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Abstract. In this paper we will discuss structure and motion problems for curved surfaces. These will be studied
using thesilhouettesor apparent contoursin the images. The problem of determining camera motion from the
apparent contours of curved three-dimensional surfaces, is studied. It will be shown how special points, called
epipolar tangency points or frontier points, can be used to solve this problem. A generalised epipolar constraint is
introduced, which applies to points, curves, as well as to apparent contours of surfaces. The theory is developed
for both continuous and discrete motion, known and unknown orientation, calibrated and uncalibrated, perspective,
weak perspective and orthographic cameras. Results of an iterative scheme to recover the epipolar line structure from
real image sequences using only the outlines of curved surfaces, is presented. A statistical evaluation is performed
to estimate the stability of the solution. It is also shown how the motion of the camera from a sequence of images
can be obtained from the relative motion between image pairs.
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1. Introduction

Structure and motion from the images of point features
has attracted considerable attention and a large number
of algorithms exist to recover both the spatial config-
uration of the points and the motion compatible with
the views. The problem to recover structure and motion
from the silhouettes or apparent contours of curved sur-
faces is more difficult, mainly because of the so called
aperture problem, i.e., it is not possible to get the cor-
respondence of points between two images of the same
curve.

This paper is concerned with the problem of recov-
ering viewer motion from the deformations of apparent

contours. It is shown how special points on the appar-
ent contour, calledfrontier points, can be detected in
image sequences and used to recover viewer motion.
The special case of frontier points under orthographic
projection and object rotation around a single axis was
considered in (Rieger, 1986; Giblin et al., 1994). In
(Porrill and Pollard, 1991), although primarily con-
cerned with stereo calibration from 3D space curves,
it was noted that the intersection of the two contour
generators from two discrete viewpoints generated a
point, visible in both images. This constraint was ex-
ploited in (Carlsson, 1994) in the analysis of the visual
motion of space-curves. An approach for parallel pro-
jection has been presented in (Vijaykumar et al., 1995,
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1996). Another approach using trinocular stereo has
been presented in (Joshi et al., 1995).

In this paper we introduce the general epipolar con-
straint. We derive the constraint for several camera
models both in discrete and continuous time. We dis-
cuss the singularities of the contour generator and show
that the general epipolar constraint can be derived from
one of these singular cases. And finally we show how
the constraint can be used to calculate the relative
viewer motion between two cameras.

The viewing geometry of surfaces is discussed in
Section 2. Then follows a brief discussion about the
problem of extracting surface structure from the de-
formation of silhouettes withknowncamera motion.
This has been treated in (Cipolla, 1991; Cipolla and
Blake, 1992). The failure modes of these structure
from motion algorithms can be understood by anal-
ysis of some singular cases of the surface and view-
ing geometry. The rest of the paper is devoted to one
of these singular cases, the epipolar tangency point.
This is exploited in Section 3 where ageneralised
epipolar constraintis derived. This constraint is sim-
ilar to the bilinear constraint. There are many varia-
tions of the problem: The motion can be continuous
or discrete, the cameras may be calibrated and uncal-
ibrated, parallel and central projection may be con-
sidered. Section 3 is of necessity elaborate because
all these cases are treated. The generalised epipolar
constraint can be used to estimate the relative mo-
tion between two images. Implementational aspects
on how to use the generalised epipolar constraint
are discussed in Section 4. A statistical evaluation in
Section 5 gives an estimate of the stability of the
solution. Preliminary experimental results obtained
from real image sequences of curved surfaces from
unknown viewpoints are given in Section 6. Section 7
contains a discussion on how to use the relative mo-
tion between image pairs to calculate camera motion
in a longer sequence of images. This is also demon-
strated in an example. Some conclusions are given in
Section 8.

2. Surface and Viewing Geometry

In this section we will provide notations and back-
ground material for the camera and surface geometry.

Definition 1. Let B be an open bounded subset ofR3

with C1 boundary. The boundaryU is called acurved
surface

This paper deals with thestructure and motionprob-
lem from the images of curved surfaces.

Definition 2. For every camera positionc /∈ B̄, define
thecontour generatoras

0c = {r ∈ U | c ∈ tangency plane ofU at r}. (1)

Denote byn = n(r) the normal to the surfaceU
at a pointr ∈ U . The contour generator can then be
defined as

0c = {r ∈ U | (r − c) · n(r) = 0}. (2)

The contour generator can also be described as the locus
of points0 on the surface which separates the visible
from the occluded parts. This is illustrated in Fig. 1.
When the viewpointc changes, i.e.,c= c(t), the con-
tour generator moves over the surfaceU . This is illus-
trated in Figs. 2 and 3. In the sequelc will sometimes
be omitted and the notation0(t) = 0c(t) will be used
for the contour generator at timet .

Definition 3. The imageγ of the contour generator
0c is called theapparent contour.

The apparent contouris usually, but not always, a
smooth curve. Although the image is considered to be
the viewing sphere, it is sometimes convenient to illus-
trate images and features in the image plane. Notice

Figure 1. Perspective projection: the contour generator0 with a
typical pointr , the image sphere with centrec and the corresponding
apparent contour pointc+ p. Thusp is the unit vector joining the
centrec to the apparent contour point. Alson is normal to the surface
at r .
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Figure 2. Degenerate case of epipolar parameterisation. The epipo-
lar plane is a tangent plane of the surface at a frontier point. Move-
ment of the viewpoint causes the contour generators to sweep over the
surface. At a frontier point the contour generators from consecutive
viewpoints intersect.

Figure 3. The figure shows a surfaceU and camera positionsc(t).
Five camera positions and the corresponding contour generator is
shown. The frontier is the envelope of the contour generators corre-
sponding to the camera positionsc(t).

that lines in the image plane correspond to great circles
on the viewing sphere.

Definition 4. If every apparent contourγc(t), t0 < t <
t1, admits a parametrisation,γc(t)(s), such that

u(s, t) = γc(t)(s)

is continuous, thenu is called aspatio-temporal
parametrisation.

In practice the whole apparent contour might not be
visible e.g., due to occlusion. By abuse of language,

we often use the term apparent contour and spatio-
temporal parametrisation for those parts that have been
detected.

The projection from contour generators onU to ap-
parent contours in the image sphere will now be anal-
ysed in a little more detail. In the sequel different no-
tations for the image pointu will be used for different
camera cases.

• Known internal calibration and camera orientation:
u = p.
• Calibrated camera:u = q.
• Uncalibrated camera:u = w.

Note that in each of these three cases the image point
is represented by a 3× 1 vectoru. In the case of cali-
brated cameras this vector can be interpreted as a direc-
tion in three-dimensional Euclidean space. In the case
of uncalibrated cameras this vector can be interpreted
as the image point(x, y) in homogeneous or extended
coordinatesu = [x y 1]T.

For simplicity assume that the orthonormal camera
and object coordinate systems coincide. Let all points
be identified with their coordinate vectors. The image
p on the viewing sphere of a pointr ∈ U fulfills

λp = r − c,

whereλ is the depth ofr and|p| = 1. Thus the apparent
contour is

γc = {p ∈ S2 | ∃λ, λp = r − c, r ∈ 0c, }. (3)

Note thatp is the orientation of the ray in the fixed
reference/world frame for Euclidean 3-space. Now
introduce an orthonormal camera coordinate system,
where coordinates are denotedq. For a moving ob-
server the camera coordinate system is continuously
changing with respect to the object coordinate system.
The relationship betweenp andq can be conveniently
expressed in terms of a rotation operatorR(t),

p = R(t)q. (4)

The measurements in anuncalibrated camera, de-
scribed by the coordinate vectorw in some affine cam-
era coordinate system, is related to the spherical image
positionq by an intrinsic calibration matrixA,

q ' A(t)w, (5)
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where' denotes equality up to positive scale. Only
the direction ofq is of interest. For simplicity the rela-
tionship betweenw andp will be expressed by a single
matrixSrepresenting both intrinsic calibration and ori-
entation of the camera

p ' R(t)A(t)w ' S(t)w. (6)

By normalisation, the matrixS can be assumed to be
an arbitrary real 3× 3 matrix whose determinant is 1.

