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Abstract

We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well
as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.
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I. I NTRODUCTION

WHEN In [1], [2], [3], [4] algorithms for 2-D images that base the classification of a pixel on the feature vectors of the pixel
itself and those of the 4 nearest neighbours are introduced. In [3] it is assumed that the classes of the nearest neighbours of

a pixel are conditionally independent given the class of the center pixel, whereas in [1], [2] it is assumed that the pixel size is small
relative to the grains of the pattern under study. In this article we will extend these algorithms to 3-D images, and carry out a series
of tests on two simulated 3-D images, one that expresses low spatial frequency of the signal and one with high frequency signal.
Furthermore, we will illustrate the use of the 3-D contextual classification for tissue classification in a 3-D magnetic resonance
image of a human brain.

II. M ETHODS

In this Section we develop a 3-D contextual classification rule, specify a Gaussian observation model and specify a prior distri-
bution for the class variable. Additionally, we describe an algorithm based on the Potts model.

A. Construction of a Contextual Classification Rule

Suppose that a pixel belongs to one of the classesπ1, π2, . . . , πk. For each pixel we observe a vector of featuresX =
(X1, X2, . . . , Xp)T . The augmented feature vector consisting of the features vectors of the (north, south, east, west, top, and
bottom) neighbours of a pixel is denotedD∆ = (XT

N , XT
S , XT

E , XT
W , XT

T , XT
B)T , and the augmented feature vector consisting

of the feature vector of a pixel itself and those of its neighbours is denotedD = (XT , DT
∆)T . We assume knowledge of the prior

probabilities,P (C = πi) = pi, i = 0, 1, . . . , k whereC is the class variable.
The Bayes solution to the classification problem for the case of equal losses is obtained by setting the discriminant score to be

maximised across classes equal to the maximum a posteriori probability. The posterior distribution is

f(πν|d) = P (C =πν|D=d) =
P (C = πν)P (D = d | C = πν)
k∑

i=1

P (C = πi)P (D = d | C = πi)

=

∑
a,b,c,d,e,f

pνP (D=d | C =(πν , πa, πb, πc, πd, πe, πf ))g(πa, πb, πc, πd, πe, πf | πν)

h(d)
(1)

whereh(d) is the unconditional density of the augmented feature vector,(a, b, c, d, e, f) is one of the possiblek6 configurations of
the class variables of the neighbouring pixels,C is the class configuration corresponding to the augmented feature vectorD, and
g(πa, πb, πc, πd, πe, πf | πν) is the probability of the configuration of the class variables of the neighbouring pixels given that the
center pixel has classπν . The spatial nature of the data is used in the modelling of the spatial dependence of the feature vectors
and in the prior distribution of the classes of a pixel and its neighbours.

B. Specification of the Gaussian observation model

Following Hjort et al. [2] we assume that each feature vector may be written as a sum of two terms, i.e.X = Y +ε, where theY
terms are independent given the classes and model the class dependency of the feature vectors, i.e.(Y | C = πi) ∈ N(µi, (1−θ)Σ)
and(εT

s(1), . . . , ε
T
s(N)) is zero mean, multinormal and model an autocorrelated noise term withE{εj1ε

T
j2
} = ρ‖s(j1)−s(j2)‖2θΣ. ρ

is the autocorrelation between first-order neighbours, andθ is the proportion of the covariance matrixΣ that is due to autocorrelated
noise.s(j) refers to the spatial position of pixel numberj, andN is the number of pixels. Her we use a correlogram model based
on the2-norm, alternative models include using the1-norm (i.e the city-block or Manhattan distance), or the∞-norm. In Fig. 2
realisations of autocorrelated noise patterns corresponding to using the 2-norm as well as the 1-norm and the∞-norm for the
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(a) CR1 (b) CR2 (c) CR3 (d) CR4

Fig. 1. Patterns in the model. Within the ’cross’, that represents the neighbourhood of a pixel, i.e. the six nearest neighbours, it it is assumed that at most two
classes are present, and that the only possible configurations are these four types of ’crosses’.

(a)2-norm (b) 1-norm (c)∞-norm

Fig. 2. 2-D Noise patterns corresponding to autocorrelation functions using (a) the2-norm (Euclidean), (b) the1-norm (Manhattan), and (c) the∞-norm. All three
realization have an autocorrelation of 0.8 in for first-order neighbours.

correlogram are shown. All these models are valid corellogram models [5], thus ensuring positive definiteness of the covariance
matrix below.

