
Mixtures of Local Linear Subspaces for Face RecognitionBrendan J. Frey (www.cs.utoronto.ca/�frey), Antonio Colmenarez, Thomas S. HuangBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignAbstractTraditional subspace methods for face recognitioncompute a measure of similarity between images afterprojecting them onto a �xed linear subspace that isspanned by some principal component vectors (a.k.a.\eigenfaces") of a training set of images. By supposinga parametric Gaussian distribution over the subspaceand a symmetric Gaussian noise model for the im-age given a point in the subspace, we can endow thisframework with a probabilistic interpretation so thatBayes-optimal decisions can be made. However, we ex-pect that di�erent image clusters (corresponding, say,to di�erent poses and expressions) will be best repre-sented by di�erent subspaces. In this paper, we studythe recognition performance of a mixture of local lin-ear subspaces model that can be �t to training datausing the expectation maximization algorithm. Themixture model outperforms a nearest-neighbor classi-�er that operates in a PCA subspace.1 Introduction
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This paper is about modeling face images of thesort shown in Fig. 1 for the purpose, say, of robustface recognition. In one approach to visual face mod-eling, normalized N -pixel face images are projectedonto a subset of D eigenvectors or \eigenfaces" ofthe covariance matrix estimated from a training set ofimages [1]. The D-dimensional subspace spanned bythese orthogonal eigenfaces is the subspace in whichthe training data has the greatest variance. In fact,these eigenfaces are equal to the �rst D principal com-ponents obtained from principal components analy-sis [2]. The distance of a new input image from thislinear subspace has been used quite successfully to de-tect faces [3]. Moghaddam and Pentland [4] recentlyextended the eigenface framework to include a dis-tance measure within the eigenspace.Although the eigenface method is currently one ofthe best algorithms for face recognition, it seems nat-ural that di�erent types of images ought to be betterrepresented by di�erent subspaces. As an extreme ex-ample, if some of the training images consist of ver-

tically inverted faces, then the appropriate subspacefor the inverted images is spanned by a set of \eigen-inverted-faces" obtained by inverting the eigenfacesfor the uninverted images. In such a model, the ori-entation of the subspace depends on the input image.Local dimensionality reduction of this type has beenconsidered by Bregler and Omohundro [5], Kambhatlaand Leen [6], Sung and Poggio [7] and Hinton et al. [8].These models can represent input images in locallylinear, globally nonlinear subspaces, but they do notinclude a distance within the subspace.The use of distances has progressively led to a moreprobabilistic view in which we de�ne a probabilitydensity function over the input image x in terms ofsome latent variables z:p(x) = Zz p(xjz)p(z)dz (1)For example, in the linear subspace model describedabove, z is a position on the surface of aD-dimensionalhyperplane. If we build one such latent variable modelfor each class of data, the probabilities of the di�erentclasses C1; C2; ::: can be computed using Bayes' rule:P (Cijx) = p(xjCi)P (Ci)Pj p(xjCj)P (Cj) ; (2)where P (Cj) is the a priori probability of class j.Using this approach, a variety of nonlinear latentvariable models have been successfully applied to thetask of pattern classi�cation [9]. Recently, Hinton etal. [10] applied a mixture of linear subspaces to thetask of handwritten character recognition.In this paper, we begin with a description of theeigenface model and its shortcomings, and then de-velop a mixture of local subspaces model for facerecognition. We review a variation on the expec-tation maximization algorithm described in [11] andthen give results on a new database that is being com-piled at the Beckman Institute, University of Illinoisat Urbana-Champaign. In the appendix, we describesome linear algebra tricks that can be used to speedup the algorithm by 2 or 3 orders of magnitude.



Figure 1: Example video frames plus normalized faces.