2.1. Structure from Motion

Underknownviewer motion, the deformation of appar-
ent contours can be used to recover the surface geom-
etry, or structure, cf. (Giblin and Weiss, 1987; Cipolla
and Blake, 1992; Vaillant and Faugeras, 1992). These
algorithms work well at points where two conditions
are fulfilled:

• The contour generators0c(t) can be used as coor-
dinate curves for a local coordinate system on the
surfaceU .
• The apparent contoursγc(t) are nonsingular curves.

These two conditions are studied in the next two sec-
tions. It is shown that they fail to be fulfilled in three
singular cases, two of which refer to the contour gener-
ators and one to the apparent contour. It is remarkable
that one of these cases can be used to derive the gener-
alised epipolar constraint in Section 3.

When the two conditions hold, a spatio-temporal
parametrisation of the image-curve motion can be cho-
sen. The choice of spatial curve parameters is of course
underconstrained. A special parametrisation, called the
epipolar parametrisation, is naturally matched to the
recovery of surface curvature, as was shown in (Cipolla
and Blake, 1992). Using the epipolar parametrisation
points on consecutive contour generators are matched
along the epipolar lines. This is briefly discussed below,
but the question of determining structure from known
motion will not be continued in this paper. Instead we
will focus on the question of determining motion.

2.2. Singularities of the Contour Generator

In this subsection we will investigate the singular cases
for the contour generators0(t) = 0c(t).

Let r0 ∈ 0(t0) be a point on the surfaceU . We want
to find conditions that make it possible to describeU
locally in a neighbourhood ofr0 by a functionU (s, t)
in such a way thatU (·, t) = 0(t). In other words,
we want(s, t) to define a local coordinate system with
0(t) as one of the coordinate curves. In (Giblin and
Weiss, 1995, Prop. 3) it is shown that this is possible
except in the following singular situations:

• Singular case A: If r0 is a parabolic point on U
and the view-liner − c is in an asymptotic direc-
tion, then the contour generator0(t0) is singular, in
fact generally an isolated point or a crossing of two
curves.
• Singular case B: The tangent plane toU at r0, is

parallel not only to the viewing directionr0− c(t0),
but also to the velocity of the camera,ct (t0), where
the suffixt denotes differentiation. This is the same
as requiring thatct (t0) is perpendicular to the normal
n(r0) to the surface, i.e.,ct (t0) · n = 0. The point
r0 is then called anepipolar tangency pointand the
tangent plane is called anepipolar tangency plane.
Geometrically, the contour generators onU form an
envelopeat epipolar tangency points—see below—
and this prevents their forming part of a coordinate
grid since they intersect each other.

The epipolar tangency points, where the plane
spanned by the view-line and the camera velocity vec-
tor is tangent toU , in general form a curve onU as the
camera moves relative to the scene. This curve is called
the frontier of U relative to the camera motionc(t).
By the above, thefrontier condition is ct · n = 0. Lo-
cally, the frontier is the boundary of the ‘visible region’
swept out by the contour generators. (Only locally be-
cause possibly there may come a later time when the
contour generators will encroach on the ‘far side’ of
the frontier.)

It is worth looking at this more closely. Consider a
surfaceU ∈ R3 parametrised locally byu andv, and a
camera motion with projection centrec(t)parametrised
by timet . The condition that the pointr(u, v) ∈ U lies
on the contour generator at timet is simply

(r(u, v)− c(t)) · n(u, v) = 0, (7)

wheren(u, v) is the normal to the surface atr(u, v).
Equation (7) can be thought of as defining a family of
curves in theu, v parameter plane. This curve is in fact
the contour generator onU . Theenvelopeof the family
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of curves, that is the ‘locus of intersections of consec-
utive curves of the family’, is given by differentiating
(7) with respect tot (compare (Bruce and Giblin, 1992,
Section 5.3)). This gives the condition

ct · n = 0. (8)

The pointsr(u, v) obtained by eliminatingt between
(7) and (8) are precisely the points of theenvelope of
contour generatorson the surface. This envelope is
therefore exactly the frontier as defined above. Over a
short period of time, the part of the surface covered by
the contour generators ison one sideof this frontier.
This is illustrated in Fig. 3. The epipolar parametrisa-
tion breaks down at frontier points as pointed out above,
because the contour generators cannot form part of a
coordinate system on the surface since they do not cross
each other transversally.

Note that if the motion islinear, then the frontier
degenerates, sincect is then aconstantvector, and the
condition (8) does not depend ont . If a pointr(u, v) lies
on the frontier at some timet , then this point continues
to satisfy the frontier condition at subsequent times
and the velocity vectorct lies in the tangent plane at
the isolated frontier point. This is illustrated in Fig. 4.
The same holds for any motion which is entirely in the
tangent plane to a surface at a particular point on the
surface.

The surface cannot be reconstructed by the epipolar
parameterisation at these points since the contour gen-
erator is locally stationary. However, because frontier
points correspond to real, fixed feature points on the

Figure 4. For linear translational motion the frontier degenerates
to a point through which all the contour generators pass. The motion
c(t) takes place in the tangent plane at this isolated frontier point.

surface, which are visible in two ‘consecutive’ views,
they can be used to provide a constraint on viewer
motion.

2.3. Singularities of the Apparent Contours

So far we have discussed degeneracies A and B that are
related to the contour generator0. Other degeneracies
are related to the apparent contourγ , i.e., the image of
the contour generator. Let us suppose that the singular
cases A and B of the previous section do not hold and
therefore that the contour generators form one family
of a coordinate grid. The apparent contours in the im-
age sphere will be a family of curvesγ (t), one for each
value oft . If we are to parametrise each apparent con-
tour with a curve parameters, then we need to avoid a
third situation:

• Singular case C: The apparent contourγ (t) is asin-
gular curve (generally with a cusp) when the view-
line r − c is in an asymptotic direction atr on U
(see (Koenderink, 1990, p. 422) and (Cipolla et al.,
1996) where surface geometry is obtained by track-
ing cusps of apparent contours under known mo-
tion). (Note that here it isγ (t) that is singular, while
in cases A and B it was the contour generator0(t),
that was singular. If the latter case then the appar-
ent contour is automatically singular but with a more
degenerate singularity than a cusp, cf. (Koenderink,
1990, p. 458).)

2.4. Epipolar Parametrisation

Assume that neither of the above singular situations
hold. Then a spatio-temporal parametrisationp(s, t)
can be chosen. Heres is anyregular parameter on the
apparent contourγ (t) = {p(s, t): t = constant}, i.e.,
ps 6= 0,∀s. This induces a parametrisation on the
surface, as in (Cipolla and Blake, 1992):

r(s, t) = c(t)+ λp(s, t).

Differentiation with respect tot and scalar multiplica-
tion with n gives

r t · n = ct · n+ λpt · n+ λtp · n.

Usingr t · n = 0 andp · n = 0 we obtain

0= ct · n+ λpt · n. (9)
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Since 0< λ < ∞, it follows that ct · n and pt · n
are either both zero or both non-zero. Assuming that
ct · n 6= 0, i.e., assuming thatr is not a frontier point,
the depthλ is given by, cf. (Cipolla and Blake, 1992,
p. 91)

λ = − ct · n
pt · n .

Again following (Cipolla and Blake, 1992), we can
use theepipolar matchingon the apparent contours to
provide a choice of parameters, by requiring that

r t × p = 0.

Introducing the notation|A| for the determinant of the
matrix A, the condition can be written

|p ct pt | = 0.

The condition says that the three vectors are copla-
nar. The epipolar matching thus breaks down at fron-
tier points and whenever the apparent contourγ (t) is
singular.

Remark. The result for surfaces can also be applied
for the case when the objects arecurvesinR3. A curve
may be regarded as a limit case of surfaces with high
curvature.

