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Abstract

Traditional subspace methods for face recognition
compute a measure of similarity between images after
projecting them onto a fixed linear subspace that is
spanned by some principal component vectors (a.k.a.
“eigenfaces”) of a training set of images. By supposing
a parametric Gaussian distribution over the subspace
and a symmetric Gaussian noise model for the im-
age given a point in the subspace, we can endow this
framework with a probabilistic interpretation so that
Bayes-optimal decisions can be made. However, we ex-
pect that different image clusters (corresponding, say,
to different poses and expressions) will be best repre-
sented by different subspaces. In this paper, we study
the recognition performance of a mizture of local lin-
ear subspaces model that can be fit to training data
using the expectation maximization algorithm. The
mixture model outperforms a nearest-neighbor classi-
fier that operates in a PCA subspace.

1 Introduction

This paper is about modeling face images of the
sort shown in Fig. 1 for the purpose, say, of robust
face recognition. In one approach to visual face mod-
eling, normalized N-pixel face images are projected
onto a subset of D eigenvectors or “eigenfaces” of
the covariance matrix estimated from a training set, of
images [1]. The D-dimensional subspace spanned by
these orthogonal eigenfaces is the subspace in which
the training data has the greatest variance. In fact,
these eigenfaces are equal to the first D principal com-
ponents obtained from principal components analy-
sis [2]. The distance of a new input image from this
linear subspace has been used quite successfully to de-
tect faces [3]. Moghaddam and Pentland [4] recently
extended the eigenface framework to include a dis-
tance measure within the eigenspace.

Although the eigenface method is currently one of
the best algorithms for face recognition, it seems nat-
ural that different types of images ought to be better
represented by different subspaces. As an extreme ex-
ample, if some of the training images consist of ver-

tically inverted faces, then the appropriate subspace
for the inverted images is spanned by a set of “eigen-
inverted-faces” obtained by inverting the eigenfaces
for the uninverted images. In such a model, the ori-
entation of the subspace depends on the input image.
Local dimensionality reduction of this type has been
considered by Bregler and Omohundro [5], Kambhatla
and Leen [6], Sung and Poggio [7] and Hinton et al. [8].
These models can represent input images in locally
linear, globally nonlinear subspaces, but they do not
include a distance within the subspace.

The use of distances has progressively led to a more
probabilistic view in which we define a probability
density function over the input image x in terms of
some latent variables z:

p(x) = [ pxl2)pla)de 1)
Jz
For example, in the linear subspace model described
above, z is a position on the surface of a D-dimensional
hyperplane. If we build one such latent variable model
for each class of data, the probabilities of the different
classes C, Cs, ... can be computed using Bayes’ rule:
P(Cilx) = p(x|Ci)P(C) 7 @)
>, p(x|C;)P(C5)
where P(C;) is the a priori probability of class j.

Using this approach, a variety of nonlinear latent
variable models have been successfully applied to the
task of pattern classification [9]. Recently, Hinton et
al. [10] applied a mixture of linear subspaces to the
task of handwritten character recognition.

In this paper, we begin with a description of the
eigenface model and its shortcomings, and then de-
velop a mixture of local subspaces model for face
recognition. We review a variation on the expec-
tation maximization algorithm described in [11] and
then give results on a new database that is being com-
piled at the Beckman Institute, University of Illinois
at Urbana-Champaign. In the appendix, we describe
some linear algebra tricks that can be used to speed
up the algorithm by 2 or 3 orders of magnitude.




Figure 1: Example video frames plus normalized faces.



2 Eigenfaces: The Principal Compo-

nents

For a training set of image vectors xW o xD)
after the sample mean and variance for each pixel, the
simplest statistic to investigate is the sample covari-
ance. In particular, the unit vector A; that leads to
maximum variance when the training vectors are pro-
jected upon it is called the first principal component.
That is, Y, (A1x®)? > 3" (u'x?)? for all unit vec-
tors u (we use “’” to denote vector transpose). If we
subtract this component from each training image, we
may then seek the second principal component, and
so on. The first D principal components give the D-
dimensional subspace in which the training set has
maximum variance (energy).

The principal components can be determined by
solving an eigenvalue equation:

A = SA, (3)

where & = L3 (x® — p)(x® — p)" is the sample
covariance matrix, A is the matrix of eigenvectors
(principal components), and S is the diagonal matrix
of eigenvalues (sample variances in the directions of
the principal components). The method of principal
components analysis (PCA) finds the first D compo-
nents having the D largest eigenvalues. Because of this
eigenvalue formulation of PCA, the principal compo-
nents of face images were dubbed “eigenfaces” in [1].

2.1 Sensitivity of Eigenfaces to Variation
in Pixel Noise

We expect different regions of input images to have
different levels of pixel noise that cannot be explained
by our model. Even if the sample variance for each
pixel is the same we hope our model will explain the
variability caused by structure and ignore the variabil-
ity caused by noise.

