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Abstract. In this paper we will discuss structure and motion problems for curved surfaces. These will be studied
using thesilhouettesor apparent contoursn the images. The problem of determining camera motion from the
apparent contours of curved three-dimensional surfaces, is studied. It will be shown how special points, called
epipolar tangency points or frontier points, can be used to solve this problem. A generalised epipolar constraint is
introduced, which applies to points, curves, as well as to apparent contours of surfaces. The theory is developed
for both continuous and discrete motion, known and unknown orientation, calibrated and uncalibrated, perspective,
weak perspective and orthographic cameras. Results of an iterative scheme to recover the epipolar line structure from
real image sequences using only the outlines of curved surfaces, is presented. A statistical evaluation is performed
to estimate the stability of the solution. It is also shown how the motion of the camera from a sequence of images
can be obtained from the relative motion between image pairs.

Keywords: curved surface, epipolar geometry, frontier point, uncalibrated camera, apparent contour, silhouette,
motion extraction

1. Introduction contours. It is shown how special points on the appar-
ent contour, calledrontier points can be detected in
Structure and motion from the images of point features image sequences and used to recover viewer motion.
has attracted considerable attention and a large numberThe special case of frontier points under orthographic
of algorithms exist to recover both the spatial config- projection and object rotation around a single axis was
uration of the points and the motion compatible with considered in (Rieger, 1986; Giblin et al., 1994). In
the views. The problemto recover structure and motion (Porrill and Pollard, 1991), although primarily con-
from the silhouettes or apparent contours of curved sur- cerned with stereo calibration from 3D space curves,
faces is more difficult, mainly because of the so called it was noted that the intersection of the two contour
aperture problemi.e., it is not possible to get the cor- generators from two discrete viewpoints generated a
respondence of points between two images of the samepoint, visible in both images. This constraint was ex-
curve. ploited in (Carlsson, 1994) in the analysis of the visual
This paper is concerned with the problem of recov- motion of space-curves. An approach for parallel pro-
ering viewer motion from the deformations of apparent jection has been presented in (Vijaykumar et al., 1995,
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1996). Another approach using trinocular stereo has
been presented in (Joshi et al., 1995).

In this paper we introduce the general epipolar con-
straint. We derive the constraint for several camera
models both in discrete and continuous time. We dis-
cuss the singularities of the contour generator and show
that the general epipolar constraint can be derived from
one of these singular cases. And finally we show how
the constraint can be used to calculate the relative
viewer motion between two cameras.

The viewing geometry of surfaces is discussed in
Section 2. Then follows a brief discussion about the
problem of extracting surface structure from the de-
formation of silhouettes wittkknowncamera motion.
This has been treated in (Cipolla, 1991; Cipolla and
Blake, 1992). The failure modes of these structure
from motion algorithms can be understood by anal-
ysis of some singular cases of the surface and view-
ing geometry. The rest of the paper is devoted to one
of these singular cases, the epipolar tangency point.
This is exploited in Section 3 where generalised
epipolar constrainis derived. This constraint is sim-
ilar to the bilinear constraint. There are many varia-
tions of the problem: The motion can be continuous

or discrete, the cameras may be calibrated and uncal-

ibrated, parallel and central projection may be con-

sidered. Section 3 is of necessity elaborate because
all these cases are treated. The generalised epipolar

constraint can be used to estimate the relative mo-
tion between two images. Implementational aspects
on how to use the generalised epipolar constraint
are discussed in Section 4. A statistical evaluation in
Section 5 gives an estimate of the stability of the

solution. Preliminary experimental results obtained

from real image sequences of curved surfaces from
unknown viewpoints are given in Section 6. Section 7

contains a discussion on how to use the relative mo-
tion between image pairs to calculate camera motion
in a longer sequence of images. This is also demon-
strated in an example. Some conclusions are given in
Section 8.

2. Surface and Viewing Geometry

In this section we will provide notations and back-
ground material for the camera and surface geometry.

Definition 1. Let B be an open bounded subseffof
with C* boundary. The boundaty is called acurved
surface

This paper deals with thetructure and motioprob-
lem from the images of curved surfaces.

Definition 2. For every camera positiang B, define
the contour generator as

I'c = {r € U | c € tangency plane dfl atr}.

1)
Denote byn = n(r) the normal to the surface

at a pointr € U. The contour generator can then be
defined as

I'e={reU|(r—c)-nr)=0}. (2)
The contour generator can also be described asthe locus
of pointsI" on the surface which separates the visible
from the occluded parts. This is illustrated in Fig. 1.
When the viewpoint changes, i.e¢ = c(t), the con-
tour generator moves over the surfateThis is illus-
trated in Figs. 2 and 3. In the sequalill sometimes
be omitted and the notatidn(t) = I¢«), will be used
for the contour generator at tinhe

Definition 3. The imagey of the contour generator
I'¢ is called theapparent contour.

The apparent contouis usually, but not always, a

smooth curve. Although the image is considered to be
the viewing sphere, it is sometimes convenient to illus-
trate images and features in the image plane. Notice

Figure 1 Perspective projection: the contour generatarith a
typical pointr, the image sphere with cent@nd the corresponding
apparent contour poirt+ p. Thusp is the unit vector joining the
centrecto the apparent contour point. Aleds normal to the surface
atr.
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we often use the term apparent contour and spatio-
temporal parametrisation for those parts that have been
detected.

The projection from contour generatorsdrto ap-
parent contours in the image sphere will now be anal-
ysed in a little more detail. In the sequel different no-
tations for the image point will be used for different
camera cases.

o Known internal calibration and camera orientation:
u=np.

e Calibrated camerau = q.

e Uncalibrated camerai = w.

Figure2 Degenerate case of epipolar parameterisation. The epipo- ] ) ]
lar plane is a tangent plane of the surface at a frontier point. Move- ~ Note that in each of these three cases the image point

ment of the viewpoint causes the contour generators to sweep overthejs represented by a8 1 vectoru. In the case of cali-
syrfacg. At.a frontier point the contour generators from consecutive brated cameras this vector can be interpreted as a direc-
viewpoints intersect. . . . . .

tion in three-dimensional Euclidean space. In the case
of uncalibrated cameras this vector can be interpreted
as the image poinix, y) in homogeneous or extended
coordinatesi =[x y 1].

For simplicity assume that the orthonormal camera
and object coordinate systems coincide. Let all points
be identified with their coordinate vectors. The image
p on the viewing sphere of a pointe U fulfills

Ap=r-—c,

wherei is the depth of and|p| = 1. Thusthe apparent
contour is

ve={peS?|Irp=r—crely} (3

E_gure 3 The ﬁg}t{fe Sho"‘(’jst";‘] surfatkand camera F;OSitiO“Kt)- o i Note thatp is the orientation of the ray in the fixed
Ive camera pos! IO!’]S an € corresponding contour generator Is referencelworld frame fOI' Euclidean 3-Space. NOW
shown. The frontier is the envelope of the contour generators corre- . ]
sponding to the camera positioo@). introduce an orthonormal camera coordinate system,
where coordinates are denotgd For a moving ob-

that lines in the image plane correspond to great circles server the camera coordinate system is continuously

on the viewing sphere. changing with respect to the object coordinate system.
The relationship betwegmandq can be conveniently
Definition 4. If every apparent contoyg ), to < t < expressed in terms of a rotation opera®it),

t1, admits a parametrisatiopg) (S), such that
p=R()aq. 4
ues, t) = yewr ()
The measurements in amcalibrated camera, de-
is continuous, theru is called aspatio-temporal scribed by the coordinate vectarin some affine cam-
parametrisation. era coordinate system, is related to the spherical image
positionq by an intrinsic calibration matriA,
In practice the whole apparent contour might not be
visible e.g., due to occlusion. By abuse of language, q>~Aw, (5)
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where~ denotes equality up to positive scale. Only Letrg € I'(tp) be a point on the surfadé. We want
the direction ofg is of interest. For simplicity the rela-  to find conditions that make it possible to descrilbe
tionship betweem andp will be expressed by a single  locally in a neighbourhood afy by a functionU (s, t)

matrix Srepresenting both intrinsic calibration and ori- in such a way thatJ (-,t) = ['(t). In other words,

entation of the camera we want(s, t) to define a local coordinate system with
['(t) as one of the coordinate curves. In (Giblin and
p ~ R(OADW ~ S(t)w. (6) Weiss, 1995, Prop. 3) it is shown that this is possible

except in the following singular situations:

