service features) and compared the two types of features
afterwards.

4.3. Analysis Procedures

For RQ3, we counted the number and ratio of feature dependencies in Sys-
tem 2 for each combination of category values, leading to a 2x2 matrix with
the two categories as dimensions. We interpret the ratio of plausible feature de-
pendencies as an indicator for the validity of our feature dependency extraction

20

Table 5: Plausibility and awareness of all analyzed feature dependencies in System 2.

Dependencies known unknown All
Incoming n=63
All 38% 62%
plausible 37% 59% 95%
implausible 2% 3% 5%
Outgoing n=37
All 49% 51%
plausible 49% 30% 78%
implausible 0% 22% 22%
Incoming + Outgoing n=100
All 42% 58%
plausible 41% 48% 89%
implausible 1% 10% 11%

approach and the ratio of known feature dependencies as an indicator for the
awareness of feature dependencies in general.

For RQ4, we performed hypothesis tests with Hy: Service features and reg-
ular features have the same number of feature dependencies and the alternative
hypothesis Hy: Service features have more feature dependencies than regular
features. We performed this test for the total number of dependencies (incom-
ing and outgoing) as well as individually for the number of incoming and for
the number of outgoing feature dependencies. We used a Shapiro-Wilk’s test
to check whether the number of feature dependencies is normally distributed
in the sets of regular and service features. It turned out that they are not
normally distributed (p-values < 0.05). Therefore, we used an unpaired two-
sample Wilcoxon test (a.k.a. Mann-Whitney U test) for the hypothesis test with
a confidence level of 0.95.

4.4. Study Results

4.4.1. Awareness of Dependencies (RQS3)

Table 5 summarizes the results of the expert interviews that we conducted
for System 2 in order to assess the plausibility and awareness of the analyzed
feature dependencies. The table shows the results for incoming, outgoing, and
all dependencies separately.

The results indicate that our analysis produced reasonable results as only
11% of the examined feature dependencies were considered as implausible, i.e.,
the dependencies were a result of our analysis but the experts considered them
as not correct or at least they were not able to give account for them. Such cases
included dependencies between features that were very similar to each other or
they were in fact alternatives. The interviewees stated that there should not be
a dependency between those features as they would never appear in one specific

21

product. Yet, they were not able to explain why these dependencies still exist in
the data. Three further feature dependencies that were considered implausible
relate to one specific damping feature.

Of the 100 feature dependencies that we examined in the interviews, 42%
were known to the experts and 58% were unknown (see Table 5). The largest
group of feature dependencies that we examined was the group of unknown
but plausible feature dependencies, i.e., the experts were not aware of the de-
pendency between the features but when examining the affected signals and
components they found reasonable explanations for them. We did not find
specific patterns of particular types of dependencies that are more prone to
be unknown to the developers. One examined dependency was considered as
known but implausible as the expert was aware of it but had no explanation
why this dependency exists.

The detailed results show that there is a difference in the awareness of incom-
ing and outgoing feature dependencies. Our interview participants considered
incoming dependencies plausible by a higher ratio than outgoing dependencies
(95% vs. 78%). One explanation may be that it is easier for developers to as-
sess the plausibility of dependencies if they relate to signals that are used in the
feature of the developer (i.e., incoming dependencies). In contrast, it may be
harder to assess whether a signal that is produced by the feature of the devel-
oper is used in another feature (i.e., outgoing dependency). On the other hand,
our participants considered relatively more incoming feature dependencies as
unknown than outgoing feature dependencies (62% vs. 51%).

4.4.2. Dependencies of Service Features (RQ4)

Figure 8 shows the distribution of feature dependencies in the sets of regular
and service features in System 3. As expected, the service features have a
higher number of feature dependencies compared with the regular features. By
adding the 28 service features to the analysis of the 116 regular features, the
total number of feature dependencies almost doubles (7,071 vs. 3,728 feature
dependencies). We were able to reject Hy in favor of H; in the case of all
dependencies (p-value: 0.0003) and outgoing dependencies (p-value: 0.014). We
were not able to reject Hy in favor of H; for the case of incoming dependencies
(p-value: 0.087). The median number of feature dependencies in service features
is 63% greater than in regular features.

The distribution of dependencies in the sets of regular and service features
indicates that the service features are in line with their purpose. The distribu-
tion is left-skewed, i.e., the mass of the distribution is concentrated on higher
numbers of dependencies. In comparison, the distribution of dependencies in
regular features is right-skewed, i.e., the mass of the distribution is concentrated
on lower numbers of dependencies.