Let ⊗ denote the Kronecker product, andα, β, andγ be as given in Table I for the different autocorrelation models mentioned
above. Then the conditional distribution of the augmented feature vector given the classes is




X
XN
XS
XE
XW
XT
XB



| C =(πν , πa, πb, πc, πd, πe, πf ) ∈ N7p





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⊗ Σ
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

(2)

C. The OHM model for the prior distribution of the class variable

Following [1], [2] - the Owen-Hjort-Mohn model (OHM) - we assume that the regions of the image are large compared to the
pixel size. Therefore, patterns other than CR2, CR3, and CR4 shown in Fig. 1 will occur with very small probability on the region
borders. Let the probability of a pixel being an interior point (i.e. CR1) bep. Furthermore, let the probability of a pixel being on a
border parallel to two of the coordinate axes (i.e. CR2) beq, on a border parallel to only one of the coordinate axes (i.e. CR3) be
r, and on a plane that is not parallel to any of the coordinate axes (i.e. CR4) bes = 1 − p − q − r. All other configurations are
assumed to occur with probability 0.

By rotation we obtain six, twelve, and eight different CR2, CR3, and CR4 patterns, respectively. Note, that from the assumption
of the regions being larger than the pixel size, we have that the pixels within the ’cross’ in the CR2, CR3, and CR4 cases that are
different from the center pixel, all have the same class. In all, given the center pixel class we have1+6(k−1)+12(k−1)+8(k−1) =
26k − 25 different configurations. These patterns are assigned positive a priori probabilities, while all other patterns are assigned
the probability zero.

Under these assumptions the possible patterns in the prior model have the probabilities shown in Equation (3). For each cross an
example of a configuration is shown. For the CR2 example only the north pixel has a class different from the center pixel, for CR3

the north and east pixel have a different class than the center pixel, and for CR4 the north, east and top pixel belong to a different

TABLE I

AUTOCORRELATIONS BETWEEN FIRST-ORDER(α), SECOND-ORDER(β), AND THIRD-ORDER(γ) NEIGHBOURS CORRESPONDING TO THREE DIFFERENT

NORMS USED IN THE DEFINITION OF THE AUTOCORRELATION MODEL.

α β γ
∞-norm ρθ ρθ ρ2θ

2-norm ρθ ρ
√

2θ ρ2θ
1-norm ρθ ρ2θ ρ2θ
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(a) Orig. (b) ρ = 0 (c) ρ = 0.4 (d) ρ = 0.6 (e) Orig. (f) ρ = 0 (g) ρ = 0.4 (h) ρ = 0.6

(i) Orig. (j) ρ = 0 (k) ρ = 0.4 (l) ρ = 0.6 (m) Orig. (n) ρ = 0 (o) ρ = 0.4 (p) ρ = 0.6

Fig. 3. Horizontal slices 32 (top row, (a)-(h)) and vertical slices 32 (bottom row, (i)-(q)) of the two original simulated data volumes and the six degraded sequences.
The low frequency signal is on the left and the high frequency signal is on the right.

class than the center pixel.
CR1 : g(πν , πν , πν , πνπν , πν | πν) = p + (q + r + s) · pν

CR2 : g(πi, πν , πν , πν , πν , πν | πν) = 1
6qpi

CR3 : g(πi, πν , πi, πν , πν , πν | πν) = 1
12rpi

CR4 : g(πi, πν , πi, πν , πi, πν | πν) = 1
8spi

(3)

whereν 6= i, andν, i = 1, . . . , k. In this way we have obtained a huge reduction in the number of non-zero terms in the contextual
classification rule (Equation (1)).

D. The WSH model for the prior distribution of the class variable

Alternatively, following [3], [4] - the Welch-Salter-Haslett (WSH) model - we assume independence between the class variables
of the neighbours given the center pixel class, i.e.

g(πa, πb, πc, πd, πe, πf | πν) = φ(πa|πν)φ(πb|πν)φ(πc|πν)φ(πd|πν)φ(πe|πν)φ(πf |πν).