Under viewer motion the contour generators will
normally slip over the surface. For any given contact
pointr the motion along the rayp is given byr t , which
depends on the distance and surface curvature (Cipolla
and Blake, 1992),

r t = −
(ct · n
λκ t

)
p, (10)

whereκ t is the normal curvature of the surface in the
direction of the ray. The speed of the contact point is
therefore inversely proportional to the surface curva-
ture. Notice that the velocityr(t) is large when the
curvature is small and vice versa. The velocity is zero
when the curvature is infinite. It then follows from (10)
thatr t = 0 for all points along a space curve.

3. Generalised Epipolar Constraints

After discussing the principles we will now show how
the viewer motion can be calculated from the con-
straints on the camera motion and the frontier points,

described in the previous sections. Remember that fron-
tier points are projections of points on the surface that
are visible in both views, i.e., the same point can be
identified in both views. However, the frontier points
are defined by the epipolar tangency constraint.

In this section we will go through the details and
show how frontier points and camera motion can be
computed. The presentation will by necessity be elab-
orate because several different cases have to be consid-
ered. The final results can, however, be expressed in a
compact form, see Tables 1 and 2.

3.1. Formulating the Generalised Epipolar
Constraints

Consider the camera centers at two time instants,c1 =
c(t1) andc2 = c(t2), and consider all tangent planes of
the surfaceU that go through these two camera cen-
ters. This will be called the pencil ofepipolar tan-
gency planeswith respect toc1 andc2. In each image,
the image of the epipolar tangency planes is a pencil of
lines, theepipolar tangency lines. They all go through
a point, theepipole e, each line being tangent to an ap-
parent contour. The tangent points on the apparent con-
tours are called theepipolar tangency points. Here,
lines in the projective image planeP2 and on the ori-
ented projective plane, or viewing sphereS2 are planar
subspaces defined up to scale or positive scale. Notice
in particular that a line inS2 is a great circle. From
the construction the following theorem is obtained, see
(Porrill and Pollard, 1991).

Formulation 1 (Coordinate Free). Given two im-
ages, and the epipolese1 and e2, the pencil of lines
throughe1 in image one, which are tangent to an appar-
ent contour, and the corresponding pencil of epipolar
tangency lines in image two are projectively related.

This is the generalised epipolar constraint. It can
also be expressed indual form , cf. (Coxeter, 1993,
p. 15), where the dual of a pointx ∈ P2 is the set of
all lines that pass through the point. After introduction
of coordinates, lines can be represented using homo-
geneous coordinates as

l = [a b c] ∈ P2.

if the equation of the line is

l · x = 0.



Generalised Epipolar Constraints 57

Table 1. Summary of relevant motion parameters, number of observable degrees of freedom and
generalised epipolar constraints in the case of infinitesimal motion. Five camera models are considered:
PT – pure translation, C – Calibrated camera, U – uncalibrated camera, O – orthographic camera, WP
– weak perspective. The motion parameters and the observable degrees of freedomn are presented as
well as the generalised epipolar constraints.

Number of tangency Combined tangency
Camera model Motion params points needed and motion constraints

PT ct 2 rank [ct p ps pt ] = 2

C ct ,Rt 5 rank [ct q qs Rt q+ qt ] = 2

U ct ,St 7 rank [ct w ws St w+ wt ] = 2

O kt ,Bt 3 rank [kt k us Bt u+ ut ] = 2

WP kt ,Ct 4 rank [kt k us Ct u+ ut ] = 2

Table 2. Summary of relevant motion parameters, number of observable degrees of freedom and generalised epipolar
constraints in the discrete case. Five camera models are considered: PT – pure translation, C – Calibrated camera, U
– uncalibrated camera, O – orthographic camera, WP – weak perspective. The motion parameters and the observable
degrees of freedomn are presented as well as the generalised epipolar constraints.

Number of tangency Combined tangency
Camera model Motion params points needed and motion constraints

PT 1c 2 rank [1c p1 (p1)s p2 (p2)s] = 2

C 1c,1R 5 rank [1c q1 (q1)s 1Rq2 1R(q2)s] = 2

U 1c,1S 7 rank [1c w1 (w1)s 1Sw2 1S(w2)s] = 2

O 1k,1B 3 rank [1k k (u1)s (1Bu2 − u1) 1B(u2)s] = 2

WP 1k,1C 4 rank [1k k (u1)s (1Cu2 − u1) 1C(u2)s] = 2

The dual of a pointx is thus a ‘line’ in parameter space
(a,b, c). The dual of a linel is a point. The dual of a
curve is defined as the set of tangent lines to the curve.

Formulation 2 (Dual). Given two sets of duals of ap-
parent contours and the dual linesl1 and l2 of the
epipoles,e1 ande2, in image one and two respectively.
The intersection of the linel1 with the dual of the appar-
ent contours in the first image is projectively related to
the corresponding intersection of linel2 with the dual
of the apparent contours in the second image.

Using the fundamental matrixF, see (Thompson,
1959; Stefanovic, 1973; Faugeras et al., 1992), and in-
troducing coordinate system in both images, the gen-
eralised epipolar constraint can be expressed by the
fundamental matrix. Notice that the two epipolese1

ande2 can be obtained as the left and right null-space
of the fundamental matrix, i.e.,eT

1F = 0 andFe2 = 0.

Formulation 3 (Fundamental Matrix). Given two
images, a coordinate system in each image, and the
fundamental matrixF. The corresponding epipolar
tangency pointsw1 andw2, fulfill

wT
1Fw2=0, motion constraint,

det [e1 w1 (w1)s]=0, tangency constraint, (11)

det [e2 w2 (w2)s]=0, tangency constraint,

where subscript s denotes differentiation with respect
to a parametrisation of the apparent contour.

Note that the tangency constraint also can be written
(w1)

T
s Fw2 = 0 andwT

1F(w2)s = 0 respectively. The
constraint can also be formulated using projection ma-
trices. This requires the introduction of coordinates in
both images and also for the object.

Formulation 4 (Projection Matrix). Given two im-
ages, formed by projection matrices P1 = S−1

1 [ I − c1],
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P2 = S−1
2 [ I − c2] respectively, whereS1, S2 andI are

3×3matrices andc1 andc2 are3×1vectors. The cor-
responding epipolar tangency pointsw1 andw2 fulfill

rank [c2 − c1 S1w1 S1(w1)s S2w2 S2(w2)s] = 2.
(12)

Formulations 1 and 2, have the advantage of being
elegant and short. However, it is not apparent how to
generalise them to other camera cases. Formulation 3,
also has its advantages. The image coordinate system
is often given a priori, or can be chosen at will. Once
this is done the whole epipolar geometry is described
by the fundamental matrixF. This matrix can thus be
used to parametrise the problem uniquely.

Formulation 5 depends not only on the choice of
coordinate system in each image, but also on the ob-
ject coordinate system. A change in object coordinates
changes the projection matricesP1 andP2, while the
epipolar constraint still holds. The matricesP1 and
P2 which have 22 degrees of freedom can only be de-
termined up to an unknown projective transformation
(15 degrees of freedom), leaving at least 7 degrees of
freedom. The fundamental matrix has the same de-
grees of freedom, sinceF is a 3× 3 matrix defined
up to scale with determinant zero. In the sequel, the
termobservable degrees of freedomwill be used to
denote this number, i.e., the number of degrees of free-
dom in the projection matrices minus the number of
degrees of freedom in the unknown object coordinate
system.

Despite this difficulty in defining observable degrees
of freedom, the coordinate dependent formulation has
the advantage of being compact. Another advantage
is that all camera cases can be expressed in a uniform
way. Notice that we are interested in computing two
quantities, the camera positions and the frontier points.
All constraints are expressed by (12). If the camera po-
sitions are known, the frontier points can be calculated,
and vice versa. It is useful to think of the constraints
in (12) as being of two types:

1. Epipolar tangency constraints.These link motion
parameters to the position of the frontier point in an
image. The constraints allow us to select a discrete
number of points in each image contour.

2. Motion constraints. The motion constraints, on
the other hand, link viewer motion to the image
motion of epipolar tangency points. This is possi-
ble because the epipolar tangency points correspond

to fixed features visible in both views. The motion
constraint involves the epipole (direction of transla-
tion) and changes in orientation.

