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ABSTRACT: The exchange bias properties of 5 nm Co/CoO ferromagnetic/antiferromagnetic core/shell nanoparticles, highly 

dispersed in a CuxO matrix, have been optimized by matching the lattice parameter of the matrix with that of the CoO shell. Ex-

change bias and coercivity fields as large as HE = 7780 Oe and HC = 6950 Oe are linked to the presence of a Cu2O matrix (0.3% 

lattice mismatch with respect to the shells). The small mismatch between Cu2O and CoO plays a dual role, (i) structurally stabiliz-

ing the CoO and (ii) favoring the existence of a large amount of uncompensated moments in the shell that enhance the exchange 

bias effects. The results evidence that lattice matching may be a very efficient way to improve the exchange bias properties of 

core/shell nanoparticles, paving the way to novel approaches to tune their magnetic properties.

INTRODUCTION 

Exchange bias refers to a set of different phenomena (e.g., 

loop shifts in the field axis, HE, coercivity enhancement or 

loop asymmetries, among others) which arise when two mate-

rials with significantly different magnetic anisotropy, typically 

a ferromagnet (FM) and an antiferromagnet (AFM), are ex-

changed coupled at their mutual interface.1–5 Although most 

devices exploiting exchange bias effects rely on thin films,6–8 

new applications based on nanoparticles, such as coercivity 

enhancement for permanent magnets9,10, microwave 

absorbers11 or novel spintronic devices,12,13 are continuously 

emerging. Driven by the existing and prospective applications, 

there is currently a trend to try to enhance the different ex-

change bias–related effects.1,2,4,5 In this respect, although ar-

chetypical exchange bias systems, e.g., AFM/FM bilayers or 

FM–AFM core/shell nanoparticles, typically exhibit HE values 

in the range of tens to hundreds of Oe;1,2,4,5 HE values in excess 

of 10 kOe have also been occasionally reported.14–19 However, 

apart from some possible minor–loop issues,20,21 many of these 

systems are based on phase–separation.14,16,17 This leads to ill–

defined FM and AFM counterparts often with FM phases of 

very small dimensions. Another strategy to obtain very large 

values for HE is using FM materials with very low magnetiza-

tion.15,18 HE has been classically expressed as μ0HEMFMV = γA, 

where MFM is the FM magnetization, V is the volume of the 

ferromagnet, γ is the interfacial coupling energy per unit sur-

face area, and A is the associated surface area (leading to the 

well–known expression μ0HE = γ/MFMtFM for thin films).2 

Thus, reducing MFM and tFM are two obvious approaches to 

enhance HE. From the applied viewpoint, however, these may 

be rather unpractical due to the reduced magnetic moment. 

Improving HE using γ may be more appealing, despite being 

more challenging since γ is still not well understood. Although 

to a first approximation γ should only depend on the intrinsic 

properties of the FM and AFM materials and their mutual 

exchange interactions, many other parameters have been 

shown to affect γ (e.g., defects, crystalline orientation, crystal-

linity, thickness of the AFM, roughness or AFM domains).2,22–

26 It has been also shown that the presence of defects and/or 

impurities in the AFM component, even far from the FM/AFM 

interface, can dramatically affect the amount of exchange 

bias.27–29 While considerable effort has been devoted in thin 

film systems to harness the diverse mechanisms affecting 

HE,2,4 the role of these effects in core/shell nanoparticles has 

been far less investigated.1,3,5  

Due to its appealing properties (e.g., a large interface energy, 

γ) one of the most studied FM/AFM core/shell systems is 

Co/CoO.30–42 Interestingly, in this system HE values ranging 

from a few to thousands of Oe have been reported for relative-

ly similar nanoparticles. Several effects have been reported to 

influence HE in Co/CoO: core diameter,34,39,40 shell 

thickness,34,37,39,40 crystallinity of the shell,32,43,44 exchange 

interactions with neighboring particles,32,45 strains,34 orbital 

moments,45 uncompensated spins33,41 and the matrix they are 

embedded in (through lattice matching effects or antiferro-

magnetic proximity effects).31,33,36,46 Concerning the role of the 

matrix in Co/CoO, HE values extending from 10 Oe (in non–

AFM – non–lattice matched matrices, e.g., Al2O3 )
31 to 7500 

Oe (in AFM – lattice matched matrices, e.g., CoO)31,36 have 

been reported for rather similar nanoparticles. Despite this 

rather large spread of experimental HE values, there is a lack 

of systematic studies aimed at elucidating the role of the em-

bedding matrix in the improvement of the exchange bias relat-

ed properties in core/shell nanoparticles, i.e., at maximization 

of the effect. 

