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Abstract

Authentication protocols (including protocols that provide key establishment) are designed to work

correctly in the presence of an adversary that can prompt honest principals to engage in an unbounded

number of concurrent runs of the protocol. The amount of local state maintained by a single run of

an authentication protocol is bounded. Intuitively, this suggests that there is a bound on the resources

needed to attack the protocol. Such bounds clarify the nature of attacks on and provide a rigorous basis

for automated veri�cation of authentication protocols. However, few such bounds are known. This paper

de�nes a domain-speci�c language for authentication protocols and establishes an upper bound on the

resources needed to attack a large subset of the protocols expressible in that language, including versions

of the Yahalom, Otway-Rees, and Needham-Schroeder public-key protocols.

1 Introduction

Many protocols are designed to work correctly in the presence of an adversary that can prompt honest prin-

cipals to engage in an unbounded number of concurrent runs of the protocol. This includes some protocols

for Byzantine Agreement [GLR95], secure reliable multicast [Rei96, MR97], authentication, and electronic

payment [OPT97]. In this paper, we focus on protocols for authentication, including key establishment

[DvOW92, MvOV97]. Such protocols play a fundamental role in many distributed systems, and their cor-

rectness is essential to the correctness of those systems. Informally, authentication protocols should satisfy

(at least) two kinds of correctness requirements: secrecy, i.e., certain values (such as cryptographic keys)

are not obtained by the adversary, and correspondence, i.e., a principal's conclusion about the identity of a

principal with whom it is communicating is never incorrect.

The amount of local state maintained by a single run of an authentication protocol is bounded. Intuitively,

this suggests that there is a bound on the resources needed to attack the protocol. Such bounds provide

insight into the possible kinds of attacks on these protocols. They also provide a rigorous basis for automated

veri�cation of authentication protocols. Authentication protocols are short and look deceptively simple, but

numerous awed or weak protocols have been published; some examples are described in [DS81, BAN90,

WL94, AN95, AN96, Low96, Aba97, LR97, THG98]. This attests to the importance of rigorous veri�cation

of such protocols. Theorem proving requires considerable expertise from the user. Systematic state-space

exploration, including temporal-logic model checking and process-algebraic equivalence checking, is emerging

as a practical approach to automated veri�cation [CES86, Hol91, DDHY92, Kur94, CS96].

Systems containing adversaries of the kind described above have an unbounded number of reachable

states, so state-space exploration is not directly possible. The case studies in [MCF87, Ros95, HTWW96,
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DK97, LR97, MMS97, MCJ97, MSS98, Bol98] o�er strong evidence that state-space exploration of authen-

tication protocols and similar kinds of protocols is feasible when small upper bounds are imposed on the size

of messages and the number of protocol runs per execution. However, the bounds used in most of those case

studies were not rigorously justi�ed. Reduction theorems are needed, which show that if a protocol is correct

in a system with certain �nite bounds on these parameters, then the protocol is correct in the unbounded

system as well.

This paper de�nes a domain-speci�c language for authentication protocols and proves a reduction for a

large subset of the protocols expressible in that language. One novel idea in our reduction is the use of a

dynamic restriction, which is really just a safety property [AS85], as well as static (i.e., syntactic) restrictions

to characterize that subset. With static restrictions alone, it seems di�cult to �nd restrictions that are both

strong enough to enable the proof and weak enough to be satis�ed by well-known protocols. Essentially, the

dynamic restriction is an auxiliary safety property that would be established as part of the proof in any case.

For a reduction to be useful for automated veri�cation, its hypotheses must be automatically checkable.

So, roughly speaking, we hypothesize that an appropriate bounded (i.e., �nite-state) system satis�es certain

static restrictions and the dynamic restriction and prove that (1) the unbounded system satis�es the dynamic

restriction, and (2) the unbounded system satis�es a correctness requirement i� the bounded system does.

Thus, checking whether a given protocol satis�es our restrictions and, if so, checking whether the protocol

is correct are �nite-state problems that can be decided by straightforward state-space exploration.

Few other reductions applicable to authentication protocols are known. Most existing techniques for

automated analysis of systems with unbounded numbers of processes, such as [CGJ95, KM95, EN96, AJ98],

are neither aimed at nor applicable to authentication protocols. One reason they do not apply is that

authentication protocols involve the generation of fresh values (for use as nonces or session keys), so the set

of values grows as the number of processes (equivalently, the number of protocol runs) grows. Dolev and Yao

developed analysis algorithms that directly verify secrecy requirements [DY83] of cryptographic protocols;

however, their algorithms do not consider correspondence properties, do not consider known-key attacks,

and apply to a severely restricted class of protocols, which excludes almost all well-known authentication

protocols (e.g., the Otway-Rees [OR87] and Yahalom protocols [BAN90]) and is strictly included in the

class of protocols we consider. Roscoe [Ros98] has done some interesting preliminary work on using data-

independence techniques to prove reductions for authentication protocols; this has not yet led to speci�c

reductions (i.e., speci�c bounds). Lowe proved speci�c bounds for a corrected version of the Needham-

Schroeder public-key protocol [Low96] and subsequently generalized that proof to show for a class of protocols

that no violations of secrecy properties are missed when small bounds are used [Low98a, Low98b].1 However,

that result does not extend to correspondence requirements [Low98a, p. 61], does not consider known-key

attacks [MvOV97, p. 496], and is based on restrictions that exclude all protocols that use temporary secrets

and well-known protocols such as the Otway-Rees [OR87] and Yahalom [BAN90] protocols. In contrast,

our reduction considers secrecy and correspondence requirements, accommodates known-key attacks, and

applies to some protocols that use temporary secrets. For example, it applies to the Yahalom protocol, the

Otway-Rees protocol, and Lowe's corrected version of the Needham-Schroeder public-key protocol [Low96].

The basic idea of our reduction is to start from an event that violates of a correctness requirement or dynamic

restriction in some execution, de�ne the set of events on which the violating event depends (other events can

1It is not strictly a generalization: the reduction in [Low98a, Low98b] does not apply to the corrected protocol from [Low96],
because message 3 violates Assumption 2.
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be pruned away without a�ecting the violation), and then obtain a bound on the size of that set.

Work is in progress to reformulate these results within a simpler and more declarative framework, such

as the elegant strand space model of Thayer, Herzog, and Guttman [THG98]. Directions for future work

include broadening the scope of our results by considering hash functions, timestamps, recency requirements,

and key con�rmation requirements [MvOV97, p. 492], and extending our approach to handle other problems

mentioned above, such as reliable multicast and electronic payment.

2 Model of Authentication Protocols

Our model of authentication is based closely on Woo and Lam's model [WL93]. We call the language LAP

(Language for Authentication Protocols).

