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Abstract 10 

Here we review the potential of ILB 938 (IG 12132– doi:10.18730/60FD2), a unique faba bean 11 

accession originating from the Andean region of Colombia and Ecuador, maintained at ICARDA 12 

- International Center for Agricultural Research in the Dry Areas, with resistance to multiple 13 

biotic and abiotic stresses and carrying some useful morphological markers. It has been used as a 14 

donor of leaf-related drought adaptation traits and chocolate spot (Botrytis fabae) resistance 15 

genes in faba bean breeding programs worldwide. From generated populations of recombinant 16 

inbred lines, QTLs (quantitative traits loci) associated with these useful traits have been mapped. 17 

Other markers, such as a lack of stipule-spot pigmentation and clinging pod wall, show the 18 

presence of unusual changes in biochemical pathways that may have economic value in the 19 

future. 20 

 21 
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Introduction 23 

Faba bean (Vicia faba L.) seeds are a generous source of plant protein, with a global average 24 

protein concentration of 29% on a dry-weight basis (Feedipedia, 2018). It is one of the main 25 

sources of affordable protein for human consumption in developing countries (consumed as dry 26 

or canned), and for livestock feed in many developed countries. The fresh pods and seeds are 27 

widely used as a vegetable crop for fresh seed production. Like other legumes, it symbiotically 28 

fixes atmospheric nitrogen, thus improving the soil fertility. As a non-host of many cereal 29 

pathogens, faba bean is ideal as a break between grain crops in the rotation (Köpke and 30 

Nemecek, 2010). It has a mixed breeding system and is cross-pollinated at frequencies of 4-84%, 31 

with the value determined by the interaction between the plant genotype, its environment, and 32 

the population of pollinators (Bond and Poulsen, 1983). Its interaction with many species of bee 33 

(Stoddard and Bond, 1987) makes it suitable for growing in ecological focus areas (Bues et al., 34 

2013). It is widely adapted to cool-temperate agriculture, being grown from Mediterranean 35 

climates in southern Australia and Mediterranean basin countries to sub-boreal climates in 36 

Finland and Canada. Nevertheless, faba bean cultivation is limited due to its susceptibility to 37 

several biotic and abiotic constraints globally (see Stoddard et al., 2006; Torres et al., 2006; 38 

Khan et al., 2010). Hence, genetically diverse sources of resistance genes or genes for specific 39 

adaptations such as to abiotic stress factors are required in pre-breeding programs worldwide. 40 

Some of these germplasm sources, called ‘donors’ may become prominent. 41 

Faba bean is represented in germplasm collections by only the cultivated form. Both 42 

botanical and molecular data suggest that the wild ancestors of faba bean either have vanished 43 

or have not yet been discovered (Maxted, 1993; Duc et al., 2010; Kosterin, 2014; Caracuta et 44 

al., 2016), which highlights the importance of the accessible diversity within the cultivated 45 
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form. The place of origin of faba bean is still unknown. A Near or Middle East centre of origin 46 

has been proposed (Cubero, 1974), and the earliest identified remains of faba bean date from 47 

10200 BP in a cave in Israel (Caracuta et al., 2015). Radiation followed in four directions from 48 

the proposed centre: Europe, along the North Africa coast to Spain, along the Nile Valley to 49 

Ethiopia, and from Mesopotamia to India and China (Lawes et al., 1983). Spanish and European 50 

material was taken to South America in the 16th century (Bond, 1976). There are 43,695 faba 51 

bean accessions conserved within 37 global genebanks (ex situ, FAO, 2010) as well as on-farm 52 

conservation (in situ, Suso et al., 2005). ICARDA (International Center for Agricultural 53 

Research in the Dry Areas) hosts the largest collection of over 9,500 accessions (21% of global 54 

collection, FAO, 2010). ICARDA maintains its faba bean germplasm in two classes, ILB 55 

(International Legume Bean) accessions from different countries, and BPL (Bean Pure Line) 56 

accessions that are derived through selfing from accessions drawn from the ILB collection 57 

(Saxena and Varma, 1985).  58 

Accession ILB 938 59 

ILB 938 is the result of mass selection from ILB 438 based on seed size. ILB 438 was brought to 60 

ICARDA from the Andean region of Ecuador and Columbia (Robertson, 1984). ICARDA’s 61 

registered BPL derivatives of ILB 438 and ILB 938 are BPL 710 and BPL 1179, respectively. 62 