Although we did not have information about the details of the service fea-
tures, the names already indicate the purpose of single service features. 15 out
of the 28 service features have the term “provisioning” in combination with a
specific signal in their name (e.g., SER_provisioning_steeringangle). This indi-
cates that these features encapsulate behavior related to the provisioning of a

22

Incoming Outgoing Total

200

- N - -
o n (2 ~
o [6)] o o

~
[6)]

T 1

Number of Feature Dependencies

25
0
Regular Service Regular Service Regular Service
features features features features features features
Feature Dep. Incoming Outgoing Total
Reg. Ser. Reg. Ser. Reg. Ser.
Maximum 103 85 117 128 209 196
Median 46.5 56.5 34 76 87 142
Std. Dev. 25.9 22.5 35.4 40.2 54.0 52.5
Minimum 1 1 1 7 2 8

Figure 8: Distribution of feature dependencies for regular and service features of System 3.

23

specific information. Another 10 service feature names contain the term “actua-
tion” in combination with a specific signal (e.g., SER_actuation_blinking). Such
service features may collect control commands from different features, bundle
(and maybe prioritize) them, and then forward the signal to a controller. The
difference between these two groups of service feature is also reflected by the
number of incoming and outgoing dependencies. While the “provisioning” ser-
vice features have more outgoing than incoming dependencies in general, for
“actuation” service features, it is the other way around.

4.5. Conclusions

Our analysis shows two things: (1) Developers of features are not aware
of a large part of dependencies between features. In order to implement their
features, the developers use signals available on the bus systems without consid-
ering where these signals come from. Similarly, they are not aware of which other
features are using the signals that are produced in the feature of a developer.
In the current way of how features are developed in the examined companies,
unawareness about outgoing dependencies poses a challenge because signals are
changed without a proper change-impact analysis. As a result, errors that arise
from a changed signal are detected late when features are integrated. With the
help of an analysis as presented in this paper, developers are aware of outgoing
dependencies much earlier and a change-impact analysis is possible.

(2) On the other hand, the comparison of regular and service features indi-
cates that feature dependencies might play an important role in structuring the
system. Our results show that features with a large number of dependencies
are candidates for serving as service features that have a different role than
regular features in the vehicle architecture. However, our results also indicate
that currently, outgoing feature dependencies play a larger role for service fea-
tures than incoming feature dependencies. This is also in line with the results
of RQ2, where incoming dependencies in System 3 appeared in components
more towards the middle and end of a feature processing chain. Components
at the beginning of the processing chain are strongly associated with outgoing
dependencies. A reason for this may be that it is easier to identify commonly
used signals and then define the producing feature as a service feature com-
pared to identifying features that collect many signals to merge them. In the
next section, we present an approach that systematically considers incoming
and outgoing dependencies to suggest candidates for service features.

5. Dependency-based Refactoring

Based on the findings of the last sections, we conclude that feature depen-
dencies are a phenomenon that is omnipresent in automotive architectures but
that developers are not very aware of and that does not play a major role
when considering architectural decisions such as deciding which functionality
to provide as platform services. In addition, we recognized in discussions with
developers that feature dependencies do not necessarily exist right away from

24

(a) Before refactoring. (b) After refactoring

Figure 9: Communal component C4 is refactored by shifting it into the dedicated platform
component layer (PCL).

the beginning. In most cases, feature dependencies emerge over time, when sig-
nals of components that were initially specified only for one specific feature are
(re)used by components of other features. Component signals are transmitted
via bus systems, which makes the information available to all components con-
nected to that bus. Therefore, it is a common practice of developers to (re)use
any signal that is available on the bus system to implement or adapt a fea-
ture, regardless of the origin of that signal. By this practice, a component that
was originally designed for one specific feature becomes relevant for other fea-
tures as well. Thus, a component may over time become an implicit communal
component (see Section 2.4).

5.1. Approach: Dependency-based Refactoring

In the context of this study, we make an implicit communal component ex-
plicit by extracting it from its original feature and shifting it into the PCL.
Figure 9b shows a refactored version of the architecture of Figure 9a, where the
implicit communal component C} is made explicit by shifting it to the PCL. We
do not consider signal flow from components of the PCL to components of a fea-
ture as a feature dependency. Therefore, making implicit communal components
explicit reduces the number of feature dependencies in the system. For example,
by the refactoring shown in Figure 9b, we removed the feature dependency be-
tween F; and F5. Of course, component Cy still reads the signal provided by Cy,
but now Cy is not associated with a feature but with the platform component
layer. That means, the dependency between Cy and Cj does not completely
disappear but it changes from a feature dependency to a dependency between
a feature and the PCL. This change has a positive impact on efforts for several
development activities. In fact, implicit communal components can be charac-
terized as technical debt [15]. We propose this dependency-based refactoring
approach as a systematic and objective way to decide which communal compo-
nents are candidates for being refactored and to reduce the technical debt in

25

the architecture. To evaluate how well this approach reflects reality, we applied
the approach to the three case study systems.