2.1 Syntax of LAP

Primitive Values. The set of primitive values is Prim = Name [ Genval [ KeyLT , where Name is the

set of names (of principals), including a distinguished name Z for the adversary, Genval is a set of symbols

representing genvals (\freshly generated values", which can be used as nonces or keys), and KeyLT is a

set of symbols representing long-term encryption keys, de�ned by KeyLT = Keysym [ Keyasym , where

the set of symmetric keys is Keysym =
S
x;y2Namefkey(x; y)g, and the set of asymmetric keys is Keyasym =S

x2Namefpubkey(x); pvtkey(x)g. pubkey(x) and pvtkey(x) represent x's public and private keys, respectively.

Distinct symbols in Prim are assumed to represent distinct values.

Terms. The set Op of operators is Op = fencrypt ; pair ; key ; pubkey ; pvtkeyg. The term encrypt(t1; t2)

represents t1 encrypted with key t2 and is usually written as ft1gt2 . The term pair (t1; t2) represents t1

paired with t2 and is usually written as t1 �t2; similarly, pair (t1; pair(t2; t3)) is usually written as t1 �t2 �t3;

and so on. Let Var be a set of variables. A term is an expression composed of constants, variables, and

operators. A ground term is a term not containing variables. Let Term and TermG denote the sets of terms

and ground terms, respectively. A key term is a term whose outermost operator is key , pubkey, or pvtkey.2

Each variable has a type, which is either Prim or All. Variables of type Prim can be bound only to

primitive values. Variables of type All can be bound to all ground terms. By convention, lowercase and

uppercase variables have type Prim and All, respectively. A ciphertext is a term whose outermost operator is

encrypt . A subterm t0 of t is unencrypted in t if t0 is not in the scope of encrypt in t. Note that a ciphertext

can be unencrypted in a term. The encryption height of a ground term t is the maximum number of nested

occurrences of encrypt in t. For example, the encryption heights of fv1gK1
�fv2gK2

and ffv1gK1
gK2

are 1

and 2, respectively.

The kinds of statements are:

BeginInit(t): Begin initiator protocol with argument t. This statement is included to facilitate expression of

correspondence requirements (see Section 2.3). The argument t is an arbitrary term used to distinguish

di�erent executions of BeginInit.

BeginRespond(t): Begin responder protocol with argument t.

2Key terms may contain variables; elements of KeyLT cannot.
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EndInit(t): Successful completion of initiator protocol with argument t.

EndRespond(t): Successful completion of responder protocol with argument t.

NewValue(ns; v): Generate an unguessable value t (e.g., a nonce or session key) and bind variable v to t.

A value generated by NewValue is called a genval. Informally, if ns is non-empty, then t is a secret

intended to be shared only by the principals named in ns; if ns is empty, then t is not intended to be

kept secret. The genval t becomes old when every principal in the set ns has executed Old(t). Thus,

if ns is empty (or as a special case, if Z 2 ns), t is old as soon as it is generated. In our model,

when a genval becomes old, it is immediately made known to Z, allowing Z to perform known-key

attacks. The adversary can generate values but does not use variables, so the adversary can execute

NewValue(ns; t), where the ground term t is the fresh value generated by this statement.

Send(x; t): Send message t to x. The message might not reach x; the adversary can intercept it.

Receive(t): Receive a message t0 and bind the unbound variables in t to the corresponding subterms of t0.

This statement attempts pattern-matching between a candidate message t0 and the term t. If there

exist bindings for the unbound variables of t such that t with those bindings equals t0, then the Receive

statement executes and establishes those bindings. The Receive statement blocks until this condition

is satis�ed. Note that variables bound by previous statements are not treated as pattern variables in

this Receive statement; in other words, occurrences of those variables in this Receive statement are

uses, not de�ning occurrences. A subterm ftgk in a Receive statement represents a decryption with

the inverse key of k, not an encryption. (A symmetric key is its own inverse.)

Old(t): Indicate that the executing principal's part in session set-up involving t is �nished. This is used to

model known-key attacks, as described above.

Local Protocols. A local protocol is a �nite sequence of statements satisfying the well-formedness require-

ments given below. There are 3 kinds of local protocols. Initiator (local) protocols may contain up to one

occurrence each of BeginInit and EndInit and do not contain BeginRespond or EndRespond. Responder

(local) protocols contain up to one occurrence each of BeginRespond and EndRespond and do not contain

BeginInit or EndInit. Server (local) protocols do not contain any of these four kinds of statements.

Reserved Variables. When an honest principal x starts executing a local protocol: (i) the variable �

(of type Prim) is automatically bound to x; (ii) in initiator and responder protocols, the variable p (of

type Prim) is automatically bound to an arbitrary element of Name n fxg, identifying the partner, i.e., the

principal expected to act as the responder or initiator, respectively; (iii) in server protocols, the variables i

and r (of type Prim) are automatically bound to arbitrary and distinct elements of Name , identifying the

initiator and responder that an instance of the server protocol is willing to serve.

De�ning Occurrences and Uses. A de�ning occurrence of a variable v is an occurrence of v that (i)

appears in the �rst statement containing v and (ii) appears in Receive or the second argument of NewValue;

as exceptions to this, there are no de�ning occurrences of � and p in initiator and responder protocols or of i

and r in server protocols. All non-de�ning occurrences of variables are called uses. Note that, for a variable

v and a statement s, all occurrences of v in s are de�ning occurrences, or all of them are uses. A variable
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may have multiple de�ning occurrences, which must occur in a single Receive statement. For the reader's

convenience, de�ning occurrences of variables are underlined in local protocols.

Well-Formedness Requirements. The well-formedness requirements are: (WF1) Variables are bound

before they are used, i.e., for each variable v except � and p in PI and PR and except i and r in PS , each

statement containing uses of v is preceded by a statement containing de�ning occurrences of v. (WF2)

Variables are single-assignment, i.e., for each variable v, uses of v do not occur in the second argument

of NewValue statements. (WF3) Keys are parameterized by names or primitive variables, i.e., for each

occurrence of key , pubkey , or pvtkey , the arguments are names or primitive variables. (WF4) Each argument

of Old is a variable of type Prim. (WF5) Server protocols do not contain Old. (WF6) A session key must

be known before it can be used for decryption; more precisely,3 in a Receive, if the second argument of an

encrypt contains a de�ning occurrence of a variable v, then there is also a de�ning occurrence of v in the

�rst argument of an encrypt whose second argument contains no de�ning occurrences of variables. (WF7)

Honest principals do not encrypt using other principals' private keys; more precisely, if a Send contains

a ciphertext of the form ft1gpvtkey(t2), then t2 is �. (WF8) Honest principals do not decrypt using other

principals' private keys; more precisely, if a Receive contains a ciphertext of the form ft1gpubkey(t2) and t1

contains a de�ning occurrence of a variable, then t2 is �.4 (WF9) Honest principals don't use shared keys

that they don't know; more precisely, if a Send or Receive contains a ciphertext of the form ft1gkey(t2;t3),

then t2 is � or t3 is �.

