
Processing Unification-based Grammars
in a Connectionist Framework

Andreas Stolcke

Computer Science Division
University of California, Berkeley

and
International Computer Science Institute

Berkeley, California

ABSTRACT

We present an approach to the processing of unification-based
grammars in the connectionist paradigm. The method
involves two basic steps: (1) Translation of a grammar’s rules
into a set of structure fragments, and (2) encoding these frag-
ments in a connectionist network such that unification and
rule application can take place by spreading activation.
Feature structures are used to constrain sentence generation
by semantic and/or grammatical properties. The method
incorporates a general model of unification in connectionist
networks.

INTRODUCTION

In recent years connectionist models have achieved notable
results in modeling various aspect of perception and cogni-
tion. Although natural language processing has not been
among the most prominent of its applications, there are a fair
number of connectionist models of both language analysis and
generation (Charniak & Santos, 1987; Cottrell, 1985; Dell,
1985; Fanty, 1985; Gasser, 1988; Kalita & Shastri, 1987;
McClelland & Kawamoto, 1986). However, most of these
models have a very narrow coverage, and hardly any attempts
to take into account current linguistic theories of grammar
(other than the basic context-free framework), for the most
part adopting some ad-hoc linguistic formalism.

This paper’s connectionist approach to natural language is
based on unification-based grammar, a formal framework
which has gained wide acceptance within the linguistic com-
munity within the last decade through its various variants
(Kay, 1984; Kaplan & Bresnan, 1982; Gazdar et al., 1985).
Although it is legitimate to argue that, by their very natures,
formal grammar and connectionist models have different
objectives (being competence versus performance theories,
respectively), this work is intended as a first step towards a
reconciliation of the two paradigms.

UNIFICATION-BASED GRAMMARS

Lack of space does not allow a self-contained overview of the
formal linguistic apparatus underlying this work (Shieber
(1986) gives an excellent introduction). Instead, we will
present the basic features of the formalism by way of a simple
example, upon which further discussion can be based. The

version of unification-based grammar used here is essentially
the one found in the PATR-II system (Shieber et al., 1983).

Feature Structures

Unification-based grammar extends traditional context-free
grammars by introducing additional structure to the language
it describes. The usual tree-like phrase structure of a sentence
(or sentential form) is referred to as its c-structure. Addition-
ally, each node in the c-structure (i.e. each constituent) has
assigned to it a matrix of feature-value pairs encoding gram-
matical properties, semantic content, etc., referred to as its
feature structure or f-structure. Features and values can be
any (mnemonically chosen) atomic labels.

For example, the propositional semantics used in the sample
grammar below will be encoded as f-structures of the form
shown in Figure 1a.

a. R
J
J
J
Q

sem:

R
J
J
J
Qarg2:

arg 1:
pred :

mary

peter

love
H
J
J
J
P

H
J
J
J
P

b.
s 1

s 2

sem

love peter mary

pred arg 1 arg 2

Fig. 1. F-structure representing love(peter, mary).

sem is the main feature under which all semantic information
is grouped. Feature pred contains the logical constant associ-
ated with a constituent, possibly with additional arguments.

Note that the value of sem is a complex feature matrix, show-
ing that f-structures may be embedded. Furthermore, feature
values may be shared, i.e. the same subsidiary structure may
be ‘pointed to’ by several features. These properties suggest
that f-structures be represented as directed acyclic graphs
(DAGs) with labeled edges, as in Figure 1b.

Finally, the concept of unification as used for terms in first-
order languages can be applied to f-structures. Informally,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24314119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STOLCKE

unifying two or more structures means merging their feature-
value pairs recursively. Thus Figure 1a could be obtained as
the unification of

R
J
Q
sem:

R
J
Qarg1:
pred :

peter

love H
J
P

H
J
P
and

R
J
Q
sem:

R
J
Qarg2:

arg 1:

mary

peter H
J
P

H
J
P
.

Unification might fail in case its operands contain incompati-
ble features, such as if peter had been replaced with john in
one of the structures above.

A Sample Grammar

We will now present a somewhat naive grammar generating
simple active and passive constructions involving transitive
verbs, such as “Peter loves Mary”, “Peter is loved by Mary”,
etc.1

Consider the top-level structure of these sentences, as dep-
icted in Figure 2.

S

NP VPR
Qhead: R

Q
. . . H

P
H
P

R
Qhead: R

Q
. . . H

P
H
P

R
Qhead: R

Qsubj : R
Q
. . . H

P
H
P
H
P

Fig. 2. C-structure and f-structure at sentence level.