Remark. The actual tangency points may not be well
defined at contour points of small curvature. This does
not affect the stability of the motion estimate as they
rely on the tangency planes only. These are determined
by the normal of the apparent contourγ and the epipole.
Even at points of high curvature the tangency plane is
well defined.

Although the motion constraints can be formulated
using the set of tangency planes, it is easier to express
them using the set of frontier points. This will be done
in the following. This also highlights the similarities
to the well known epipolar constraints for points, cf.
(Faugeras, 1992). Keep in mind that each tangency
point defines a tangency plane.

3.2. Central Projection Models

We will structure the analysis as follows:

• Known rotation and internal calibration.
• Calibrated camera. Unknown rotation but known in-

ternal calibration.
• Uncalibrated camera.

If the rotation of the camera is known, then the image
pointp ∈ S2 gives the direction from the camera center
to the apparent contour. In the calibrated camera case,
q ∈ S2 will be used to denote image points in the
camera coordinate system. It is related to the absolute
directionp asp = Rq. In the uncalibrated camera case,
the image point in homogeneous coordinatesw has
to be corrected with an unknown internal calibration
matrixA in order to get the directionq.

Oriented homogeneous coordinates for vectors and
matrices will be used. Two vectors or matrices will
be considered equal if they are a positive multiple of
each other. This simplifies the notation considerably.
Remember thatp = Rq and alsop ' RAw ' Sw.
Sometimes a specific scaled representations of vectors
and matrices is needed. In this case all vectors are
normalised to have unit length and all matrices have
unit determinant.

3.2.1. Discrete Motion with Known Rotation. Let
p1(s)denote the apparent contour in image 1 with curve
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Figure 5. (a) and (b): The two figures illustrate the configuration of
apparent contours, the epipole and the epipolar tangency lines in two
images. The two pencils of epipolar tangency lines are projectively
equivalent. (c) and (d): The figure illustrate the dual of (a) and (b).
The dual of an apparent contour is a curve, the dual of the epipole is a
line and the dual of each epipolar tangency line is a point. The duals
of the set of epipolar tangency lines are projectively equivalent. The
figure is only schematic.

parametersand letp2(s)be the corresponding apparent
contour in image 2. The pointr where the epipolar tan-
gency point is tangent to the surfaceU belongs to both
contour generators, as illustrated in Fig. 2. The normal
n to the surface at this point is orthogonal not only to
p1 andp2 but also to their image tangents,(p1)s and
(p2)s, and to the direction of motionc2− c1. This can
be written as thegeneralised epipolar constraints,

rank [c2− c1 p1 (p1)s p2 (p2)s] = 2. (13)

The five column vectors in this matrix are perpendic-
ular to the normaln. Notice that the rank constraints
involve both curve parameterss1 ands2 and the motion
parameters(c1, c2).

The constraints (13) can be used in several ways.
Firstly, once the direction of motion1c = c2 − c1 is
known the first image of the epipolar tangency point
can be found by searching for the curve parameter
s1 which gives det [1c p1(s1) (p1)s(s1)] = 0, and
similarly for the second image, see (Carlsson, 1994).
Secondly, when the image of the epipolar tangency
points is known, the condition det [1c p1 p2] = 0
can be checked.

The motion parameters(c1, c2) have six degrees of
freedom. They can, however, only be found up to an un-
known coordinate transformation consisting of trans-

lation and change of scale which gives 4 degrees of
freedom. This leaves 2 observable degrees of free-
dom. A canonical parametrisation can be chosen with
|1c| = 1, so that the condition (13) becomes

rank [1c p1 (p1)s p2 (p2)s] = 2. (14)

3.2.2. Discrete Motion with Calibrated Camera.The
constraints in the calibrated camera case can be derived
by introducingp = Rq in (13). This gives:

rank [c2−c1 R1q1 R1(q1)s R2q2 R2(q2)s] = 2.
(15)

The motion parameters(R1, c1,R2, c2) have 12 de-
grees of freedom, but they can only be determined up
to a similarity transformation, which has 7 degrees of
freedom. This leaves 5 observable degrees of freedom.
A canonical parametrisation is obtained by choosing
R1 = I , c1 = 0 and|1c| = |c2 − c1| = 1. Using
1R = R2 we get

rank [1c q1 (q1)s 1Rq2 1R(q2)s] = 2.
(16)

3.2.3. Discrete Motion with Uncalibrated Camera.
The constraints in the uncalibrated camera case can
be derived by introducingp ' Sw in (13). This gives:

rank [c2−c1 S1w1 S1(w1)s S2w2 S2(w2)s] = 2.
(17)

The motion parameters(S1, c1,S2, c2) have 22 degrees
of freedom, but they can only be determined up to a pro-
jective transformation, which has 15 degrees of free-
dom. This leaves 7 observable degrees of freedom.
UsingS1 = I , c1 = 0 and|1c| = |c2 − c1| = 1, we
remove some of the arbitrariness, but three degrees of
freedom are left. Using1S= S2 we get

rank [1c w1 (w1)s 1Sw2 1S(w2)s] = 2.
(18)

The parameter ambiguity in1S can be understood by
doing a projective transformation by the matrix1S of
the viewing sphere of image 2 and then by choosing
a coordinate system so that the direction of translation
is along thex-axis. Compare this with the standard
rectification in Fig. 7. The set of epipolar tangency
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planes is now invariant under the projective transfor-
mations

S= ex1s1+x2s2+x3s3,

wheree is the matrix exponential and

s1 =
1 0 0

0 0 0
0 0 0

 , s2 =
0 1 0

0 0 0
0 0 0

 ,
s3 =

0 0 1
0 0 0
0 0 0

 ,
are a basis for corresponding Lie-algebra. The parame-
ter ambiguity in1Scorresponds to the three parameter
ambiguity in choosing the plane at infinity, (see (Luong
and Vieville, 1994)).

3.2.4. Infinitesimal Motion with Known Rotation. In
some cases it is of interest to compute the infinitesimal
motion of the camera. The constraints can be derived
from the previous results by a limiting procedure. It
follows from Eq. (13) that

rank [1c p1 (p1)s p2 (p2)s]

= rank [1c/1t (p1)s (p2− p1)/1t (p2)s]

→ rank [ct p (p)s pt (p)s] = 2, ast → 0.

(19)

Thus the infinitesimal generalised epipolar constraint
is

rank [ct p (p)s pt ] = 2. (20)

Remark. Note that the frontier conditionct · n = 0 is
equivalent topt ·n = 0, see (9), which is the condition
for the apparent contours to form anenvelope in the
image.

As in the discrete time case there are 2 observable
degrees of freedom. A unique parametrisation is ob-
tained by requiring that|ct | = 1.

3.2.5. Infinitesimal Motion with Calibrated Camera.
The constraints in the calibrated camera case are ob-
tained by introducingp = Rq in (20). This gives

rank [ct Rq (Rq)s (Rq)t ]

= rank [ct Rq R(q)s Rtq+ Rqt ] = 2. (21)

The motion parameters(R, c,Rt , ct ) have 12 degrees
of freedom, but they can only be determined up to a
similarity transformation, which has 7 degrees of free-
dom. This leaves 5 observable degrees of freedom. A
unique parametrisation is obtained byR = I , c = 0
and|ct | = 1. This gives,

rank [ct q (q)s Rtq+ qt ] = 2. (22)

3.2.6. Infinitesimal Motion with Uncalibrated Cam-
era. The constraints in the uncalibrated camera case
are found by introducingp = Sw in (20). This gives,

rank [ct Sw (Sw)s (Sw)t ]

= rank [ct Sw S(w)s Stw+ Swt ] = 2. (23)

The motion parameters(S, c,St , ct ) have 22 degrees
of freedom, but they can only be determined up to
a projective transformation, which has 15 degrees of
freedom, leaving 7 observable degrees of freedom. By
choosingS= I , c= 0 and|ct | = 1, we obtain

rank [ct q (q)s Stq+ qt (q)s] = 2. (24)

As in the discrete time case, three unobservable degrees
of freedom remain. To understand this, choose coordi-
nates so thatct is parallel to thex-axis. The constraints
then only involve the last two components ofStw. The
first row ofSt is thus not observable. The choice of the
first row ofSt corresponds to the choice of the plane at
infinity.