Here we present a systematic study of the magnetic properties 

of Co/CoO core/shell clusters deposited in a CuxO matrix 

under different oxygen partial pressures, pO2. The magnetic 

properties are optimized for oxygen pressures yielding matri-



 

ces with a majority Cu2O component, which provides an al-

most perfect lattice matching with the CoO shell. The results 

indicate that the lattice matching induces a structural stabiliza-

tion (i.e., improved crystallinity) of the CoO and the concomi-

tant migration of Cu atoms into the shell, enhancing the densi-

ty of AFM uncompensated spins vital for large HE field rela-

tively high exchange bias blocking temperature. 

 

EXPERIMENTAL  

The samples have been grown by a combination of a vapor 

phase aggregation technique (i.e., a cluster source) and con-

ventional sputtering.47 Pure Co nanoparticles are pre–formed 

in the cluster source by sputtering in an Ar+He atmosphere of 

about 0.1 mbar.47 These are then injected by differential pump-

ing into the sputtering deposition chamber where the Ar pres-

sure is two orders of magnitude lower. Importantly, in the 

main chamber a controlled amount of O2 is also present (with 

partial pressures pO2 = 0 to 5·10-4 mbar). The nanoparticles are 

thus partially oxidized during their flight towards the sub-

strate, forming a core/shell structure with a Co core and a CoO 

shell. A Cu target is simultaneously sputtered as the particles 

arrive at the substrate.47 This leads to the Co/CoO nanoparti-

cles being embedded in a CuxO matrix (where the precise 

crystallographic composition of the matrix depends on the O2 

partial pressure). The deposition rates of particles and matrix 

were adjusted to guarantee a high dilution degree of nanopar-

ticles (less than 1 % by volume). Finally the oxygen gas was 

removed and a capping layer of pure Nb was deposited in 

order to prevent further (ex–situ) oxidation.48 

Transmission electron microscopy (TEM) using a FEI Tecnai 

G2 F20 TEM operated at 200 kV was performed on nanoparti-

cles deposited on a TEM–grid in the absence of oxygen and 

without a matrix or capping layer. 

X–ray diffraction was carried out using a laboratory source 

(CuKα radiation) and Bragg–Brentano geometry. Diffraction 

patterns were analyzed using the Rietveld method implement-

ed via FullProf.49 

 

 

Figure 1. Hysteresis loops (with different corrections) of samples 

grown in p(O2)=0, 27 and 50 ·10-5 mbar, at 10K, after cooling 

from 330K in a saturating field. Black: as measured, blue: after 

removing substrate contribution; red: after removing the remain-

ing high field susceptibility. 

Magnetic properties were measured in a SQUID magnetome-

ter. Hysteresis loops were obtained at fixed temperatures be-

tween 10K and 330K after field cooling from 330 K to 10 K 

using an applied field HFC = 5o kOe. Note that depending on 

the coercivity (HC) of the sample, a maximum field of either 

50 kOe or 70 kOe was used to avoid minor loop effects.20,21 

The as–obtained hysteresis loops present a negative slope at 

high fields (Fig. 1, black symbols). To separate the contribu-

tion of the substrate from that of the composite films, the high 

field susceptibility of the substrates was carefully evaluated 

and subtracted from the data (Fig. 1, blue symbols). The re-

sulting loops then show a positive slope, originating from the 

films. Finally, to obtain the exchange bias parameters (HE, HC 

and vertical shift)50 the high field slope, χHF, was also subtract-

ed (Fig. 1, red symbols).  

 

RESULTS AND DISCUSSION 

Fig. 2 shows a TEM image of the nanoparticles together with 

the corresponding particle size histogram. As can be seen the 

size distribution is rather narrow with more than one third of 

the particles with sizes between 4.5 and 5 nm. An independent 

estimation of the size can be obtained from the superparamag-

netic behavior of the nanoparticles at high temperatures. The 

fit of the room temperature hysteresis loop of the sample with 

pO2 = 0 to a Langevin function51 yields an average nanoparticle 

moment of (10200±200) µB (see inset of Fig. 3), which trans-

lates to an average nanoparticle diameter of (5.01 ± 0.03) nm 

(assuming a magnetic moment of 1.72µB per Co atom), in 

good agreement with TEM observations. 



 

 

Figure 2. Representative TEM image of the Co nanoparticles. The 

scale bar at the bottom left corresponds to 20 nm. Shown in the 

inset is the corresponding particle size distribution. 