The c-structure consists simply of three tree nodes, namely for
the sentence (S) itself and its two subordinate constituents,
noun phrase (NP) and verb phrase (VP). Attached to each of
these is a piece of f-structure. By convention, the grammati-
cal and semantic features of each c-structure node are grouped
together under the head feature to be able to handle them as a
whole. The subj feature in the S ’s head will be explained
below.

Now consider the top-level rule for sentences, characterizing
the structures shown in Figure 2. Grammar rules take the
form of usual context-free rewriting rules, augmented with
equations specifying that certain parts of the associated f-
structures have to unify (failure to do so will render the rule
inapplicable).

(RS) S → NP VP
S.head = VP.head
S.head.subj = NP.head

S.head designates the value of the head feature in the f-
structure belonging to the S node. The dot notation may be
extended to specify feature values buried deeper in the f-
structure, as in S.head.subj .

The second rule describes how to further expand verb phrases.

(RVP) VP → V NP
VP.head = V.head
VP.head.obj = NP.head

hhhhhhhhhhhhhhhhhhhhh
1 Here and in the following, note the distinction between the surface string

“Mary” and its semantics, the logical constant mary .

The unification equations so far specify that the head struc-
tures of S , VP , and V all have to unify, i.e. can be merged
and thus effectively shared. The head features of the subject
and object NP , on the other hand, will be unified with the
values of subj and obj , respectively, in the sentence’s head ,
i.e. they are effectively ‘assigned’ to these features.

All that has to be added now, for the grammar to fulfill its
humble purpose, are lexical rules for NP and V (verbs).

(R Peter) NP → Peter
NP.head.sem =peter

(R Mary) NP → Mary
NP.head.sem =mary

(R loves) V → loves
V.head.sem.pred = love
V.head.sem.arg 1 = V.head.subj.sem
V.head.sem.arg 2 = V.head.obj.sem

For the purpose of exposition, passives are handled in a very
simple-minded way, assuming auxiliary + past participle +
“by” as a single complex verb. Thus passives can be gen-
erated by a single additional lexical rule.

(R loved-by) V → is loved by
V.head.sem.pred = love
V.head.sem.arg 1 = V.head.obj.sem
V.head.sem.arg 2 = V.head.subj.sem

This completes our sample grammar. Note how the assign-
ment of grammatical roles (subj , obj) to semantic arguments
(arg 1, arg 2) is neatly handled by unification equations,
depending on the verb.

For simplicity, we have only considered the semantic features
shown above; in a typical grammar additional equations
would have to be included, such as

NP.head.agree.person = 3rd,
V.head.agree = V.head.subj.agree , or
V.head.tense = pres

to account for agreement, tense, etc.

There is one fine point about the rule notation which has been
omitted so far: Category labels (S , VP , NP , etc.) are not
really part of the c-structure, but are encoded as another stan-
dard feature at each node: cat . Thus, for convenience and to
relate the notation to its context-free origins, a node designa-
tion such as VP is simply a shorthand for a generic node X
with a category specification of X.cat = VP .

Grammar Rules As Fragments of Structure

In their usual interpretation unification equations function as
declarative constraints on the f-structure assigned to a
sentence’s c-structure. Taking an alternative view, however,
the rules can themselves be regarded as pieces of structure.

Besides being a very compact representation for rules, this
interpretation will allow processing of rules using just one
basic mechanism, namely unification. Thus, the goal of this
transformation of rules into structure fragments is to have rule
application translate precisely into unification of well-defined
nodes in the corresponding fragments.

STOLCKE

(RS)
s 1

s 2 S s 3

cat

NP s 4 VP

cat cat

head

head

s 5

head

subj

(R Peter) s 11

s 12 NP s 13

cat head

Peter peter

cat sem

(R loves) s 17

s 18 V s 19

cat head

loves

cat

s 20 s 21 s 22

subj sem obj

s 23 love s 24

sem arg 1 pred arg 2 sem

Fig. 3. Structure fragments derived from sample grammar.

The c-structure fragment derived from a grammar rule is
rather obvious: Since the c-structure is just a tree, it can be
obtained by ‘pasting together’ tree fragments of depth one,
with a root node for the left-hand side part of the rule and one
child node for each right-hand side element. For instance,
rule (RS) corresponds to a c-structure fragment consisting of
an S node and two child nodes NP and VP . Likewise,
rule (RVP) has a VP root node and children V and NP .
Applying (RVP) to the VP in the right-hand side of (RS) then
corresponds to a simple ‘merging’ of the two VP nodes.
Since c-structures are trees, we can view them as special cases
of f-structures and interpret the node merging as a unification
operation.2

The f-structure fragment corresponding to a rule is derived
from its unification equations. We create a minimal DAG
containing all the features and values mentioned in the equa-
hhhhhhhhhhhhhhhhhhhhh

2 At this point it is crucial that, technically, c-structure nodes do not carry
any category labels themselves. Rather, categories are encoded as cat values
in the f-structures corresponding to c-structure nodes.