Protocols. A protocol is a pair hIK; PSi, where IK (mnemonic for initial knowledge) is a set of ground

terms, and PS is a set of pairs of the form hns; P i, where ns � (Name n fZg) and P is a local protocol. IK

is the set of terms initially known to Z. A pair hns; P i in PS means that local protocol P can be executed

by any principal in ns.

Example. Here is a simple unilateral authentication protocol that uses a temporary secret:

�U = hfkey(A;Z); key(Z;A); key(Z;B); key(B;Z)g; fhfA;Bg; PIi; hfA;Bg; PRigi; (1)

where

PI : 0. NewValue(fpg; n)

1. Send(p; ��fn�pgkey(�;p))

2. Receive(n)

3. EndInit(n)

PR: 0. Receive(p�fn��gkey(p;�))

1. BeginRespond(n)

2. Old(n)

3. Send(p; n)

Example. In LAP, the Yahalom protocol [BAN90] is

�Y = hfkey(Z; S)g; fhfA;Bg; PIi; hfA;Bg; PRi; hfSg; PSigi; (2)

where

3This is stronger than necessary but is relatively simple and seems adequately permissive.
4If t1 contains no de�ning occurrences, then the pattern-matching can be implemented by encrypting a candidate message

using the appropriate principal's public key.
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PI :

0. NewValue(;; ni)

1. Send(p; ��ni)

2. Receive(fp�k�ni�nrgkey(�;S) �X)

3. BeginInit(nr)

4. Send(p;X �fnrgk)

5. EndInit(ni)

6. Old(k)

7. Old(nr)

PR:

0. Receive(p�ni)

1. NewValue(f�; pg; nr)

2. BeginRespond(ni)

3. Send(S; ��fp�ni�nrgkey(�;S))

4. Receive(fp�kgkey(�;S) �fnrgk)

5. EndRespond(nr)

6. Old(k)

7. Old(nr)

PS :

0. Receive(r �fi�ni�nrgkey(r;�))

1. NewValue(fi; rg; k)

2. Send(i; fr �k �ni�nrgkey(i;�)

�fi�kgkey(r;�))

Example. In LAP, Lowe's corrected version of the Needham-Schroeder public-key protocol [Low96] is

(following Lowe, we omit the steps used to obtain public keys from a server)

�NSPK = hfpubkey(A); pubkey(B); pubkey(Z); pvtkey(Z)g; fhfA;Bg; PIi; hfA;Bg; PRigi; (3)

where

PI :

0. NewValue(f�; pg; ni)

1. Send(p; fni��gpubkey(p))

2. Receive(fni�nr�pgpubkey(�))

3. BeginInit(nr)

4. Send(p; fnrgpubkey(p))

5. EndInit(ni)

6. Old(ni)

7. Old(nr)

PR:

0. Receive(fni�pgpubkey(�))

1. NewValue(f�; pg; nr)

2. BeginRespond(ni)

3. Send(p; fni�nr ��gpubkey(p))

4. Receive(fnrgpubkey(�))

5. EndRespond(nr)

6. Old(ni)

7. Old(nr)

Example. In LAP, the Otway-Rees protocol [OR87] is

�OR = hfkey(Z; S)g; fhfA;Bg; PIi; hfA;Bg; PRi; hfSg; PSigi; (4)

where

PI :

0. NewValue(;;m)

1. NewValue(;; n)

2. BeginInit(m)

3. Send(p; m���p

�fn�m���pgkey(�;S))

4. Receive(m�fn�kgkey(�;S))

5. Old(k)

6. EndInit(m)

PR:

0. Receive(m�p���X)

1. BeginRespond(m)

2. NewValue(;; n)

3. Send(S;m�p���X �fn�m�p��gkey (�;S))

4. Receive(m�X �fn�kgkey(�;S))

5. Send(p;m�X)

6. Old(k)

7. EndRespond(m)

PS :

0. Receive(m�i�r �fx�m�i�rgkey(i;�)

�fy �m�i�rgkey(r;�))

1. NewValue(fi; rg; k)

2. Send(r;m �fx�kgkey(i;�)

�fy �kgkey(r;�))

Example. In LAP, the Needham-Schroeder shared-key protocol [BAN90], slightly modi�ed, is

�NSSK = hfkey(Z; S)g; fhfA;Bg; PIi; hfA;Bg; PRi; hfSg; PSigi; (5)
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where

PI :

0. NewValue(;; ni)

1. Send(S; ��p�ni)

2. Receive(fni�p�kgkey(�;S) �X)

3. Send(p;X)

4. Receive(fnrgk)

5. BeginInit(nr)

6. Send(fnr �pgk)

7. EndInit(k)

8. Old(k)

PR:

0. Receive(fk�pgkey(�;S))

1. NewValue(;; nr)

2. BeginRespond(k)

3. Send(p; fnrgk)

4. Receive(fnr ��gk)

5. EndRespond(nr)

6. Old(k)

PS :

0. Receive(i�r �ni)

1. NewValue(fi; rg; k)

2. Send(i; fni�r �kgkey(i;�) �fk �igkey(r;�))

The original Needham-Schroeder shared-key protocol is obtained by changing nr in line 6 of PI and line

4 of PR to nr � 1, and by changing line 2 of PI to Receive(fni � p � k �Xgkey(�;S)) and line 2 of PS to

Send(i; fni � r �k � fk � igkey(r;�)gkey(i;�)). A straightforward argument shows that correctness of the above

protocol implies correctness of the original version of the protocol.

2.2 Semantics of LAP

Sequences. Sequences are represented as functions from the natural numbers or a pre�x of the natural

numbers to elements. Thus, sequences may be in�nite or �nite. Thus, the initial element of a sequence � is

�(0); the next element is �(1); and so on. For a function f , dom(f) denotes the domain of f . The length a

sequence �, denoted j�j, is the size of dom(�). For j < j�j, �(0::j) denotes the pre�x of � of length j + 1;

for j � j�j, �(0::j) denotes �.