 

Figure 3. Evolution of the moment per particle on the O2 pressure, 

as deduced from Langevin fits to room temperature loops, for the 

samples that could be satisfactorily fitted to such a Langevin 

function. Note that for high pO2 the loops show a weak secondary 

magnetic contribution, making it impossible to reliably fit then 

using Langevin function. The inset shows the 300K loop of the 

reference sample grown with no O2 in the chamber, together with 

its fit (red line). 

Note that the conditions for the nanoparticle generation in the 

cluster source are the same for all the samples. Consequently, 

the number of particles in each sample should be roughly the 

same for all samples. Thus, any changes in the saturation 

moment [Fig. 4(d)] of the samples should primarily arise from 

the partial oxidation of the Co nanoparticles. As can be seen in 

Fig. 4, the values of both HE and HC at 10 K exhibit an analo-

gous non–monotonic behavior with pO2, with maxima at 

around pO2 = 23·10-5 mbar. Interestingly, the maximum values 

of HE and HC (7780 and 6850 Oe, respectively) are extraordi-

narily large for a Co/CoO diluted system with very thin CoO 

shells (tCoO=0.4–0.6 nm) and approach values typical of very 

dense systems (with strong shell–shell interactions)32 or 

Co/CoO nanoparticles embedded in a CoO matrix.31,36 Since 

the nanoparticles are grown as pure Co clusters and develop 

CoO shells during flight through the O2 atmosphere towards 

the substrate, the shell thickness (and thus the core diameter) 

could vary with pO2. These changes could affect the evolution 

of the exchange bias properties with pO2. A Langevin fit to the 

high temperature hysteresis loop of the different samples 

shows that, indeed, the average particle magnetic moment, and 

consequently the core diameter, decreases monotonically with 

increasing pO2 (see Fig. 3). Hence, as pO2 becomes higher the 

core diameter decreases, while the shell thickness concomi-

tantly increases. However, a simple calculation shows that the 

changes are not significant: the core diameter is reduced from 

5.0 nm to 4.2 nm, leading to a shell thickness increase of 

merely 0.6 nm (taking into account the lower density of CoO 

with respect to Co). Since the radius of the core (equivalent to 

the thickness of the ferromagnet in the well–known formula 

for thin films μ0HE = γ/MFMtFM)1,2 becomes smaller as pO2 

increases, HE is expected to increase monotonically due to the 

HE1/tFM relationship. Moreover, it is well–known that when 

the AFM thickness is very small virtually no bias is 

induced.27,56 As the AFM thickness increases slightly, HE 

should also monotonically increase,27,56 as observed for small 

pO2. Notably, in some systems, in particular in thin films, for 

thick enough AFM layers HE can eventually decrease.56 In 

fact, similar effects have been observed in Co/CoO nanoparti-

cles.57 However, the HE reduction with AFM thickness occurs 

for much thicker AFM layers than the shells formed in our 

nanoparticles.56,57 Hence, although the slight changes in mor-

phology of the Co/CoO samples with pO2 may explain the 

increase in HE and HC for small pO2, the decrease in HE for 

high O2 contents must have some other origin. 

Since the matrix has been shown to play an important role in 

the magnetism of Co/CoO nanoparticles, we next evaluate the 

evolution of the matrix with pO2. The matrices may contain 

different proportions of the different possible CuxO phases: 

Cu, Cu2O, Cu4O3 and CuO. From this list two interesting cases 

should be highlighted: (i) Cu2O which has a very good lattice 

match to CoO (with only ~0.3% mismatch) and thus could 

lead to a “structural stabilization” (i.e., a higher degree of 

crystalline order) of CoO resulting in improved antiferromag-

netic properties,32 and (ii) CuO  which is antiferromagnetic 

with a Néel temperature of TN = 200 K and thus could enhance 

the magnetic properties due to exchange coupling.36 



 

 

Figure 4. Dependence at T=10K of the (a) exchange bias, HE, (b) 

coercivity, HC, (c) vertical shift and (d) saturation moment of all 

the samples studied on the oxygen pressure, pO2. The lines are 

guides to the eye. 

As can be seen in Fig. 5, quantitative phase analysis (via the 

Rietveld method) of the XRD patterns shows that, with in-

creasing pO2, there is certainly an evolution of the phases pre-

sent in the matrix towards more oxidized states of Cu. Re-

markably, the main improvement of the exchange bias proper-

ties occurs as the Cu2O phase appears, while the worsening of 

the properties for large pO2 is linked to the presence of CuO. 