By normalisation, the matri$ can be assumed to be

an arbitrary real 3 3 matrix whose determinantis 1. e Singular case Alf ro is a parabolic point on U
and the view-liner — c is in an asymptotic direc-
tion, then the contour generatBrty) is singular, in

2.1. Structure from Motion fact generally an isolated point or a crossing of two

curves.

ent contours can be used to recover the surface geom- parallel not only to the viewing direction — c(to),
etry, or structure, cf. (Giblin and Weiss, 1987; Cipolla  pyt also to the velocity of the camer(to), where
and Blake, 1992; Vaillant and Faugeras, 1992). These  the suffixt denotes differentiation. This is the same
algorithms work well at points where two conditions as requiring that; (to) is perpendicular to the normal

are fulfilled: n(ro) to the surface, i.eg(tp) - n = 0. The point
rois then called aepipolar tangency pointand the
e The contour generatofB;;, can be used as coor- tangent plane is called apipolar tangency plane
dinate curves for a local coordinate system on the Geometrically, the contour generatorsldrfiorm an
surfacel. envelopeat epipolar tangency points—see below—
e The apparent contousg, are nonsingular curves. and this prevents their forming part of a coordinate

grid since they intersect each other.

These two conditions are studied in the next two sec-
tions. It is shown that they fail to be fulfilled in three The epipolar tangency points, where the plane
singular cases, two of which refer to the contour gener- spanned by the view-line and the camera velocity vec-
ators and one to the apparent contour. It is remarkabletor is tangent tdJ, in general form a curve dd as the
that one of these cases can be used to derive the genereamera moves relative to the scene. This curveis called
alised epipolar constraint in Section 3. the frontier of U relative to the camera motiatt).
When the two conditions hold, a spatio-temporal By the above, thérontier condition is¢,-n = 0. Lo-
parametrisation of the image-curve motion can be cho- cally, the frontier is the boundary of the ‘visible region’
sen. The choice of spatial curve parameisiof course swept out by the contour generators. (Only locally be-
underconstrained. A special parametrisation, called the cause possibly there may come a later time when the
epipolar parametrisation, is naturally matched to the  contour generators will encroach on the ‘far side’ of
recovery of surface curvature, as was shown in (Cipolla the frontier.)
and Blake, 1992). Using the epipolar parametrisation It is worth looking at this more closely. Consider a
points on consecutive contour generators are matchedsurfacel € R® parametrised locally by andv, and a
along the epipolar lines. Thisis briefly discussed below, camera motion with projection centté) parametrised
but the question of determining structure from known by timet. The condition that the poim{u, v) € U lies
motion will not be continued in this paper. Instead we on the contour generator at tirhés simply
will focus on the question of determining motion.

(r(u,v) —c(t)) -n(u,v) =0, (7)

2.2. Singularities of the Contour Generator wheren(u, v) is the normal to the surface gafu, v).
Equation (7) can be thought of as defining a family of

In this subsection we will investigate the singular cases curves in thai, v parameter plane. This curve is in fact

for the contour generatoi3(t) = I'¢y). the contour generator ah. Theenvelopef the family



of curves, that is the ‘locus of intersections of consec-
utive curves of the family’, is given by differentiating
(7) with respect td (compare (Bruce and Giblin, 1992,
Section 5.3)). This gives the condition

n=0.

(8)

C -

The pointsr (u, v) obtained by eliminating between

(7) and (8) are precisely the points of teevelope of
contour generator®n the surface. This envelope is
therefore exactly the frontier as defined above. Over a
short period of time, the part of the surface covered by
the contour generators @ one sideof this frontier.
This is illustrated in Fig. 3. The epipolar parametrisa-
tion breaks down at frontier points as pointed out above,
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surface, which are visible in two ‘consecutive’ views,
they can be used to provide a constraint on viewer
motion.

2.3. Singularities of the Apparent Contours

So far we have discussed degeneracies A and B that are
related to the contour generafor Other degeneracies
are related to the apparent contgyi.e., the image of

the contour generator. Let us suppose that the singular
cases A and B of the previous section do not hold and
therefore that the contour generators form one family
of a coordinate grid. The apparent contours in the im-
age sphere will be a family of curvest), one for each
value oft. If we are to parametrise each apparent con-

because the contour generators cannot form part of atour with a curve parametsy then we need to avoid a
coordinate system on the surface since they do not crosgthird situation:

each other transversally.

Note that if the motion idinear, then the frontier
degenerates, sin@gis then aconstantvector, and the
condition (8) does not dependtrifa pointr (u, v) lies
on the frontier at some time then this point continues
to satisfy the frontier condition at subsequent times
and the velocity vectoc; lies in the tangent plane at
the isolated frontier point. This is illustrated in Fig. 4.
The same holds for any motion which is entirely in the
tangent plane to a surface at a particular point on the
surface.

The surface cannot be reconstructed by the epipolar

parameterisation at these points since the contour gen-

erator is locally stationary. However, because frontier
points correspond to real, fixed feature points on the

c(ts)

Figure 4 For linear translational motion the frontier degenerates
to a point through which all the contour generators pass. The motion
c(t) takes place in the tangent plane at this isolated frontier point.

e Singular case CThe apparent contoyr(t) is asin-
gular curve (generally with a cusp) when the view-
line r — cis in an asymptotic direction aton U
(see (Koenderink, 1990, p. 422) and (Cipolla et al.,
1996) where surface geometry is obtained by track-
ing cusps of apparent contours under known mo-
tion). (Note that here it ig (t) that is singular, while
in cases A and B it was the contour generdta),
that was singular. If the latter case then the appar-
ent contour is automatically singular but with a more
degenerate singularity than a cusp, cf. (Koenderink,
1990, p. 458).)

2.4. Epipolar Parametrisation

Assume that neither of the above singular situations
hold. Then a spatio-temporal parametrisatms, t)

can be chosen. Hereis anyregular parameter on the
apparent contouy (t) = {p(s,t): t =constany, i.e.,

ps # 0,Vs. This induces a parametrisation on the
surface, as in (Cipolla and Blake, 1992):

rs,t) =c(t) + Ap(s, t).

Differentiation with respect tb and scalar multiplica-
tion with n gives

r-N=C-N4+Ap;-N+Ap-n.
Usingry - n = 0 andp - n = 0 we obtain

O=c -n+4+Ap:-n. (9)
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Since 0< A < oo, it follows thatc - nandp; - n describedinthe previous sections. Remember that fron-
are either both zero or both non-zero. Assuming that tier points are projections of points on the surface that
G - n # 0, i.e., assuming thatis not a frontier point, are visible in both views, i.e., the same point can be
the depthi is given by, cf. (Cipolla and Blake, 1992, identified in both views. However, the frontier points
p. 91) are defined by the epipolar tangency constraint.
In this section we will go through the details and
— ) show how frontier points and camera motion can be
Pe-N computed. The presentation will by necessity be elab-
orate because several different cases have to be consid-
ered. The final results can, however, be expressed in a
compact form, see Tables 1 and 2.