5.2. Research Questions

Our research goal is to assess the extent of implicit communal components
within real-world automotive systems and examine the effect of a dependency-
based refactoring approach on the number of feature dependencies. For this
purpose, we follow two research questions.

RQ5: How many implicit communal components exist in real-world automotive
systems?

We want to assess the extent of implicit communal components in real-world
automotive systems. The answer to this question indicates the relevance of
considering implicit communal components as technical debt.

RQG6: What is the effect of dependency-based refactoring on the number of fea-
ture dependencies?

We want to understand if and how our dependency-based refactoring approach
leads to a reduction in feature dependencies. The answer to this question may
indicate whether it is reasonable to consider dependency-based refactoring for
architectural evolutions of automotive systems.

5.8. Data Collection and Analysis

To answer RQ5, we calculated the number of implicit communal components
and resulting feature dependencies within the component architecture based on
Definitions 1 and 4. In System 3, we excluded all service features for this analysis
to consider the fact that these features are already intended to serve as platform
service features.

To answer RQ6, we implemented and analyzed a greedy algorithm that re-
moves, in each iteration, the single implicit communal component that con-
tributes to the largest number of feature dependencies. This refactoring oper-
ation corresponds to the idea of shifting an implicit communal component to
a dedicated platform component layer, i.e., the component does no longer con-
tribute to any feature dependency. The algorithm terminates when all implicit
communal components have been refactored and thus no feature dependency
exists anymore. As a result of one refactoring step, a number of feature de-
pendencies are removed and consequently also a number of implicit communal
components may become “normal” components (when the removed feature de-
pendencies are the only dependencies a communal component contributes to).
Thus, the algorithm is steadily decreasing the number of feature dependencies
with each refactoring of an implicit communal component.

26

Table 6: Overview of the study results for RQ5

Results for RQ5 System 1 System 2 System 3
Implicit communal components 97 (36%) 175 (46%) 504 (60%)
Feature dependencies 136 1,451 3,728

5.4. Study Results

5.4.1. RQ5: Number of Implicit Communal Components

Table 6 depicts the results of RQ5. For the small truck (System 1), our
automated analysis returned an overall of 97 implicit communal components,
which accounts for 36% of all components. These 97 communal components
contribute to an overall of 136 feature dependencies between the 57 features of
the system. For the SUV (System 2), we identified 175 implicit communal com-
ponents, which accounts for 46% of all components. The communal components
contribute to an overall of 1,451 feature dependencies between the 94 features
of the system. For System 3, we identified 504 implicit communal components,
which accounts for 60% of all components (not counting components already
assciated with service features). The communal components contribute to an
overall of 3,728 feature dependencies between the 116 features of the system
that are not service features.

Interpretation: The goal of RQ5 was to assess the extent of implicit commu-
nal components in real-world automotive systems to indicate the relevance of
considering implicit communal components as technical debt. The presented re-
sults show that in the examined systems 36-60% of all components are implicit
communal components. Thus, refactoring all implicit communal components at
once is not realistic and, therefore, it is useful to consider implicit communal
components as technical debt that should be removed when the refactoring pays
off.

5.4.2. RQG6: Effect of Dependency-based Refactoring On Feature Dependencies

Figure 10 shows the remaining percentage of feature dependencies within
the three systems after each iteration of the mentioned greedy algorithm that
successively refactors the component that contributes to the largest number
of feature dependencies. The figure shows that, for all systems, the number of
feature dependencies decreases strongly after refactoring only a few components.
In fact, to remove 90% of the feature dependencies, we need to refactor less
than 12.5% of the components. To remove all feature dependencies, we need
to refactor 13% of components for System 1, 22% for System 2, and 26% for
System 3.

In addition to the number of remaining feature dependencies, which resem-
bles a reduction of coupling of features, we also analyzed the corresponding
cohesion. A reduction of coupling may come with the risk of lower cohesion be-
cause features may get pulled apart. However, for the three examined systems,
we rather observe a slight increase in cohesion. In Section 2.5, we reported the

27

100%

90% System
a3 N System 1
2 0% 4 System 2
c System 3
[0}
T 70%
[0
5]
o 60%
o R
o}
T 50%
Q
()]
£ 40% s
£ AL
© A
€ 30% n
o R
° has

20%)

AAAA
10% B
Hasaaa,,
Ahhidan,,,
0% Eam Y YYYYVVYy
0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

% of refactored components

Figure 10: Remaining feature dependencies after successively refactoring implicit communal
components

original mean cohesion values of the systems in terms of the Subsystem Co-
hesion Metric [31]. This measure of cohesion increased during the refactoring
simulation from 0.21 to 0.24 for System 1, from 0.27 to 0.31 for System 2, and
from 0.16 to 0.22 for System 3. That means that the refactoring operations
in the examined systems do not have a negative influence on the cohesion of
features.

