
SCCS-453

Northeast Parallel Architectures Center
at Syracuse University

An Integrated Software Development
Model for Heterogeneous High

Performance Computing

Manish Parashar, Salim Hariri, Tomasz Haupt and Geo�rey C. Fox

parashar@npac.syr.edu

April 21, 1993

S
SYRACUSE UNIVERSITY
Northeast Parallel Architectures Center
111 College Place, Room # 3-201 . Syracuse, New York 13244-4100
Tel: (315) 443-1722 . Fax: (315) 443-1973

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24313689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453

An Integrated Software Development Model for Heterogeneous High

Performance Computing

Manish Parashar, Salim Hariri, Tomasz Haupt and Geo�rey C. Fox

Northeast Parallel Architectures Center

Syracuse University

parashar@npac.syr.edu, hariri@cat.syr.edu

Contents

1 Introduction 1

2 Issues and Requirements for HHPC Software Development 4

2.1 General Parallel Programming Models : 5

2.2 Portable Application Description Medium : 5

2.3 Algorithm Classi�cation Support : 5

2.4 Algorithm Evaluation Support : 6

2.5 Algorithm Mapping Support : 6

2.6 Program Implementation and Run-Time Support : 6

2.7 Visualization/Animation Support : 7

2.8 Maintainability Issues : 7

2.9 Reliability Issues : 7

2.10 Reusability Issues : 7

3 A Model for HHPC Software Development 7

3.1 Parallel Modeling of Stock Option Pricing : 9

3.2 Model Inputs : 9

3.3 Application Analysis Stage : 11

3.4 Application Development Stage : 12

3.4.1 Algorithm Development Module : 12

3.4.2 System Level Mapping Module : 13

3.4.3 Machine Level Mapping Module : 14

3.4.4 Implementation/Coding Module : 15

3.4.5 Design Evaluator Module : 15

3.5 Compile-Time & Run-Time Stage : 15

3.6 Evaluation Stage : 16

3.7 Maintenance/Evolution Stage : 16

4 Existing Software Support 17

5 Conclusions 19

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 1

An Integrated Software Development Model for Heterogeneous High

Performance Computing

Manish Parashar, Salim Hariri, Tomasz Haupt and Geo�rey C. Fox

Northeast Parallel Architectures Center

Syracuse University

parashar@npac.syr.edu, hariri@cat.syr.edu

Abstract

The last few decades have seen an impressive developments in every aspect of parallel computing technology;

viz. processing and storage technology, interconnect technology and software technology. Although these

systems incorporate large amount of computing power, they are not general enough to e�ciently support

today's computation-intensive problems (e.g. the Grand Challenges), that warrant multiple computational

models and levels of parallelism. We believe that the future of parallel computing lies in the integration

of the plethora of \specialized" architectures into a single Heterogeneous High Performance Computing

(HHPC) environment that allows them to cooperate in solving complex problems. Software development

in any Parallel/Distributed environment is a non-trivial process and requires a thorough understanding

of the application and the architecture. This problem further intensi�es as systems evolve into HHPC

environments. The objective of this paper is to formalize the software development process for an HHPC

environment. The issues and requirements that need to be addressed in HHPC software development are

investigated and a model that meets these requirements is proposed. Support required at each stage of the

model is also highlighted. The modeling of stock option pricing is used as a running example to validate

the applicability of the model. Finally a survey of existing tools and techniques applicable to the di�erent

stages is presented.

1 Introduction

The last few decades have seen an impressive development in every aspect of parallel computing technol-

ogy; viz. processing and storage technology, interconnect technology and software technology. Advances in

processing and storage technology can be characterized by advances in device and concurrency technology.

Developments in device technology have resulted in faster, more powerful processors with larger storage

support and increased functionality, while research in concurrency technology has explored new concur-

rency paradigms designed to exploit parallelism at di�erent levels and in di�erent ways (e.g. SIMD, shared

memory MIMD (SM-MIMD), distributed memory MIMD (DM-MIMD), Dataow, Vector, Pipelined, etc.).

Advances in interconnect technology have introduced (a) high speed, reliable networks capable of providing

high transfer rates (e.g. FDDI, DQDB, HIPPI, SONET, ATM, etc.), (b) new, more e�cient communi-

cation protocols (e.g. NETBLT, VMTP, XTP, Ultranet, etc.) and (c) exotic interconnection topologies

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 2

(e.g. FAT Tree, Hypercube, Mesh, Torus, etc.). Advances in software technology have explored new

approaches to assist the user in developing parallel software and application. This has included the de-

velopment of automatic parallelizing/vectorizing compilers, parallel programming languages and language

extensions, parallel software development environments, etc. along with support tools such as performance

analysis/monitoring tools, problem decomposition/mapping tools, parallel debugging tools, etc.

High performance computer systems today, include SIMD architectures like CM2 and DECmpp, shared

memory MIMD, vector and pipelined architectures like the CRAY C90, NEC SX3, and IBM POWER/4,

distributed memory MIMD machines like the Paragon XP/S and iPSC/860 from Intel, the CM-5 from

TMC, and the KSR1, transputer based machines like the Parsytec GC, special purpose architectures like

the BBN MP2000, etc. Each of the above architectures can be thought of as points in the state space

of possible alternatives in the design of parallel computers and result from a unique set of trade-o�'s

in system parameters and design decisions. These design trade-o�'s cause speci�c architectures to favor

certain computational models and thereby deliver maximum performance only to a speci�c set of appli-

cations which lend themselves to one of those computation models. Further, this narrow applicability of

current architectures has prevented them from being cost-e�ective. As a result, although these architec-

tures incorporate large amount of computing power, they are not general enough to e�ciently support

today's computation-intensive problems, that warrant multiple computational models and levels of par-

allelism. The U.S. O�ce of Science and Technology Policy's Committee on Physical, Mathematical, and

Engineering Sciences has outlined a set of desired applications and their computing requirements in its

report \Grand Challenges: High Performance Computing and Communication" (1991) [1]. The Grand

Challenge applications include climate modeling, uid turbulence, pollution dispersion, human genome,

ocean circulation, quantum chormodynamics, semiconductor modeling, superconductor modeling, com-

bustion systems and vision and cognition among others, and are estimated to requires Teraops (1012

ops) of computing power. Tackling applications of this magnitude and diversity would require a general,

cost-e�ective, scalable, yet powerful computing model which will be able to e�ciently support its varied

computational and communication requirement. It is this realization that has spurred intense research in

heterogeneous computing environments [2, 3, 4, 5, 6, 1, 7, 8].