3.3. Parallel Projection Models

The same analysis can be made for the parallel projec-
tion camera model. In this case points at positionr are
projected onto the image plane along the same direc-
tion k. A point r on the surfaceU lies on the contour
generator if

k · n(r) = 0.

The normal direction is uniquely constrained by

k(t1) · n(r) = 0, k(t2) · n(r) = 0,

if the two directions of projectionk(t1) andk(t1) are
different. The directionk of the projection plays a
similar role in the parallel camera model as the focal
pointc does in the perspective camera models.
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Introducek1 = k(t1), k2 = k(t2), u1 = u(·, t1)
andu2 = u(·, t2). The normaln(r) of the surface is
orthogonal not only tok1 andk2 but also to the image
tangents(u1)s and(u2)s and the vectoru2 − u1. This
can be written

rank [k2 k1 u2− u1 (u1)s (u2)s] = 2. (25)

The infinitesimal time constraint is obtained by a lim-
iting procedure

rank [kt k ut us] = 2. (26)

In the orthographic camera model the image coordi-
nate system is known up to a Euclidean transformation.
Thus we obtain

rank [k2 k1 B2u2−B1u1 B1(u1)s B2(u2)s] = 2
(27)

for discrete motion and

rank [kt k (Bu)t Bus] = 2 (28)

for continuous motion, whereB is a 3×3 matrix repre-
senting planar Euclidean transformations. In the weak
perspective camera model the image coordinate sys-
tems are known up to a similarity transformationC.
By choosing coordinate system such thatB1 = I and
k1 = [0 0 1] and denoting1B = B2 and1k = k2,
and similar for the other cases we obtain,

rank [1k k 1Bu2− u1 (u1)s 1B(u2)s] = 2,

rank [1k k 1Cu2− u1 (u1)s 1C(u2)s] = 2,

for discrete motion and

rank [kt k Btu+ ut us] = 2, (29)

rank [kt k Ctu+ ut us] = 2, (30)

for infinitesimal motion, where

k = [ 0 0 1],

1k =' [ cosθ sinθ 0]
T
,

1B =
 cos(b1) sin(b1) b2

−sin(b1) cos(b1) b3

0 0 1

 ,
1C =

 c1 cos(c2) c1 sin(c2) c3

−c1 sin(c2) c1 cos(c2) c4

0 0 1

 ,

kt =' [ cosθ sinθ 0]T,

Bt =
 0 b1 b2

−b1 0 b3

0 0 0

 ,
Ct =

 c1 c2 c3

−c2 c1 c4

0 0 0

 .
In all of these cases all parameters but one are observ-
able.

4. Implementation

In this section we will discuss some details of the com-
putation of camera motion. This involves detection of
apparent contours, determination of an initial estimate
of motion parameters and refinements of the estimates.

Notice that there is not a closed form solution to the
problem. The epipoles are needed to find the fron-
tier points. The frontier points are needed to find the
epipoles.

We have developed algorithms for several different
camera models. The idea is to obtain an initial estimate
of motion and then use optimisation techniques to ob-
tain the final solution. The algorithms can be divided
into two groups: continuous versus discrete time.

Algorithm for continuous time parameters

1. Track the contours.
2. Tesselate each focus of expansion (infinitesimal

epipole).
3. For each focus of expansion calculate optimal mo-

tion parameters and measure residual.
4. Select the best focus of expansion as initial motion

estimate.
5. Calculate scaled residuals, likelihood and their

derivatives with respect to motion parameters.
6. Quit if residuals are small.
7. Otherwise update motion parameters and goto 5.

Algorithm for discrete time parameters

1. Track the contours.
2. Get initial motion estimate, for example using a con-

tinuous time approximation.
3. Calculate scaled residuals, likelihood and their

derivatives with respect to motion parameters.
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4. Quit if residuals are small.
5. Otherwise update motion parameters and goto 3.

These steps will be commented upon here and illus-
trated in Section 6.

4.1. Extraction and Tracking of Apparent Contours

An important part of the calculation of motion from
the deformation of apparent contour is the extraction
and tracking of the contour. This is a difficult practi-
cal problem which has received considerable attention,
see (Blake and Yuille, 1992). The notion ofB-spline
snakehas been used for this purpose, see (Cipolla and
Blake, 1990). Roughly speaking, a snake see (Kass
et al., 1987) is a parametrised curve, in this case as
B-splines, whose parameters are changed dynamically
to fit the contour. The spline curve wriggles to adapt
the image, thus resembling a snake. The curve is repre-
sented as a collection of B-spline segments, where each
segment is represented by four control points. These
points generate a segment of the contour, see (Foley
et al., 1990, p. 493). This representation has several
nice properties. The contour obtained by joining the
segment generated by control points (1,2,3,4) and the
segment generated by control points (2,3,4,5) is auto-
maticallyC2, unless some of the control points coin-
cide. Closed contours are easily represented using the
control points cyclically.

The B-spline snake is matched to the contour in two
steps. Euclidean transformations are first used. This
ensures a fast, robust, but rough positioning of the snake
in the new image, cf. Fig. 6(a) and (b). The snake is then
deformed to match the new image. Figure 6 illustrate
this for one of the contours. The procedure is explained
in more detail in (Curwen and Blake, 1992).

To deform the B-spline snakes, a subpixel edge de-
tectors is used, that not only give the location of the
contour but also a confidence interval in the normal di-

Figure 6. The B-spline snake (a) is used as a template to track the
contour in the next image. A rough positioning is found by allowing
rigid motion of the snake (b). The new snake is then found by
allowing the snake to deform (c).

rection of the curve. This is done with the technique
described in (̊Aström and Heyden, 1999). For clear,
well defined edges, like the ones in Fig. 6, the indi-
vidual edge positions can be found with a standard
deviation of about on tenth of a pixel. This uncertainty
measure is important in estimating motion parameters.
Different frontier points are weighted according to the
uncertainty in their positioning.

A rough estimate of point correspondences are ob-
tained as a by-product of the snake type tracking. These
correspondences can be used to calculate an initial es-
timate of motion parameters as described in the next
section.

4.2. Initial Hypothesis of Motion

An initial estimate of the motion parameters is needed
in order to use the generalised epipolar constraints.
There are a number of different ways to obtain these:

1. Point matches: In most cases it is useful to match
points as well as contours. The points can be
used to estimate motion parameters with conven-
tional methods, e.g., the linear eight point method
(Longuet-Higgins, 1981) or non-linear methods
(Luong et al., 1993).
Approximate point matches can also be obtained by
matching points with high curvature in the image or
by using the centroid of the matched contours.
The B-spline snake tracker can also be used to ob-
tain approximate point correspondences. Individual
points on the apparent contour are first identified
through the rigid motion of the template as illus-
trated in Fig. 6, and then through the deformation
of the contour in the normal direction.

2. Motion sensors: In some situations, partial knowl-
edge of the motion can be obtained by other means.
The camera might be mounted on a robot with sen-
sors that give approximate and/or partial knowledge
of viewer motion.

3. Prediction: If viewer motion is smooth it might be
possible to predict motion parameters from motion
history.

The problem of finding good initial estimates is an
important and difficult one. The above suggestions in-
dicate some possible techniques. In the experiements,
additional suggestions are given and tested. These
methods work reasonably well for the type of data and
motion present in the experiments. A more thorough
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testing of methods for finding the initial estimates is
needed, but is outside the scope of this paper.

4.3. Maximum Likelihood Estimate

The maximum likelihood method is a natural way to
estimate the motion parameters given noisy input data.
It has several advantages, and is relatively easy to apply.
In the sequelm will be used as an abstract variable
for the motion parameter andM will be used for the
motion parameter manifold. The general principle is
first described.

1. Create a residual functionαi = αi (m). This is
described below.

2. Calculate the joint conditional distributionfn(α |
m) of the residuals given the motion parameterm.

3. Define the likelihood functionL(m) = fn(α | m)
as a function ofm ∈M.

4. The maximum likelihood estimatêm is the param-
eter which maximises the likelihoodL(m) overM.

To simplify the minimisation it is often assumed that
the residualsαi are independent and Gaussian with zero
mean and standard deviationσi . This is a reasonable
assumption if the images of the frontier points are not
too close to each other. The likelihood function is then

L =
∏ 1√

2πσ 2
i

e−α
2
i /2σ

2
i .