Interpretation: The goal of RQ6 was to understand how single commu-
nal components contribute to the number of feature dependencies to justify an
individual assessment of components with respect to their impact on feature
dependencies. The presented results show that the contribution to feature de-
pendencies strongly differs between single communal components. Therefore,
refactoring some communal components has a much higher impact on feature
dependencies than refactoring others. Assuming that the refactoring operation
is equally costly for all implicit communal components, this means that there are
some communal components for which the refactoring saves much more effort
compared to others. This results in a trade-off between costs for the refactoring
step and benefits gained from removing the corresponding feature dependencies.
We characterized this trade-off as a type of technical debt in earlier publications
and identified a number of cost factors that need to be considered when assessing
the trade-off [15]. By considering this trade-off, it should be clear that it is usu-
ally not desirable to refactor all implicit communal components. Components
should only be refactored if the (short- and long-term) costs for refactoring are

28

lower than the costs for an implicit communal component. This decision may
also be influenced by the current state of the PCL. Shifting more and more com-
ponents to the PCL may make the PCL large and complicated, which increases
the costs for maintaining the PCL. System architects must find the sweet spot
between a manageable PCL and a low number of feature dependencies. Our
analysis does not provide a definitive answer to this sweet spot but we would
consider a refactoring of 10% of components as reasonable as this would result
in a decrease in feature dependencies of almost 90% while the PCL consists of
only 26-83 components for the analyzed systems.

6. Threats to Validity

We structure and discuss the threats to validity along the three aspects that
we have addressed in this article.

6.1. Extent of Feature Dependencies

Construct Validity: Our analysis relies on our definition of feature de-
pendencies as given in Section 2. There may be other definitions of feature
dependencies that may also be used to answer the RQs and that may lead to
different results. Besides the explicitly modeled dependencies that are in the
focus of this study, there may also be dependencies between vehicle features
that occur when functions are implicitly connected by a feedback loop through
the environment. Considering also such dependencies may additionally increase
the number of detected feature dependencies. The specification and detection of
these dependencies would require considering a system together with a precise
specification of its context.

Internal Validity: A threat to the internal validity is the fact that the
analyzed models are already a realization/implementation of the vehicle fea-
tures. Dependencies might thus be a consequence of design decisions made by
developers and not a necessity of the vehicle feature itself. This effect can be
seen as an instance of the optional feature problem [33], which addresses that
the implementation of features may be dependent, although the actual features
are independent in the problem domain.

External Validity: A threat to the external validity is that we performed
this study in a development and tooling context specific to the two companies
that provided the examined systems. This context might not be transferable to
other companies or domains. However, from our experience, we are confident
that the definition of vehicle features, which are implemented by a network of
functional blocks or components, is common in the development of automotive
software systems.

6.2. Awareness of Feature Dependencies

Construct Validity: We determine awareness from two angles. One is
a direct measure, where we ask developers whether they know certain feature
dependencies, the other is an indirect measure, where we examine the expected

29

effect of feature dependencies toward the definition of so-called service features.
Besides these two measures, there may be other measures to determine aware-
ness (cf. [34]). In addition, awareness may not be a good indicator to reveal ac-
tual development problems caused by feature dependencies. In earlier work [15],
we made a first attempt to relate the phenomenon of feature dependencies to
development activities that become more costly in the presence of feature depen-
dencies. This activity-oriented characterization may lead to a more operational
characterization of the challenges related to feature dependencies (cf. [35]).

Internal Validity: We use triangulation and assess the concept of aware-
ness from two different angles as explained above. By this, we aim to reduce
the threats to validity related to qualitative research (reactivity, researcher bias,
and respondent bias [36]).

External Validity: Similar to our analysis of the extent of feature depen-
dencies, our conclusions for the awareness are based on the observations of only
two systems (System 2 and System 3) in the specific context of one company.
Thus, it is possible that other developers of other automotive companies are
more (or less) aware of feature dependencies due to better tooling, methodolo-
gies, or just because the systems they develop are less complex. We think that
the level of complexity should be similar for other automotive OEMs, however,
it may be the case that feature dependencies are not so much of a problem for
automotive supplier companies who usually build smaller subsystems.