(RVP)
s 6

s 7 VP s 8

cat

V s 9 NP

cat cat

head

head

s 10

head

subj

(R Mary) s 14

s 15 NP s 16

cat head

Mary mary

cat sem

(R loved-by) s 25

s 26 V s 27

cat head

is loved by

cat

s 28 s 29 s 30

subj sem obj

s 23 love s 24

sem arg 2 pred arg 1 sem

tions, and encode equalities of values as reentrancies (shared
nodes) in the DAG. We thus arrive at a DAG that can be
interpreted as a somewhat generalized type of f-structure,
since it contains not a single root node, but rather several
‘root’ or ‘source’ nodes, one for each element of the rule.

The result of applying this transformation to the sample gram-
mar is depicted in Figure 3. Here c-structure fragments and
f-structure fragments have been combined into a single struc-
ture by identifying a c-structure node with the root node of the
f-structure assigned to it. C-structure edges are distinguished
as dashed arrows, and internal nodes have been numbered for
reference.

The critical point in the construction of f-structure fragments
from rules is, again, that rule application maps directly to
unification of corresponding nodes.3 For example, both the c-
structure and the f-structure of “Peter loves Mary” is obtained
hhhhhhhhhhhhhhhhhhhhh

3 We shall say that two f-structure nodes unify, iff the f-structures rooted in
those nodes unify. In general, we use the root of a structure to designate the
structure as a whole, whenever this is implied by the context.

STOLCKE

by performing the following unifications (‘wig ’ denotes the
‘unifies’ relation):

s 2 wig s 11, s 3 wig s 6, s 7 wig s 17, s 8 wig s 14.

In our example, possible unifications are mainly restricted by
category (cat) matching, but in a richer grammar agreement,
selection restrictions, etc. would all be encoded in the f-
structures and act as constraints.

F-structures As Sentence Specifications

One of the appealing features of unification-based grammars
is that multiple levels of linguistic description can be accom-
modated within a single simple formal apparatus. Both syn-
tax and semantics of a sentence can be encoded in f-structures
and are generated by the rules if the grammar accounts for
them. This is a very desirable property when the grammar is
used in the context of sentence generation or parsing.

In generation, the semantics can be specified as a partially
filled f-structure which automatically constrains the applica-
tion of rules so as to produce sentences which conform to the
specified semantics. Conversely, when parsing takes place
based on the syntactic form of a sentence, its semantics are
assembled as a side effect of f-structure construction by suc-
cessive unifications.

The particular application experimented with in our research
involved sentence generation; therefore the usage of f-
structures as specifications for generation will be discussed in
more detail. Suppose, e.g., we wanted to use the f-structure in
Figure 1 to specify the semantics of the sentence to be gen-
erated. More formally, we want the f-structure of the root of
the c-structure (i.e. the S node) to unify with

R
J
J
J
Q

head:

R
J
J
J
Q

sem:

R
J
J
J
Qarg2:

arg 1:
pred :

mary

peter

love
H
J
J
J
P

H
J
J
J
P

H
J
J
J
P

.

(For technical reasons, our grammar embeds sem features in
the head values, hence the same embedding has to occur in
the specification.)

It turns out, however, that specification by f-structures does
not require any additions to our formal apparatus and its
implementation. Alternatively, we can express the above con-
straint by adding to our grammar a new top-level category S ′,
plus a rule of the form

(RS ′) S ′ → S
S ′.head = S.head
S.head.sem.pred = love
S.head.sem.arg 1 = peter
S.head.sem.arg 1 = mary

and generate sentences from S ′.
This rule can then be transformed into a structure fragment as
described before. As a result, sentence specifications can be
incorporated in our framework in a natural way following the
pattern shown above. This gives a set of structure fragments
encoding the grammar, which is typically kept invariant
within a certain context of application, plus a single varying
f-structure encoding a sentence specification.

A CONNECTIONIST MODEL OF UNIFICATION

The previous section has shown that sentence generation in
unification-based grammars can essentially be reduced to
unification of structural fragments derived from the grammar.
We will now describe how unification in turn can be
efficiently implemented using the connectionist model of
computation, i.e. a network of very simple processing units
exchanging activation. This model of unification is by no
means restricted to linguistic applications; connectionist
unification is discussed in detail elsewhere (Stolcke, 1989).
For the purposes of this paper an informal description will be
sufficient.