2 Eigenfaces: The Principal Compo-nentsFor a training set of image vectors x(1); : : : ;x(T ),after the sample mean and variance for each pixel, thesimplest statistic to investigate is the sample covari-ance. In particular, the unit vector �1 that leads tomaximum variance when the training vectors are pro-jected upon it is called the �rst principal component.That is, Pt(�01x(t))2 � Pt(u0x(t))2 for all unit vec-tors u (we use \0" to denote vector transpose). If wesubtract this component from each training image, wemay then seek the second principal component, andso on. The �rst D principal components give the D-dimensional subspace in which the training set hasmaximum variance (energy).The principal components can be determined bysolving an eigenvalue equation:�� = S�; (3)where � = 1T Pt(x(t) � �)(x(t) � �)0 is the samplecovariance matrix, � is the matrix of eigenvectors(principal components), and S is the diagonal matrixof eigenvalues (sample variances in the directions ofthe principal components). The method of principalcomponents analysis (PCA) �nds the �rst D compo-nents having theD largest eigenvalues. Because of thiseigenvalue formulation of PCA, the principal compo-nents of face images were dubbed \eigenfaces" in [1].2.1 Sensitivity of Eigenfaces to Variationin Pixel NoiseWe expect di�erent regions of input images to havedi�erent levels of pixel noise that cannot be explainedby our model. Even if the sample variance for eachpixel is the same we hope our model will explain thevariability caused by structure and ignore the variabil-ity caused by noise.Fig. 2a shows a scatter plot of some 2-dimensionaldata that was generated as follows. T = 1000 valueswere randomly picked from a Gaussian distributionwith mean 0.0 and standard deviation 0.2. Then, eachvalue v(t) was mapped to a 2-dimensional data pointusing x(t)1 = x(t)2 = v(t), producing \noise-free" datawhich was then made noisy by adding independentzero-mean Gaussian noise to each dimension. Thestandard deviations of the noise for x1 and x2 wereequal to 0:5 and 0:01 respectively. Two 1-dimensionalsubspaces were estimated from the training data: one(PC) is the �rst principal component, and the other(FA) was determined using the expectation maximiza-tion algorithm to �t the factor analysis model de-scribed in Scn. 3. As shown in Fig. 2b, the princi-