ILB 938/2 is an inbred line developed at Göttingen for use in genetics and breeding studies. The 63 

corresponding “IG” number for ILB 938 in the ICARDA genebank is “IG 12132” (accession doi: 64 

10.18730/60FD2, see https://www.genesys-pgr.org/10.18730/60FD2). ILB 438 is registered as 65 

IG 11632 in the ICARDA genebank (accession doi: 10.18730/601TB). 66 

Morphological markers 67 
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In the wild-type faba bean, the extra-floral nectary on the stipule is coloured black. The presence 68 

of stipule spot pigmentation was proposed as an early morphological marker indicating wild-type 69 

‘coloured’ flowers (tannin-containing faba bean), where there is a black spot on each wing petal 70 

and dark vein markings on the standard petal (Picard, 1976). The absence of the pigmentation 71 

was considered as the corresponding early morphological indicator for the white-flower, zero-72 

tannin trait (Link et al., 2008). ILB 938, however, carries a rare allele (ssp1) that decouples 73 

pigmentation in flowers from that in stipules, so it has colourless stipules and coloured flowers 74 

(Supplementary Figure S1, Khazaei et al., 2014a). An Australian line, AF11212, has the same 75 

phenotype and is derived from BPL 710 (Dr. Jeff Paull, The University of Adelaide, Australia; 76 

personal communication). Crossing ILB 938/2 with AF11212 (including reciprocal crosses) 77 

showed in the F1 and F2 generations uniformly the combination of colourless stipule spots and 78 

spotted flowers, confirming that the same gene exists in both accessions (Miller, 2016). 79 

The seed size of ILB 938 is classified as equina (horse bean, field bean, flattened seed; 80 

0.6 g / seed) which is expected since it was the medium to large-seeded Mediterranean-adapted 81 

faba bean forms that were introduced to Central and South America by immigrants from Spain 82 

(Muratova, 1931; Cubero, 1974). The seed coat of ILB 938 is green in colour, which is recessive 83 

to the common beige or buff colour (Khazaei et al., 2014b). 84 

A further noticeable morphological character of ILB 938 is the clinging pod wall, where 85 

fibres from the inner epidermis of the pod cling to the surface of the seed (Supplementary Figure 86 

S2). We have not seen this trait otherwise reported in faba bean germplasm, and while it is of 87 

little importance agronomically or economically, it may indicate a difference in cell wall 88 

development that has other impacts elsewhere in the plant or in the value chain. 89 
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Finally, the funiculus is yellow in ILB 938, in contrast to the common green displayed by 90 

other accessions. 91 

Biotic stresses 92 

The resistance of ILB 938 to chocolate spot (CS, caused by Botrytis fabae Speg.) has been 93 

demonstrated in Egypt (Mohamed et al., 1981 [re-coded NEB 938]; Khalil and Nassib, 1984; 94 

Robertson, 1984), Syria (Hanounik, 1982), the United Kingdom (Jellis et al., 1982), Canada 95 

(Robertson, 1984), France (Tivoli et al., 1988), and Ethiopia (Beyene et al., 2016). Further, we 96 

have noticed its resistance to CS in field conditions of both southern Finland and western 97 

Canada. 98 

The resistance of the original source of ILB 938 was confirmed in the Nile Delta after 99 

crosses with the local cultivar Giza 3 (ICARDA Caravan, 1998; Zeid et al., 2009). From there it 100 

was transferred to locally adapted material that was released as Giza 461 in Egypt (Bond et al., 101 

1994; Dwivedi et al., 2006; El-Komy et al., 2015). 102 

The related bean pure lines BPL 710 and BPL 1179 to ILB 438 and ILB 938, respectively 103 

also showed high resistance to CS across environments (Hanounik and Maliha, 1986; Hanounik 104 

and Robertson, 1988; Villegas-Fernández et al., 2012). The Australian cultivar Icarus was 105 

derived from BPL 710 and released as a cultivar resistant to CS and rust (Dwivedi et al., 2006). 106 

ILB 938 is, furthermore, considered as a consistent source of resistance to rust (Uromyces 107 

viciae-fabae (Pers.) J. Schrot.) (Rashid and Bernier, 1991; Khalil et al., 1985; Rashid and 108 

Bernier, 1986). Both BPL 710 (Australian accession No. AC1269) and BPL 1179 (AC1272) are 109 
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registered as rust-resistant accessions in Australia (Ijaz et al., 2018) as well as in ICARDA 110 