Run-ids, Substitutions, and Events. A run of a local protocol can be thought of as a thread that

executes the local protocol once and then exits. A run-id identi�es a particular run. Let ID denote the

set of run-ids. For a set V of variables, let Subst(V ) denote the set of bindings for the variables in V , i.e.,

the set of functions from V to ground terms that respect the types of the variables. We use \binding"

and \substitution" interchangeably. The application of a substitution � to a term t is denoted t[�]. For a

local protocol P , vars(P ) is the set of variables occurring in P . An event is a tuple of the form hid; l; si or

hZ;Z; si, where id is a run-id, l is a natural number, and s is a statement. The event hid; l; si indicates that

run id executes statement s, which is line number l of a local protocol (the local protocol associated with

id is speci�ed separately, as described in the next paragraph). The event hZ;Z; si indicates that Z executes

statement s.

Executions. Let hIK; PSi be a protocol. Let fhns1; P1i; hns2; P2i; : : : ; hnsn; Pnig = PS.5 An execu-

tion of � is a tuple h�; subst ; lproti, where � is a sequence of events, and for each run-id id, lprot(id) 2

fP1; P2; : : : ; Png is the local protocol being executed in that run, and subst(id) 2 Subst(vars(lprot(id))) is

the variable bindings for that run. For convenience, we de�ne subst(Z) to be the substitution that binds � to

Z, i.e., subst(Z) 2 Subst(f�g) and subst(Z)(�) = Z. An execution must satisfy the following requirements

(E1){(E7).

5We use phrases like \let ht1; t2i = t" to indicate that meta-variables t1 and t2 are being introduced to denote components
of t.
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E1. For each id 2 ID, letting hns; P i = lprot(id), subst(id)(�) 2 ns.

E2. For each event hid; l; si in �, if id 6= Z, then s is the statement in line l of lprot(id).

E3. For each id 2 ID, letting �0 be the subsequence of � containing the events of run id, the line

numbers in �0 are a pre�x of the natural numbers. In other words, execution of a local protocol starts at

line 0 and proceeds line-by-line.

E4. For each Send event e = hid; l; Send(x; t)i, e is the last event in the execution or is immediately

followed by a Receive event hid0; l0;Receive(t0)i, called the corresponding Receive event,6 such that

t[subst(id)] = t0[subst(id0)] ^ (id 6= id0) ^ (id0 = Z _ subst(id0)(�) = x[subst(id)]):

This allows Z to intercept messages and send messages that appear to be from other principals. Every

Receive event is immediately preceded by a Send event.

E5. For each NewValue event hid; l;NewValue(ns; t)i in �, t[subst(id)] is a fresh genval, i.e., t[subst(id)]

does not appear in IK or in preceding events in �.

E6. For each id 2 ID, for each v 2 vars(lprot(id)), if v appears as an argument of key , pubkey , or

pvtkey in some statement in lprot(id), then subst(id)(v) 2 Name.

E7. For each j 2 dom(�), if �(j) is of the form hZ;Z; si, then (using Lamport's bullet-style notation

for lists of conjuncts or disjuncts [Lam93])

_ (9t 2 Prim ; ns � Name : s = NewValue(ns; t))

_ (9t 2 TermG; x 2 Name : s = Send(x; t) ^ t 2 knownZ(IK; �(0::j � 1); subst))

_ (9t 2 TermG : s = Receive(t))

where knownZ(IK; �; subst) is the set of ground terms known to Z after the events in � with initial knowledge

IK and bindings subst . Informally, Z knows t i� Z can obtain t by the following procedure: starting with the

terms in IK and that Z learned during �, Z crumbles these terms into smaller terms by un-doing pairings

and encryptions and then constructs larger terms using pairing and encryption. Let rcvdZ(�) be the set of

terms received by Z in �. Let genvalsZ(�; subst) be the set of genvals n such that n is generated in � by

an event hid; l;NewValue(ns; v)i and either: (i) Z generated n, i.e., id = Z; (ii) n is intended to be shared

with Z, i.e., Z 2 ns[subst(id)]; or (iii) n is old, i.e., for each principal x in ns[subst(id)], � contains an

event of the form hid0; l0;Old(v0)i with subst(id0)(�) = x and subst(v0) = n. Let learnedZ(IK; �; subst) =

IK[rcvdZ(�)[genvalsZ(�; subst). Then knownZ(IK; �; subst) = closure(crumble(learnedZ(IK; �; subst))),

where for a set S of ground terms, crumble(S) is the least set C satisfying7

C = S [ ft1 j (9t2 : pair (t1; t2) 2 C _ pair (t2; t1) 2 C)g [ ft j ftgK 2 C ^K 2 C \Keysymg

[ ft j ftgpubkey(x) 2 C ^ pvtkey(x) 2 Cg [ ft j ftgpvtkey(x) 2 C ^ pubkey(x) 2 Cg

and where closure(S), the set of terms that can be constructed from the terms in S, is the least set C

satisfying

C = S [ fpair(t1; t2) j t1 2 C ^ t2 2 Cg [ fft1gK j t1 2 C ^K 2 C \ (Keysym [Keyasym)g

6Allowing the corresponding Receive event to be separated from the Send event would lead to an equivalent model, because
message delay is already modeled by the possibility of Z intercepting and later re-sending a message.

7If the public-key cryptosystem is not reversible, the last set comprehension in the de�nition of crumble should be omitted.
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These de�nitions assume that the symmetric and public-key cryptosystems are perfect, i.e., invulnerable to

cryptanalytic attacks. Several researchers, using similar models of perfect cryptography, have de�ned similar

functions to express the adversary's knowledge.

2.3 Syntax and Semantics of Correctness Requirements

We consider two kinds of correctness requirements: correspondence and secrecy. The semantics of a require-

ment is given by de�ning the set of executions that satisfy it. A protocol satis�es a requirement i� every

execution of the protocol satis�es the requirement.

Correspondence Requirement. A Correspondence Requirement is speci�ed by a pair, which must be

hEndInit;BeginRespondi or hEndRespond;BeginIniti. An execution satis�es a correspondence requirement

ha; a0i i�, for all distinct pairs hx; yi of honest principals, if x executes a with argument t in a run with

partner y, then previously y executed a0 with argument t in a run with partner x.

Short-Term Secrecy Requirement. The Short-Term Secrecy Requirement expresses secrecy of genvals.

An execution h�; subst ; lproti satis�es the Short-Term Secrecy Requirement i� all genvals in knownZ(IK; �; subst)

are in genvalsZ(�; subst).

Long-Term Secrecy Requirement. A term is long-term if it contains no genvals. A Long-Term Secrecy

Requirement expresses secrecy of long-term secrets. A Long-Term Secrecy Requirement is speci�ed by a

set of long-term ground terms not containing the encrypt or pair operators. An execution h�; subst ; lproti

satis�es a Long-Term Secrecy Requirement S i� knownZ(IK; �; subst) \ S = ;.