We believe that the future of parallel computing lies in the integration of the plethora of \specialized"

architectures into a single Heterogeneous High Performance Computing (HHPC) environment that allows

them to cooperate in solving complex problems (Figure 1). The HHPC environment will capitalize on

existing architectures and on current advances in computing, networking and communication technology

to provide e�cient, cost-e�ective, scalable, high-performance distributed computing.

Software development in any Parallel/Distributed environment is a non-trivial process and requires a

thorough understanding of the application and the architecture. This is apparent from the fact that, appli-

cations are currently able to achieve only a fraction of peak available performance [7, 1]. The percentage of

the peak performance achieved by standard parallel benchmarks on current parallel/distributed systems is

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 3

HHPC Environment

DM-MIMD

WorkstationStorage System

Supercomputer
Vector SM-MIMD

SIMD
Special Purpose Architecture

Figure 1: The Heterogeneous High Performance Computing Environment (HHPC)

System Con�guration Peak Speed NAS Parallel Benchmark E�ciency (%)

Name (# Processors) (Gigaops) EP (228) FFT (25628 � 128) CG (2� 106)

Cray C90 16 16 50% 30% 16%

Intel iPSC/860 128 2.6 15% 20% 3%

TMC CM-200 64 K 20 12% - -

TMC CM-2 64 K 14 - 4% -

TMC CM-2 16 K 3.5 - - 3%

Note:

NAS = Numerical Aerodynamic Simulation

EP = Highly parallel Monte Carlo Simulation

FFT = 3-D Poisson PDE solver using FFT

CG = Conjugate Gradient linear equation solver for a banded system of equation

Table 1: Current utilization of parallel/distributed systems

shown in Table 1 [1]. The software development problem further intensi�es as systems evolve into HHPC

environments. The HHPC environment, while increasing the computing power and design exibility avail-

able to the user, provides increased degrees of freedom and therefore requires the developer to make a

larger number of design choices. During the course of software development in an HHPC environment, the

developer is required to select the optimal hardware con�guration for a particular application, the best

decomposition and mapping of the problem onto the selected hardware con�guration, the best commu-

nication and synchronization strategy to be used, etc. Using conventional techniques, this would require

extensive experimentation and data collection before these parameters can be resolved. The process is not

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 4

always feasible since parallel/distributed systems are expensive resources and usually not freely available

for such experimentation. Further, programming, running and data collection on most parallel/distributed

systems is a tedious process and exhaustively evaluating the possible alternatives is usually not practi-

cal. Most existing evaluation tools post-process traces generated during an execution run. This implies

instrumenting source code, executing the application on the actual hardware to generate trace �les, post-

processing these trace �les to gain insight into the execution and overheads in the implementation, re�ning

the implementation and then repeating the process. The process is repeated until all possibilities have been

evaluated and the best options for the problem have been identi�ed. Clearly, this development overhead

explains the poor exploitation of existing parallel/distributed platforms.

Consequently, there is a need for a software development environment which can assist the developer in

uncovering the inherent parallelism in the application, to make e�cient use of the underlying computing

resources and to exploit the heterogeneity in both, application and hardware. Such an environment should

outline the stages involved in the software development process and incorporate tools to support the devel-

oper during each stage of application development starting from the speci�cation and design formulation

stages through the programming, mapping , distribution, scheduling phases, tuning and debugging stages

upto the evaluation and maintenance stages.

The objective of this paper is to formalize the software development process for an HHPC environment

and to outline the stages encountered. Section 2 outlines the issues and requirements that need to be

addressed in HHPC software development. Section 3 introduces a software development model which

meets the requirements outlined and describes the di�erent stages of the model. Support required at each

stage is also highlighted. Modeling of stock option pricing is used as a running example to validate the

applicability of the proposed model. Section 4 surveys existing tools and techniques applicable to the

di�erent stages of the model. Section 5 presents some concluding remarks.

2 Issues and Requirements for HHPC Software Development

This section highlights some of the issues that need to be addressed when designing HHPC software de-

velopment environments. The �rst set of issues (Sections 2.1 - 2.7) primarily focus on e�cient software

development and high performance. This set includes issues pertaining to programming paradigms, appli-

cation description media, algorithm classi�cation evaluation, and mapping support, implementation/run-

time support and visualization/animation support. In addition to these issues, there exists another set of

equally important issues (Sections 2.8 - 2.10) that need to be addressed. These issues involve the maintain-

ability, reusability and reliability of the developed application. Some of these issues have been mentioned

in [9, 10, 11, 12, 8, 13]. The issues are discussed below:

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 5

2.1 General Parallel Programming Models

Although a number of models for parallel programming have been proposed, these models are either

too general to be of practical use (e.g. Petrinet, PRAM or Boolean Circuit models) or are bound to

speci�c machines or architectural classes. Models of the former type are primarily theoretical and do not

correspond to the behavior of any real machine; while those of the latter type are not general enough

to describe algorithms to be implemented on di�erent architectures. As a result, there is a need for a

robust software development paradigm which addresses the issues that surface in an HHPC environment

and a parallel programming model which is general enough to handle the diversity inherent in such an

environment. The model must be architecture independent, must be intuitive, simple to use and must be

accurate enough to reect its cost of execution. The Paralation Model presented in [14] attempts to meet

these requirements.

2.2 Portable Application Description Medium

A number of application description media, capable of describing and handling parallelism have been

proposed. However, they either lack the exibility to exploit the potential of the underlying hardware (e.g.

parallel extensions) or are tied to particular systems and lack portability (e.g. parallel languages). These

can be classi�ed as either parallel extension or parallel languages. The former class consists of classical

languages like C, Fortran, Pascal, etc. with appropriate language extensions to handle parallel processes,

communication, synchronization, etc. These languages allow easier porting of existing application to

parallel platforms. However, parallelism is introduced in these languages as an after-thought which prevents

them from being e�cient and exible enough to fully exploit the potential of the underlying hardware.