Representing F-structures

Note that each f-structure, and hence the grammar as a whole
can be represented as a set of edges, each characterized by a
triple (node, feature, node). Each such triple is represented by
a single so-called e-unit, with an activation corresponding to
the presence or absence of the corresponding edge. Units will
be designated by enclosing their ‘meaning’ in angle brackets.
Thus we have, e.g., that the activation of e-unit
langles 3.cat =VPrangle equals 1 whenever feature cat has
value VP in structure (node) s 3, and is 0 otherwise. All the
units in the implementation will be simple linear threshold
units operating with activations of either 0 or 1.

This representational scheme is essentially a localized version
of the encoding of S-expressions in BoltzCONS
(Touretzky1986). E-units can be visualized as residing in a
3-dimensional space, with two ‘node’ dimensions and one
‘feature’ dimension.

Representing Unifications

Unification of f-structures can be viewed as a merging of
DAG nodes. For example, consider the structures represent-
ing rules (RS) and (RVP) in Figure 3. Suppose structures s 3

and s 6 are to be unified. This means node s 3 has to be merged
(unified) with s 6, and, due to the features head and subj
present in both structures, s 4 has to unify with s 9 and s 5 with
s 10.

Again, we use a localist representation to encode the ‘unifies’
relation on nodes. Each possible unification si wigsj is
represented by a u-unit, such that activation 1 on
langlesi wigsj rangle indicates that the two nodes have been
unified.

It is not sufficient, however, to just represent unifications;
non-unifiability has to be dealt with explicitly, too. For exam-
ple, suppose we wanted to unify s 7 in (RVP) with s 11 in
(R Peter). This will fail due to incompatible cat features V and
NP , and will be represented in the network by turning on the
nu-unit langles 7!wigs 11rangle . (Exactly how this takes place
is the subject of the next section.)

Thus we have two spaces of units representing node
unifications, u-units and nu-units, which can be thought of as
organized along two ‘node’ dimensions. Obviously activa-
tions in these two sets of units have to be kept consistent. In
particular, activity on corresponding u-units and nu-units
should be mutually exclusive. The way the net is operated

STOLCKE

implies that u-units merely represent ‘tentative’ unifications
which should always be overruled by the stronger ‘evidence’
from nu-units. Therefore the relationship is not symmetrical,
and nu-units simply deactivate their corresponding u-units by
strong inhibitory links, so-called nu-links.

Unification As Constraint Satisfaction

Using the representational scheme described above, we now
have to implement the operation of unification within our
connectionist framework, using appropriate link patterns.
Broadly speaking, the link structure must connect e-units and
u/nu-units such that the unifications represented conform to
the edges present in the f-structures.

The approach taken here is formally justified by a characteri-
zation of unifications as a specially constrained class of
equivalence relations on f-structure nodes. This gives rise to
a reformulation of unification as a constraint satisfaction prob-
lem with a straightforward connectionist implementation. It
is possible, however, to describe the implementation without
going into the formal details, so we will try to convey a more
intuitive understanding.

Node equivalence

The equivalence relation alluded to above informally
corresponds to the ‘unifies’ relation on nodes, as used in the
discussion so far; it should be obvious that this relation actu-
ally has to be reflexive, symmetrical and transitive. There-
fore, the activity patterns on n/nu-units have to be constrained
to actually have these properties.

Reflexivity and symmetry can be encoded implicitly using
simple techniques. To ensure reflexivity, all u-units lan-
glexwigxrangle are kept active all the time, while all nu-units
langlex !wigxrangle are clamped to be permanently inactive.4

Similarly, symmetry can be implicitly accounted for by the
net structure by collapsing symmetric u-units langlexwigyran-
gle and langleywigxrangle (and likewise for nu-units).

Transitivity, on the other hand, has to be encoded explicitly in
the link structure. For every group of three u-units lan-
glexwigyrangle , langleywigzrangle and langlexwigzrangle ,
activity of any two of them should cause activation of the
third.

There is a similar constraint involving nu-units, which is not
completely symmetrical: For every pair of nu-units
langlex !wigyrangle and langley !wigzrangle , and each u-unit
langlexwigzrangle , activity of one of the nu-units plus the u-
unit should activate the other nu-unit.