Hereφ(πi | πj) = P (CA = πi | CB = πj), whereA andB are immediate neighbours. The model leads to a considerable
simplification of Equation (1) in the case of conditional independence of the feature vectors given the class variables, i.e.θ =

TABLE II

MISCLASSIFICATION RATES FOR EACH OF THE COMBINATIONS BETWEEN CLASSIFIER AND NOISE LEVEL. OHM AND WSH REFERS TO THE

OWEN-HJORT-MOHN AND THE WELCH-SALTER-HASLETT METHODS, A PREFIX CAPITAL A DENOTES USE OF AN AUTOCORRELATED NOISE MODEL(I .E.

θ 6= 0), WHEREAS A MISSING CAPITALA DENOTES THE USE OF A WHITE NOISE MODEL ONLY(I .E. θ = 0). FINALLY , THE POSTFIXn-D INDICATES THE

SIZE OF THE CONTEXT CONSIDERED IN THE ALGORITHM.

Low frequency image High frequency image
White noise Autocorrelated noise White noise Autocorrelated noise

ρ = 0.4 ρ = 0.6 ρ = 0.4 ρ = 0.6
Non-context 15.8 15.8 16.0 15.9 15.8 16.2
AOHM 3-D - 3.6 5.9 - 6.2 8.4

OHM 3-D 1.1 3.7 6.0 3.0 6.3 8.8
AWSH 3-D - 5.0 7.0 - 7.7 9.6

WSH 3-D 2.2 4.9 7.0 4.6 7.8 10.0
AOHM 2-D - 4.9 7.0 - 7.8 9.6

OHM 2-D 2.2 4.9 7.0 4.6 7.8 9.8
AWSH 2-D - 4.9 7.1 - 7.7 9.9

WSH 2-D 2.2 4.9 7.1 4.6 7.8 10.0
AOHM 1-D - 7.5 9.1 - 10.7 11.9

OHM 1-D 5.1 7.4 9.0 8.1 10.2 11.7
AWSH 1-D - 7.3 8.9 - 10.3 11.9

WSH 1-D 4.9 7.3 9.0 8.1 10.4 12.1
Potts,β = 0.1 11.2 11.8 12.5 12.0 12.6 13.3
Potts,β = 0.5 0.4 0.8 3.9 3.1 4.7 6.9
Potts,β = 1.0 1.3 2.3 2.0 1.9 3.3 5.5
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(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 4. Classification of the low frequency data volume degraded with white noise (signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and vertical slice 32
(bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter settings ((h)-(j)
and (r)-(t)).

(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 5. Classification of the low frequency data volume degraded with autocorrelated noise (ρ = 0.4, signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and
vertical slice 32 (bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter
settings ((h)-(j) and (r)-(t)).

(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 6. Classification of the low frequency data volume degraded with autocorrelated noise (ρ = 0.6, signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and
vertical slice 32 (bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter
settings ((h)-(j) and (r)-(t)).

0 ∨ ρ = 0 ⇔ α = β = γ = 0 in Equation (2). In the case of autocorrelated noise, however, an approximation is necessary
(for computational reasons). In [2] it is suggested to approximate the covariance matrix ofD∆ by a diagonal matrix with equal
diagonal elements having the same determinant as the original matrix.

E. Standard method for comparison

Finally, we include results obtained by performing the classification using a Potts model for the prior. For reviews of the Potts
model see [7], [8]. The conditional probabilities are given by

P (C = πν |C∆ = c∆) =
exp(βu(ν))
k∑

i=1

exp(βu(i))
(4)
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(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 7. Classification of the high frequency data volume degraded with white noise (signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and vertical slice 32
(bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter settings ((h)-(j)
and (r)-(t)).

(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 8. Classification of the high frequency data volume degraded with autocorrelated noise (ρ = 0.4, signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and
vertical slice 32 (bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter
settings ((h)-(j) and (r)-(t)).

(a) Non-ctx (b) 3-D OHM (c) 3-D WSH (d) 2-D OHM (e) 2-D WSH (f) 1-D OHM (g) 1-D WSH (h) β = 1 (i) β = 0.5 (j) β = 0.1

(k) Non-ctx (l) 3-D OHM (m) 3-D WSH (n) 2-D OHM (o) 2-D WSH (p) 1-D OHM (q) 1-D WSH (r) β = 1 (s)β = 0.5 (t) β = 0.1

Fig. 9. Classification of the high frequency data volume degraded with autocorrelated noise (ρ = 0.6, signal-to-noise ratio 0 dB). Horizontal slice 32 (top row) and
vertical slice 32 (bottom row) of the classifed volumes using the contextual Bayesian algorithms ((a)-(g) and (k)-(q)), and a Potts model with three parameter
settings ((h)-(j) and (r)-(t)).

whereC∆ is the classes of the neighbours, andu(ν) is the number of the neighbours that have classπν . If this Potts model has
two states (i.e.k = 2) it is equivalent to an isotropic zero-field Ising model (e.g. see [9]).