6.3. Dependency-based Refactoring

Construct Validity: The study on the effect of applying the refactoring
operation is based on a simulation of refactoring steps. There was no actual
refactoring of those systems that could be tested and evaluated whether it pre-
served the behaviour of the previous versions.

Although we consider the technical debt metaphor as a useful instrument
to explain the effects of communal components, we are not sure whether an
operationalization can provide quantitative measures that allow for an exact
prediction of cost savings. It is an open issue whether it is possible to quantify
the cost factors provided in this paper and how to weight them.

Internal Validity: A limitation of our study is that we only considered
one type of refactoring. There may be other possibilities of refactoring implicit
communal components with a different cost structure (e.g., making implicit
communal components explicit by labeling them inside a feature and not moving
them to the PCL).

External Validity: From a research methodological point of view, the
sample size of our study poses a threat to the validity of the results. We answered
the RQs on the basis of examining only three system instances.

7. Related Work

Apel et al. [37] explored feature interactions in real-world systems and char-
acterized them by two dimensions: order and visibility. The order of a feature

30

interaction is defined as the minimum number of features (minus one) that need
to be activated to trigger the interaction. For visibility, the authors distinguish
between external and internal feature interactions. External feature interactions
may appear at the level of externally-visible behavior. They are subdivided into
functional interactions, which address interactions violating the functional spec-
ification of a system and non-functional interactions, which address interactions
influencing non-functional properties (e.g., performance, memory consumptions,
or energy consumption). Internal feature interactions, on the other hand, may
appear at the level of the internal properties of a system. They are subdi-
vided into structural interactions, which can be detected by static analysis of
the syntactic program structure and operational interactions, which can only
be detected by more sophisticated analyses (e.g., control or data flow analy-
sis). In their article, Apel et al. [37] give preliminary results considering the
detection and classification of feature interactions in four real-world systems:
Linux, BusyBox, GCC, and APACHE. Feature interactions occurred in all
systems, and the authors found interactions of all kinds, including structural,
operational, functional, and non-functional interactions. The internal feature
interactions outnumbered the external feature interactions found. Ribeiro et al.
report similar results when examining preprocessor-based code [11]. They found
that 66% =+ 18.5% of the methods with directives have dependencies. In our
study, we found feature dependencies in more than 70% of all features and more
than 36% of components. We were interested in external functional feature in-
teractions [37] and call them feature dependencies. In Section 3, we investigate
structural (i.e., internal) interactions in an automotive system to derive feature
dependencies. Our results support the presumption of Apel et al. [37], who
assume a relation between internal and external feature interactions: “We [the
authors] believe that there may be systematic correlations between externally-
visible and internally-visible interactions, which is a major motivation for our
endeavor to explore and understand the nature of feature interactions.”

In a study by Késtner et al. on the optional feature problem [33], the authors
conclude that dependencies on an implementation/architectural level should be
separated and handled differently from dependencies on a level of features. We
support this conclusion from a different angle by our results. In our study, we
showed that specifying dependencies solely on an implementation/architectural
level leads to a high chance of missing dependencies on the level of functions.

The extraction of cross-feature dependencies as presented by Cataldo and
Herbsleb [13] is comparable to our extraction of feature dependencies. In their
study, they showed with statistical significance that the higher the number of
feature dependencies is, the higher is the likelihood of integration failures to
occur. In our study, we have not investigated the relation between feature
dependencies and integration failures but we observed a high number of feature
dependencies in real-world multifunctional systems and showed that developers
are, in most cases, not aware of them. Together with the results from the study
of Cataldo and Herbsleb [13], this leads to the conclusion that many severe
faults are due to feature dependencies.

Technical debt in the context of automotive systems is a relatively new topic.

31

Eliasson et al. recently defined and assessed two types of architecture technical
debt for automotive systems: A derivation of the actual system architecture from
a previously defined ideal architecture [38] and a misplaced component, which is
a component that is deployed to a hardware execution unit different from other
components that contribute to the realization of the same feature [39]. Our
work adds implicit communal components as an additional type of technical
debt relevant in the automotive context. We consider it promising to further
identify and investigate types of technical debt specific for a given context (such
as automotive systems).

Martini et al. [2] provide a qualitative model that describes causes of in-
troducing technical debt. One cause they mention is “priority of features over
product”. They exemplify: “Small refactorings necessary for the feature are
carried out within the feature development by the team, but long-term refactor-
ings, which are needed to develop “architectural features” for future development,
are not considered necessary for the release.” [2] This matches the situation in
automotive companies where the whole development is often organized in fea-
ture teams and no team is responsible for an extensible and maintainable system
architecture. From our point of view, this is a reason for the large number of
implicit communal components we found in the analyzed systems.