The latter class of application description media, includes new languages designed speci�cally to handle

parallelism, e.g. Occam, PCN, etc. These media are better suited for parallel machines but require re-

coding of complete applications. Further, current application description media for parallel/distributed

computing are tied to a particular machine or a particular architecture class. For example CMFortran and

C� are speci�c languages for the Connection Machines from TMC,MPFortran is targeted to the DECmpp's,

while Occam has been designed for transputer based systems. Hence, there is a need for a portable, yet

exible application description medium which can e�ciently support HHPC. HPF [15] proposed by the

High Performance Fortran Forum is a step in this direction.

2.3 Algorithm Classi�cation Support

An HHPC environment provides architectural support for parallelism at multiple levels (e.g. instruction

level, procedure level, etc,) and of di�erent types (e.g. data parallelism, control parallelism, etc.). and

presents the developer with the potential of exploiting corresponding levels and types of parallelism within

the application. This can be done by mapping relevant portions (tasks) of the application onto processing

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 6

elements of the HHPC environment which are best suited for it. In-order to achieve this, it is necessary to be

able to classify an algorithm on the basis of its computational/communication needs. Such a classi�cation

must be able to cover the largest possible set of applications while retaining su�cient detail to enable

selection of the best hardware con�guration.

2.4 Algorithm Evaluation Support

It is critical to HHPC software development, to be able to obtain a realistic estimate of the complexity or

potential performance of an algorithm. This allows the developer to evaluate di�erent algorithms for the

problem and to make proper design choices early in the application development process.

2.5 Algorithm Mapping Support

The mapping of the algorithm onto the right hardware con�guration in the HHPC environment is critical

to exploiting its potential performance. Any such mapping support should make use of algorithm evalu-

ation and classi�cation support along with benchmarking data and the performance speci�cations of the

underlying hardware, to assist the developer in identifying the most suited hardware con�guration for the

particular application. A knowledge-base of rules and heuristics can be used for this purpose.

2.6 Program Implementation and Run-Time Support

In current HHPC environments, even after having selected the right algorithm and system level mapping

for an application, the developer has to spend a considerable amount of time understanding the underlying

hardware and resolving system speci�c aspects like selection of synchronization strategies, routing, data

decomposition, load balancing, vectorization strategies, pipelining strategies, etc., to get the best possible

performance. Following this, additional time and considerable e�ort required for actually programming

the application and debugging the implementation. As a result, there is a critical need for a programming

environment providing parallel language support, intelligent compilers and cross-compilers, parallel debug-

gers, syntax-directed editors, con�guration management tools as well as other programming aids to assist

the user with every aspect of application development. In addition, such an environment must provide

extensive evaluation support for performance prediction and estimation as well as performance evaluation,

to enable the developer to evaluate di�erent design choices and tradeo�'s. These tools must account for

the non-deterministic nature of communication as well as the lack of global ordering of events which are

characteristic of distributed systems, and for the heterogeneity in the environment. Run-Time support for

HHPC environments includes providing e�cient, parallel run-time libraries, dynamic scheduling and load-

balancing support, as well as support for non-intrusive monitoring and pro�ling of application execution.

As a part of this category, we can also mention the need for a truly distributed operating system which

provides low-level support for HHPC and provides the user with a familiar user interface.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 7

2.7 Visualization/Animation Support

Since, the HHPC environment can process huge amounts of data at high speeds, there is a need for

visualization and animation support to enable the user to interpret the data. Further, visualization and

animation support enable the user to obtain insight into the actual execution of the application and the

existing ine�ciencies.

2.8 Maintainability Issues

Maintainability issues include ensuring that the developed software continues to meet its speci�cations

and handling any faults or bugs that might surface during its lifetime. It deals with issues like software

testability, software quality evaluations and fault handling and recovery. HHPC environments introduce

a great deal of non-determency in the application execution, specially due to asynchronous behavior and

synchronization problems, which have to be handled.

2.9 Reliability Issues

Reliability and software fault-tolerance are specially critical to HHPC environments due to the lack total

ordering of events in the system as well as lack to repeatability of event execution. Fault detection and

recovery in such a system is complex since the order of computation cannot be easily determined. This is

further intensi�ed by the fact that multiple autonomous computing elements are involved.

2.10 Reusability Issues

Software reusability issues, as with sequential computing, deal with productivity and development costs.

However, as software development for HHPC environments involve higher costs and much greater e�orts,

these issues have added signi�cance to such an environment and must be addressed.

3 A Model for HHPC Software Development

The HHPC software development model described in this section is de�ned as a set of stages, which

correspond to phases typically encountered in the software development process. At each stage, a set of

support tools which can assist the developer are identi�ed. The stages can be viewed as a set of �lters in

cascade (see Figure 2). The input to this system of �lters is the application description and speci�cation

which is generated from the application itself (if it is a new problem) or from existing sequential code

(porting of dusty decks). The �nal output of the model is a running application. All intermediate stages

are managed within the environment, with user interaction. Feedback loops are present at some stages

to enable step-wise re�nement and tuning. Descriptions of models for traditional parallel computing

environments spanning parts of the software development process can be found in [11, 9, 16]. The stages in

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 8

Application Analysis Stage

Compile−Time/Run−Time Stage

Evaluation Stage

Algorithm Development Module System Level Mapping Module

Implementation/Coding Module Machine Level Mapping Module

Application Development Stage

Application Specification
Filter

Application Specification
Filter

Maintenance/Evolution Stage

Evaluation Recommendation

Evaluation Specification

Application Specification

Parallelized Structure

Parallelization Specification

Dusty Decks New Application

Design Evaluator

Module

Figure 2: A Model for HHPC Software Development

the HHPC software development model are described in the following sections. To illustrate the validity of

the proposed model and the application of the various stages of the model, we use the Modeling of Stock

Option Pricing [17] as a running example through the discussion below.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 9

3.1 Parallel Modeling of Stock Option Pricing

Stock options are contracts that give the holder of the contract the right to buy or sell the underlying stock

at some time in the future for an agreed upon striking or exercise price. Option contracts are traded just

as stocks and models that quickly and accurately predict their prices are valuable to the traders. Stock

option pricing models estimate the price for an option contract based on historical market trends and

current market information. The model required three classes of inputs: (1) Market Variables which

include the current stock price, call price, exercise price and time to maturity. (2) Model Parameters

which include the volatility of the asset (variance of the asset price over time), variance of the volatility and

the correlation between asset price and volatility. These parameters cannot be be directly observed and

must be estimated from historical data (using optimization techniques). (3) User Inputs which specify

the nature of the required estimation; e.g. American/European call, constant/stochastic volatility, time

of dividend payo�, and other constraints regarding acceptable accuracy and running times. A number of

option pricing models have been developed using varied approaches, e.g. non-stochastic analytic models,

Monte Carlo simulation models, binomial models, binomial models with forced recombination, etc. Each

of these models involve a set of tradeo�'s in the nature and accuracy of the estimation and suit di�erent

user requirements. In addition, these models make varied demands in terms of programming models and

computing resources.