A link setup that implements this behavior is shown in Fig-
ure 4. Also shown are the inhibitory nu-links mentioned ear-
lier.5 The type of conjunctive activation needed for transi-
tivity has been realized by a set of intermediate units (t-units)
labeled A through E in the figure. These units behave con-
junctively, i.e. their threshold is set up so that all their inputs
hhhhhhhhhhhhhhhhhhhhh

4 As described later, these and other constant units can be eliminated by a
simple space optimization. However, this optimization will be ignored here for
clarity of exposition.

5 Following connectionist convention, excitatory links are drawn as arrows,
while inhibitory links carry small circles at their ends.

A

B

C

xwigz

D

E

xwigyywigz

x !wigyy !wigz

nunu

tt

t t

t

t

tt

t

tt

t t

t

t

x

x

x

x

Fig. 4. Link structure enforcing transitivity.

have to be active for the unit itself to become active (hence
their distinctive square shape). Other units (represented as
ellipses) generally work disjunctively, meaning that one
active input is sufficient to exceed the unit’s threshold turning
it on.6 Connections linking t-units to u-units and nu-units are
called t-links.

For technical reasons, inhibitory x-links cause activation in t-
units to be mutually exclusive, thus preventing stable coali-
tions (Feldman & Ballard, 1982) of u/nu-units.

Unification by spreading activation

We will now describe the link structure which forces node
equivalence (represented by u/nu-units) to conform to the
given set of f-structure edges (represented by e-units) and the
definition of unification. Unification proceeds recursively,
following the recursive composition of the f-structures being
processed.

Specifically, when unifying two structures x and y containing
the same feature f , say x.f = x ′ and y.f = y ′, we have to
unify the values x ′ and y ′ recursively. In terms of node
equivalence, this means that simultaneous presence of the
edges x.f = x ′ and y.f = y ′ and the equivalence x wig y
should induce the equivalence x ′ wig y ′. Again, this is
implemented by a conjunctive pattern of activation, shown in
the left half of Figure 5a. As for transitivity, an intermediate
unit, A , is needed to realize the conjunctive behavior. A will
become active only if all three of its inputs are active. The
scheme causes activation representing equivalence to spread
along co-occurring features top-down, i.e. from the root of the
f-structures towards the leaves. Accordingly, the links and
intermediate units transmitting this activation have been
hhhhhhhhhhhhhhhhhhhhh

6 Precise values for unit thresholds and link weights are ommitted here,
focussing instead on the functionality of the net structure. Stolcke (1989)
gives a complete specification.

STOLCKE

a.

A

x.f = x ′

y.f = y ′

B

xwigy

x ′wigy ′

x !wigy

x ′!wigy ′

nu

nu

td

td

td

td bu

bu

bu

bu

b.

C

x !wigvx !wigu . . .

na na na

x.g = zx.f = y . . .

na na na

Fig. 5. Link structure performing unification.

termed td-links and td-units, respectively.

A similar flow of activation occurs among the nu-units, since
co-occuring features also transmit non-unifiability.
Specifically, if the two values x ′ and y ′ are known to be non-
unifiable, so are their parent nodes x and y . This gives rise to
the link structure in the right half of Figure 5a, consisting of
bu-links and the conjunctive bu-unit B . Thus activation
representing non-unifiability flows in a bottom-up direction,
possibly suppressing top-down activation via nu-links.

A question that remains is: Where does top-down and
bottom-up activation originate? Top-down activation
corresponds to an attempt to unify given f-structures, i.e.
comes from some outside source, presumably some other net-
work or input that uses the unification network as a ‘subrou-
tine’. In our case this initial activation is provided by a set of
links that connect grammar rules to trigger the generation pro-
cess, which will be described in the next section.

Bottom-up activation, on the other hand, originates in the f-
structures themselves, generated by feature value mismatches
at the leaves of the structures involved. A basic definitional
property of unification is that non-identical atomic values can
never unify. This implies that units like
langleV !wigNPrangle are clamped to remain constantly
active; bottom-up activation will spread non-unifiability to
any pair of nodes x and y which has these unequal values in
the same feature f , activating langlex !wigyrangle , and so on
further up the f-structure.

Another source of bottom-up activation comes from the fact
that an atomic value can never unify with a complex one.
Hence nodes with outgoing edges can never be equivalent to
atomic nodes. This property is enforced by the link structure
shown in Figure 5b. For every non-atomic node x , there is a
disjunctive na-unit C which transmits activation from e-units

to all nu-units langlex !wigurangle , u atomic, using na-links.
The intermediate unit C merely avoids full connectivity
between e-units and nu-units, thus saving links.