Maximising the likelihoodL is then almost the same
as minimising

g(m) =
∑ α2

i (m)

σ 2
i (m)

. (31)

The estimatêm is the motion parameters that minimise
this weighted sum of squared residuals, i.e.,

m̂ = argming(m). (32)

Although the method is straightforward, some points
need careful consideration. The functionsαi (m) and
σi (m), must be determined and suitable optimisation
methods must be found. To do this we will consider
three cases: central projection and orthographic projec-
tion in the discrete time case and the continuous time
case.

4.3.1. Residuals for Discrete Time Central Projection.
We will first define the residualsαi (m) for the discrete
time case with central projection and an uncalibrated
camera. Consider two images. Let1S and1c be the
incremental motion parameters. Recall that1S is the
change in generalised orientation of the camera and1c
is the change in position. These motion parameters can
be used to rectify the camera, as illustrated in Fig. 7.
Two images are shown in Fig. 7(a) and (b). Each of
them is mapped onto the viewing sphere in Fig. 7(c) and
(d). The image c remains unchanged in e but the image
d is projectively transformed with1S, to compensate

Figure 7. Rectification of uncalibrated images. (a) and (b): The
figures show two images. (c) and (d): These are projected onto the
viewing sphere using approximate intrinsic calibration matrices. (e)
and (f): Image (d) is then projectively transformed by the matrix
1S. (g) and (h): Both images are rotated with matrixRc, so that the
direction of motion1c is along thex-axis. After rectification the
epipolar tangency planes all intersect at thex-axis. The two sets of
epipolar tangency planes should be equal. The angular difference is
used as a residual.
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for changes in orientation and internal calibration. The
images e and f are then transformed with the same
rotation matrixRc, so that the direction of motion is
along thex-axis. Having made the transformation it
now remains to find the frontier points in the images.
According to the generalised epipolar constraint (18),
the frontier points in image c are given by

|1c w1 (w1)s| = 0,

and those in image d by

|1c 1Sw2 1S(w2)s| = 0.

After rectification this simplifies to

|e1 w1 (w1)s| = 0,

and

|e1 w2 (w2)s| = 0,

where e1 = [1 0 0]T. When the corresponding
frontier points have been found, the epipolar tangency
planes through thex-axis and the frontier points in
g and h should be identical. The residualαi is then
defined as the angular difference between the planes
(Fig. 8). The standard deviationσi of each residual is

Figure 8. Two sets of epipolar tangency planes are calculated from
two images. These two sets should ideally be identical. The resid-
ual is defined as the angular differenceαi between corresponding
epipolar tangency planes after rectification.

estimated using the edge detector. The transformation
from contour errors to angular errors in the epipolar tan-
gency planes is straightforward. It will not be described
explicitly here, see (Faugeras, 1993). It has now been
described how to computeαi andσi . Summing over all
frontier points gives the loss function (31). However,
efficient minimisation of the loss function requires the
derivatives

∂αi

∂m
and

∂σi

∂m
.

The expressions for these derivatives are complicated.
The analytical calculations have been checked numer-
ically and with computer algebra. An additional com-
plication arises becauseM is a manifold. It is thus
necessary to introduce new local coordinates at each
iteration. Second derivatives have also been used to
implement the Newton-Raphson iteration for some of
the camera cases.

4.3.2. Residuals for Discrete Time Parallel Projection.
The parallel projection case is similar to the central pro-
jection case. The motion parameters are used to rectify
the image pair. The epipolar tangency planes are calcu-
lated through the epipolar tangency constraints (Fig. 9).

Figure 9. The case of discrete motion with weak perspective cam-
eras. (a) and (b): The figures shows two images. (c) and (d): Image
(b) is transformed with similarity transformation1C. (e) and (f):
Both images are rotated so that the direction of motion is along the
x-axis. The two sets of epipolar tangency planes should be equal.
The difference (iny-direction) is used as residual.
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The distance between the parallel epipolar tangency
planes is used as a residualαi . The residual is scaled
with respect to its standard deviationσi . The residual
variance, due to edge localisation error, is changed in
these transformation. These effects must be taken into
account.

4.3.3. Residuals for Infinitesimal Time. In the in-
finitesimal case, the direction of viewer motionct is
used as an infinitesimal epipole, or the focus of expan-
sion. The tangency constraint is then used to find the
epipolar tangency planes and the corresponding fron-
tier points. For example, in the calibrated case we have

|ct q qs| = 0.

Each plane defines a normaln. The motion constraint
is then simply

n · (Rtq+ qt ) = 0.

It is reasonably to use

α = n · (Rtq+ qt )

as residual. The maximum likelihood estimate is ob-
tained by minimising (31), i.e.,

g(m) =
∑

i

α2
i (m)

σ 2
i (m)

. (33)

It seams reasonable to assume that errors inαi are
mostly due to the errors inqt . If so the following ap-
proximation holds

σi = σ [αi ] ≈ σ [ni · qt ].

These standard deviations are obtained from the sub-
pixel edge detector routines. Furthermore, it seams
reasonable to assume that this standard deviation is ap-
proximately constant around each frontier points. Us-
ing these approximationsg is in fact quadratic inRt so
that the minimisation with respect toRt can be found
by linear methods.

The implementation of the infinitesimal case is sim-
pler than the discrete time case. The major reasons for
this are the following

• The derivative of the matrix rotation,Rt , and simi-
larly for St , Bt andCt , is an element of a linear space,

a Lie algebra, as opposed to the rotation operatorR.
The same holds forS, B or C, which are elements of
a non-linear manifold, a Lie group.
• For a fixed choice ofct the weighted residualαi /σi

is linear inRt .

4.4. Finding the Tangency Points

Determination of the epipolar tangency planes is an
important part of the calculations. The motion param-
eters give the position of the epipoles, or the focus of
expansion in the infinitesimal case. The B-spline rep-
resentation is very useful for computing the tangents to
the apparent contours that go through a given epipole.
There is a way to check each segment and to deter-
mine if it contains an epipolar tangency. The tangent
can then easily be found with Newton–Raphson iter-
ations. The solution is typically found within a few
(3–6) iterations.

4.5. Optimisation Techniques

Computing the maximum likelihood estimate is in es-
sence an optimisation problem. The motion parameters
m are found by minimising (31), i.e.,

g(m) =
∑

i

(
αi (m)
σi (m)

)2

=
∑

Yi (m)2,

where Yi (m) is the normalised residualYi (m) =
αi (m)/σi (m).

The first practical difficulty lies in the non-linear na-
ture of the motion parameter manifold. Therefore a
new parametrisation is chosen at each iteration around
the current motion parametermk ∈M. This parametri-
sation is a local mapping betweenRd and a neighbour-
hood ofmk inM,

Rd 3 x→ mk(x) ∈M.

The scaled residualY atmk and its derivative∂Y
∂x atmk

are calculated as described on Pages 14. Both Newton-
Raphson and Gauss–Newton methods have been used
to find the minimum of

g(x) = Y(mk(x))
TY(mk(x)),

A couple of difficulties have to be solved. The minimi-
sation routine has to be modified so that a descent in
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the error functiong is guaranteed. This involves line-
search methods if the error function does not decrease,
and checking whether the second order derivative ma-
trix is positive definite, as it should be to guarantee
a descent direction. The technique is standard, see
(Luenberger, 1984).

Another difficulty is the appearance of new and dis-
appearance of old tangency planes as the motion pa-
rameters are changed. In our implementation we have
solved this by not allowing new tangencies in the er-
ror function until the minimum for the other ones is
reached.

5. Statistical Evaluation

The maximum likelihood estimate has several good
properties. One is that it is guaranteed to be asymp-
totically unbiased. Another is that it is asymptotically
efficient under reasonable conditions.