Example. The Yahalom protocol satis�es Correspondence Requirements hEndInit;BeginRespondi and

hEndRespond;BeginIniti, the Short-Term Secrecy Requirement, and the Long-Term Secrecy RequirementS
x2NamenfZ;Sgfkey(x; S)g.

3 Reduction

3.1 Static Restrictions

Primitive Variable Restriction. All variables in the protocol are of type Prim.

Shallow Ciphertext Restriction. The encryption height of the second argument of each Send and the

argument of each Receive is at most 1.

Secrecy of Long-Term Keys Restriction. Long-term keys are not sent in messages, i.e., in each Send

statement, the operators key , pubkey, and pvtkey occur only in the second argument of the encrypt operator.

Initially, Z does not know other principals' keys, i.e., for x 2 Name n fZg, IK does not contain key(x; S) or

pvtkey(x).

Known Name Restriction. Z knows all names, i.e., Name � IK.
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Width of End� Restriction. For each EndRespond and EndInit statement, the sum of the numbers of

variables and primitive values in its argument is less than jPrim \ IKj.

Lemma 1. Let � be a protocol satisfying the Primitive Variable and Shallow Ciphertext Restrictions. For

all executions of �, every ciphertext sent or received by an honest principal has an encryption height of 1.

Proof: Straightforward.

Lemma 2. Let hIK; PSi be a protocol satisfying the Secrecy of Long-Term Keys Restriction. For all

executions h�; subst ; lproti of �, (knownZ(IK; �; subst) \KeyLT ) � IK.

Proof: Straightforward.

3.2 Dependence Relations

Source of Ciphertext. Given an execution h�; subst ; lproti of a protocol � = hIK; PSi that satis�es

the Primitive Variable Requirement, the source of each ciphertext c0 in each message received by an honest

principal is an index j such that �(j) is a Send event hid; l; Send(x; t)i containing the encryption that created

c0. Let hid0; l0;Receive(t0)i = �(j) be a Receive event by an honest principal. Let hid; l; Send(x; t)i = �(j�1)

be the corresponding Send event. Let c0 be a subterm of t0[subst(id0)] that is a ciphertext. Let fdgk = c0.

Suppose id 6= Z. Then the Primitive Variable Requirement and E4 in the de�nition of execution imply that

the source of hj; c0i is j � 1. Suppose id = Z. If k 2 knownZ(IK; �(0::j � 1; subst), then Z can perform

the encryption to create c0, so the source of hj; c0i is j � 1. Otherwise, there must be a previous Send

event hid00; l00; Send(x00; t00)i = �(j00) such that t00[subst(id00)] contains a subterm equal to c0 (there might be

multiple such Send events; for our purposes, it does not matter which one is chosen), and the source of hj; c0i

is j00.

Dependence Between Events. Given an execution ex, we de�ne dependence relations on events and

runs in ex. These relations and their auxiliary functions are implicitly parameterized by the execution being

considered. Informally,
lcl
! captures local dependencies, i.e., dependencies within a single run;

ct
! captures

dependencies induced by one run receiving a ciphertext sent by another run; and
rvl;n
! captures dependencies

induced by one run helping reveal to Z a genval n that Z uses in a message received by another run. For

a genval n generated by an event hid; l;NewValue(ns; v)i, the set prins(n) of principals associated with n is

de�ned by prins(n) = ns[subst(id)]. We say \helps reveal n" rather than \reveals n", because an Old event

can contribute to revealing a genval n without actually revealing n (if jprins(n)j > 1).

e
lcl
! e0

�

= e and e0 are events with the same run-id and e precedes e0

e
ct
! e0

�

= e is a Send event by an honest principal and e0 is a Receive of a term containing a ciphertext

whose source is e

e
rvl;n
! e0

�

= (e helps reveal n) ^ (e0 rcvs n from Z)

(6)
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where for a genval n,

e helps reveal n
�

= _ e is the NewValue event that generates n

_ Z 62 prins(n) ^ (9x 2 prins(n) : e is the �rst Old event by x with argument n)

e rcvs n from Z
�

= _ e is a Receive of a term containing n unencrypted

_ e is a Receive of a term containing a ciphertext containing n

and whose source is an event by Z

(7)

In the de�nition of
lcl
!, e need not immediately precede e0. The de�nition of \e helps reveal n" considers only

NewValue and Old events, because the Short-Term Secrecy Requirement implies that only those two kinds

of events help Z learn genvals,8 and we use this relation only in contexts where the Short-Term Secrecy

Requirement holds. Regarding the second disjunct in the de�nition of \e rcvs n from Z", note that a

ciphertext contains terms used for the encryption key or in the data; for example, fAgkey(B;S) contains the

primitive values A and key(B;S).

Replaceable Genvals. Roughly, a set evs of events depends on an event e if there exists an event e0 in

evs such that e precedes e0 in some run, e is the source of a ciphertext received by e0, e generates a genval

received by e0, or e helps reveal to Z a genval used by Z in a message received by e0. To avoid spurious

dependencies, only genvals that are \irreplaceable" in R are considered in the last of these cases. Let evs be

a set of events (implicitly, a subset of the events in the execution being considered) that is backwards-closed

with respect to
lcl
! [

ct
!, i.e., e0 2 evs ^ e (

lcl
! [

ct
!) e0 ) e 2 evs. In other words, evs contains pre�xes of

some set R of runs. A genval n is irreplaceable in evs i� evs contains the NewValue event that generated

n. If n is replaceable (i.e., not irreplaceable) in evs, then n can be replaced with any primitive value in

evs, and the events in evs would occur exactly as before, except for the e�ect of this substitution on the

variable bindings of the runs in R. To see this, note that in evs, n is received only (i) unencrypted, (ii) in

ciphertexts produced by Z, or (iii) in ciphertexts produced by other events in evs. Regarding (i) and (ii),

Z can substitute any other primitive value for n in those messages (this might require inserting into the

execution a Receive event by Z to intercept the message and an immediately following Send event by Z to

send the modi�ed message). Now we show that (iii) does not prevent replacement of n in evs. The proof

is by induction on evs ordered by (
lcl
! [

ct
!)�, where for a binary relation !, !� denotes the reexive and

transitive closure of !. For the base case, let e be a minimal (with respect to (
lcl
! [

ct
!)�) event in evs that

is the source of a ciphertext c containing n and received by some Receive event e0 2 evs. Let id and id0 be

the runs containing e and e0, respectively. In the pre�x of id up to and including e, n is received only in

contexts (i) and (ii), so n can be replaced in that pre�x and hence in ciphertext c and hence in the pre�x of

id0 up to (not including) the earliest Receive event in id0 after e0. The induction hypothesis is that n can be

replaced in a subset S of evs that is backwards-closed with respect to
lcl
! [

ct
!. For the step case, let event

e be a minimal event in evs n S that is the source of a ciphertext c containing n and received by a Receive

event e0 2 evs. Let id and id0 be the runs containing e and e0, respectively. By similar reasoning as in the

base case, n can be replaced in c and hence in the pre�x of id0 up to (not including) the earliest Receive

event in id0 after e0.