Connectionist Unification: Summary

The preceding section presents a general mechanism for f-
structure unification by connectionist means. The overall pro-
cedure is as follows: Two or more f-structures are ‘input’ to
the net by activating the corresponding e-units. Following
this, any number of unifications can be attempted by activat-
ing the u-units representing equivalence of the roots of the
respective f-structures. After a time proportional to the depth
of the structures these u-units will either remain active, indi-
cating successful unification, or be turned of by the
corresponding nu-unit, thus indicating failure.

Processing is extremely fast, since it explores subordinate f-
structures in parallel, while requiring a reasonable amount of
network resources: The most expensive aspects of the net-
work are the links realizing transitivity (cubic in the number
of nodes) and td/bu-links/units (quadratic in the number of
edges).

A significant optimization is possible in case certain f-
structures are fixed. This is true for our application, since all
the grammar rules are typically fixed with the exception of the
inital rule encoding a sentence specification. This implies that
all corresponding e-units and a portion of the u/nu-units have
constant activation. All of the category mismatches in a
grammar can be precomputed this way. For example,
langleV !wigNPrangle is constantly 1 and implies the same
for langles 2!wigs 17rangle , langles 2!wigs 25rangle ,
langles 8!wigs 17rangle , and langles 8!wigs 25rangle . In a
second step, all units with constant activation (and the links
incident upon them) can be eliminated from the network,
resulting in savings of network resources and computation
time.7

SENTENCE GENERATION

A traditional approach to sentence generation would use some
top-level control structure to deal with rule selection, rule
application, etc. Connectionist models lack the means to
naturally implement global controlling instances and restrict
themselves to purely local interactions of processing ele-
ments. This section describes how the model presented ear-
lier can be extended to accomplish sentence generation.

Controlling Rule Application

Our approach to generation relies on parallel application of all
the rules in the grammar whenever considering expansion of a
non-terminal c-structure node. This is possible since the net-
work holds all the rules of the grammar and allows parallel
unification attempts to take place. The unification process
itself will then single out those rules that are actually applica-
ble, and incorporate the corresponding structure fragment into
hhhhhhhhhhhhhhhhhhhhh

7 Inactive units can be simply dropped. Active units can be eliminated
after adjusting the thresholds of their neighbors according to the weights of the
connections that are deleted in the process.

STOLCKE

the structure generated so far.

To arrive at the link structure for this task, it is convenient to
distinguish two special classes of nodes within the set of
structures derived from the grammar rules. Those root nodes
corresponding to left-hand side elements in rules are referred
to as L-nodes, roots derived from right-hand side elements are
R-nodes. L-nodes in Figure 3 are s 1, s 6, s 11, s 14, s 17, and s 25;
R-nodes are s 2, s 3, s 7, s 8, s 12, s 15, s 18, and s 26. Rule applica-
tion corresponds to unification of R-nodes with L-nodes
(L/R-unifications for short). Hence the approach of parallel
rule application described above can be implemented by a
link structure which attempts all possible L/R-unifications
involving the R-nodes of a rule, once the L-node of that rule
has been unified.

As an example, consider rule (RVP), whose context-free com-
ponent is VP → V NP with L-node s 6 and R-nodes s 7 and s 8.
The link structure shown in Figure 6 triggers parallel rule
application as follows:

A

. . . s 2wigs 6 s 3wigs 6
. . .

. . . s 7wigs 11 s 7wigs 17
. s 8wigs 11 s 8wigs 17

. . .

Fig 6. Link structure triggering rule application.

As soon as L-node s 6 unifies with any R-node (from any other
rule), the intermediate disjunctive unit A transmits activation
to the u-units responsible for unification of R-nodes s 14 and
s 17 to other L-nodes.

Note that L/R-unifications involving the same L-node or R-
node are mutually exclusive, since each right-hand side ele-
ment can only be attached to exactly one left-hand side (and
vice-versa). The mutally inhibitory links between u-units in
Figure 6 implement this property.

Parallel rule application would in principle attempt any com-
bination of L-nodes and R-nodes and include them in the
schema shown in Figure 6. In practice those combinations
resulting in category mismatches can be eliminated before-
hand (e.g. langles 7wigs 11rangle). Since categories are just
cat feature values, however, this optimization would fall out
as a by-product of the constant unit elimination process sug-
gested earlier.

Implementing Specifications

Initial specification rules such as (RS ′) can be enoded as a
degenerate structure fragment containing just a single R-node
but no L-node (the R-node will be simply the root of the
specifying f-structure). Accordingly, the schema from Fig-
ure 6 will be reduced to its bottom half. Assuming the root
node of the specifying f-structure is s 0, this will give the links
shown in Figure 7. Here the auxiliary unit A will serve the

A

. . . s 0wigs 1 s 0wigs 6
. . .