C-n
A=

Again following (Cipolla and Blake, 1992), we can
use theepipolar matchingon the apparent contours to
provide a choice of parametsrby requiring that

rexp=_0. 3.1. Formulating the Generalised Epipolar

_ _ . Constraints
Introducing the notatiohA| for the determinant of the

matrix A, the condition can be written Consider the camera centers at two time instants;
c(t;) andc, = c(tp), and consider all tangent planes of
P ¢ pil=0. the surfacdJ that go through these two camera cen-

. ters. This will be called the pencil apipolar tan-

The conqun says that_ the three vectors are copla- gency planeswith respect ta; andc,. In each image,
nar. The epipolar matching thus breaks down at fron- ¢ jmage of the epipolar tangency planes is a pencil of
tier points and whenever the apparent conte() is lines, theepipolar tangency lines They all go through
singular. a point, theepipole e each line being tangent to an ap-

parent contour. The tangent points onthe apparent con-
d tours are called thepipolar tangency points Here,
lines in the projective image plar® and on the ori-
ented projective plane, or viewing sphé&reare planar
subspaces defined up to scale or positive scale. Notice
in particular that a line ir§? is a great circle. From
the construction the following theorem is obtained, see
(Porrill and Pollard, 1991).

Remark. The result for surfaces can also be applie
for the case when the objects atgvesin R3. A curve
may be regarded as a limit case of surfaces with high
curvature.

Under viewer motion the contour generators will
normally slip over the surface. For any given contact
pointr the motion along the ray is given byr, which
depends on the distance and surface curvature (Cipolla

and Blake, 1992), Formulation 1 (Coordinate Free). Given two im-

ages, and the epipoles and e,, the pencil of lines
G- Nn throughe; inimage one, which are tangentto an appar-
n:—( ), (10) . . .
At ent contour, and the corresponding pencil of epipolar
tangency lines in image two are projectively related.

wherex! is the normal curvature of the surface in the
direction of the ray. The speed of the contact point is
therefore inversely proportional to the surface curva-

ture. Notice that the velocity(t) is large when the p. 15), where the dual of a pointe P? is the set of

CL:]rvatl:]re is small and \gcg vers:;. T?e”veloc;ny IS Z€T0 3| lines that pass through the point. After introduction
v;/] ent ec;Jrvahure isin |r|1|te. Itthen follows from (10) ¢ coordinates, lines can be represented using homo-
thatr; = O for all points along a space curve. geneaus coordinates as

This is the generalised epipolar constraint. It can
also be expressed nual form, cf. (Coxeter, 1993,

3. Generalised Epipolar Constraints l=[a b deP2

After discussing the principles we will now show how if the equation of the line is
the viewer motion can be calculated from the con-
straints on the camera motion and the frontier points, |- x=0.
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Table 1 Summary of relevant motion parameters, number of observable degrees of freedom and
generalised epipolar constraints in the case of infinitesimal motion. Five camera models are considered:
PT — pure translation, C — Calibrated camera, U — uncalibrated camera, O — orthographic camera, WP
—weak perspective. The motion parameters and the observable degrees of fnedqmesented as

well as the generalised epipolar constraints.

Number of tangency Combined tangency
Camera model Motion params points needed and motion constraints
PT Gt 2 rankfcc p ps pi]=2
c ¢, R 5 rankfe g gs Riq+ql =2
U ¢, S 7 rankfer w ws SwH+w] =2
(@) k¢, Bt 3 rank ki k us Biu+u] =2
WP k¢, Ct 4 rank ki k us Ciu+u]=2

Table 2 Summary of relevant motion parameters, number of observable degrees of freedom and generalised epipolar

constraints in the discrete case. Five camera models are considered: PT — pure translation, C — Calibrated camera, U
— uncalibrated camera, O — orthographic camera, WP — weak perspective. The motion parameters and the observable
degrees of freedom are presented as well as the generalised epipolar constraints.

Number of tangency Combined tangency
Camera model Motion params points needed and motion constraints
PT Ac 2 rank[Ac p1 (pD)s P2 (P2)s] =2
C Ac, AR 5 rank[Ac g1 (01)s ARQg2 AR(Q2)s] =2
U Ac, AS 7 rank [Ac w; (W1)s ASW, AS(Wy)s] =2
(0] Ak, AB 3 rank [Ak k (u1)s (ABuz —uj) AB(up)s] =2
WP Ak, AC 4 rank [Ak k (up)s (ACuz —uj) AC(up)s] =2

The dual of a poink is thus a ‘line’ in parameter space Formulation 3 (Fundamental Matrix). Given two

(a, b, ). The dual of a lind is a point. The dual ofa  images, a coordinate system in each image, and the

curve is defined as the set of tangent lines to the curve. fundamental matrix-. The corresponding epipolar
tangency pointsv; andws, fulfill

Formulation 2 (Dual). Given two sets of duals of ap- WIFWZ =0, motion constraint
parent contours and the dual lindg and I, of the
epipolesg; andey, in image one and two respectively.
The intersection of the lirlg with the dual of the appar- ~ detfez Wz (W2)s] =0, tangency constraint

ent contours in the first image is projectively related to

the corresponding intersection of lilgwith the dual where subscript s denotes differentiation with respect
of the apparent contours in the second image. to a parametrisation of the apparent contour.

detle; wy (wy)s]=0, tangency constraint (11)

Note that the tangency constraint also can be written

Using the fundamental matrik, see (Thompson,  (w1)IFw, = 0 andw]F(w;)s = O respectively. The
1959; Stefanovic, 1973; Faugeras et al., 1992), and in- constraint can also be formulated using projection ma-
troducing coordinate system in both images, the gen- trices. This requires the introduction of coordinates in
eralised epipolar constraint can be expressed by theboth images and also for the object.
fundamental matrix. Notice that the two epipoks
ande, can be obtained as the left and right null-space Formulation 4 (Projection Matrix). Given two im-
of the fundamental matrix, i.eeIF = 0 andFe, = 0. ages, formed by projection matriceg £ Sgl[l —Ci,
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P, = sz—l[| — ¢y] respectively, wher8,, S, and| are to fixed features visible in both views. The motion

3x 3matrices andt; andc, are3x 1 vectors. The cor- constraint involves the epipole (direction of transla-

responding epipolar tangency pointg andws fulfill tion) and changes in orientation.

rank [ — ¢ SW1 SiWi)s SoWa  Sp(Wa)g] = 2. Remark. The actual Fangency points may not b_e well
(12) defined at contour points of small curvature. This does

not affect the stability of the motion estimate as they
i . relyonthe tangency planes only. These are determined
Formulations 1 and 2, have the advantage of being by the normal of the apparent contguand the epipole.

elegant and short. However, it is not apparent how 10 gyen at points of high curvature the tangency plane is
generalise them to other camera cases. Formulation 3, o defined.