A recent trend in automotive architectures is the migration to service-oriented
architectures [29, 40, 41] to allow for more flexible and faster development and
deployment. In a recent case study, we have shown how an advanced driver as-
sistance function can be migrated to a microservice architecture [30]. The defi-
nition of modular services may well support our proposed refactoring approach.
During the refactoring of an implicit communal component, the component may
be migrated to a microservice. Services and service-based definition of software
components are also supported in recent automotive architecture standards such
as the AUTOSAR Adaptive Platform [28]

8. Summary and Conclusions

In this article, we presented an extensive analysis of dependencies between
features in automotive software systems. Features are used to structure the
functionality that is provided by a system with the goal to decompose the spec-
ification. We presented an algorithmic approach to extract feature dependencies
from dataflow between components that implement the features.

Our results point to a number of problems that occur in today’s develop-
ment of automotive software systems. Current development processes handle
vehicle features more or less as isolated units of functionality. To some extent,
this has historical reasons as the automotive industry managed to make their
different features as independent as possible such that vehicles could be devel-
oped and produced in a modular way. With the rise of software-based features
in the vehicle, this independence disappeared [1]. The extent and distribution
of dependencies between vehicle features challenge the process and methods for
requirements specification, system integration and testing [42, 15].

32

The results of this study show that dependencies between vehicle features
pose a great challenge for the development of automotive software systems. Al-
most every vehicle feature depends on or influences another vehicle function.
We have also seen that describing the dependencies solely on the level of imple-
menting components is insufficient for analyzing them, leading to a 50% chance
that a developer is not aware of a specific dependency. Our results empirically
underpin the challenges mentioned by Broy et al. [1, 43], where the authors
state that “functions [of a vehicle] do not stand alone, but exhibit a high de-
pendency on each other so that a vehicle becomes a complex system where all
functions act together”. Dependencies should rather be specified on the levels
of features, which demands a clear definition of feature interfaces. We have
proposed a dependency-based refactoring approach for components that shows
the potential of considering feature dependencies for a more modular system
architecture.

Acknowledgments

We thank the employees of our industrial partners for providing the data
that we analyzed and the interview participants for contributing to the results.
In particular, we thank Steffen Fuhrmann and Stefan Cimander. In addition,
we thank Florian Wiesweg for feedback on earlier versions of this manuscript.

References

[1] M. Broy, Challenges in automotive software engineering, in: 28th Inter-
national Conference on Software Engineering (ICSE), 2006, pp. 33-42.
doi:10.1145/1134285.1134292.

[2] A. Martini, J. Bosch, M. Chaudron, Architecture technical debt: Under-
standing causes and a qualitative model, in: 40th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA), 2014,
pp- 85-92. doi:10.1109/SEAA.2014.65.

[3] M. Broy, I. Kriiger, A. Pretschner, C. Salzmann, Engineering automotive
software, Proceedings of the IEEE 95 (2) (2007) 356-373. doi:10.1109/
JPROC. 2006 .888386.

[4] P. Zave, FAQ sheet on feature interaction, http://www.research.att.
com/~pamela/faq.html (1999).

[5] M. Calder, M. Kolberg, E. H. Magill, S. Reiff-Marganiec, Feature in-
teraction: a critical review and considered forecast, Computer Networks
41 (1) (2003) 115-141. doi:https://doi.org/10.1016/51389-1286(02)
00352-3.

[6] R. G. Crespo, M. Carvalho, L. Logrippo, Distributed resolution of feature
interactions for internet applications, Comput. Netw. 51 (2) (2007) 382
397. doi:10.1016/j.comnet.2006.08.010.

33

[7]

[12]

[13]

[16]

M. Weiss, B. Esfandiari, Y. Luo, Towards a classification of web service fea-
ture interactions, in: B. Benatallah, F. Casati, P. Traverso (Eds.), Service-
Oriented Computing (ICSOC), Springer Berlin Heidelberg, 2005, pp. 101—
114.

A. Vogelsang, S. Fuhrmann, Why feature dependencies challenge the re-
quirements engineering of automotive systems: An empirical study, in:
21st IEEE International Requirements Engineering Conference (RE), 2013.
doi:10.1109/RE.2013.6636728.

P. Jayaraman, J. Whittle, A. M. Elkhodary, H. Gomaa, Model composi-
tion in product lines and feature interaction detection using critical pair
analysis, in: G. Engels, B. Opdyke, D. C. Schmidt, F. Weil (Eds.), Model
Driven Engineering Languages and Systems, Springer Berlin Heidelberg,
2007, pp. 151-165.