8After NewValue and Old statements reveal a genval n to Z, Send statements can send n unencrypted or encrypted with
a key known to Z without violating the Short-Term Secrecy Requirement. Such Send events can be ignored here, because Z

needs to learn a genval only once to use it in subsequent messages.
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One can de�ne simpler dependence relations on runs that implicitly consider all genvals to be irreplaceable.

In that case, there would be more dependencies between runs, and fewer protocols would satisfy the cluster

restriction for a given cluster size (see Section 3.3). Thus, the notion of irreplaceability makes our reduction

applicable to more protocols and sometimes reduces the size of the state space that needs to be explored.

Support. Let irrep(evs) denote the set of genvals that are irreplaceable in evs. For an execution ex and a

set evs of events, the set of events on which events in evs depend is denoted support(ex; evs) and de�ned by

support(ex; evs)
�

= the least set evs0 such that

evs � evs0 ^ (8e 2 ex; e0 2 evs0; n 2 irrep(evs0) : e (
lcl
! [

ct
! [

rvl;n
! ) e0 ) e 2 evs0)

(8)

To see that this is well-de�ned, note that if evs1 and evs2 satisfy the predicate in (8), then so does evs1\evs2.

Let events(ex; id) denote the set of events of run id in ex. For convenience, we overload support by de�ning

support(ex; id)
�

= support(ex; events(ex; id)): (9)

3.3 Dynamic Restriction

Clusters. A cluster size is a function from the set of local protocols to f1; 2; : : :g. For a cluster size f , a

set evs of events is an f-cluster in an execution ex i� for each local protocol P , evs contains events from at

most f(P ) runs of P in ex.

Cluster Restriction. An execution ex satis�es the cluster restriction for cluster size f , abbreviated

Clus(f), i� for every run id in ex, support(ex; id) is an f -cluster.

3.4 Protocol Transformation

Most protocols of interest do not directly satisfy the Primitive Variable Restriction, but most of them do

satisfy it after a simple correctness-preserving transformation is applied.

Transformation ElimFwdVar. Eliminate all occurrences of forwarding variables. A forwarding variable

is a variable whose de�ning occurrences are in a Receive and all of whose occurrences are unencrypted. If

this transformation reduces the second argument of a Send or the argument of a Receive to the \empty

term", then that statement can be deleted.

Lemma 3. Let � be a protocol. Let �0 be a protocol obtained from � by applying transformation Elim-

FwdVar. Let � be a correspondence or secrecy requirement. � satis�es � i� �0 satis�es �.

Proof: Straightforward.

Example. Applying transformation ElimFwdVar to the Yahalom protocol (2) eliminates variable X from

lines 2 and 4 of PI . Let �Y 0 denote the resulting protocol.
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3.5 Dependence Width

Let s be a Receive statement Receive(t) executed during a run id. Informally, the dependence width of s

is the number of other runs on which direct (i.e., not transitive) dependencies can be created by executing

s. This concept is used in Theorem 1 to bound the number of runs involved in a violation of the Cluster

Restriction. We assume that the protocol satis�es the static restrictions in Section 3.1.

Consider a ciphertext ft0gk in t. Let c be the received ciphertext that matches ft0gk. If k is key(�; S),

then the Secrecy of Long-Term Keys Restriction implies that Z does not know k, so source of c is an honest

principal, and receiving c creates a dependence on the source of c. Otherwise, the source of c might be

Z, so receiving it creates dependencies on events (if any) that revealed primitive values in c to Z. The

Known Name and Secrecy of Long-Term Keys Restrictions imply that Z does not learn names or long-term

keys during an execution, so occurrences of these names and key terms in t do not (by themselves) create

dependencies. Genvals in c must match variables in t. The number of such genvals and the number of events

that help reveal them to Z are bounded as described below.

Consider a use of a variable v. Suppose this occurrence of v is unencrypted or is encrypted and the

received ciphertext is from Z. If v is bound to a genval n, then (when s is executed) this occurrence of

v creates direct dependencies on the events that help reveal n to Z. If v is de�ned in a statement of the

form NewValue(ns; v), then the number of such events not in id is at most jnsj. If v is de�ned in a previous

Receive statement, then the number of such events is at most jnsj + 1, because the NewValue statement

that generated n might be in a run other than id. If v is not bound to a genval, then the Primitive Variable

Restriction implies that v is bound to a name or long-term key. The Known Name and Secrecy of Long-

Term Keys Restrictions imply that Z does not learn names or long-term keys during an execution. Thus,

this occurrence of v does not (by itself) create any dependencies. Note that reserved variables are always

bound to names. Suppose v appears encrypted and the received ciphertext is from an honest principal. This

occurrence of v creates a direct dependence on the source of the ciphertext; this dependence are \charged"

to the encrypt operator enclosing v.

Consider a de�ning occurrence of a variable v. Note that all occurrences of v is s are uses, or all

occurrences of v is s are de�ning occurrences. Suppose all de�ning occurrences of v are in ciphertexts

with key key(�; S). These occurrences must match parts of ciphertexts whose sources are events by honest

principals; the resulting dependences on the sources of those ciphertexts are \charged" to the encrypt operator

enclosing v. Suppose some de�ning occurrence of v is unencrypted or is in a ciphertext with key not equal to

key(�; S). If v gets bound to a genval, then these occurrences of v create direct dependencies on the events

that help reveal n to Z; there are at most maxss(�) + 1 such events, where maxss(�) (\maximum sharing

size") is the maximum cardinality of the �rst argument of NewValue statements in �. If v does not get

bound to a genval, then it must be bound to a name or long-term key, so it creates no dependencies.

Based on the above arguments, the dependence width of the argument t of a Receive statement in a

protocol � satisfying the static restrictions in Section 3.1 is de�ned as follows. Intuitively, for each ciphertext

c in t, we take the maximum of one dependence (on the source of c, if c's source is an honest principal) and

the number of events needed to help reveal to Z the genvals bound to variables in c. However, if a variable v

possibly bound to a genval n occurs in multiple ciphertexts t that might match messages from Z, the events

that help reveal n are counted only once; this is why dependence width is not de�ned by a simple structural

recursion. Let ctexts(t) be the set of ciphertexts appearing in t. Let vars(t) be the set of variables appearing
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in t.

dw(t)
�

=
X

c2ctexts(t)

dwC(c; t) +
X

v2vars(t)

dwV (v; t) (10)

dwC(ft
0gk; t)

�

=

(
0 if k is not key(�; S), and ft0gk contains a variable v such that dwV (v; t) > 0.