Fig. 2a shows a scatter plot of some 2-dimensional
data that was generated as follows. T = 1000 values
were randomly picked from a Gaussian distribution
with mean 0.0 and standard deviation 0.2. Then, each
value v(*) was mapped to a 2-dimensional data point
using CU?) = :Uét) = v, producing “noise-free” data
which was then made noisy by adding independent
zero-mean Gaussian noise to each dimension. The
standard deviations of the noise for z; and z2 were
equal to 0.5 and 0.01 respectively. Two 1-dimensional
subspaces were estimated from the training data: one
(PC) is the first principal component, and the other
(FA) was determined using the expectation maximiza-
tion algorithm to fit the factor analysis model de-
scribed in Scn. 3. As shown in Fig. 2b, the princi-
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Figure 2: Scatter plots of some data with unequal
noise in each dimension

pal component is not aligned with subspace in which
the noise-free data (NFD) lies. The other subspace is
more closely aligned with the correct subspace and is
thus able to more clearly differentiate between struc-
ture and noise.

2.2 Insensitivity of Eigenfaces to the
Manifold of Faces

Imagine a vast convoluted manifold in the space
of pixel intensities, in which all “noise-free” faces lie.
This manifold accounts for all sorts of local variations
in faces, such as pupil dilation, lip posture, etc., but
does not account for “noise” such as whisker detail,
eyelash detail, etc. It seems plausible that locally this
manifold is low-dimensional (relative to the number
of pixels), since the class of faces is a very small sub-
set of all possible images. The method of principal
components approximates this highly non-linear low-
dimensional manifold with one linear subspace. Since
this linear subspace must account for all significant
variation, we expect its dimensionality will tend to
be higher than the local dimensionality. In this way,
eigenfaces are not sensitive to the local structure in
the manifold of faces.

Fig. 3a shows a 2-dimensional scatter plot of some
3-dimensional data that happens to lie in a two-
dimensional linear subspace. (We dispense with 3-
dimensional rendering for the sake of visual clarity.) A
single principal component (long line) fails to capture
the curvature of the data within the 2-dimensional
subspace. We can add a second principal component
(short line) and even try to model the data within the
2-dimensional subspace using a mixture of Gaussians
(e.g., [4]). Although this will work for the toy data,
we expect the manifold of faces to twist and turn so
that each of many directions in pixel-space is signif-
icant somewhere on the manifold. As a result, PCA
must ignore some directions of local variability.

Fig. 3b shows how a mixture of 2 1-dimensional lin-
ear subspaces can be fit to the same data. In general, a
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Figure 3: (a) A 2-dimensional scatter plot of some
3-dimensional data that lies on a 2-dimensional sub-
space. The data actually comes from a curved 1-
dimensional manifold. The principal components
fail to capture the curvature. (b) A mixture of 1-
dimensional subspaces fits the data much better.

model manifold of this sort can be low-dimensional lo-
cally and high-dimensional globally, just as we expect
the manifold of faces to be. Results in Scn. 4 show
that local variability can be nicely modeled using a
mixture of local linear subspaces.

3 Factor Analysis: A Probability
Model for Globally Linear Subspaces

PCA extracts a linear subspace from a training set,
but does not model the off-subspace noise nor the in-
subspace variability. Moghaddam and Pentland [4]
append a Gaussian in-subspace model and a single
off-subspace noise variance parameter to account for
these deficiencies in PCA. Although this model can be
estimated directly from a training set, the “noise” is
actually structured since it lies in the null space of the
linear subspace. In contrast, factor analysis (FA) [12]
is a probabilistic model where the noise on each pixel
is independent. FA models the joint density of the
input and a vector of D latent variables (or factors)
z, meant to capture input covariance:

p(x,2) = p(z)p(x|z) = N(z;0,)N(x; Az, ¥), (4)

where N(x; p, C) is the normal density function with
mean p and covariance C, I is the D x D identity
matrix, A is the factor loading matriz that relates the
latent variables to the means of the inputs linearly,
and W is a diagonal matrix of input pixel variances.
The principal components of PCA are roughly anal-
ogous to the factors in FA. The kth factor models vari-
ability in the input space in the direction given by the
kth column of the loading matrix. Unlike PCA| each
input pixel 4 has its own noise variance parameter ;.
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Figure 4: The log-likelihood of a test set during learn-
ing, for three different sizes of FA model (D = 10, 20,
and 30). Also shown are the test set likelihoods pro-
duced by a PCA-type model with the same number of
parameters.

This allows FA to model variation in pixel noise across
the image.

Notice that the columns of A are not required to
be orthogonal. That is, the factors may introduce
variability in non-orthogonal directions in input space.
This property is useful in nonlinear extensions of FA
[13].

We fit a FA model with D = 10,20, and 30 fac-
tors to a training set of 181 normalized front-view
FERET face images, using 10 iterations of the EM
algorithm [14]. Such a model with D factors for N-
dimensional data has (D + 1)N parameters. By mod-
eling the in-subspace variability of PCA using an axis-
aligned Gaussian and the off-subspace noise of PCA
using a single variance parameter as described above,
we are able to compare these two methods as density
estimators. Since such a PCA model with D com-
ponents effectively has only N D parameters, in order
to make a fair comparison between the performance
of FA and PCA, we extracted the first 11,21, and 31
principal components. The log-likelihood of a test set
of 60 images versus EM iteration number is shown in
Fig. 4. For all three model sizes the FA model gives a
higher density to the training set, indicating that it is
a superior density estimator.