However, an exact matching between the maximum HE and 

the amount of Cu2O is not observed probably because of the 

presence of Cu4O3 around the optimal pressure pO2=23·10-5 

mbar. Although Cu4O3 (AFM with TN = 40 K)58 could play a 

role, it is likely that the evolution of the lattice parameter of 

Cu2O (and for example the presence of microstrains) with pO2 

could be the dominating factor. Other factors, such as the 

increase in shell thickness and decrease in core diameter, will 

be simultaneously influencing the magnetic properties, thus 

one–to–one correlations between structure and magnetism are 

somewhat difficult. In any case, our results unambiguously 

show that for Co/CoO nanoparticles, the structural–

stabilization of the shell is the dominant factor enhancing the 

magnetic properties, with exchange–stabilization playing a 

secondary role. 

Another outstanding aspect of our results is the unexpectedly 

large HE and HC values observed in optimal pO2 conditions. 

The current understanding of exchange bias is based on the 

existence of uncompensated spins. Two types of uncompen-

sated spins have been identified: pinned (unaffected by the 

magnetic field and which give rise to HE) and unpinned or 

rotatable (which are dragged by the FM component and are 

related to the enhancement of HC).59–63  

 

Figure 5. Evolution of the crystalline composition of the matrix on 

pO2. The solid lines are guides to the eye. The vertical dashed line 

indicates the pressure at which a maximum in the exchange-bias 

field is observed.   

In a hysteresis loop the pinned uncompensated spins are evi-

denced by a vertical shift.50 Assuming that, once the FM mag-

netization is switched, the rotatable uncompensated spins can 

be further dragged by the applied magnetic field, then χHF 

should have a contribution from these uncompensated spins.52–

55 From panel (c) of Fig. 4, it is clear that the behavior of the 

pinned uncompensated spins (as quantified by the vertical 

shift) is similar to that displayed by HE. Similarly, the depend-

ence of χHF on pO2 (Fig. S2), which should carry out infor-

mation about the rotatable uncompensated spins (see Support-

ing Information), resembles that of HC.  Interestingly, in thin 

films it has been shown that the dilution of the magnetic ions 

in the AFM layers by similar non–magnetic ions leads to a 

marked increase in HE and HC (e.g., CoO–Mg, FeMn–Cu, 

FeF2–Zn).29,64–66 Hence, in analogy to thin film systems, the 

large increase of HE and HC in the Co/CoO samples is due to 

the large increase in the number of uncompensated (pinned 

and unpinned) spins for intermediate O2 pressures, presumably 

linked to a “dilution effect” in the CoO shell. Such effect is 

probably brought about by intermixing between the CoO shell 

and the Cu atoms of the CuxO matrix during the particle–

matrix co–deposition,36,67 which is undoubtedly enhanced by 

the lattice matching effect between Cu2O and CoO.  

To rule out any effect related to the small morphological 

changes caused by the O2 in the chamber (core diameter - shell 

thickness) and to confirm the dominating role of the matrix in 

the observed effects, we have fabricated a second series of 

samples with Ag as matrix, instead of Cu, while keeping all 

conditions unaffected (see Supporting Information, SI). Note 

that, although both Ag and Ag2O have a cubic structure, the 

lattice matching with CoO is considerably worse than for 

Cu2O (Ag – mismatch 4.2%; Ag2O – mismatch 10.6%). As 

can be seen in Fig. S1, the AgxO-matrix series also shows a 

maximum with pO2. However, compared to the CuxO-matrix 

(Fig. S2) (i) the maximum occurs at much lower pO2, (ii) the 

HE values are remarkably smaller, and (iii) both the vertical 

shift and HF are much smaller and without a clear link to HE. 

These results eliminate the possibility that the small pO2-

induced morphological changes contribute significantly to the 

enhanced exchange bias properties. Interestingly, as expected, 

the maximum in HE occurs at rather low pO2, in the region 

where the Ag-based cubic phases exist; between the pure Ag 



 

matrix and the Ag2O dominated matrix.68,69 The fact that the 

maximum HE does not coincide with the best matched matrix 

(i.e., pure Ag) is probably due to the competition between the 

better lattice matching of the Ag matrix (which would better 

structurally stabilize the thin CoO shell) and the oxide charac-

ter of the Ag2O matrix. Namely, although Ag has a better 

lattice matching, the fact that it is not an oxide probably makes 

it more difficult for the Ag to diffuse into the CoO shell. A 

combination of poor matching (hence, low structural stabiliza-

tion) and the limited interdiffusion (i.e., fewer uncompensated 

spins) is understood to be the origin of the greatly reduced HE 

in the AgxO-matrix when compared to the CuxO-matrix. 