−2 −1 0 1 2

−0.5

0

0.5

(a)
x1x2 FAPC

−2 −1 0 1 2

−0.5

0

0.5

(b)
x1x2 NFD FAPC

Figure 2: Scatter plots of some data with unequalnoise in each dimensionpal component is not aligned with subspace in whichthe noise-free data (NFD) lies. The other subspace ismore closely aligned with the correct subspace and isthus able to more clearly di�erentiate between struc-ture and noise.2.2 Insensitivity of Eigenfaces to theManifold of FacesImagine a vast convoluted manifold in the spaceof pixel intensities, in which all \noise-free" faces lie.This manifold accounts for all sorts of local variationsin faces, such as pupil dilation, lip posture, etc., butdoes not account for \noise" such as whisker detail,eyelash detail, etc. It seems plausible that locally thismanifold is low-dimensional (relative to the numberof pixels), since the class of faces is a very small sub-set of all possible images. The method of principalcomponents approximates this highly non-linear low-dimensional manifold with one linear subspace. Sincethis linear subspace must account for all signi�cantvariation, we expect its dimensionality will tend tobe higher than the local dimensionality. In this way,eigenfaces are not sensitive to the local structure inthe manifold of faces.Fig. 3a shows a 2-dimensional scatter plot of some3-dimensional data that happens to lie in a two-dimensional linear subspace. (We dispense with 3-dimensional rendering for the sake of visual clarity.) Asingle principal component (long line) fails to capturethe curvature of the data within the 2-dimensionalsubspace. We can add a second principal component(short line) and even try to model the data within the2-dimensional subspace using a mixture of Gaussians(e.g., [4]). Although this will work for the toy data,we expect the manifold of faces to twist and turn sothat each of many directions in pixel-space is signif-icant somewhere on the manifold. As a result, PCAmust ignore some directions of local variability.Fig. 3b shows how a mixture of 2 1-dimensional lin-ear subspaces can be �t to the same data. In general, a
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Figure 3: (a) A 2-dimensional scatter plot of some3-dimensional data that lies on a 2-dimensional sub-space. The data actually comes from a curved 1-dimensional manifold. The principal componentsfail to capture the curvature. (b) A mixture of 1-dimensional subspaces �ts the data much better.model manifold of this sort can be low-dimensional lo-cally and high-dimensional globally, just as we expectthe manifold of faces to be. Results in Scn. 4 showthat local variability can be nicely modeled using amixture of local linear subspaces.3 Factor Analysis: A ProbabilityModel for Globally Linear SubspacesPCA extracts a linear subspace from a training set,but does not model the o�-subspace noise nor the in-subspace variability. Moghaddam and Pentland [4]append a Gaussian in-subspace model and a singleo�-subspace noise variance parameter to account forthese de�ciencies in PCA. Although this model can beestimated directly from a training set, the \noise" isactually structured since it lies in the null space of thelinear subspace. In contrast, factor analysis (FA) [12]is a probabilistic model where the noise on each pixelis independent. FA models the joint density of theinput and a vector of D latent variables (or factors)z, meant to capture input covariance:p(x; z) = p(z)p(xjz) = N(z;0; I)N(x;�z;	); (4)where N(x;�;C) is the normal density function withmean � and covariance C, I is the D � D identitymatrix, � is the factor loading matrix that relates thelatent variables to the means of the inputs linearly,and 	 is a diagonal matrix of input pixel variances.The principal components of PCA are roughly anal-ogous to the factors in FA. The kth factor models vari-ability in the input space in the direction given by thekth column of the loading matrix. Unlike PCA, eachinput pixel i has its own noise variance parameter  ii.
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Figure 4: The log-likelihood of a test set during learn-ing, for three di�erent sizes of FA model (D = 10; 20;and 30). Also shown are the test set likelihoods pro-duced by a PCA-type model with the same number ofparameters.This allows FA to model variation in pixel noise acrossthe image.Notice that the columns of � are not required tobe orthogonal. That is, the factors may introducevariability in non-orthogonal directions in input space.This property is useful in nonlinear extensions of FA[13].We �t a FA model with D = 10; 20; and 30 fac-tors to a training set of 181 normalized front-viewFERET face images, using 10 iterations of the EMalgorithm [14]. Such a model with D factors for N -dimensional data has (D+1)N parameters. By mod-eling the in-subspace variability of PCA using an axis-aligned Gaussian and the o�-subspace noise of PCAusing a single variance parameter as described above,we are able to compare these two methods as densityestimators. Since such a PCA model with D com-ponents e�ectively has only ND parameters, in orderto make a fair comparison between the performanceof FA and PCA, we extracted the �rst 11; 21; and 31principal components. The log-likelihood of a test setof 60 images versus EM iteration number is shown inFig. 4. For all three model sizes the FA model gives ahigher density to the training set, indicating that it isa superior density estimator.4 Mixtures of Local Linear SubspacesIn this section, we consider a mixture of K locallinear subspaces as a mixture of K factor analyzers,