We use a Gaussian observation model, i.e.(X | C = πi) ∈ N(µi,Σ). In the posterior distribution the faith in the observations
vs. the faith in the model is controlled by a parameterγ. Only one ofβ andγ can be varied freely. The maximum a posteriori
estimate is found using the Gibbs sampler and simulated annealing [9].

III. D ATA

The procedures described above are tested on Monte Carlo simulated data and a magnetic resonance image of a human brain.
The two simulated datasets consist of64 × 64 × 64 data volumes with one feature observed at every pixel and express low and

high spatial frequency, respectively. In Figs. 3(a) and 3(i), and Figs. 3(e) and 3(m) horizontal slice 32 and vertical slice 32 of the
volumes are shown.
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(a) Orig. (b) Non-ctx (c) 3-D OHM

(d) Orig. (e) Non-ctx (f) 3-D OHM

Fig. 10. Horizontal slice 44 ((a)-(c)) and vertical slice 16 ((d)-(f)) of the image of the human brain under study. The original image is shown on the left ((a), (d)).
Classification results using non-contextual classification in the middle ((b), (e)), and classification using 3-D OHM on the right ((c), (f)). White matter is shown
as white, grey matter as grey and cerebro-spinal fluid as black.

(a)β = 1 (b) β = 0.5 (c) β = 0.1

(d) β = 1 (e)β = 0.5 (f) β = 0.1

Fig. 11. Three classification results using stochastic relaxation with a Potts model. The parameterβ controls the number of neighbours that have the same class.
White matter is shown as white, grey matter as grey and cerebro-spinal fluid as black.

We consider two cases of degradation. First, the case of pure white noise, and second, the case of a mixture of white and autocor-
related noise. We use a Gaussian noise level with a signal-to-noise ratio of 0 dB. In both cases we compare the contextual classifiers
with a classical pixelwise linear classifier (e.g. [6]). In addition to this we make comparisons between the classifications using the
3-D algorithms with implementations where contextual information is drawn only from 2-D (corresponding to the algorithms in
[2], [3]), as well as implementations where only 1-D context is used.

The T1 weighted magnetic resonance image was scanned on a Magnetom Vision scanner from Siemens. We apply our algorithm
to a130× 68× 61 subimage. A vertical and a horizontal slice is shown in Figs. 10(a) and 10(d). We want to discriminate between
grey matter, white matter, and cerebro-spinal fluid.

IV. CLASSIFICATION RESULTS

All classifications of the simulated datasets are performed using the true parameters for mean values, variances, and autocorrela-
tions. The transition probabilities of the WSH models and the prior distribution of the neighbourhood configurations of the OHM
models are estimated by their relative occurences in the simulated data volumes.

For each class the parameters of the algorithm are estimated from a training set. The training set is generated by a 3-D version
of the 2-D seed algorithm described in [10]. For each class a single pixel (seed) is identified. An initial training set is generated
by expanding this pixel to a small neighbourhood. From this neighbourhood initial mean value and dispersion matrix of the class
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are estimated. These estimates are used to include new pixels in the training set. The inclusion of a new pixel in the training set
is conditioned on the pixel being connected with the original seed through other pixels in the training set and on the estimated
Mahalanobis distance from the feature vector of the pixel to the class centre being less than a specified quantile in the appoximate
χ2(p) distribution of the Mahalanobis distance.

A. Case 1: White noise

In Figs. 3(b) and 3(j), and in Figs. 3(f) and 3(n) degraded slices are shown. The misclassification rates for the classifications are
shown in Table II. For the Potts model based algorithm we apply the classifier with three different settings of the parameterβ in
Equation (4), and the weight of the observation model energy fixed toγ = 1.

For the non-contextual classifier the theoretical misclassification rate is 15.866%. The obtained results agree well with this. When
compared with the contextual OHM 3-D classifier, we see that the inclusion of spatial information results in a misclassification rate
that is a factor 15 lower for the low frequency image. For the WSH 3-D model the misclassication rate is also lower, though not as
good as for the OHM model. It is noteworthy that whereas the OHM models increase their performance as more spatial dimensions
are included, the misclassification rate does not decrease for the WSH model when going from 2-D to 3-D. Also, where OHM 2-D
and WSH 2-D performs equally well, the OHM model is superior in the 3-D case.