also has its advantages. The image coordinate system
is often given a priori, or can be chosen at will. Once
this is done the whole epipolar geometry is described
by the fundamental matrik. This matrix can thus be
used to parametrise the problem uniquely.
Formulation 5 depends not only on the choice of
coordinate system in each image, but also on the ob-
ject coordinate system. A change in object coordinates
changes the projection matricBg andP,, while the
epipolar constraint still holds. The matricBs and
P, which have 22 degrees of freedom can only be de- 3.2. Central Projection Models
termined up to an unknown projective transformation
(15 degrees of freedom), leaving at least 7 degrees of We will structure the analysis as follows:
freedom. The fundamental matrix has the same de-
grees of freedom, sinckE is a 3 x 3 matrix defined e Known rotation and internal calibration.
up to scale with determinant zero. In the sequel, the ¢ Calibrated camera. Unknown rotation but known in-
termobservable degrees of freedonwill be used to ternal calibration.
denote this number, i.e., the number of degrees of free-e Uncalibrated camera.
dom in the projection matrices minus the number of
degrees of freedom in the unknown object coordinate If the rotation of the camera is known, then the image
system. pointp e S? gives the direction from the camera center
Despite this difficulty in defining observable degrees to the apparent contour. In the calibrated camera case,
of freedom, the coordinate dependent formulation has q € S? will be used to denote image points in the
the advantage of being compact. Another advantage camera coordinate system. It is related to the absolute
is that all camera cases can be expressed in a uniformdirectionp asp = Rg. Inthe uncalibrated camera case,
way. Notice that we are interested in computing two the image point in homogeneous coordinatehas
quantities, the camera positions and the frontier points. to be corrected with an unknown internal calibration
All constraints are expressed by (12). If the camera po- matrix A in order to get the directiog.
sitions are known, the frontier points can be calculated, Oriented homogeneous coordinates for vectors and
and vice versa. It is useful to think of the constraints matrices will be used. Two vectors or matrices will
in (12) as being of two types: be considered equal if they are a positive multiple of
each other. This simplifies the notation considerably.
1. Epipolar tangency constraints. These link motion Remember thap = Rq and alsop >~ RAwW >~ Sw.
parameters to the position of the frontier pointin an Sometimes a specific scaled representations of vectors
image. The constraints allow us to select a discrete and matrices is needed. In this case all vectors are
number of points in each image contour. normalised to have unit length and all matrices have
2. Motion constraints. The motion constraints, on  unit determinant.
the other hand, link viewer motion to the image
motion of epipolar tangency points. This is possi- 3.2.1. Discrete Motion with Known Rotation. Let
ble because the epipolar tangency points correspondp; (s) denote the apparent contour inimage 1 with curve

Although the motion constraints can be formulated
using the set of tangency planes, it is easier to express
them using the set of frontier points. This will be done
in the following. This also highlights the similarities
to the well known epipolar constraints for points, cf.
(Faugeras, 1992). Keep in mind that each tangency
point defines a tangency plane.
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a : lation and change of scale which gives 4 degrees of
\ J , \ )/ freedom. This leaves 2 observable degrees of free-
N z ~ Q /Q dom. A canonical parametrisation can be chosen with

D ‘\ / /Q \;P/ |Ac| = 1, so that the condition (13) becomes

’ rank [Ac p1 (PD)s P2 (P2)s] =2 (14)

2 3.2.2. Discrete Motion with Calibrated Camera.The
constraints in the calibrated camera case can be derived
by introducingp = Rq in (13). This gives:

—

rank [c;—c1 Ri101 Ri1(g1)s R202 Ra2(Q2)s] =2
(15)

Figure 5 (a)and (b): The two figures illustrate the configuration of
_apparentcontours, the_epipole'andthe epipolar_tangencyliqes i_n two The motion parameter€Ry, ¢1, Ry, C;) have 12 de-
equnalent. &) an (0 The fere lLstiare the dualof (3 an (), 97e€S Of freedom, but they can only be determined up
The dual of an apparent contour is a curve, the dual of the epipole is a {0 @ Similarity transformation, which has 7 degrees of
line and the dual of each epipolar tangency line is a point. The duals freedom. This leaves 5 observable degrees of freedom.
of the set of epipolar tangency lines are projectively equivalent. The A canonical parametrisation is obtained by Choosing
figure is only schematic. Ry = |, ¢c; = 0and|Ac| = |c, — ¢1] = 1. Using

AR = R, we get

parametes and lefp,(s) be the corresponding apparent KA AR AR -2
contourinimage 2. The pointwhere the epipolar tan- rank[ac G (Gus a2 (@2)s] (16)

gency point is tangent to the surfddebelongs to both

contour generators, as illustrated in Fig. 2. The normal

n to the surface at this point is orthogonal not only to 3.2.3. Discrete Motion with Uncalibrated Camera.

p: andp, but also to their image tangentq;)s and The constraints in the uncalibrated camera case can

(p2)s, and to the direction of motiog, — ¢;. This can be derived by introducing ~ Swin (13). This gives:

be written as thgeneralised epipolar constraints

rankfco—c1 SwW1 S1(W1)s SWa  S(wp)s] = 2.
rank[cz—¢c1 p1 (P)s P2 (P2)s] =2 (13) (17)

The motion parameter($, c1, S, Cz) have 22 degrees

The five column vectors in this matrix are perpendic- offreedom, but they can only be determined up to a pro-

ular to the normah. Notice that the rank constraints jective transformation, which has 15 degrees of free-

involve both curve parametessands; and the motion  gom. This leaves 7 observable degrees of freedom.

parameterscy, Cy). _ UsingS; = |, c; = 0 and|Ac| = [c; — ¢ = 1, we
“The constraints (13) can be used in several ways. remove some of the arbitrariness, but three degrees of
Firstly, once the direction of motionc = ¢c; — ¢y is freedom are left. UsingnS = S, we get

known the first image of the epipolar tangency point

can be found by searching for the curve parameter rank[ac w; (W1)s ASW  ASW.)g] = 2.

s1 which gives dethc  pi(s1) (p1)s(s)] = 0, and (18)

similarly for the second image, see (Carlsson, 1994).

Secondly, when the image of the epipolar tangency The parameter ambiguity iAS can be understood by

points is known, the condition deAt p; p2] =0 doing a projective transformation by the matis of

can be checked. the viewing sphere of image 2 and then by choosing
The motion parameter&;, c;) have six degrees of  a coordinate system so that the direction of translation

freedom. They can, however, only be found uptoanun- is along thex-axis. Compare this with the standard

known coordinate transformation consisting of trans- rectification in Fig. 7. The set of epipolar tangency
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planes is now invariant under the projective transfor- The motion parameter®, ¢, Ry, ¢;) have 12 degrees
mations of freedom, but they can only be determined up to a
similarity transformation, which has 7 degrees of free-

S = euaenhes dom. This leaves 5 observable degrees of freedom. A

unique parametrisation is obtained By= I, c =0
wheree is the matrix exponential and and|c| = 1. This gives,
1 0 0] 010
rank R =2 22
s—|0 0 ol SF{O 0 0] g9 @s Rg+ai (22)
:0 0 0: 000 3.2.6. Infinitesimal Motion with Uncalibrated Cam-
0 0 1 era. The constraints in the uncalibrated camera case
ss=|0 0 0], are found by introducing = Swin (20). This gives,
0 0O

. o rank e SW (Sw)s  (Sw)]
are a basis for corresponding Lie-algebra. The parame-  _ rank e SW SW)s SW+Sw] =2 (23)

ter ambiguity inA S corresponds to the three parameter
ambiguity in choosing the plane at infinity, (see (Luong The motion parametersS, ¢, S, ¢) have 22 degrees

and Vieville, 1994)). of freedom, but they can only be determined up to

a projective transformation, which has 15 degrees of
freedom, leaving 7 observable degrees of freedom. By
choosingS = |, ¢ = 0 and|c;| = 1, we obtain

3.2.4. Infinitesimal Motion with Known Rotation. In
some cases itis of interest to compute the infinitesimal
motion of the camera. The constraints can be derived
from the previous results by a limiting procedure. It

follows from Eq. (13) that rankfee g @s Sa+a @sl =2 (24)

Asinthe discrete time case, three unobservable degrees

k [A
rankfac pu (Ps P2 (P2)sl of freedom remain. To understand this, choose coordi-

=rank[Ac/At  (pD)s (P2 — P1)/At  (P2)s] nates so that, is parallel to thex-axis. The constraints
—rankfcc p (P)s Pt (P)s] =2, ast— 0. then only involve the last two componentsfv. The
(19) first row of S is thus not observable. The choice of the
first row of S corresponds to the choice of the plane at

Thus the infinitesimal generalised epipolar constraint infinity.
is
3.3. Parallel Projection Models

rankfcc p (P)s pl=2 (20)
The same analysis can be made for the parallel projec-
tion camera model. In this case points at positiame
projected onto the image plane along the same direc-
tion k. A pointr on the surfac&) lies on the contour
generator if

Remark. Note that the frontier conditiog -n = 0 is
equivalent tq; - n = 0, see (9), which is the condition
for the apparent contours to form amvelope in the
image

As in the discrete time case there are 2 observable k-n(r)=0
degrees of freedom. A unique parametrisation is ob- ’
tained by requiring thaft| = 1. The normal direction is uniquely constrained by
3.2.5. Infinitesimal Motion with Calibrated Camera. Kt;)-n(r) =0, Kk(t)-n(r) =0
The constraints in the calibrated camera case are ob- ' '

tained by introducing = Rq in (20). This gives if the two directions of projectiok(t;) andk(t;) are

different. The directiork of the projection plays a
rank[cc Rg (Ra)s  (Ray] similar role in the parallel camera model as the focal
=rank[cc Rg R(Q)s Rig+Rq] =2 (21) pointc does in the perspective camera models.