1 otherwise

dwV (v; t)
�

=

8>>>>>>>>>>><
>>>>>>>>>>>:

jnsj if there is a use of v in t not in a ciphertext with key key(�; S),

and v is de�ned in a statement NewValue(ns; v)

maxss(�) + 1 if there is a use of v in t not in a ciphertext with key key(�; S),

and v is de�ned in a previous Receive statement

maxss(�) + 1 if there is a de�ning occurrence of v in t in a ciphertext

with a key not equal to key(�; S)

0 otherwise.

For a protocol �, de�ne the dependence width dw(�) of � to be the maximum dependence width of the

Receive statements in �.

Examples. Consider the transformed Yahalom protocol. The dependence width of PI , line 2, is 1; of

PR, line 0, is 0; of PR, line 4, is 6; of PS , line 0, is 6. Thus, dw(�Y 0) = 6. For the simple protocol �U ,

dw (�U ) = 2. The dependence width of the transformed Otway-Rees protocol is 6, because the Receive in

line 0 of PS has a dependence width of 6. The dependence width of the Needham-Schroeder public-key

protocol is 5, because the Receive in line 2 of PI has a dependence width of 5.

3.6 Reduction for Cluster Restriction and Short-Term Secrecy Requirement

Run-Bounds. A run-bound � bounds the number of runs of each local protocol in an execution. For a

protocol �, for each local protocol P of �, �(�)(P ) is a bound on the number of runs of P in an execution.

�j� denotes a protocol whose executions are the executions of � that satisfy the bounds imposed by �.

For example, if �(�)(PI ) = 3, and ex is an execution of � containing at most 3 run-ids id such that

lprot(id) = PI , then ex is an execution of �j� .

For a cluster size f , de�ne a run-bound �f by

�f (�)(P )
�

= (dw (�) + 1)f(P ): (11)

Theorem 1. Let � be a protocol satisfying the �rst four static restrictions in Section 3.1. Let f be a

cluster size. � satis�es Clus(f) and the Short-Term Secrecy Requirement i� �j�f satis�es Clus(f) and the

Short-Term Secrecy Requirement.

Proof: The forward direction ()) of the \i�" follows immediately from the fact that the set of executions

of �j�f is a subset of the set of executions of �. For the reverse direction ((), we prove the contrapositive,

i.e., we suppose there exists an execution ex = h�; subst ; lproti of � violating Clus(f) or the Short-Term

Secrecy Requirement and show that �j�f violates Clus(f) or the Short-Term Secrecy Requirement. We abuse

notation and write ex(0::j) to denote h�(0::j); subst ; lproti. Let d be the largest d such that ex(0::d) satis�es

Clus(f) and the Short-Term Secrecy Requirement. Such a d exists because an execution of length 0 satis�es
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these properties. Let id be the run containing the event that causes the violation, i.e., hid; l; si = �(d + 1).

ex(0::d) satis�es Clus(f), so support(ex(0::d); id) is an f -cluster.

The event �(d + 1) may create direct dependencies of id on other runs. Let R1 be the set of such runs.

Only Receive events create dependencies on other runs. As argued in Section 3.5, the dependence width

of a Receive statement bounds the number of direct dependencies on other runs created by that Receive

statement. Thus, jR1j � dw (�).

ex(0::d) satis�es Clus(f), so for each id0 2 R1, support(ex(0::d); id
0) is an f -cluster. Let

R =
[

id02R1[fidg

support(ex(0::d); id0):

Note that R contains events from at most dw (�) + 1 f -clusters.

Consider the e�ect of removing from ex(0::d + 1) the events not in R. By de�nition of R and support ,

events in R do not receive ciphertexts whose sources are events not in R. Consider ciphertexts c received by

events in R and whose sources are events by Z; speci�cally, consider when Z learned the terms used in such a

ciphertext c. Lemma 1 implies that Z does not use (learned) ciphertexts to construct c. Tuples do not need

to be considered explicitly here, because Z knows a tuple exactly when Z knows the components of the tuple.

So, it su�ces to consider when Z learned the primitive values in c. � satis�es the Secrecy of Long-Term

Keys Restriction, so Lemma 2 implies that Z does not learn long-term keys. � satis�es the Known Name

Restriction, so Z does not learn names. Thus, all primitive values learned by Z during an execution are

genvals. Removal of events not in R can potentially a�ect events in R by changing when Z learns genvals

used in messages received by events in R. By de�nition of
rvl;n
! and support , all events that help Z learn

irreplaceable genvals are included in R, so removing events not in R does not a�ect when Z learns those

genvals. Events that help Z learn genvals that are replaceable in R might be removed. As argued in Section

3.2, replaceable genvals can be replaced with any primitive value in the events in R, and the result is an

execution in which events in evs occur exactly as before, except for the e�ect of this substitution on the

variable bindings of the a�ected runs. This replacement eliminates the dependence of events in R on the

events that helped reveal the replaceable genvals to Z.

Consider primitive values received unencrypted by events in R. � satis�es the Secrecy of Long-Term

Keys Restriction, so Lemma 2 implies that long-term keys are never received unencrypted. � satis�es the

Known Name Restriction, so receiving an unencrypted name does not create dependencies on other events.

Consider a genval n received unencrypted by an event e in R. If n is irreplaceable in R, then removing events

not in R does not a�ect when Z learns n and hence does not a�ect e. If n is replaceable in R, then events

that help reveal n to Z might be removed, but by the same argument as in the previous paragraph, n can

be replaced with any primitive value in R, thereby eliminating the dependence of R on the events that help

reveal n to Z.

Let ex0 be ex(0::d+1) with events not in R removed and with genvals that are replaceable in R replaced

with some primitive value known to Z (e.g., some name). It follows from the above that ex0 is an execution

of �j�f . It remains to show that ex0 violates Clus(f) or the Short-Term Secrecy Requirement.

Suppose ex(0::d+1) violates Clus(f). By construction, every event in support(ex(0::d+1); id) is included

in ex0. By de�nition, calculation of support is not a�ected by replacement of replaceable genvals with other

primitive values. Thus, the support of events(id) is the same in ex(0::d+1) and ex0, so ex0 violates Clus(f).