3.2 Model Inputs

The HHPC software development model presented in this section addresses two classes of applications:

1. \New" Application Development: This class of applications involves solving new problems using

the resources of an HHPC environment. Developers of this class of applications have to start from

scratch using a textual description of the problem.

2. Porting of Exiting Applications (Dusty-Decks): This class includes developers attempting

to port existing codes written for single processor or closely-coupled multiprocessor systems, to an

HHPC environment. Developer of this class applications start o� with huge listings of (hopefully)

commented source code.

The input to the HHPC software development model is an application speci�cation in the form of a

functional ow description of the application and its requirements. The functional ow description is

a very high-level ow diagram of the application outlining the sequence of functions that have to be

performed. Each node (termed as functional module) in the functional ow diagram is a black-box and

contains information about (1) its input(s), (2) the function to be performed, (3) the desired output(s)

and (4) the requirements at each node. Implementation issues like the approach or algorithm to be used

to realize a function or the nature of data representation to be used, are not included in this speci�cation.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

Figure 4: Stock Option Pricing Model: Parallelization Speci�ca-

tions

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 11

information and historical data and generates the three classes of inputs required by the model. (2) The

estimation module consists of the actual model and generates the stock option pricing estimates. (3) The

output module provides a graphical display of the estimation to the user. The feedback from the output

module to the input module represents tuning of the user speci�cation based on the output displayed.

3.3 Application Analysis Stage

The �rst stage of the HHPC software development model is the application analysis stage. The input to this

stage is the application speci�cation as described in Section 3.2. The function of this stage is to thoroughly

analyze the application with the sole objective of achieving the most e�cient implementation. An attempt

is made, in this stage, to uncover any parallelism inherent in the application. Functional modules which

can be executed concurrently are identi�ed and the dependencies between these modules are analyzed.

In addition, the application analysis stage attempts to identify standard computational modules which

can later be matched with a database of optimized templates in the application development stage (for

example, nodes in the application speci�cation performing a Fast Fourier Transform can be clustered and

tagged so that they can be matched with an appropriate FFT template in the application development

stage). The output of this stage is a detailed process ow graph called the \Parallelization Speci�cation"

where the nodes represent functional components and the edges represent interdependencies. Thus, the

problems dealt with in this stage can be summarized as: (1) module creation problem, i.e. identi�cation

of tasks which can be executed in parallel; (2) module classi�cation problem i.e. identi�cation of standard

modules; and (3) module synchronization problem, i.e. analysis of mutual interdependencies. This stage

corresponds to the \design phase" in standard software life-cycle models and its output corresponds to the

\design document".

The tools which can assist the user at this stage of software development are: (1) smart editors which

can interactively generate directed graph models from the application speci�cations; (2) intelligent tools

with learning capabilities which can use the directed graphs to analyze dependencies, identify potentially

parallelizable modules and attempt to classify the functional modules into standard modules; and (3)

problem speci�c tools equipped with a database of transformations and strategies applicable to the speci�c

problem.

The parallelization speci�cation for the running example is shown in Figure 4. The Input functional

module is subdivided into two functional components: (1) analyzing historical data and generating model

parameters; and (2) accepting market information and user inputs to generate market variables and es-

timation speci�cations. The two components can be executed concurrently. The Estimation module is

identi�ed as a standard computational module and is retained as a single functional component (to avoid

getting into the details of �nancial modeling in this paper). The Output functional module consists of two

independent functional components: (1) rendering the estimated information onto a graphical display; and

(2) writing it onto disk for subsequent analysis.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 12

3.4 Application Development Stage

The application development stage receives as its input the Parallelization Speci�cations and produces the

Parallelized Structure which can then be compiled and executed. This stage is made up of 5 modules: (1)

Algorithm Development Module; (2) System Level Mapping Module; (3) Machine Level Mapping Module;

(4) Implementation/Coding Module; and (5) Design Evaluator Module. It should be noted, however, that

these modules are not executed in any �xed sequence or a �xed number of times. There exists instead, a

feedback system from each module to the other modules through the design evaluator module. This allows

the development as well as the tuning to proceed in an iterative manner using step-wise re�nement. A

typical sequence of events in the application development stage can be outlined as follows:

� The Algorithm Development Module uses an initial system level mapping (possibly speci�ed via user

directives) to select appropriate algorithms for the functional components.

� The Algorithm Development Module then uses the services of the Design Evaluator Module to eval-

uate applicable algorithms and to tune the selection of the algorithmic implementations.

� The System Level Mapping Module uses feedback provided by the Design Evaluator Module and the

Algorithm Development Module to tune the initial mapping.

� The Machine Level Mapping Module selects an appropriate machine level distribution and mapping

for the particular algorithmic implementation and system level mapping. Once again, feedback from

the Design Evaluator Module is used to select between alternate mappings.

� This process of step-wise re�nement and tuning is continued until some termination criterion is met

(e.g. until some acceptable performance is achieved or up to a maximum time limit).

� The selected algorithm, system level mapping and machine level mapping are realized by the Imple-

mentation/Coding Module which generates the parallelized structure.

3.4.1 Algorithm Development Module

The function of the algorithm development module is to assist the developer in identifying functional

components in the parallelization speci�cation and selecting appropriate algorithmic implementations.