Introducek; = k(t1), ko = k(t2), Uy = u(-, ty)
andu, = u(-, t2). The normaln(r) of the surface is
orthogonal not only td; andk, but also to the image
tangentqu;)s and(u,)s and the vectou, — u;. This
can be written

rank kz ki uz—u1 (up)s (U)s] =2. (25)
The infinitesimal time constraint is obtained by a lim-
iting procedure

rank ki k u;y ug] =2 (26)

In the orthographic camera model the image coordi-

nate system is known up to a Euclidean transformation.

Thus we obtain

rank ko ki Baup;—Biui; Bi(up)s Ba(up)s] =2
(27)

for discrete motion and
rank ki k (Bu); Bus] =2 (28)

for continuous motion, whei is a 3x 3 matrix repre-
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ki =~[cos? sing 0],
0 b b
Bt g —b]_ 0 b3 N
| 0 0 0
B C1 C C3
Ci=|—-C C C
| 0 0 O

In all of these cases all parameters but one are observ-
able.

4. Implementation
In this section we will discuss some details of the com-
putation of camera motion. This involves detection of
apparent contours, determination of an initial estimate
of motion parameters and refinements of the estimates.
Notice that there is not a closed form solution to the
problem. The epipoles are needed to find the fron-
tier points. The frontier points are needed to find the
epipoles.
We have developed algorithms for several different

senting planar Euclidean transformations. In the weak camera models. The ideais to obtain an initial estimate

perspective camera model the image coordinate sys-

tems are known up to a similarity transformatiGn
By choosing coordinate system such tBat= | and
k; = [0 O 1] and denotingAB = B, and Ak = kj,
and similar for the other cases we obtain,

rank [AK k ABu; —uU; (U1)s AB(U2)s] = 2,
rank [Ak k ACus; —ug (Up)s AC(UQ)S] =2,
for discrete motion and
rank ki Kk Biu+u; ug] =2, (29)
rankk; k Ciu+ur us] =2, (30)
for infinitesimal motion, where
k=[0 0 1],
Ak =~ [cosf sing O]T,
[ cogby) sin(by) by
AB = | —sin(by) cogb;) bs |,
| O 0 1
[ cicoqcy)  cisin(cy)  c3
AC = | —c¢gsin(c;) cicoscy) ¢4 |,
i 0 0 1

of motion and then use optimisation techniques to ob-
tain the final solution. The algorithms can be divided
into two groups: continuous versus discrete time.

Algorithm for continuous time parameters

1.
2.

Track the contours.

Tesselate each focus of expansion (infinitesimal

epipole).

. For each focus of expansion calculate optimal mo-
tion parameters and measure residual.

. Select the best focus of expansion as initial motion
estimate.

. Calculate scaled residuals, likelihood and their
derivatives with respect to motion parameters.

. Quit if residuals are small.

. Otherwise update motion parameters and goto 5.

(o]

Algorithm for discrete time parameters

1. Track the contours.

2. Getinitial motion estimate, for example using a con-
tinuous time approximation.

3. Calculate scaled residuals, likelihood and their
derivatives with respect to motion parameters.
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4. Quitif residuals are small. rection of the curve. This is done with the technique

5. Otherwise update motion parameters and goto 3. described in i\str('jm and Heyden, 1999). For clear,
well defined edges, like the ones in Fig. 6, the indi-

These steps will be commented upon here and illus- vidual edge positions can be found with a standard

trated in Section 6. deviation of about on tenth of a pixel. This uncertainty
measure is important in estimating motion parameters.

4.1. Extraction and Tracking of Apparent Contours Different frontier points are weighted according to the
uncertainty in their positioning.

An important part of the calculation of motion from A rough estimate of point correspondences are ob-

the deformation of apparent contour is the extraction t@inedasaby-productofthe snake type tracking. These

and tracking of the contour. This is a difficult practi- Correéspondences can be used to calculate an initial es-

cal problem which has received considerable attention, fimate of motion parameters as described in the next

see (Blake and VYuille, 1992). The notion Bfspline section.

snakehas been used for this purpose, see (Cipolla and

Blake, 1990). Roughly speaking, a snake see (Kass4 2. |nitial Hypothesis of Motion

et al., 1987) is a parametrised curve, in this case as

B-splines, whose parameters are changed dynamically o initial estimate of the motion parameters is needed
to fit the contour. The spline curve wriggles to adapt iy order to use the generalised epipolar constraints.
the image, thus resembling a snake. The curve is repre-There are a number of different ways to obtain these:
sented as a collection of B-spline segments, where each

segment is represented by four control points. These 1 - pyint matches In most cases it is useful to match
points generate a segment of the contour, see (Foley pints as well as contours. The points can be
etal,, 1990, p. 493). This representation has several ;5eq to estimate motion parameters with conven-
nice properties. The contour obtained by joining the {4 methods, e.g., the linear eight point method
segment generated by control points (1,2,3,4) and the (Longuet-Higgins, 1981) or non-linear methods
segment generated by control points (2,3,4,5) is auto- (Luong et al., 1993).

matically C?, unless some of the control points coin- Approximate point matches can also be obtained by
cide. Closed contours are easily represented using the matching points with high curvature in the image or

control points cyclically. _ by using the centroid of the matched contours.
The B-spline snake is matched to the contour in two The B-spline snake tracker can also be used to ob-
steps. Euclidean transformations are first used. This 5 approximate point correspondences. Individual
ensures afast, robust, but rough positioning of the snake points on the apparent contour are first identified
inthe newimage, cf. Fig. 6(a) and (b). The snake isthen through the rigid motion of the template as illus-
deformed to match the new image. Figure 6 illustrate  ated in Fig. 6, and then through the deformation
this for one of the contours. The procedureisexplained ¢ the contour in the normal direction.
in more detail in (Curwen and Blake, 1992). 2. Motion sensorsIn some situations, partial knowl-
To deform the B-spline snakes, a subpixel edge de-  gqqge of the motion can be obtained by other means.
tectors is used, that not only give the location of the The camera might be mounted on a robot with sen-
contour but also a confidence interval in the normal di- ~ ¢rsthat give approximate and/or partial knowledge
of viewer motion.

A B C 3. Prediction If viewer motion is smooth it might be
possible to predict motion parameters from motion
history.