Fig 7. Links for initial rule application.

purpose of triggering the generation process as a whole.

Experience and Shortcomings

We used simlation tools to implement our model and investi-
gate its dynamic behaviour empirically, although the underly-
ing software posed significant limits on the size of networks
and hence grammars. The sample grammar and others of
slighly higher complexity were encoded and used for genera-
tion to verify our method.8

One important property of the network is random selection of
alternative formulations for a given semantics.9 For example,
given a sem structure as in Figure 1 as specification, the sam-
ple grammar will either generate an active (“Peter loves
Mary”) or a passive (“Mary is loved by Peter”) construction.
‘Priming’ of either of these alternatives is possible by pre-
specifying what the subj of the sentence should be, or by
specifying an explicit aspect feature (and accounting for it in
the grammar).

The most serious drawback encountered was the apparent ina-
bility of the generation process to ‘backtrack’. In cases where
the unsuitability of a rule becomes evident only after several
steps of intermediate rules applied successfully, the network
has no means to undo the unifications and try alternatives. To
guarantee successful generation, then, the specification must
be specific enough to avoid such dead-end paths; this require-
ment, however, is clearly not acceptable for many purposes.

A different perspective on this problem might indicate a way
to its solution. Rule applications from which the system has
to backtrack eventually, roughly correspond to local minima
in the energy function generally used to describe and analyze
the dynamics of connectionst systems (Hopfield, 1982),
whereas the set of unifications resulting in a complete sen-
tence should constitute a global energy minimum. There exist
standard techniques to ‘escape’ such local minima (Hinton &
Sejnowski, 1986), but they do not apply to networks with
asymmetric links such as ours.

A less serious shortcoming of the current model involves
recursive rule applications. The model handles recursiveness
insofar as the depth of the structures generated is limited only
by the size of the relevant unit spaces. Each rule application,
however, ‘consumes’ that rule in the sense that the
corresponding fragment is incorporated in the overall struc-
hhhhhhhhhhhhhhhhhhhhh

8 Credit is due to Kai Zimmermann at TU Munich for designing and imple-
menting the LOOPS-based interactive network simulator that was the basis for
our experimental work.

9 This randomness is rooted in the asynchronous model of operation of the
units.

STOLCKE

ture, thus becoming unavailable for reuse. To allow multiple
rule application, say of the VP rule, a corresponding number
of duplicates of that rule has to be included in the grammar.
A mechanism that accomplished such rule duplication ‘on the
spot’ would run into well-known problems of connectionist
models, in particular the variable binding problem.

EXTENSIONS AND
DIRECTIONS FOR FUTURE RESEARCH

One of the most obvious extensions to the model presented
here is its application to sentence analysis (parsing). The
same transformation of grammar rules into structure frag-
ments could be used, with the same connectionist approach to
f-structure representation and unification. A sentence to be
parsed would be represented by the set of fragments
corresponding to the lexical items constituting it. Parsing
would proceed combining those lexical items with rule frag-
ments, using essentially a link structure inverse to the one in
Figure 6 (links point bottom-up and the intermediate unit
operates conjunctively rather than disjunctively).

A fundamental feature of natural language neglected in our
model is time-sequentiality. Although considerable parallel-
ism is probably essential for natural language processing,
sequentiality is still inherent in priming effects on sequencing
and other psycholinguistic phenomena (Bock, 1982). As a
first step in this direction, activation flow (progressing
unifications) could be modified so as to follow a left-to-right
pattern. Early segments would be generated first, thereafter
constraining what follows in the sentence.

Another issue is how current theories of grammar can account
for the wealth of ungrammaticality found in actual utterances,
such as agreement violations and blending of constructions.
These phenomena suggest that grammaticality is really a
matter of degree, realized in actual speech according to limita-
tions of processing resources and other constraints. By their
nature, connectionist models seem to be better suited to model
graded grammaticality, yet it is not clear how to integrate
such a notion with our or other models of processing.

Finally, it would be nice if a model of processing also gave
some perspective on how its language-specific structures can
be efficiently acquired, i.e. learned. With respect to our
model, it remains an open question whether any of the known
connectionist learning procedures can be applied to accom-
plish this task.

CONCLUSION

We have shown that connectionist models of natural language
processing can efficiently incorporate state-of-the-art linguis-
tic formalisms. In particular, we view our model of sentence
generation as a first step towards an integration of
unification-based grammar with connectionist principles.
Also, the work reported here seems to suggest several possi-
ble directions in which traditional linguistic theories may be
extended and modified to accommodate performance models
of natural language.