The input information to this module includes: (1) the classi�cation and requirements of the components

speci�ed in the parallelization speci�cation; (2) hardware con�guration information; and (3) mapping

information generated by the system level mapping module. It then uses this information to select the best

algorithmic implementation and the corresponding implementation template from its database. It also

analyzes the requirements of the selected algorithm (e.g. communication requirements, synchronization

requirements, storage requirements, etc.). The algorithm development module uses the services of the

design evaluator module to select between possible algorithmic implementations. Tools needed during

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 13

this phase include an intelligent algorithm development environment (ADE) equipped with a database of

optimized templates for di�erent algorithmic implementations, an evaluation of the requirements of these

templates and an estimation of their performance on di�erent platforms.

The algorithm chosen to implement the Estimation Component of the stock option pricing model (shown

in Figure 4), depends on the nature of the estimation (constant/stochastic volatility, American/European

calls/puts, dividend payo� time, etc) to be performed and the accuracy/time constraints. For example,

models based on Monte Carlo simulation provide high accuracy. However, these models are computation-

ally intensive and slow and thereby cannot be used in real-time systems. Further they are not suitable

for American calls/puts when early dividend payo� is possible. Binomial models are less accurate than

Monte Carlo models but are more tractable and can handle early exercise. Models using constant volatil-

ity (as opposed to treating volatility as a stochastic process) lack accuracy but are simplistic and easy

to compute. Modeling American calls where in the option can be exercised anytime during the life of

the contract (as opposed to European calls which can only be exercised at maturity) is more involved

and requires sophisticated and computationally e�cient model (e.g. binomial approximation with forced

recombination).

The algorithmic implementations of the input and output functional components must be capable of

handling terminal and disk I/O at rates speci�ed by the time constraint parameters. Further, the output

display must provide all information required by the user.

For an illustration of the operation of this module for a prede�ned mapping, consider a functional

component which requires the solution of a system of linear equations. If it is mapped onto an SIMD

architecture, a direct parallelization of the Gauss-Jordan algorithm is applicable. However, if the target

machine has a MIMD architecture, the blocked Gauss-Seidel algorithm will be more e�cient.

3.4.2 System Level Mapping Module

The function of the system level mapping module is to use the information provided by the algorithm

development module to appropriately map the functional components of the application to the appropriate

computing elements of the HHPC environment. The objective is to map each functional component to the

computing element that maximizes the performance of the application. Some data and load distribution

issues may have to be resolved in this module. In addition, this module may also cluster functional

component nodes speci�ed in the parallelization speci�cations to obtain a better mapping. The system

level mapping module uses feedback from the evaluation module to select between di�erent mapping

candidates.

System level mapping can be accomplished in an interactive mapping environment equipped with intel-

ligent tools for analyzing the requirements of the functional components, and a knowledge base consisting

of analytic benchmarks for the di�erent computing elements and interconnection media in the HHPC en-

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 14

vironment. The tools use this information to interactively select an appropriate mapping of algorithmic

implementations to the computing elements.

The algorithms for stock option pricing have been e�ciently implemented on architectures like the CM2

and the DECmpp-12000 [17]. Thus, an appropriate mapping for the estimation functional component in

the parallelization speci�cation in Figure 4 is an SIMD architecture. The input and output interfaces

(Input/Output Component-A) require graphics capability with support for high speed rendering (output

display) and must be mapped to an appropriate graphics stations. Finally, Input/Output Component-B

requires high speed disk I/O and must be mapped to an I/O server with such capabilities.

3.4.3 Machine Level Mapping Module

The machine level mapping module performs the mapping of the functional component(s) onto the pro-

cessor(s) of the computing elements. This stage resolves issues like data partitioning, load distribution,

control distribution, etc. and makes transformations speci�c to that computing element. It uses the feed-

back from the design evaluator module to select between possible alternatives. Machine level mapping

can be accomplished in an interactive mapping environment similar to that described for the system level

mapping module, but equipped with information pertaining individual computing elements of a speci�c

computer architecture.

The performance of the stock option pricing models are very sensitive to the layout of data onto the

processing elements. The optimal layout is dictated by the input parameters (e.g. time of dividend payo�,

terminal time, etc.) and by the speci�cation of the architecture onto which the component is mapped.

For example, in the binomial model, the continuous time processes for stock price and volatility are

represented as discrete up/down movements forming a binary lattice. Such lattice is generally implemented

as asymmetric arrays which are distributed onto the processing elements. It has been found that the default

mapping of these arrays (i.e. in two dimensions) on architectures like the DECmpp-12000, lead to poor

load balancing and performance, specially for extreme values of the dividend payo� time [18]. Further the

performance in case of such a mapping, is very sensitive to this value and has to be modi�ed for each set of

inputs. Hence, in this case it is favorable to explicitly map them as one dimensional arrays. This is done

by the machine level mapping module. As another example of the mapping performed by this module,

consider the case of a functional component performing linear algebra which is allocated to a hypercube

architecture. The function of the machine level mapping module would be to decide whether to distribute

the matrix in a block or cyclic fashion and whether to perform this distribution in a column or row major

fashion.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 15

3.4.4 Implementation/Coding Module

The function of the implementation/coding module is to handle all code generation and perform the code

�lling of selected templates so as to produce parallel code which can then be compiled and executed on the

target computer architecture. This module incorporates all machine speci�c codes, handles the introduction

of calls to communication and synchronization routines and takes care of the distribution of data among

the processing elements. It also handles any input/output redirection that may be required. Machine

speci�c transformations and calls to optimized machine speci�c libraries are inserted by this module.

With regard to the pricing model application, the implementation/coding module is responsible for

introducing the machine speci�c communication routines. For example, the binary estimation model makes

use of the \end-of-shift" function for its nearest-neighbor communication. The corresponding function call

in C� (CM2) or MPL (DECmpp-12000) are introduced by this module. A possible machine speci�c

optimization that can be introduced by this module is to reduce communication by making use of in-

processor arrays. This optimization can improve performance by about two orders of magnitude [17].

3.4.5 Design Evaluator Module

The design evaluator module is a critical component of the application development stage. Its function

is to assist the developer in evaluating di�erent options (e.g. algorithms, implementations, system level

mappings, machine level mappings including data partitioning, etc.), available to each of the other modules,

and identifying the option that provides the best performance. It receives information about the hardware

con�guration, the application structure, the requirements of the selected algorithms and the mappings.

This input information is then used to estimate the performance of the application on the target computer.