where each factor analyzer has the same number Dof factors. Let �k be the factor loading matrix foranalyzer k. Each analyzer will also have its own imagemean �k and its own diagonal pixel noise covariancematrix 	k. The mixture model can be writtenp(x; z; k) = P (k)p(zjk)p(xjz; k)= �kN(z;0; I)N(x;�k +�kz;	k); (5)where �k is the mixing proportion of component k.After integrating out z, we havep(xjk) = exp[� 12 (x � �k)0(�k�0k +	k)�1(x� �k)](2�)N=2j�k�0k +	kj1=2 :(6)This can be computed e�ciently using the techniquesdescribed in the appendix, and then we can computep(x) = Pk �kp(xjk). If we have one such mixturemodel for each class of data (e.g., individual to berecognized), this procedure gives us p(xjCi) for thedi�erent classes C1; C2; : : : . We then apply Bayes' rule(2) to make a recognition decision.4.1 Maximum Likelihood Parameter Es-timation via the EM AlgorithmThe EM algorithm for this mixture model is sim-ilar to the EM algorithm for a single factor analysismodel [14], except that the E-step must now also �llin the subspace model identity k for each input image.The identity k of the subspace can be represented as aK-element binary \subspace indicator" vector s thathas a 1 in the kth position and zeros in all other posi-tions. In this case, the latent variables s and z can beprobabilistically �lled in usingE[sjx(t)];E[zjx(t); k]; andE[zz0jx(t); k]: (7)These expectations over the posterior distributionp(s; zjx) are su�cient for computing the maximumlikelihood model using EM. They can be computedeasily using linear algebra (all likelihoods are Gaus-sian). See [11] for details.10 iterations of this algorithm were used to �t amixture of 2 1-dimensional subspaces to the scatter-plot data shown in Fig. 3. The mixture model isclearly a better �t than the single 1-dimensional PCAmodel. Although a mixture of Gaussians could beused to model the data in the subspace spanned bythe �rst 2 principal components, such a model wouldignore the locally-linear distribution of the data.
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Figure 5: Comparison of recognition performance asa function of computational requirement.4.2 Results on Robust Face RecognitionWe are in the process of compiling a database ofvideo sequences of a relatively small number of indi-viduals (100), but with wide variation in facial expres-sion and pose. Fig. 1 shows some of the more tamevideo frames from this database. The application wehave in mind is highly robust face recognition in arelatively closed environment, such as an o�ce area.In this section, we compare the recognition perfor-mances of the mixture of local linear subspaces modeland a method that performs nearest neighbor classi�-cation in a PCA subspace [4]. In these experiments,temporal structure is not modeled. Of course, treat-ing the video as a time-series is expected to greatlyimprove performance and we are currently investi-gating temporal mixture models. The training setis completely separate from the test set, and eachcontains a total of 4000 images of the sort shown inFig. 1. In this �gure, the picture-in-picture imagesshow the intensity-normalized output of our real-timeface tracking system [15].Fig. 5 shows the error rates for the nearest neighbormethod and the mixture model as a function of recog-nition algorithm complexity (the number of multipliesrequired to recognize each input pattern). Each mix-ture component has D = 3 dimensions and the per-formances of models with K = 2, 3 and 4 clusters aregiven. For the nearest neighbor classi�er, subspaceswith 11, 15, 19 and 23 dimensions are used.5 DiscussionWe have presented results that indicate the mix-ture of linear subspaces model is more powerful thanclassi�cation within a single linear subspace, on a par-ticular data set, for low computation rates. It remains



to be seen how signi�cant the di�erence is statisticallyand how well the method works for di�erent types offace data. The mixture model is capable of automati-cally extracting pose, but it is probably unnecessarilycomplex in cases where there is little variation in pose,lighting, expression, etc. On the other hand, for datasets that have a wide variation in these attributes, wefeel the mixture model is much more suitable.6 AcknowledgementsWe appreciate helpful conversations we had withZoubin Ghahramani and Geo�rey Hinton and wethank Karla Miller for comments on a draft of thispaper.AppendixDirectly computing (x��)0(��0+	)�1(x��) in(6) requires O(N2) operations, where N is the lengthof x. Here, we show how it can be done using O(DN)operations, where D is the dimensionality of the linearsubspace (the number of columns in �). Beforehand,SVD is used to compute U and a diagonal matrix Ssuch that USU0 = (I+�0	�1�)�1. Then, we createa D �N matrix B = S1=2U0�0	�1. Using a matrixinversion identity, it turns out that the quantity weare seeking can be expressed as(x� �)0	�1(x� �)� jjB(x� �)jj2; (8)which can be computed using O(DN) operations.We do not know of an e�cient way to computej��0 + 	j exactly. (If you do, please let us know.)However, by leaving out relatively small values duringthe LU decomposition of ��0+	, we can compute Land U much more quickly and then setlog j��0 +	j �Xi log j`iij; (9)where `ii is the ith diagonal element of L.References[1] M. Turk and A Pentland, \Eigenfaces for recog-nition," Journal of Cognitive Neuroscience, vol.3, no. 1, 1991.[2] I. T. Jolli�e, Principal Component Analysis,Springer-Verlag, New York NY., 1986.[3] A. Pentland, B. Moghaddam, and T. Starner,\View-based and modular eigenspaces for facerecognition," in Proceedings of the IEEE Con-ference on Computer Vision and Pattern Recog-nition. IEEE Press, June 1994.
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