(1987). 111 

Some studies have suggested that ILB 938 may also carry resistance to crenate 112 

broomrape, Orobanche crenata Forsk., an achlorophyllous, holoparasitic weed, poses a major 113 

constraint to faba bean production in Mediterranean climates (Zeid et al., 2006; 2009). 114 

Abiotic stresses 115 

Drought adaptation is an essential character for faba bean cultivation in arid and semiarid 116 

regions. ILB 938 has demonstrated high water use efficiency (WUE) in several studies (e.g., 117 

Abdelmula et al., 1999; Link et al., 1999; Stoddard et al., 2006; Khan et al., 2007, 2010; Khazaei 118 

et al., 2013; Khazaei et al., 2014b) mainly due to low stomatal conductance, thus minimizing 119 

water loss and maintaining yield under drought conditions. Nevertheless, its reduced leaf 120 

stomatal conductance was not associated with a highly ramified rooting system (Belachew et al., 121 

2018). 122 

While ILB 938 has relatively low productivity, no yield penalty was observed when it 123 

was exposed to drought conditions (Link et al., 1999; Khan et al., 2007; Khazaei et al., 2014b). 124 

It maintains a relatively high water status under water deficit conditions, demonstrating high 125 

WUE with relatively low yield, because its stomata shut early, reducing potential photosynthesis 126 

while limiting water loss. 127 

The response of ILB 938/2 to ultraviolet light differs greatly from that of a contrasting 128 

cultivar, Aurora/2 that was developed at low altitudes and high latitudes where incident UV is 129 

much weaker than high in the Andes (Yan et al., 2018). 130 
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Mapping populations 131 

A population of recombinant inbred lines (RILs) was developed from the cross of Mélodie/2 × 132 

ILB 938/2 (along with its reciprocal) at the University of Helsinki (Khazaei et al., 2014a). This 133 

population has been mapped for traits related to drought adaptation (Khazaei et al., 2014b), 134 

vicine-convicine concentration (v-c, Khazaei et al., 2015), and stipule spot pigmentation 135 

(Khazaei et al., 2014a). QTLs (quantitative traits loci) for seed size, seed coat colour, clinging 136 

pod wall and yellow funiculus have also been located. ILB 938 and Mélodie differed at two loci 137 

affecting stomatal activity at opposite ends of Chromosome II, with each parent contributing a 138 

canopy-cooling allele (Khazaei et al., 2014b). The progenies of this population facilitated the 139 

development of a reliable molecular marker for v-c in this crop (Khazaei et al., 2017). This 140 

population is being phenotyped for salinity response in a collaboration with Egypt and 141 

collaborative studies on other traits are in progress. Near-isogenic lines have been derived from 142 

heterozygous F5 individuals at Göttingen (Tacke and Link, 2017). 143 

Another RIL population, ILB 938/2 × Disco/2 (Khazaei et al., 2014a), is suitable for CS 144 

genetic studies. Disco (low in both tannin and v-c) has been shown to be very sensitive to CS 145 

(Villegas-Fernández et al., 2012; Khazaei, Personal observation). A RIL population from ILB 146 

938/2 × Aurora/2 (Khazaei et al., 2014a) will be useful for analyzing the basis of the difference 147 

in ultraviolet response of these two lines. 148 

A multi-parent population [(Disco/2 × ILB 938/2) × (IG 114476 × IG 132238)] has been 149 

prepared for use in genomic studies (Khazaei et al., 2018). This population is at F4 generation at 150 

the time of writing this paper and kept at the University of Reading, UK. 151 

DNA fingerprinting 152 
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ILB 938/2 was genotyped using 875 SNP (single nucleotide polymorphism) markers developed 153 

by Webb et al. (2016). The results showed a high level of homozygosity (99.6%, Webb et al., 154 

2016). The genotyping calls on ILB 938/2 are presented in Supplementary Table S1. 155 

Conclusions 156 

The presence of unusual traits in this material is intriguing, because the crop has been grown in 157 

South America for only about 500 of its 10 000 years of domestication. It may be attributable to 158 

several causes, including widespread genetic variation introduced by the European settlers, 159 

adaptation to extremely varied environments within short distances due to altitude, frequent gene 160 

exchanges by pollinators and movement of peoples, and natural selection (Bond et al., 1994), or 161 

UV-induced mutation. Recently, several new accessions from Spain, Ecuador, Colombia and 162 

Peru with high level of resistance to CS were identified (Maalouf et al., 2016). 163 
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