R. Donaldson, M. Calder, Modular modelling of signalling pathways and
their cross-talk, Theoretical Computer Science 456 (2012) 30-50. doi:
https://doi.org/10.1016/j.tcs.2012.07.003.

M. Ribeiro, F. Queiroz, P. Borba, T. Tolédo, C. Brabrand, S. Soares, On
the impact of feature dependencies when maintaining preprocessor-based
software product lines, in: 10th ACM International Conference on Genera-
tive Programming and Component Engineering (GPCE), 2011, pp. 23-32.
doi:10.1145/2047862.2047868.

B. B. Cafeo, E. Cirilo, A. Garcia, F. Dantas, J. Lee, Feature dependencies
as change propagators: An exploratory study of software product lines,
Information and Software Technology 69 (2016) 37-49. doi:https://doi.
org/10.1016/j.infsof.2015.08.009.

M. Cataldo, J. D. Herbsleb, Factors leading to integration failures in global
feature-oriented development: An empirical analysis, in: 33rd International
Conference on Software Engineering (ICSE), 2011, pp. 161-170. doi:10.
1145/1985793.1985816.

C. Késtner, S. Apel, M. Kuhlemann, Granularity in software product lines,
in: 30th International Conference on Software Engineering (ICSE), 2008,
pp- 311-320. doi:10.1145/1368088.1368131.

A. Vogelsang, H. Femmer, M. Junker, Characterizing implicit communal
components as technical debt in automotive software systems, in: 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA), 2016,
pp- 31-40. doi:10.1109/WICSA.2016.28.

A. Vogelsang, S. Teuchert, J. Girard, Extent and characteristics of de-
pendencies between vehicle functions in automotive software systems, in:
4th International Workshop on Modeling in Software Engineering (MISE),
2012. doi:10.1109/MISE.2012.6226020.

34

[17]

[18]

[27]

K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-
21, Software Engineering Institute, Carnegie Mellon University (1990).

K. Chen, W. Zhang, H. Zhao, H. Mei, An approach to constructing fea-
ture models based on requirements clustering, in: 13th IEEE Interna-
tional Conference on Requirements Engineering (RE), 2005, pp. 31-40.
doi:10.1109/RE.2005.9.

P. Shaker, J. Atlee, S. Wang, A feature-oriented requirements modelling
language, in: IEEE International Conference on Requirements Engineering
(RE), 2012, pp. 151-160. doi:10.1109/RE.2012.6345799.

B. Schétz, Modular functional descriptions, Electronic Notes in Theoretical
Computer Science 215 (2008) 23-38. doi:10.1016/j.entcs.2008.06.019.

J. Liu, D. Batory, C. Lengauer, Feature oriented refactoring of legacy appli-
cations, in: 28th International Conference on Software Engineering (ICSE),
2006, pp. 112-121. doi:10.1145/1134285.1134303.

S. Apel, C. Lengauer, B. Moller, C. Késtner, An algebraic foundation for
automatic feature-based program synthesis, Science of Computer Program-
ming 75 (11) (2010) 1022-1047. doi:10.1016/j.scico0.2010.02.001.

M. Broy, Multifunctional software systems: Structured modeling and spec-
ification of functional requirements, Science of Computer Programming
75 (12) (2010) 1193-1214. doi:10.1016/j.scico.2010.06.007.

D. Batory, J. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE
Transactions on Software Engineering (TSE) 30 (6) (2004) 355-371. doi:
10.1109/TSE.2004.23.

S. Apel, D. S. Batory, C. Késtner, G. Saake, Feature-Oriented Software
Product Lines — Concepts and Implementation, Springer, 2013.

M. Broy, W. Damm, S. Henkler, K. Pohl, A. Vogelsang, T. Weyer, In-
troduction to the SPES modeling framework, in: Model-Based Engi-
neering of Embedded Systems, Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-34614-9_3.

Y. Dajsuren, M. G. van den Brand, A. Serebrenik, S. Roubtsov, Simulink
models are also software: Modularity assessment, in: 9th International
ACM Sigsoft Conference on Quality of Software Architectures (QoSA),
2013, pp. 99-106. doi:10.1145/2465478.2465482.

S. Fiirst, M. Bechter, AUTOSAR for connected and autonomous vehicles:
The AUTOSAR adaptive platform, in: 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop (DSN-
W), 2016, pp. 215-217. doi:10.1109/DSN-W.2016.24.