Moreover, it should be taken into account that when growing 

without O2 the CoO shell probably would be very thin (only 

due to the residual O2 in the chamber), which could also lead 

to reduced HE in the pO2 = 0 case. Nevertheless, it is worth 

emphasizing that although the maximum HE values for the 

AgxO-matrix (HE = 300 Oe) are smaller than for the CuxO-

matrix, given the cubic character of the AgxO-matrix for low 

pO2 (and thus a moderate lattice matching), these values are 

much larger than for matrices with no structural matching, 

e.g., Al2O3 which exhibit HE values of only a few Oe.32 

Further evidence of the enhanced properties for the lattice–

matched samples arises from the temperature dependence of 

HE. As can be seen in Fig. 6, the samples with optimal O2 

pressure exhibit an exchange bias blocking temperature 𝑇𝑇
𝑇𝑇  

(i.e., T at which HE vanishes) of about 200 K. This value is 

typical of high quality isolated Co/CoO nanoparticles with 

substantially thicker CoO shells than in the NPs discussed 

here.42 On the other hand, as the O2 pressure varies away from 

the optimum value, 𝑇𝑇
𝑇𝑇quickly decreases, as shown for the 

pO2 = 13·10-5 and 50·10-5 mbar samples in Fig. 6. In fact, the 

dependence of 𝑇𝑇
𝑇𝑇  on pO2 nicely mimics the dependence of 

HE(pO2) (compare the inset of Fig. 6 with Fig. 4 (a)). These 

results indicate that the optimum pO2 not only enhances HE but 

it stabilizes the exchange bias of the nanoparticles. This is in 

contrast to what has been observed for thin films where often 

an increase of HE is usually accompanied by a decrease in 

𝑇𝑇
𝑇𝑇29,64–66 and thus gives further credibility to the structural 

stabilization model, since it shows that despite the magnetic 

dilution behind the enhanced HE (which is the origin of the 

decreased 𝑇𝑇
𝑇𝑇𝑇 in thin films), is actually highest for the sam-

ples with the largest HE. 𝑇𝑇
𝑇𝑇  is understood to be linked to the 

magnetic anisotropy energy of the CoO shell, i.e., 

𝑇𝑇
𝑇𝑇𝑇KCoOVCoO (where K and V are the anisotropy and the 

volume of the CoO grains, respectively). If we assume that 

VCoO does not change considerably between samples, an in-

crease in 𝑇𝑇
𝑇𝑇  should imply a higher KCoO, which would be 

expected for shells with a high degree of crystalline order. 

Additionally, the 𝑇𝑇
𝑇𝑇data allows us to rule out any leading 

role of exchange coupling in the enhanced properties, since for 

the case of pO2=23·10-5 mbar no anomaly is seen about the 

Néel temperature of Cu3O4 [TN(Cu3O4)= 40 K]. Similarly, for 

high pO2, where the CuO matrix is dominant, 𝑇𝑇
𝑇𝑇  is clearly 

below TN(CuO) = 200 K, in contrast to when a NiO matrix is 

used (where exchange coupling is known to be dominant).36 

 

Figure 6. Temperature dependence of the normalized HE, 

HE(T)/HE(10 K). Shown in the inset is the dependence of ex-

change bias blocking temperature, 𝑇𝑇
𝑇𝑇

, on the oxygen pressure, 

p(O2) The lines are guides to the eye. 

CONCLUSIONS 

In summary, we have studied the exchange bias properties of 

Co/CoO core/shell nanoparticles embedded in different CuxO 

matrices. The results show that HE, HC and 𝑇𝑇
𝑇𝑇  are enhanced 

when the matrix is partially formed by Cu2O, which has a 

good lattice parameter match with that of the CoO shell. In 

fact, for the optimized conditions both HE and HC present very 

large values (7780 and 6950 Oe, respectively), which can be 

linked to the presence of a large number of uncompensated 

spins (pinned and unpinned) in the CoO shell, induced by 

interdiffusion of Cu ions from the matrix to the shell during 

the sputtering. The results highlight the importance of the 

surrounding matrix to improve the crystalline quality of the 

thin CoO shells in the Co/CoO nanoparticles. Hence we 

demonstrate that lattice matching may be a highly efficient 

strategy to improve the magnetic properties of certain 

core/shell nanoparticle systems. 
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