4 Mixtures of Local Linear Subspaces

In this section, we consider a mixture of K local
linear subspaces as a mixture of K factor analyzers,



where each factor analyzer has the same number D
of factors. Let Ay be the factor loading matrix for
analyzer k. Each analyzer will also have its own image
mean p,; and its own diagonal pixel noise covariance
matrix ¥;. The mixture model can be written

p(x,2,k) = P(k)p(z|k)p(x|z, k)

= mpN(z; 0, I)N(x; py, + Agz, ¥p), (5)

where 7y, is the mizing proportion of component k.
After integrating out z, we have

(x|k) = exp[*%(x - Nk)I(AkA’k + ‘I’k)il(x ~ )]
g - (2m)N2| AR A}, + B |1/2 :
(6)

This can be computed efficiently using the techniques
described in the appendix, and then we can compute
p(x) = >, mp(x|k). If we have one such mixture
model for each class of data (e.g., individual to be
recognized), this procedure gives us p(x|C;) for the
different classes C,Cy, . ... We then apply Bayes’ rule

(2) to make a recognition decision.

4.1 Maximum Likelihood Parameter Es-
timation via the EM Algorithm

The EM algorithm for this mixture model is sim-
ilar to the EM algorithm for a single factor analysis
model [14], except that the E-step must now also fill
in the subspace model identity k for each input image.
The identity k of the subspace can be represented as a
K-element binary “subspace indicator” vector s that
has a 1 in the kth position and zeros in all other posi-
tions. In this case, the latent variables s and z can be
probabilistically filled in using

E[s|x)],
E[z|x® k], and
Elzz'|x" k]. (7)

These expectations over the posterior distribution
p(s,z|x) are sufficient for computing the maximum
likelihood model using EM. They can be computed
easily using linear algebra (all likelihoods are Gaus-
sian). See [11] for details.

10 iterations of this algorithm were used to fit a
mixture of 2 1-dimensional subspaces to the scatter-
plot data shown in Fig. 3. The mixture model is
clearly a better fit than the single 1-dimensional PCA
model. Although a mixture of Gaussians could be
used to model the data in the subspace spanned by
the first 2 principal components, such a model would
ignore the locally-linear distribution of the data.
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Figure 5: Comparison of recognition performance as
a function of computational requirement.

4.2 Results on Robust Face Recognition

We are in the process of compiling a database of
video sequences of a relatively small number of indi-
viduals (100), but with wide variation in facial expres-
sion and pose. Fig. 1 shows some of the more tame
video frames from this database. The application we
have in mind is highly robust face recognition in a
relatively closed environment, such as an office area.

In this section, we compare the recognition perfor-
mances of the mixture of local linear subspaces model
and a method that performs nearest neighbor classifi-
cation in a PCA subspace [4]. In these experiments,
temporal structure is not modeled. Of course, treat-
ing the video as a time-series is expected to greatly
improve performance and we are currently investi-
gating temporal mixture models. The training set
is completely separate from the test set, and each
contains a total of 4000 images of the sort shown in
Fig. 1. In this figure, the picture-in-picture images
show the intensity-normalized output of our real-time
face tracking system [15].

Fig. 5 shows the error rates for the nearest neighbor
method and the mixture model as a function of recog-
nition algorithm complexity (the number of multiplies
required to recognize each input pattern). Each mix-
ture component has D = 3 dimensions and the per-
formances of models with K = 2, 3 and 4 clusters are
given. For the nearest neighbor classifier, subspaces
with 11, 15, 19 and 23 dimensions are used.

5 Discussion

We have presented results that indicate the mix-
ture of linear subspaces model is more powerful than
classification within a single linear subspace, on a par-
ticular data set, for low computation rates. It remains



to be seen how significant the difference is statistically
and how well the method works for different types of
face data. The mixture model is capable of automati-
cally extracting pose, but it is probably unnecessarily
complex in cases where there is little variation in pose,
lighting, expression, etc. On the other hand, for data
sets that have a wide variation in these attributes, we
feel the mixture model is much more suitable.
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Appendix

Directly computing (x — ) (AA'+ ®)"1(x — p) in
(6) requires O(N?) operations, where N is the length
of x. Here, we show how it can be done using O(DN)
operations, where D is the dimensionality of the linear
subspace (the number of columns in A). Beforehand,
SVD is used to compute U and a diagonal matrix S
such that USU’ = (I+ A'® 'A)~!. Then, we create
a D x N matrix B = 8'"/?U’'A’® ', Using a matrix
inversion identity, it turns out that the quantity we
are seeking can be expressed as

(x = )T (x —p) — |Bx — )%, (8)

which can be computed using O(DN) operations.

We do not know of an efficient way to compute
|AA' + | exactly. (If you do, please let us know.)
However, by leaving out relatively small values during
the LU decomposition of AA' + ¥, we can compute L
and U much more quickly and then set

log [AA' + @] ~ Y " log s, 9)

where /;; is the ith diagonal element of L.
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