Further, it provides insight into the computation and communication costs, the existing idle times and the

overheads. This information can be used by the other modules to identify regions where further re�nement

or tuning is required. The module can evaluate the correctness of the implementation using performance

debugging as a criterion and can detect synchronization error like deadlocks. Finally, many runtime

scenarios can be evaluated (e.g. system load, network contention). The keys features of this module are:

(1) the ability to provide evaluations with the desired accuracy, with minimum resource requirements and

within a reasonable amount of time; (2) the ability to automate the evaluation process; and (3) the ability

to perform the evaluation within an integrated workstation environment without running the application

on the target computers. Support applicable to this module consists primarily of performance prediction

and estimation tools. Simulation approaches can also be used to achieve some of the required functionality.

3.5 Compile-Time & Run-Time Stage

The compile-time/run-time stage handles the task of executing the parallelized application generated by

the development stage to produce the required output. The input to this stage is the parallelized source

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 16

code (parallelized structure). The compile-time portion of this stage consists of set of cross compilers for the

computing elements and tools for scheduling and allocation. These compilers have appropriate optimization

capabilities and can introduce machine-speci�c optimizing transformation into the parallelized structure.

The compile-time software also handles the loading of the executables onto appropriate computing elements.

The run-time portion of this stage handles run-time functions like debugging, scheduling, dynamic load

balancing, migration, irregular communications, etc. It also enables the user to (non-intrusively) instrument

the code for pro�ling and debugging and allows checkpointing for fault-tolerance. During the execution

of the application, it accepts outputs from the di�erent computing elements and directs them for proper

visualization. It intercepts error messages generated and provides proper interpretation.

3.6 Evaluation Stage

In the evaluation stage, the developer, retrospectively evaluates the design choices made during the de-

sign process and looks for ways to improve the performance. The evaluation stage performs a thorough

evaluation of the execution of the entire application, detailing communication and computation times,

communication and synchronization overheads and existing idle times at every execution level (applica-

tion level, node level, process level, procedure level, etc.). It uses this evaluation to identify regions in

the implementation where performance improvement is possible. The evaluation procedure is accurate,

non-intrusive and does not alter the execution order of the application. Further, it allows a cost-e�ective

evaluation (in terms of time and resources) of the application for a representative inputs set as well as the

e�ect of various run-time parameters like system load, network contention, on performance. The scalability

of the application with machine and problem size is also evaluated. The key features of this stage are: (1)

the ability to provide desired accuracy and granularity of evaluation while maintaining tractability and

non-intrusiveness; and (2) the ability to perform the evaluation within a friendly workstation environment

without requiring the actual hardware. Support applicable to the evaluation stage include di�erent analytic

tools, monitoring tools, simulation tools and prediction/estimation tools.

3.7 Maintenance/Evolution Stage

In addition to the above described stages encountered during the development and execution of HHPC

applications, there is an additional stage in the life-cycle of this software which involves its maintenance

and evolution. Software maintenance is an important part of the software life-cycle and is known to span

around 70% of this cycle. Maintenance includes monitoring the operation of the software and ensuring

that it continues to meet its speci�cations. It involves detecting and correcting bugs as they surface. The

maintenance stage also handles modi�cations needed to incorporate changes in the system con�guration.

Software evolution deals with improving the software, adding additional functionality, incorporating new

optimizations, etc. Another aspect of evolution is the development of more e�cient algorithms and cor-

responding algorithmic templates and the incorporation of new hardware architectures. To support such

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 17

a development, the maintenance/evolution stage provides tools for the rapid prototyping of hardware and

software and for evaluating the new con�guration and designs without having to implement them. Other

support required during this stage includes tools for monitoring the performance and execution of the

software, fault detection and recovery tools, system con�guration and con�guration evaluation tools and

prototyping tools.

4 Existing Software Support

Development Stage Required Tools Existing Tools/Approaches

Application Speci�cation Filter SA/SD CASE Tools SAMTOP (TOPSYS)

Application Analysis Stage Intelligent Editors, Sigma (FAUST),

Problem Speci�c Databases SAMTOP (TOPSYS)

Parafrase-2

Application Development Stage

(a) Algorithm Development Module Intelligent ADE's, Databases, SCHEDULE, SKELETONS

Optimized Templates

(b) System Level Mapping Module Intelligent Mapping Tools, SAMTOP (TOPSYS), MARC,

Analytic Benchmarks Paralex, TEACHER 4.1

(c) Machine Level Mapping Module same as system level mapping ParaScope

(d) Implementation/Coding Module Code Generation Tools, Proteus, SUPERB,

Code Optimizers S. Bhatt et al.

(e) Design Evaluator Module Performance Prediction Tools V. Balasundaram et al.

A. Sussman et al.

M. Gupta et al.

Compile-Time/Run-Time Stage Intelligent Optimizing Compilers, Parafrase-2,

Dynamic Load-Balancing Tools, DETOP (TOPSYS),

Debuggers, Pro�lers, FAUST

Visualization Tools,

Error-handling Support, etc.

Evaluation Stage Performance Analysis Tools, PATOP, VISTOP (TOPSYS),

Performance Monitoring Tools, SIMPLE, IPS-2,

Performance Simulation Tools, FAUST, CPPP,

Performance Prediction Tools RPPT

Maintenance/Evolution Stage Monitoring Tools, PAWS, SiGle, Proteus.

Fault Detection/Recovery Tools,

System Con�guration Tools,

Prototyping Tools,

Predictive Evaluation Tools

Table 2: HHPC Software Development Model - Requirements and Existing Support

In this section we survey some existing tools which provide support at di�erent stages of the software

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 18

development process. Our objective is twofold: (1) demonstrate the nature of support needed at each

stage of the HHPC software development model; and (2) illustrate the fact that, although a large number

of individual tools or systems have been developed, there is a lack of an integrated environment which

can support the developer through the entire software development process and assist in fully utilizing the

potential of an HHPC environment. Table 2 summarizes the tool requirements and existing support at

each stage of the HHPC software development model proposed in this paper. In what follows, we briey

discuss these tools.

Application Speci�cations Filter The SAMTOP tool, which is proposed to be a part of the TOP-

SYS [19] system, will provide provide the functionality required by this stage. In addition, existing SA/SD

(Structured Analysis/Structured Design) CASE tools can be used at this stage.