) = The problem of finding good initial estimates is an
important and difficult one. The above suggestions in-

. . . dicate some possible techniques. In the experiements,
Figure 6. The B-spline snake (a) is used as a template to track the dditi | ti . d tested. Th
contour in the nextimage. A rough positioning is found by allowing additional suggestions are given and tested. ese
rigid motion of the snake (b). The new snake is then found by Methods work reasonably well for the type of data and
allowing the snake to deform (c). motion present in the experiments. A more thorough
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testing of methods for finding the initial estimates is 4.3.1. Residuals for Discrete Time Central Projection.
needed, but is outside the scope of this paper. We will first define the residuals (m) for the discrete
time case with central projection and an uncalibrated
camera. Consider two images. L& andAc be the
incremental motion parameters. Recall thad is the
change in generalised orientation of the camera/end

The_: maximum I|I_<eI|hood method_ls a na_turgl way 10 g the change in position. These motion parameters can
estimate the motion parameters given noisy input data. ., | .sed to rectify the camera, as illustrated in Fig. 7.

It has several advantages, and is relatively easy to apply.TWO images are shown in Fig. 7(a) and (b). Each of

}n thhe sequem will be used as alrl] babstragtfvarir;a\ble them is mapped onto the viewing sphere in Fig. 7(c) and
or the motion parameter anti will be used for the (d). Theimage c remains unchanged in e but the image

motion parameter manifold. The general principle is d is projectively transformed with.S, to compensate
first described.

4.3. Maximum Likelihood Estimate

1. Create a residual functiom = «j(m). This is
described below. A B

2. Calculate the joint conditional distributiofy(« |
m) of the residuals given the motion parameter

3. Define the likelihood functiot.(m) = fy(a | M)
as a function om € M.

4. The maximum likelihood estimath is the param-
eter which maximises the likelihodd(m) over M.

To simplify the minimisation it is often assumed that
theresiduals; are independent and Gaussian with zero
mean and standard deviatien This is a reasonable
assumption if the images of the frontier points are not
too close to each other. The likelihood function is then

L=T]] 1 g

2 aiz

Maximising the likelihoodL is then almost the same
as minimising

2
gm =34 (m (31)

Uiz(m).

The estimatéh is the motion parameters that minimise
this weighted sum of squared residuals, i.e.,

rh = argming(m). (32)
. . . Figure 7. Rectification of uncalibrated images. (a) and (b): The
Although the method is straightforward, some points  figures show two images. (c) and (d): These are projected onto the
need careful consideration. The functiangm) and viewing sphere using approximate intrinsic calibration matrices. (e)
oi (M), must be determined and suitable optimisation and (f): Image (d) is then projectively transformed by the matrix
methods must be found. To do this we will consider 2S5 (9)and (h): Bothimages are rotated with mafix so that the
. L . . direction of motionAc is along thex-axis. After rectification the
thre? Cases'_ central _prOJectlon and orthogra_lphlc prqjec- epipolar tangency planes all intersect at xhaxis. The two sets of
tion in the discrete time case and the continuous time epjipolar tangency planes should be equal. The angular difference is
case. used as a residual.
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for changes in orientation and internal calibration. The

estimated using the edge detector. The transformation

images e and f are then transformed with the same from contour errors to angular errors in the epipolar tan-

rotation matrixR¢, so that the direction of motion is
along thex-axis. Having made the transformation it
now remains to find the frontier points in the images.
According to the generalised epipolar constraint (18),
the frontier points in image c are given by

[Ac wy  (Wp)s| =0,

and those in image d by
|[AC ASW, AS(wy)s| = 0.
After rectification this simplifies to

e w1 (Wy)s| =0,

and

let wz  (W2)s| =0,

wheree; = [1 0 0]". When the corresponding
frontier points have been found, the epipolar tangency
planes through the-axis and the frontier points in

g and h should be identical. The residaalis then

defined as the angular difference between the planes

(Fig. 8). The standard deviatien of each residual is

Figure 8 Two sets of epipolar tangency planes are calculated from
two images. These two sets should ideally be identical. The resid-
ual is defined as the angular differengebetween corresponding
epipolar tangency planes after rectification.

gency planesis straightforward. Itwill notbe described
explicitly here, see (Faugeras, 1993). It has now been
described how to compute ands;. Summing over all
frontier points gives the loss function (31). However,
efficient minimisation of the loss function requires the
derivatives

The expressions for these derivatives are complicated.
The analytical calculations have been checked numer-
ically and with computer algebra. An additional com-
plication arises becaus#! is a manifold. It is thus
necessary to introduce new local coordinates at each
iteration. Second derivatives have also been used to
implement the Newton-Raphson iteration for some of
the camera cases.

4.3.2. Residuals for Discrete Time Parallel Projection.
The parallel projection case is similar to the central pro-
jection case. The motion parameters are used to rectify
the image pair. The epipolar tangency planes are calcu-
lated through the epipolar tangency constraints (Fig. 9).

Figure 9 The case of discrete motion with weak perspective cam-
eras. (a) and (b): The figures shows two images. (c) and (d): Image
(b) is transformed with similarity transformatiotC. (e) and (f):
Both images are rotated so that the direction of motion is along the
x-axis. The two sets of epipolar tangency planes should be equal.
The difference (iry-direction) is used as residual.



The distance between the parallel epipolar tangency
planes is used as a residagl The residual is scaled
with respect to its standard deviatien The residual
variance, due to edge localisation error, is changed in
these transformation. These effects must be taken into
account.

4.3.3. Residuals for Infinitesimal Time. In the in-
finitesimal case, the direction of viewer motionis
used as an infinitesimal epipole, or the focus of expan-
sion. The tangency constraint is then used to find the

epipolar tangency planes and the corresponding fron-
tier points. For example, in the calibrated case we have

lcc g9 gs|=0.

Each plane defines a nornral The motion constraint
is then simply

n-(Rq+aqy) =0.
It is reasonably to use
a=n-(Rq+0qr)

as residual. The maximum likelihood estimate is ob-
tained by minimising (31), i.e.,

gm =>"

aZ(m)
O’iz(m)'

(33)

It seams reasonable to assume that errors;iare
mostly due to the errors ig;. If so the following ap-
proximation holds

oi = olai] ® o[n; - qt]-

These standard deviations are obtained from the sub-
pixel edge detector routines. Furthermore, it seams

reasonable to assume that this standard deviation is ap-

proximately constant around each frontier points. Us-
ing these approximatiorgsis in fact quadratic ifR; so
that the minimisation with respect & can be found
by linear methods.

The implementation of the infinitesimal case is sim-
pler than the discrete time case. The major reasons for
this are the following

e The derivative of the matrix rotatiofR;, and simi-
larly for &, B; andC;, is an element of alinear space,
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a Lie algebra, as opposed to the rotation operator
The same holds fd8, B or C, which are elements of
a non-linear manifold, a Lie group.

e For a fixed choice of; the weighted residual; /o;
is linear inR;.

4.4. Finding the Tangency Points

Determination of the epipolar tangency planes is an
important part of the calculations. The motion param-
eters give the position of the epipoles, or the focus of
expansion in the infinitesimal case. The B-spline rep-
resentation is very useful for computing the tangents to
the apparent contours that go through a given epipole.
There is a way to check each segment and to deter-
mine if it contains an epipolar tangency. The tangent
can then easily be found with Newton—Raphson iter-
ations. The solution is typically found within a few
(3-6) iterations.

4.5. Optimisation Techniques

Computing the maximum likelihood estimate is in es-
sence an optimisation problem. The motion parameters
m are found by minimising (31), i.e.,

g(m) = Z( )2 =Y _Yimy,

I
where Y;(m) is the normalised residuat;(m)
o (M) /o (M).

The first practical difficulty lies in the non-linear na-
ture of the motion parameter manifold. Therefore a
new parametrisation is chosen at each iteration around
the current motion parametex, € M. This parametri-
sation is a local mapping betwe®d and a neighbour-
hood ofmy in M,

aj (m)
oi (M)

RY 5 X — my(x) € M.