The residuals at the minimum can be used to estimate
empirically the magnitude of edge localisation error.
This can then be compared to the estimates obtained
directly in the edge detectors. The residuals can thus
be used to automatically verify whether an acceptable
estimate of the minimum has been found.

The second order derivative matrix∂
2g
∂x2 or its approx-

imation ∂Y
∂x

T ∂Y
∂x together with the variance of the scaled

residuals give an estimate of the covariance of the es-
timated motion parameters,

C[x] = 2σ̂ 2

(
∂2g

∂x2

)−1

≈ σ̂ 2

(
∂Y

∂x

T ∂Y

∂x

)−1

.

Note that this covariance matrix is expressed with re-
spect to the particular local parametrisation of the mo-
tion parameter manifold.

6. Examples

In the previous sections we have discussed princi-
ples for motion determination. In this section we will
present results of practical experiments. There are
many details that have to be considered when imple-
menting the algorithms. Some of these will be dis-
cussed. In the experiments we have illustrated several
of the principles discussed previously. Several differ-
ent camera models are discussed with both continuous-
and discrete-time approaches. We will start with the
case that gives the simplest calculations, but not so ac-
curate results. The results will then be refined to give

more accurate results at the cost of more complicated
algorithms. The result from the simpler approaches
is used as initial estimates in the more complicated
procedures. The first four examples thus form a unit.
All procedures have been applied to the same image
sequence.

The first four examples are based on scenes in a lab-
oratory. In the fifth example we have used an outdoor
scene of Henry Moore sculptures, where the images
were taken with a hand held video camera.

A final example illustrates how additional informa-
tion can be used, e.g., that one of the objects in the scene
is a planar. This information admits a drastic simplifi-
cation as was discussed in (Heyden andÅström, 1997).
The experiment shows that this idea can indeed be im-
plemented effectively.

6.1. Infinitesimal Motion, Weak Perspective

In this experiment we use a scene consisting of five
stones and a piece of paper on a black cloth. A sequence
of pictures have been taken from different view-points
with a camera mounted on a tripod. The scene is ap-
proximately 40 cm wide and the camera is roughly
half a meter from the scene. One image is shown in
Fig. 10. The baseline of the camera movement is fairly
small, about 5–10 cm, making it reasonable to use an
infinitesimal approximation. The apparent contours of
the images were extracted and tracked automatically,
using the B-spline method described in Section 4.1.
The apparent contours in the first image, the normal
velocity and its standard deviation were represented
with B-splines.

In the weak perspective case the motion parameters
arekt andBt , cf. Section 3.3. The focus of expansion
kt can be represented as

kt =
cos(θ)

sin(θ)
0

 ,
with 0 ≤ θ < π . If kt is given the epipolar tangency
points can be found through the epipolar tangency con-
straint

|kt k us| = 0.

The function to be minimised is

g =
∑ α2

i (kt ,Bt )

σ 2
i (kt )

,
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Figure 10. The case of infinitesimal motion with weak perspective
camera. (a): One image with apparent contours and the estimated
normal velocity is used as input. (b): The minimal error functiong̃
is calculated for each of forty choices of focus of expansionkt =
(cos(θ), sin(θ),0) and plotted againstθ . The best choice is used as
input to a Gauss–Newton minimisation routine. The minimum is
found within a few iterations. The logarithm in base 10 of the step
lengths is plotted as a function of iteration number.

whereα = n · (Btu + ut ). The other motion param-
eterBt can be represented as a linear combination of
matrices

s1 =
0 −1 0

1 0 0
0 0 0

 , s2 =
0 0 0

0 0 1
0 0 0

 ,

s3 =
1 0 0

0 1 0
0 0 0

 .
If kt is fixed, the matrixBt belongs to a linear manifold
and the loss functiong is quadratic inBt . The optimi-
sation with respect toBt can thus be done analytically,
and the global minimum is estimated by sweeping over
all kt . In practice we have done this by quantisingθ in
40 equidistant parts. The result is illustrated in Fig. 10,
which shows the image ina. The value of

g̃(θ) = min
Bt

g(kt (θ),Bt ), (34)

is shown in b. Notice that̃g(θ) is π -periodic. A crude
value ofθ is found as the argmiñg(θ) of the discre-
tised function. In our particular example this gives
θ̃ with a resolution corresponding to the quantisation.
An improved estimate is obtained by Gauss–Newton
iteration, as illustrated in Fig. 10(c), which shows
that a numerical accuracy of 10−6 is obtained after 10
iterations.

6.2. Infinitesimal Motion, Uncalibrated Camera

The image sequence of Example 6.1 will now be anal-
ysed using the uncalibrated camera model. In this case
the motion parameters arect ∈ S2 andSt is a general
3×3 matrix. Given the focus of expansionct the epipo-
lar tangency points can be found through the epipolar
tangency constraint

|ct w ws| = 0.

The function to be minimised is

g =
∑ α2

i (ct ,St )

σ 2
i (ct )

,

whereα = n · (Stw+wt ).Analogously to the previous
example, ifct is fixed the matrixSt belongs to a linear
manifold and the loss functiong is quadratic inSt .
The optimisation with respect toSt can thus be done
analytically, and the global minimum is obtained by
sweeping over allct . In practice we have done this by
tessellation of the sphere. In our particular example,
this is done by quantising the latitude and longitude
angles in 20 steps, as illustrated in Fig. 11. The value
of

g̃(ct ) = min
St

g(ct ,St ) (35)



68 Åström, Cipolla and Giblin

Figure 11. The case of infinitesimal motion with uncalibrated cam-
era. The sphere of directional velocities is tessellated. For each di-
rectionct , the minimal error functioñg is found and plotted against
ct . Dark regions correspond to low values ofg̃. Notice the long
dark valley indicating good choices ofct . The rough estimate of
the minimum is used as an input to a Gauss–Newton minimisation
routine. The minimum is found within a few iterations. The shape
of this long valley indicates thatct will be poorly located along the
length of the valley. This is confirmed by the statistical validation.

is shown. A crude value ofct is found as argmiñg(ct )

of the discretised function. Improved values is obtained
by Gauss–Newton iterations.

Notice that the low values of̃g form a long valley
on the sphere. We expect the direction of motion to be
poorly located along that valley. This is confirmed by
the statistical evaluation. Also notice that choosing the
weak perspective model corresponds to searching this
sphere along the equator only.

The minimum obtained from tessellating the sphere
or the minimum obtained from the weak perspective
case above can both be used as initial estimate in a
Gauss–Newton search of the minima. This was done
and ten iterations were needed to find the minima.

6.3. Discrete Motion, Weak Perspective Camera

In some of the previous examples the infinitesimal mo-
tion parameters were determined. We will now deter-
mine the discrete motion parameters. The same images
as in the previous example will be used. With the weak
perspective camera model the motion parameters are
1k and1C. The loss functiong(1k,1C) was de-
rived on page 15–15. The problem no longer has the
nice structure of infinitesimal motions, where we could
optimise with respect to one motion parameter analyt-
ically. Attempting to discretise all variables gives a
very unwieldy optimisation problem. Therefore, we

will use the result of Example 6.1 to obtain an initial
estimate of the discrete motion parameters:

1C = eCt1t , 1k = kt1t.

The estimate is then refined using Gauss–Newton op-
timisation.

6.4. Discrete Motion, Uncalibrated Camera

This example is similar to the Example 6.3. The result
from the infinitesimal case in Example 6.2 are used as
an initial estimates of the discrete motion parameters.
A standard extrapolation is used:

1S= eSt1t , 1c= ct1t.

This initial estimate is used as input in a Gauss–Newton
search. This will be described in a little more detail
here, for one iteration.

The current estimates of motion parameters are used
to calculate the epipoles and the epipolar tangencies.
This is illustrated in Fig. 12, where (a) and (b) show the
images of the epipolar tangency planes. These images
are then rectified as described on pages 14–15. The
result of the rectification is shown in Fig. 12(c). The
epipolar tangency planes should coincide after recti-
fication. In practice there will be deviations, due to
edge localisation errors. The difference, represented
by the angleα, is calculated together with its standard
deviation, as explained on page 14–15. The weighted
residual is then computed as

Y = α

σ
.