35

[29]

S. Kugele, D. Hettler, J. Peter, Data-centric communication and con-
tainerization for future automotive software architectures, in: IEEE In-
ternational Conference on Software Architecture (ICSA), 2018, pp. 65-74.
doi:10.1109/ICSA.2018.00016.

J. Lotz, A. Vogelsang, O. Benderius, C. Berger, Microservice architectures
for advanced driver assistance systems: A case-study, in: IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW), 2019,
pp- 45-52. doi:10.1109/ICSA-C.2019.00016.

Y. Dajsuren, On the design of an architecture framework and quality evalu-
ation for automotive software systems, Ph.D. thesis, Department of Math-
ematics and Computer Science, Technische Universiteit Eindhoven (2015).

D. Holten, Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data, IEEE Transactions on Visualization and Computer
Graphics 12 (5) (2006) 741-748. doi:10.1109/TVCG.2006. 147.

C. Kaéstner, S. Apel, S. S. ur Rahman, M. Rosenmiiller, D. Batory,
G. Saake, On the impact of the optional feature problem: Analysis and case
studies, in: 13th International Software Product Line Conference (SPLC),
2009, pp. 181-190.

B. Timmermans, A. Cleeremans, How can we measure awareness? An
overview of current methods, Behavioural methods in consciousness re-
search (2015) 21-46doi:10.1093/acprof :0s0/9780199688890.003.0003.

H. Femmer, A. Vogelsang, Requirements quality is quality in use, IEEE
Software 36 (3) (2019) 83-91. doi:10.1109/MS.2018.110161823.

C. Robson, Real world research: A resource for social scientists and
practitioner-researchers, Wiley-Blackwell, 2002.

S. Apel, S. Kolesnikov, N. Siegmund, C. Késtner, B. Garvin, Exploring
feature interactions in the wild: The new feature-interaction challenge,
in: 5th International Workshop on Feature-Oriented Software Development
(FOSD), 2013, pp. 1-8. doi:10.1145/2528265.2528267.

U. Eliasson, R. Heldal, P. Pelliccione, J. Lantz, Architecting in the auto-
motive domain: Descriptive vs prescriptive architecture, in: 12th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2015, pp. 115-
118. d0i:10.1109/WICSA.2015.18.

U. Eliasson, A. Martini, R. Kaufmann, S. Odeh, Identifying and visualizing
architectural debt and its efficiency interest in the automotive domain:
A case study, in: International Workshop on Managing Technical Debt
(MTD), 2015, pp. 33-40. doi:10.1109/MTD.2015.7332622.

36

[40]

C. Berger, B. Nguyen, O. Benderius, Containerized development and mi-
croservices for self-driving vehicles: Experiences & best practices, in: IEEE
International Conference on Software Architecture Workshops (ICSAW),
2017, pp. 7-12. doi:10.1109/ICSAW.2017.56.

S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege, M. Arm-
bruster, G. Spiegelberg, A. Knoll, RACE: A centralized platform computer
based architecture for automotive applications, in: IEEE International
Electric Vehicle Conference (IEVC), 2013, pp. 1-6. doi:10.1109/IEVC.
2013.6681152.

S. Benz, Generating Tests for Feature Interaction, Ph.D. thesis, Technische
Universitat Miinchen (2010).

A. Pretschner, M. Broy, I. H. Kriiger, T. Stauner, Software engineering
for automotive systems: A roadmap, in: Future of Software Engineering,
IEEE Computer Society, 2007, pp. 55-71. doi:10.1109/F0SE.2007.22.

37

	Introduction
	Background
	Features and Feature Dependencies
	Features and Component Architectures in the Automotive Domain
	Feature Dependency Extraction From Component Architectures
	Layered Component Architectures and Communal Components
	Study Objects

	Extent of Feature Dependencies in Automotive Systems
	Research Questions
	Data Collection
	Analysis Procedures
	Validity Procedures
	Study Results
	Extent of Dependencies (RQ1)
	Distribution of Dependencies (RQ2)

	Conclusion

	Awareness of Feature Dependencies in Automotive Systems
	Research Questions
	Data Collection
	Analysis Procedures
	Study Results
	Awareness of Dependencies (RQ3)
	Dependencies of Service Features (RQ4)

	Conclusions

	Dependency-based Refactoring
	Approach: Dependency-based Refactoring
	Research Questions
	Data Collection and Analysis
	Study Results
	RQ5: Number of Implicit Communal Components
	RQ6: Effect of Dependency-based Refactoring On Feature Dependencies

	Threats to Validity
	Extent of Feature Dependencies
	Awareness of Feature Dependencies
	Dependency-based Refactoring

	Related Work
	Summary and Conclusions