The scaled residud atmy and its derivativell atmy

are calculated as described on Pages 14. Both Newton-
Raphson and Gauss—Newton methods have been used
to find the minimum of

g(x) = Y(M()) Y (Mk(x)),

A couple of difficulties have to be solved. The minimi-
sation routine has to be modified so that a descent in
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the error functiorg is guaranteed. This involves line- more accurate results at the cost of more complicated
search methods if the error function does not decrease,algorithms. The result from the simpler approaches
and checking whether the second order derivative ma- is used as initial estimates in the more complicated
trix is positive definite, as it should be to guarantee procedures. The first four examples thus form a unit.
a descent direction. The technique is standard, seeAll procedures have been applied to the same image
(Luenberger, 1984). sequence.

Another difficulty is the appearance of new and dis-  The first four examples are based on scenes in a lab-
appearance of old tangency planes as the motion pa-oratory. In the fifth example we have used an outdoor
rameters are changed. In our implementation we have scene of Henry Moore sculptures, where the images
solved this by not allowing new tangencies in the er- were taken with a hand held video camera.
ror function until the minimum for the other ones is A final example illustrates how additional informa-
reached. tion can be used, e.g., that one of the objects inthe scene

is a planar. This information admits a drastic simplifi-

cation as was discussed in (Heyden Asttom, 1997).

The experiment shows that this idea can indeed be im-
q plemented effectively.

5. Statistical Evaluation

The maximum likelihood estimate has several goo
properties. One is that it is guaranteed to be asymp-
totically unbiased. Another is that it is asymptotically
efficient under reasonable conditions. . . - '
The residuals at the minimum can be used to estimate " this experlment We use a scene consisting of five
empirically the magnitude of edge localisation error. Stones andapiece ofpaperonabla_ck cloth. _A sequence
This can then be compared to the estimates obtainedOf_ pictures have been taken fror_n different wew-pplnts
directly in the edge detectors. The residuals can thus with a camera mounted on a tripod. The scene is ap-

be used to automatically verify whether an acceptable proximately 40 cm wide and the camera 1S roughl_y
estimate of the minimum has been found. half a meter from the scene. One image is shown in

The second order derivative mat@%% or its approx- Fig. 10. The baseline of the camera movement is fairly

Ly Ty . ¢ small, about 5-10 cm, making it reasonable to use an
imation 7, 7 together with the variance of the scaled infinitesimal approximation. The apparent contours of

:ien?adtgglfnglt\i/gnaga?:\:g?(:?f the covariance of the es- tha images were extracted and trackeq automatically,
' using the B-spline method described in Section 4.1.
22\ - Hy Ty 1L The apparenF contours in the' fir'st image, the normal
C[x] = 2&2<_> ~ 5—2<_ _) . velocity and its standard deviation were represented
9x? Ix X with B-splines.
In the weak perspective case the motion parameters
arek; andBg, cf. Section 3.3. The focus of expansion
ki can be represented as

6.1. Infinitesimal Motion, Weak Perspective

Note that this covariance matrix is expressed with re-
spect to the particular local parametrisation of the mo-
tion parameter manifold.
cog0)
6. Examples ki = | sin(®)
0

’

In the previous sections we have discussed princi-

ples for motion determination. In this section we will with 0 < 6 < =. If k¢ is given the epipolar tangency
present results of practical experiments. There are points can be found through the epipolar tangency con-
many details that have to be considered when imple- straint

menting the algorithms. Some of these will be dis-

cussed. In the experiments we have illustrated several ke k us[=0.

of the principles discussed previously. Several differ-

ent camera models are discussed with both continuous-The function to be minimised is

and discrete-time approaches. We will start with the «?(ke. By)

case that gives the simplest calculations, but not so ac- g= Z %

curate results. The results will then be refined to give 0" (kt)
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Figure 10 The case of infinitesimal motion with weak perspective

camera. (a): One image with apparent contours and the estimated

normal velocity is used as input. (b): The minimal error functipn

is calculated for each of forty choices of focus of expandipr=
(cog6), sin(¥), 0) and plotted against. The best choice is used as
input to a Gauss—Newton minimisation routine. The minimum is
found within a few iterations. The logarithm in base 10 of the step
lengths is plotted as a function of iteration number.

wherea = n - (Biu + u;). The other motion param-
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1 00
010
0 0O

S =

If k; is fixed, the matriXB; belongs to a linear manifold
and the loss functiog is quadratic irB;. The optimi-
sation with respect tB; can thus be done analytically,
and the global minimum is estimated by sweeping over
all k;. In practice we have done this by quantiséhim

40 equidistant parts. The resultis illustrated in Fig. 10,
which shows the image ia. The value of

go) = r’ging(kt(e), By), (34)

is shown in b. Notice th&j(0) is = -periodic. A crude
value off is found as the argmig(6) of the discre-
tised function. In our particular example this gives
6 with a resolution corresponding to the quantisation.
An improved estimate is obtained by Gauss—Newton
iteration, as illustrated in Fig. 10(c), which shows
that a numerical accuracy of 1®is obtained after 10
iterations.

6.2. Infinitesimal Motion, Uncalibrated Camera

The image sequence of Example 6.1 will now be anal-

ysed using the uncalibrated camera model. In this case
the motion parameters ace € S? and$; is a general

3x 3 matrix. Given the focus of expansiofthe epipo-

lar tangency points can be found through the epipolar

tangency constraint

lcc w ws|=0.
The function to be minimised is

o S)
g= Z W,

wherea = n- (Sw+Ww;). Analogously to the previous
example, ifc; is fixed the matrixS; belongs to a linear
manifold and the loss functiog is quadratic inS.
The optimisation with respect t8 can thus be done
analytically, and the global minimum is obtained by
sweeping over alt;. In practice we have done this by

eterB; can be represented as a linear combination of tessellation of the sphere. In our particular example,

matrices
0 -1 0 0 0O
ss=[(1 0 0], s=|0 0 1}/,
0O 0 O 0 0O

this is done by quantising the latitude and longitude
angles in 20 steps, as illustrated in Fig. 11. The value
of

g(o) = msin g(c, &) (35)
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will use the result of Example 6.1 to obtain an initial
estimate of the discrete motion parameters:

AC = %At Ak = kAt.

The estimate is then refined using Gauss—Newton op-
timisation.

6.4. Discrete Motion, Uncalibrated Camera

This example is similar to the Example 6.3. The result
from the infinitesimal case in Example 6.2 are used as

Figure11 The case_ofln_flnlte5|mal _r'r?otu_)n with uncalibrated cam- ~ an initial estimates of the discrete motion parameters.
era. The sphere of directional velocities is tessellated. For each di- Lo
A standard extrapolation is used:

rectionc;, the minimal error functiorg is found and plotted against
ci. Dark regions correspond to low values @f Notice the long
dark valley indicating good choices of. The rough estimate of AS=e3 Ac= CiAt.
the minimum is used as an input to a Gauss—Newton minimisation

routine. The minimum is found within a few iterations. The shape This initial estimate is used as inputin a Gauss—Newton

of this long valley indicates that will be poorly located along the . . . . . .
length of the valley. This is confirmed by the statistical validation. search. ThIS,WIH t_)e described in a little more detail
here, for one iteration.