Application Analysis Stage The Sigma editor, which part of the FAUST [20] parallel programming

environment, provides the support required by this stage for shared memory architectures. It provides

intelligent, interactive editing and parallelizing capabilities and incorporates a performance predictor. An-

other existing system applicable to this stage is Parafrase-2 [21]. The SAMTOP tool discussed above will

also provide some analysis capabilities.

Application Development Stage At the application development stage, tools like SCHEDULE [22]

and SKELETONS assist the user during algorithm development while MARC, Paralex [23] and TEACHER

4.1 [24] provide mapping support. SKELETONS and and MARC are part of an integrated application

development environment and run-time environment for transputer based systems [9]. Existing approaches

which provide some of the functionality of the design evaluator module include methodologies proposed by

V. Balasundaram et al. [25], A. Sussman [26] and M. Gupta et al. [27]. Support for implementation and

coding is provided by the Proteus system [28], SUPERB [29], and by the system proposed by S. Bhatt et

al. [30].

Other tools providing support during application development include ParaScope [31] and SPADE [9].

SAMTOP and Sigma systems also provide some functionality need by the stage.

Compile-Time & Run-Time Stage Support required by this stage of software development is provided

by the FAUST and TOPSYS systems discussed above. TOPSYS provides debugging support (DETOP)

while FAUST incorporates a compile-time and run-time environment. Another tool applicable to this stage

is Parafrase-2.

Evaluation Stage Existing evaluation systems include PATOP and VISTOP from TOPSYS, the IPS-2

system [32], the SIMPLE environment [33], and RPPT [34]. FAUST and RPPT [34] speci�cally provide

evaluation support for the CEDAR computer system.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 19

Maintenance/Evolution Stage The PAWS systems [35] presents an approach for machine evaluation

and can be used during the maintenance/evolution stage. System prototyping capabilities are provided by

SiGle [36] and Proteus [28].

5 Conclusions

Current trends in parallel/distributed computing indicate that the future of parallel computing lies in

the integration of the plethora of existing \specialized" architectures into a single Heterogeneous High

Performance Computing (HHPC) environment that allows them to cooperate in solving complex problems.

The HHPC environment will capitalize on existing architectures and on current advances in computing,

networking and communication technology to provide e�cient, cost-e�ective, scalable, high-performance

distributed computing.

Software development in any Parallel/Distributed environment is a non-trivial process and requires a

thorough understanding of the application and the architecture. This apparent from the fact that currently,

applications are able to achieve only a fraction of peak available performance. The software development

problem further intensi�es as systems moves to an HHPC environment. The HHPC environment, while

increasing the computing power and design exibility available to the user, provides increased degrees of

freedom and requires the developer to make a larger number of design choices.

This paper formalizes the software development process for an HHPC environment. It describes a

software development model and outlines the support required at each stage of the model. The development

of a parallel model for stock option pricing is used as a running example to demonstrate the applicability

of the model. Existing tools techniques corresponding to the di�erent stages are also surveyed. The

ultimate goal of the ongoing High Performance Fortran project at the Northeast Parallel Architectures

Center, Syracuse University, is to realize such an environment. Currently our e�orts are focussed on the

application development and the compile-time/run-time stages. An interpretive performance prediction

framework is also being developed which meets the requirements of the Design Evaluator Module of the

application development stage and of the Evaluation Stage.

Acknowledgment

The presented research has been jointly sponsored by DARPA under contract #DABT63-91-k-0005 and

by Rome Labs under contract #F30602-92-C-0150. The content of the information does not necessary

reect the position or the policy of the sponsors and no o�cial endorsement should be inferred.

References

[1] Glenn Zorpette, \Teraops Galore", IEEE Spectrum, vol. 29, pp. 26{76, sep 1992.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 20

[2] Salim Hariri, Manish Parashar, Jong Baek Park, Fang-Kuo Yu, and Geo�rey Fox, \A Case for Heterogeneous

High Performance Computing", Technical Report SCCS-417, Northeast Parallel Architectures Center, 111

College Place, Room # 3-201, Syracuse NY 13244-4100, 1992.

[3] Salim Hariri, Manish Parashar, JongBaek Park, and Fang-Kuo Yu, \An Environment for High-Performance

Distributed Computing", Technical Report SCCS-418, Northeast Parallel Architectures Center, Syracuse Uni-

versity, 111 College Place Room # 3-201, Syracuse NY 13244-4100, 1992.

[4] Salim Hariri, Manish Parashar, JongBaek Park, Fang-Kuo Yu, and Geo�rey Fox, \A Message Passing Inter-

face for Parallel and Distributed Computing", To be presented at the 2nd International Symposium on High

Performance Distributed Computing, Spokane, Washington, July 1993.

[5] Richard F. Freund and D. Sunny Conwell, \Superconcurrency: A Form of Distributed Heterogeneous Super-

computing", Supercomputing Review, vol. , pp. 47{50, oct 1990.

[6] Norris Parker Smith, \The Future of High-Performance Computing: The 1990 Federal Assessment", Supercom-

puting Review, vol. , pp. 52{53, oct 1990.

[7] Gordon Bell, \Ultracomputers: A Teraop Before Its Time", Communications of the ACM, vol. 35, pp. 27{47,

aug 1992.

[8] Ashfaq Khokar, Viktor K. Prasanna, Mohammad Shaaban, and Cho-Li Wang, \Heterogeneous Supercomputing:

Problems and Issues", Heterogeneous Processing Workshop, IPPS `92, vol. , 1992.

[9] J. E. Boillat, H. Burkhart, K. M. Decker, and P. G. KROPF, \Parallel Computing in the 1990's: Attacking the

Software Problem", Physics Report (Review Section of Physics Letters), vol. 207, pp. 141 { 165, 1991.

[10] Joseph P. Cavano, Geo�rey C. Fox, Carl Murphy, and Lucian Russel, \Panel Session: Software Development

Issues for Parallel Processing", Proceedings of the 12th Annual International Computer Software and Applications

Conference, vol. , pp. 299{307, 1988.

[11] Victor R. Basili and John D. Musa, \The Future Engineering of Software: A Management Perspective", IEEE

Computer, vol. 24, pp. 90{96, Sep. 1991.