The gradient ofY with respect to the motion parameters
is also calculated. The motion parameters are then
adjusted using the Gauss–Newton method. Figure 12
shows the result at iteration 4 and 12 in the second and
third row respectively.

The figure gives an indication of the epipolar geom-
etry. Comparing Fig. 12(c) and (i), we can also see that
the iteration decreases the angle residuals, particularly
the residual represented by the lowest lines.

The effectiveness of the optimisation routine is illus-
trated in Table 3. Notice the rapid reduction of the loss
function and the norm of the gradient. A few iterations
(6 in this case) are typically required to get close to the
minimum. A few more iterations may be required to
localise the minimum within machine accuracy.
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Table 3. The table illustrate the decrease in loss functiong and the gradient magnitude|∇g| using the Gauss–Newton optimisation.

Iteration 1 2 3 4 5 6 7 8 9 10

g 110 66 34 16 7.7 6.5 6.5 6.5 6.5 6.5

log10(|∇g|) −1.0 −1.1 −1.3 −1.5 −2.0 −3.6 −5.5 −7.6 −9.7 −9.7

Figure 12. Finding the uncalibrated motion parameters using the generalised epipolar constraints. Optimisation of the likelihood function.
Iteration number 1 (first row), 4 (second row) and 10 (third row). The first and second columns illustrate the epipolar tangencies in the first and
second image. The third column illustrates the rectified epipolar tangency planes, projected on the view-sphere and viewed along the direction
of motion.

6.5. Discrete Motion, Calibrated Camera

Experiments have also been made to determine mo-
tion parameters based on real outdoor scenes. We have
taken video sequences of a Henry Moore statue in York-
shire Sculpture Park, UK, see Fig. 13. The images
were taken using a hand-held video camera. The fig-
ure illustrates two frames of a longer video sequence of
the scene. In this example the apparent contours were
detected and tracked manually. Two plausible local
minima were found, one with eight tangencies, Fig. 13,
and one with six tangencies, Fig. 14. Both epipolar
line structures agree with the image data. However,
they yield different solutions. The covariance matrices

of the motion parameters are quite large in both cases.
This is probably caused by the small number of tangen-
cies, the small baseline and perhaps a poorly calibrated
camera. These are the same problems that plague all al-
gorithms for determination of motion parameters from
structure.

6.6. Discrete Motion, Known Rotation

The experiment illustrate the use of a priori informa-
tion. In (Heyden and̊Aström, 1997) it was shown that
the presence of a planar feature in the scene makes
it possible to simplify the algorithms drastically. By
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Figure 13. Henry Moore sculpture. 8 epipolar tangencies lead to
convergence to different local minima. Due to the small field of view
and because the direction of translation is outside the image frame
the solution is very sensitive to image contour localisation errors.

Figure 14. Henry Moore sculpture. 6 epipolar tangencies are used
to estimate the motion between frames. Although they yield a con-
sistent estimate of the motion between frames ( judged by quality of
epipolar line structure) the solution is ill-conditioned.

detecting and aligning a planar feature in a sequence
of images, the analysis of the sequence can be reduced
to the case of a purely translating camera. The planar
curve is regarded as a curve on the plane at infinity.
Thus it has no apparent image motion. This simplifi-
cation has been used in (Heyden andÅström, 1997;
Sinclair et al., 1995). It is known asprojective reduc-
tion, which is a generalisation of the ‘plane plus par-
allax’ method.

This is illustrated in Fig. 15. Only the direction of
motion1c needs to be estimated. The sphere of pos-
sible directions can then be tessellated and the error
function g can be calculated for each direction. The
minimum obtained after tessellation is improved by lo-
cal Newton-Raphson search (6 iterations were needed).
The scene used in the experiment consists of stones
placed on building blocks. The camera was mounted
on a robot and moved around the scene. Four images
are shown in Fig. 15. The contours from all images are
aligned so that the planar curve coincides.

7. Extension to Multiple Images

The techniques in this paper describe in detail how mo-
tion parameters between pairs of images can be esti-
mated. General features such as points, planar curves,

Figure 15. Projective reduction. (a)–(d): Four images out of a
longer sequence. (e): By detecting and aligning the image of a planar
feature the images can be thought of as coming from a purely trans-
lating camera. The apparent contours after alignment are shown. (f):
This makes it relatively easy to extract motion parameters between
each pair of images. These parameters can then be used to calculate
the full motion of the camera.

space curves and apparent contours of general surfaces
can be used. The same kind ofgeneralised epipolar
constraintsapply to all these features. One interesting
application is to use estimates of motion parameters for
pairs of images in a sequence, to obtain the full motion
of the camera. In the calibrated case the motion can be
represented by camera positionsci = c(ti ) and camera
orientationRi = R(ti ). From the motion constraint

|c j − ci Ri qi R j q j |,

elementary determinant operations give

|R−1
i (c j − ci ) qi R−1

i R j q j | =
|1ci j qi 1Ri j q j | = 0. (36)

Our algorithm was constructed so that (36) holds. It
thus follows that

µi j1ci j = R−1
i (c j − ci ),

γi j1Ri j = R−1
i R j ,

where(1ci j ,1Ri j ) describes the incremental motion
parameters from imagei to image j . Since1Ri j and
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R−1
i R j are rotation matrices,γi j must be one. The over-

all coordinate system must be chosen, e.g., by choosing
c0 = 0, R0 = I and|cn| = 1.

Similar equations apply to the other camera models.
In the uncalibrated case the 3 parameter ambiguity in
determiningSi j and the choice of plane at infinity must
also be taken into account.

The idea is illustrated in Fig. 15. Four images of a
short sequence is shown (a)–(d) and the camera mo-
tion is represented as the corresponding four camera
positions (f).

8. Conclusions and Future Work

The apparent contour and its deformation under viewer
motion is known to be a rich source of surface geomet-
ric information. This can be used in visual navigation
and object manipulation. Here we have shown how so
called frontier points of apparent contours can be used
to recover the viewer motion from the deformation of
apparent contours. The epipolar constraint for points
is generalised to curves and apparent contours. The re-
sults hold for continuous and discrete motion cases, for
uncalibrated and calibrated cameras and for perspec-
tive and parallel camera models. An iterative method
to obtain the maximum likelihood estimate of the mo-
tion parameters is presented and the problem of finding
initial estimates is discussed. Statistical evaluation of
the results are presented. They can be used to evaluate
the validity of the solution and also to obtain estimates
of the covariance of the estimated motion parameters.
The theory is applied to experiments with real image
sequences. It is also indicated how motion between
image pairs can be used to obtain full camera motion.

In this paper we have shown that we can estimate
camera motion by measuring the deformation of the
apparent contour. In the future we intend to evaluate the
performance of this approach, for example by studying
if the motion estimate is good enough to test whether an
apparent contour is the silhouette of a curved surface or
the image of a fixed curve. We are also going to study
the problem of estimating surface structure using the
motion estimate.

As with all methods that depend on optimisation by
iterative techniques, there is the question of finding
good initial estimates, so that the global optimum is
found. In the paper some ideas for doing this is de-
scribed, but more work is needed in order to establish
the feasibility of the methods.

In the examples of this paper we have only used ap-
parent contours in the motion estimates. In practice one
would use a combination of image features to estimate
motion. Note that the generalised epipolar constraint
applies to both points, curves and curved surfaces.

It is unclear whether the extraction of motion leads
to a unique solution. For circular motion and parallel
projection it does, see (Giblin et al., 1994), but we in-
tend to apply the new insights gained from the present
work back to this case, generalising as far as perspec-
tive projection. Possibly other simple motion can be
included too.

Another theoretical question of interest is to deter-
mine necessary and sufficient conditions for profiles
p(s, t) and camera motionc(t) to arise from a surface
in space with the contour generators forming an enve-
lope on the surface. In the case of point reconstruc-
tions bilinear and trilinear constraints are enough but
the situation is less clear for surfaces. Some progress
is described in (Fletcher, 1996), where ‘higher fron-
tier conditions’ are obtained which in principle pro-
vide constraints on camera motion additional to those
described in the present paper.
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