The current estimates of motion parameters are used

is shown. A crude value af is found as argmingi(c;) to calculate the epipoles and the epipolar tangencies.
of the discretised function. Improved valuesis obtained Thisisillustrated inFig. 12, where (&) and (b) show the
by Gauss—Newton iterations. images of the epipolar tangency planes. These images

Notice that the low values of form a long valley are then rectified as described on pages 14-15. The
on the sphere. We expect the direction of motion to be result of the rectification is shown in Fig. 12(c). The
poorly located along that valley. This is confirmed by €Pipolar tangency planes should coincide after recti-
the statistical evaluation. Also notice that choosing the fication. In practice there will be deviations, due to
Weak perspective mode| Corresponds to Searching thisedge |Ocalisati0n errors. The diﬁerence, represented
sphere along the equator only. by the angley, is calculated together with its standard

The minimum obtained from tessellating the sphere deviation, as explained on page 14-15. The weighted
or the minimum obtained from the weak perspective 'esidual is then computed as
case above can both be used as initial estimate in a o
Gauss—Newton search of the minima. This was done Y =—
and ten iterations were needed to find the minima. 7

The gradient o¥ with respect to the motion parameters

is also calculated. The motion parameters are then
6.3. Discrete Motion, Weak Perspective Camera adjusted using the Gauss—Newton method. Figure 12

shows the result at iteration 4 and 12 in the second and
In some of the previous examples the infinitesimal mo- third row respectively.
tion parameters were determined. We will now deter-  The figure gives an indication of the epipolar geom-
mine the discrete motion parameters. The same imagesetry. Comparing Fig. 12(c) and (i), we can also see that
asin the previous example will be used. With the weak the iteration decreases the angle residuals, particularly
perspective camera model the motion parameters arethe residual represented by the lowest lines.
Ak and AC. The loss functiorg(Ak, AC) was de- The effectiveness of the optimisation routine is illus-
rived on page 15-15. The problem no longer has the trated in Table 3. Notice the rapid reduction of the loss
nice structure of infinitesimal motions, where we could function and the norm of the gradient. A few iterations
optimise with respect to one motion parameter analyt- (6 in this case) are typically required to get close to the
ically. Attempting to discretise all variables gives a minimum. A few more iterations may be required to
very unwieldy optimisation problem. Therefore, we localise the minimum within machine accuracy.
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Table 3 Thetable illustrate the decrease in loss funcg@md the gradient magnitudi€g| using the Gauss—Newton optimisation.

Iteration 1 2 3 4 5 6 7 8 9 10
g 110 66 34 16 7.7 6.5 6.5 6.5 6.5 6.5
logyo(IVaD) -1.0 -1.1 -1.3 -1.5 -2.0 -3.6 -5.5 -7.6 -9.7 -9.7

Figure 12 Finding the uncalibrated motion parameters using the generalised epipolar constraints. Optimisation of the likelihood function.
Iteration number 1 (first row), 4 (second row) and 10 (third row). The first and second columns illustrate the epipolar tangencies in the first and
second image. The third column illustrates the rectified epipolar tangency planes, projected on the view-sphere and viewed along the direction
of motion.

6.5. Discrete Motion, Calibrated Camera of the motion parameters are quite large in both cases.
This is probably caused by the small number of tangen-

Experiments have also been made to determine mo-cies, the small baseline and perhaps a poorly calibrated

tion parameters based on real outdoor scenes. We haveamera. These are the same problems that plague all al-

taken video sequences of a Henry Moore statue in York- gorithms for determination of motion parameters from

shire Sculpture Park, UK, see Fig. 13. The images structure.

were taken using a hand-held video camera. The fig-

ure illustrates two frames of a longer video sequence of

the scene. In this example the apparent contours were6.6. Discrete Motion, Known Rotation

detected and tracked manually. Two plausible local

minima were found, one with eight tangencies, Fig. 13, The experiment illustrate the use of a priori informa-

and one with six tangencies, Fig. 14. Both epipolar tion. In (Heyden and\strém, 1997) it was shown that

line structures agree with the image data. However, the presence of a planar feature in the scene makes

they yield different solutions. The covariance matrices it possible to simplify the algorithms drastically. By
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Figure 13 Henry Moore sculpture. 8 epipolar tangencies lead to
convergence to different local minima. Due to the small field of view
and because the direction of translation is outside the image frame
the solution is very sensitive to image contour localisation errors.

Figure 15 Projective reduction. (a)—(d): Four images out of a
longer sequence. (e): By detecting and aligning the image of a planar
feature the images can be thought of as coming from a purely trans-
lating camera. The apparent contours after alignment are shown. (f):
This makes it relatively easy to extract motion parameters between
each pair of images. These parameters can then be used to calculate
detecting and aligning a planar feature in a sequencethe full motion of the camera.

of images, the analysis of the sequence can be reduced
to the case of a purely translating camera. The planar
curve is regarded as a curve on the plane at infinity.
Thus it has no apparent image motion. This simplifi-
cation has been used in (Heyden akstrom, 1997;
Sinclair et al., 1995). It is known gwojective reduc-
tion, which is a generalisation of thelane plus par-
allax’ method.

This is illustrated in Fig. 15. Only the direction of
motion Ac needs to be estimated. The sphere of pos-
sible directions can then be tessellated and the error
function g can be calculated for each direction. The
minimum obtained after tessellation is improved by lo-
cal Newton-Raphson search (6 iterations were needed).
The scene used in the experiment consists of stones Rlc;—c) g RRjqjl=
placed on building blocks. The camera was mounted
on a robot and moved around the scene. Four images |AGj G ARijg;[=0. (36)
are shown in Fig. 15. The contours from all images are
aligned so that the planar curve coincides.

Figure 14 Henry Moore sculpture. 6 epipolar tangencies are used
to estimate the motion between frames. Although they yield a con-
sistent estimate of the motion between frames (judged by quality of
epipolar line structure) the solution is ill-conditioned.

space curves and apparent contours of general surfaces
can be used. The same kindg#neralised epipolar
constraintsapply to all these features. One interesting
application is to use estimates of motion parameters for
pairs of images in a sequence, to obtain the full motion
of the camera. In the calibrated case the motion can be
represented by camera positians= c(t;) and camera
orientationR; = R(tj). From the motion constraint

Ici—¢ Rigi Rjqjl,

elementary determinant operations give

Our algorithm was constructed so that (36) holds. It
thus follows that

mij AGj = Ri=(¢j —Gi),
vijARij = R-_le,

7. Extension to Multiple Images

The techniques in this paper describe in detail how mo-
tion parameters between pairs of images can be esti-where(Ac;j, AR;j) describes the incremental motion
mated. General features such as points, planar curvesparameters from imageto imagej. SinceAR;; and
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R 'R; are rotation matrices;; mustbe one. The over- In the examples of this paper we have only used ap-
all coordinate system must be chosen, e.g., by choosingParent contours in the motion estimates. In practice one
o =0,Rg =1 and|c,| = 1. would use a combination of image features to estimate

Similar equations apply to the other camera models. motion. Note that the generalised epipolar constraint
In the uncalibrated case the 3 parameter ambiguity in applies to both points, curves and curved surfaces.
determiningS; and the choice of plane at infinity must It is unclear whether the extraction of motion leads
also be taken into account. to a unique solution. For circular motion and parallel

The idea is illustrated in Fig. 15. Four images of a Projection it does, see (Giblin et al., 1994), but we in-
short sequence is shown (a)—(d) and the camera mo-tend to apply the new insights gained from the present
tion is represented as the corresponding four cameraWork back to this case, generalising as far as perspec-
positions (f). tive projection. Possibly other simple motion can be
included too.

Another theoretical question of interest is to deter-
mine necessary and sufficient conditions for profiles

. . . p(s, t) and camera motion(t) to arise from a surface
The apparent contour and its deformation under viewer ;, space with the contour generators forming an enve-

motion is known to be a rich source of surface geomet- lope on the surface. In the case of point reconstruc-
ric information. This can be used in visual navigation qng pilinear and trilinear constraints are enough but
and object manipulation. Here we have shown how SO ¢ sjtyation is less clear for surfaces. Some progress

called frontier pqints of ap'parent contours can pe used s described in (Fletcher, 1996), where *higher fron-
to recover the viewer motion from the deformation of .. ~onditions’ are obtained which in principle pro-

apparent contours. The epipolar constraint for points \jge constraints on camera motion additional to those
is generalised to curves and apparent contours. The re-yascribed in the present paper.
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