ACKNOWLEDGEMENTS
Many thanks are due to the members of the AI research group at TU Munich,
who were of great help during the preparation of the Diploma thesis on which
this work is based.

I would also like to thank Joachim Diederich, Jerry Feldman, Jim Hendler and
Charles Rosenberg for their valuable comments of earlier versions of this
paper.

REFERENCES
Bock, J. Kathryn (1982), “Toward a Cognitive Psychology of Syntax: Informa-

tion Processing Contributions to Sentence Formulation”. Psychologi-
cal Review 89(1):1−47.

Charniak, Eugene & Santos, Eugene (1987), “A Connectionist Context-Free
Parser Which is not Context-Free, But Then It is not Really Connec-
tionist Either”. In Proceedings of the 9th Annual Conference of the
Cognitive Science Society, Seattle, Wash., pp. 70−77.

Cottrell, Garrison W. (1985), “A Connectionist Approach to Word Sense
Disambiguation”. Technical Report TR 154. Computer Science
Department, University of Rochester, Rochester, N.Y..

Dell, Gary S. (1985), “Positive Feedback in Hierarchical Connectionist
Models: Applications to Language Production”. Cognitive Science
9:3−23.

Fanty, Mark (1985), “Context-Free Parsing in Connectionist Networks”.
Technical Report TR 174. University of Rochester, Rochester, N.Y..

Feldman, Jerome A. & Ballard, Dana H. (1982), “Connectionist Models and
Their Properties”. Cognitive Science 6:205−254.

Gasser, Michael E. (1988), “A Connectionist Model of Sentence Generation in
a First and Second Language”. Technical Report UCLA-AI-88-13.
Artificial Intelligence Laboratory, University of California, Los
Angeles, Calif..

Gasser, Michael E. (1985), Generalized Phrase Structure Grammar. Cam-
bridge, Mass.: Harvard University Press.

Hinton, Geoffrey E. & Sejnowski, Terrence J. (1986), “Learning and Relearn-
ing in Boltzmann Machines”. In David E. Rumelhart, James L.
McClelland (Ed.), Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Volume 1: Foundations. Cambridge,
Mass.: MIT Press, pp. 282−317.

Hopfield, J. J. (1982), “Neural networks and physical systems with emergent
collective computational abilities”. Proceedings of the National
Academy of Sciences USA 79:2554−2558.

Kalita, Jugal & Shastri, Lokendra (1987), “Generation of Simple Sentences in
English Using the Connectionist Model of Computation”. In Proceed-
ings of the 9th Annual Conference of the Cognitive Science Society,
Seattle, Wash., pp. 555−565.

Kaplan, Ronald M. & Bresnan, Joan (1982), “Lexical Functional Grammar: A
Formal System for Grammatical Representation”. In Joan Bresnan
(Ed.), The Mental Representation of Grammatical Relations. Cam-
bridge, Mass.: MIT Press, pp. 173−281.

Kay, Martin (1984), “Functional Unification Grammar: A formalism for
machine translation”. In Proceedings of the 10th International Confer-
ence on Computational Linguistics, Stanford, Calif., pp. 75−78.

McClelland, James L. & Kawamoto, Alan H. (1986), “Mechanisms of Sentence
Processing: Assigning Roles to Constituents of Sentences”. In David
E. Rumelhart, James L. McClelland (Ed.), Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition. Volume 2:
Psychological and Biological Models. Cambridge, Mass.: MIT Press,
pp. 272−325.

David E. Rumelhart, James L. McClelland (1983), “The Formalism and Imple-
mentation of PATR-II”. In B. Grosz, M. Stickel (Ed.), Research on
Interactive Acquisition and Use of Knowledge. SRI Final Report 1894.
Artificial Intelligence Center, SRI International, Menlo Park, Calif..

Shieber, Stuart M. (1986), “An Introduction to Unification-Based Approaches
to Grammar”. CSLI Lecture Note Series. Center for Study of
Language and Information, Stanford, Calif..

STOLCKE

Stolcke, A. (1989), “A Connectionist Model of Unification”. Technical Report
TR 89-032. International Computer Science Institute, Berkeley, Calif..

Touretzky, David S. (1986), “BoltzCONS: Reconciling Connectionism with the
Recursive Nature of Stacks and Trees”. In Proceedings of the 8th
Annual Conference of the Cognitive Science Society, Amherst, Mass.,
pp. 522−530.