[12] D. B. Skillicorn, \Models for Practical Parallel Computation", International Journal of Parallel Programming,

vol. 20, pp. 133{158, 1991.

[13] Grady Booch, Software Engineering with Ada, The Benjamin/Cummings Publishing Company, 2 edition, 1986.

[14] Gary W. Sabot, The Paralation Model: Architecture-Independent Parallel Programming, The MIT Press,

Cambridge, Massachusetts, 1988.

[15] Massively Parallel System Group, High Performance Fortran, Digital Equipment Corporation, report ml01-

5/u46 edition, 1992.

[16] Lucian Russell and R. N. C. Lightfoot, \Software Development Issues for Parallel Processing", Proceedings of

the 12th Annual International Computer Software and Applications Conference, vol. , pp. 306{307, 1988.

[17] Kim Mills, Gang Cheng, Michael Vinson, Sanjay Ranka, and Geo�rey C. Fox, \Software Issues and Performance

of a Parallel Model for Stock Option Pricing", Proceedings of the 5th Australian Supercomputing Conference,

Melbourne, Australia, vol. , Dec. 1992.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 21

[18] Kim Mills, Gang Cheng, Michael Vinson, and Geo�rey C. Fox, \Expressing Dynamic, Asymmetric, Two-

Dimensional Arrays for Improved Performance on the DECmpp-12000", Technical Report SCCS-261, Northeast

Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY 13244-4100, Oct. 1992.

[19] Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas Treml, and Roland Wism�uller, The Design

and Implementation of TOPSYS, Technische Universit�at M�unchen, Institut F�ur Informatik, July 1991, Ver 1.0.

[20] D. Gannon, Y. Gaur, V. Guarna, D. Jablonowski, and A. Malony, \FAUST: An Integrated Environment for

Parallel Programming", IEEE Software, vol. , pp. 20{27, July 1989.

[21] Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat, Chia Ling Lee, and Bruce Le-

ung, \Parafrase-2: An Environment for Parallelizing, Partitioning, Synchronizing and Scheduling Programs on

Multiprocessors", Proceedings of the International Conference on Parallel Processing, vol. 2, pp. 39{48, Aug.

1989.

[22] J. J. Dongarra and D. C. Sorensen, \SCHEDULE: Tools for Developing and Analyzing Parallel Fortran Pro-

grams", in L. H. Jamieson, D. B. Gannon, and R. J. Douglas, editors, The Characteristics of Parallel Algorithms,

vol. . MIT Press, 1987.

[23] �Ozalp Babao�glu, Lorenzo Alvisi, Alessandro Amoroso, Renzo Davoli, and Luigi Alberto Giachini, \Paralex: An

Environment for Parallel Programming in Distributed Systems", Technical report, Department of Mathematics,

University of Bologna, Piazza Porta S. Donato, 5, 40127 Bologna, Italy, 1991.

[24] Arthur Ieumwananonthachai, Akiko N. Aizawa, Steven R. Schwartz, Benjamin W. Wah, and Jerry C. Yan,

\Intelligent Mapping of CommunicationProcesses in Distributed Computing Systems", Supercomputing `91,

Proceedings, vol. , pp. 512{521, 1991.

[25] Vasanth Balasundaram, Geo�rey Fox, Ken Kennedy, and Ulrich Kremer, \An Interactive Environment for Data

Partitioning and Distribution", Proceedings of the 5th Distributed Memory Computing Conference, Charleston,

South Carolina, vol. , pp. 1160{1170, Apr. 1990.

[26] Alan Sussman, \Execution Models for Mapping Programs onto Distributed Memory Parallel Computers",

Technical Report 189613, Institute for Computer Applications in Science and Engineering, NASA Langley

Research Center, Hampton, Virginia 23665-5225, Mar. 1992.

[27] Manish Gupta and Prithviraj Banerjee, \Compile-Time Estimation of Communication Costs in Multicomput-

ers", Technical report, Center for Reliable and High-Performance Computing, Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign, 1101 W. Spring�eld Avenue, Urbana IL 61801, .

[28] Peter H. Mills, Lars S. Nyland, Jan F. Prins, John H. Reif, and R. W. Wagner, \Prototyping Parallel and

Distributed System in Proteus", Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing,

vol. , 1991.

[29] H. Zima, H. Bast, and M. Gerndt, \SUPERB: A Tool for Semi-Automatic SIMD/MIMD Parallelization",

Parallel Computing, vol. , 1988.

[30] Sandeep Bhatt, Marina Chen, Cheng-Yee Lin, and Pangfeng Liu, \Abstractions for Parallel N-body Simula-

tions", Technical Report DCS/TR-895, Yale University, 1992.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

An Integrated Software Development Model for Heterogeneous High Performance Computing

Technical Report: SCCS-453 22

[31] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, K. McKinley, and J Subhlok, \The ParaScope Editor:

An Interactive Parallel Programming Tool", Supercomputing '89, Reno, Nevada, vol. , Nov. 1989.

[32] Barton P. Miller, Morgan Clark, Je� Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy Torzewski,

\IPS-2: The Second Generation of a Parallel Program Measurement System", IEEE Transactions on Parallel

and Distributed Systems, vol. 1, pp. 206{217, Apr. 1990.

[33] Bernd Mohr, \SIMPLE: A Performance Evaluation Tool Environment for Parallel and Distributed Systems",

Proceedings of the 2nd European Distributed Memory Computing Conference (EDMCC2), vol. , pp. 80{89, Apr.

1991.

[34] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, \The Rice Parallel Processing Testbed",

1988 ACM 0-89791-254-3/88/0005/0004 pp 4-11, 1988.

[35] Daniel Pease, Arif Gafoor, Ishfaq Ahmad, David L. Andrews, Kamal Foudil-Bey, Thomas E. Karpinski, Mo-

hammad A. Mikki, and Mohammad Zerrouki, \PAWS: A Performance Evaluation Tool for Parallel Computing

Systems", IEEE Computer, vol. , pp. 18{29, Jan. 1991.

[36] F. Andre and A. Joubert, \SiGle: An Evaluation Tool for Distributed Systems", Proceedings of the International

Conference on Distributed Computing Systems, vol. , pp. 466{472, 1987.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973