Apart from the contextual methods performing significantly better in terms of misclassification rates the original patterns are
clearly discernible when comparing with the non-contextual method, as is shown in Fig. 4. It should also be noted that the errors
tend to occur on the edges, and that the errors also tend to lump together in the directions where contextual information is included
(i.e. for the 1-D algorithms the errors frequently occur in east-west line segments, whereas in the other directions they seem to
occur more randomly).

With respect to the spatial frequency of the signal the performance of the classifications decrease with spatial frequency. This is
what would be expected. The number of edge pixels are significantly higher and errors seem to occur predominantly at edges.

In comparison with the Potts model restoration we see that in terms of misclassification rates the Potts model (with the right
choice of parameter) performs a little better than the OHM 3-D method. However, it should be taken into account that no tuning is
necessary for the OHM method.

B. Case 2: Autocorrelated and white noise

In Figs. 3(c)-3(d) and 3(k)-3(l), and in Figs. 3(g)-3(h) and 3(o)-3(p) degraded slices are shown. With respect to the contextual
methods we see the same pattern as for the white noise only situation: The 2-D algorithms works equally well, whereas the
extension to 3-D increase the performance only for the OHM model. The lowest misclassification rates are obtained for the
(A)OHM 3-D classifiers. It should also be noted that for the WSH models the inclusion of spatial autocorrelation in the noise
model does not have an effect. For the OHM models the effect of including spatial autocorrelation in the noise model is hardly
discernible. Examples of the classification results on the slices shown in Fig. 3 are shown in Figs. 5 and 6.

With respect to the autocorrelated noise in the images it is clear that the relative improvement of including the context in the
classification is less. The neighbours hold less extra information as is also noted in [3].

For the autocorrelated noise situation the advantage of the Potts model restoration over the OHM 3-D method is even more
explicit. The Potts model has the advantage of drawing information from a larger neighbourhood (i.e. the entire image) when
classifying a pixel.

C. MRI image of human brain

The human brain MRI image is classified using a non-contextual and the 3-D OHM algorithm as well as Potts model restoration
using three parameter settings. For the non-contextual classification the result is shown in Figs. 10(b) and 10(e). For the 3-D OHM
algorithm the results are shown in Figs. 10(c) and 10(f), and for the Potts model restoration classification examples are shown in
Fig. 11. The non-contextual method gives a classification that expresses some salt-and-pepper noise. This noise is not present in
the 3-D OHM result. For the parameter settingβ = 1 the Potts model restoration also gives salt-and-pepper noise free results.
However, this is at the cost of overly smoothing of some fine patterns. An example of which can be seen in the middel bottom of
the vertical slice (Fig. 11(d)). Loweringβ to e.g.β = 0.1 allows for a more reasonable classification of this pattern but this results
in salt-and-pepper noise in other parts of the image.

For this real world example it seems that the 3-D OHM algorithm has some advantages over the Potts model.

V. CONCLUSION

We have described extensions of 2-D contextual classification algorithms by Owen, Hjort & Mohn (OHM) and Welch, Salter &
Haslett (WSH) based on the simultaneous distribution of a pixel and its nearest neighbours to the 3-D case. The algorithms include
contextual information for each pixel by including the feature vector of that pixel as well as the feature vectors of the 6 nearest
neighbouring pixels in the decision. A joint Gaussian distribution for these feature vectors given the classes of the pixels has been
specified. It is assumed that the noise can be modelled as a sum of white noise and autocorrelated noise, where the autocorrelation
function is exponentially decaying with (Euclidean) distance. Furthermore, joint prior distributions of the class variables of a pixel
and its 6 nearest neighbours have been specified.



Compared to a restoration based on a Potts model for the underlying images the 3-D OHM model performs almost as well in
terms of misclassification rates for the case of white noise. When autocorrelated noise is added the Potts model has the advantage.
For a case of classification of a magnetic resonance image of a human brain with respect to tissue type the 3-D OHM model is
more robust than the Potts model. At the same time the 3-D OHM algorithm avoids salt-and-pepper noise and correctly classifies
areas of fine structure.
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