Suppose ex(0::d+1) violates the Short-Term Secrecy Requirement; thus, �(d+1) reveals to Z a genval n
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not previously known to Z. Let e be the event that generates n. We show that e 2 R, i.e., n is irreplaceable

in R; this and the fact that removing events not in R cannot make n old imply that ex0 violates the Short-

Term Secrecy Requirement. To see that e 2 R, consider some sequence of messages by which n owed from

the run containing e to id. Every message in the sequence must be a ciphertext, because if n were sent

unencrypted, Z would know n before �(d+1) occurred, a contradiction. Thus, e0 (
lcl
! [

ct
!)

�

�(d). From the

de�nition of support , it follows that e 2 R.

3.7 Reduction for Long-Term Secrecy and Correspondence Requirements

For a cluster size f , de�ne a run-bound �1f by: �1f (�)(P ) = f(P ). Thus, an execution of �j�1
f
contains at

most one f -cluster.

Theorem 2. Let � be a protocol satisfying the static restrictions in Section 3.1. Let f be a cluster size. Let

� be a long-term secrecy or correspondence requirement . Suppose �j�f satis�es Clus(f) and the Short-Term

Secrecy Requirement. � satis�es � i� �j�1
f
satis�es �.

Proof: The forward direction ()) of the \i�" follows immediately from the fact that the set of executions of

�j�f is a subset of the set of executions of �. For the reverse direction ((), we prove the contrapositive, i.e.,

we suppose there exists an execution ex = h�; subst ; lproti of � violating � and show that �j�f violates �.

Let d be the largest d such that ex(0::d) satis�es �. Let hid; l; si = �(d+1). Let R = support(ex(0::d+1); id).

Theorem 1 implies that � satis�es Clus(f) and the Short-Term Secrecy Requirement, so R is an f -cluster.

Let ex0 be ex(0::d + 1) with events not in R removed and with genvals that are replaceable in R replaced

with a primitive value known to Z. By the same reasoning as in the proof of Theorem 1, it follows that ex0

is an execution of �j�f . It remains to show that ex0 violates �.

Suppose � is a Long-Term Secrecy Requirement. Let t 2 � be a ground term revealed to Z by �(d+ 1).

Removing events not in R does not eliminate this event and therefore does not destroy the violation of �. t

does not contain genvals, so replacing replaceable genvals with other primitive values does not destroy the

violation of �. Thus, ex0 violates �.

Suppose � is a Correspondence Requirement. Let ha; a0i = �. �(d + 1) must have the form hid; l; a(t)i.

Removing events not in R does not destroy the violation of �. We need to argue that there exists a

substitution of primitive values known to Z for replaceable genvals of R that does not destroy the violation

of �; some substitutions might destroy the violation of � by causing the argument of some a0 event in �(0::d)

to become equal to t[subst(id)]. A substitution that replaces all replaceable genvals with some primitive

value that does not appear in t[subst(id)] cannot produce such equalities. Thus, it su�ces to argue that

Z knows such a primitive value. The Primitive Variable and Width of End� Restrictions imply that the

number of primitive values in t[subst(id)] is less than jPrim \ IKj, so Z knows such a primitive value.

4 Discussion

Applicability. Applying Transformation ElimFwdVar to the Otway-Rees, Needham-Schroeder shared-

key, corrected Needham-Schroeder public-key, and Yahalom protocols yields protocols satisfying the static

restrictions in Section 3.1. It seems that some interesting protocols satisfy Clus(f) for cluster sizes f with

1 or 2 runs per local protocol. (Many incorrect or ine�cient protocols do not satisfy this restriction, but

that is no cause for concern.) De�ne cluster size f1 by: f1(P ) = 1 for all P . A tool that conveniently checks
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the Cluster Requirement is not yet available, and those checks might require considerable CPU cycles. If

such a tool and su�cient CPU cycles were available, then the appropriate cluster size for a given (correct)

protocol could be determined by starting with a cluster size f equal to f1 and gradually increasing the

cluster size until the tool reports that �j�f satis�es Clus(f). In the meantime, I proved that the transformed

Yahalom protocol satis�es Clus(fY ), where fY (PI ) = 1, fY (PR) = 2, and fY (PS) = 1, that the transformed

Otway-Rees protocol satis�es Clus(fOR), where fOR(PI) = 1, fOR(PR) = 1, and fOR(PS) = 2,9 and that

the corrected Needham-Schroeder public-key protocol and the simple unilateral protocol (1) satisfy Clus(f1).

Bound on Number of Operations Performed by Z. Z builds messages using encryption and tupling.

Recall from Lemma 1 that all ciphertexts sent or received by honest principals have an encryption height of

1. The Primitive Variable Restriction implies that the number of pair operators in messages sent or received

by honest principals is bounded by the number of concatenation operators in a Send or Receive statement in

the protocol. Thus, we can easily obtain a bound on the number of useful message-building operations that

Z can perform in an execution of �j� . We also need to bound the number of NewValue events performed by

Z. Provided the Width of End� Restriction holds and jPrim \ IKj � 1, we can prohibit Z from executing

NewValue events. This restriction on Z preserves all correctness requirements and dynamic restrictions.

This follows from an argument similar to the argument in the proof of Theorem 2 that replaceable genvals

can be replaced with other primitive values without destroying violations of Correspondence Requirements.

Implementing LAP. To correctly implement the LAP semantics, the run-time system needs to ensure

that variables of type Prim get bound only to primitive values. In an implementation, how can ciphertexts

and tuples be distinguished from primitive values? For example, does it su�ce to adopt a data format

such that the size (in bytes) of a ciphertext or tuple never equals the size of a primitive value? If so,

this requirement seems fairly easy to satisfy, since there are only a few kinds of primitive values, and they

typically have �xed sizes. In an implementation, the encryption and decryption functions must incorporate

an integrity check based on a message digest. Also, messages must contain formatting information that

enables a recipient to correctly split a tuple into its components; a header specifying the starting o�set of

each �eld su�ces. Proving a (probabilistic) re�nement relationship between such an implementation and

the high-level semantics in Section 2.2 is a non-trivial undertaking.

Reducing the Bound by Protocol Transformation. Consider the transformation: Replace each Re-

ceive statement of the form Receive(t1 �t2 � : : : �tn) for n > 2 with the sequence of statements Receive(t1);

Receive(t2); � � � ; Receive(tn). This transformation preserves correctness requirements and static restrictions

and sometimes reduces the dependence width and therefore �f . However, it can introduce violations of the

Cluster Requirement. Thus, if the transformed protocol violates the Cluster Requirement (for some cluster

size), then the untransformed protocol should be considered instead.

Feasibility of Model-Checking. We have succeeded in making the problem �nite-state. However, for

most protocols, the bound on the number of runs is probably too large for state-space exploration to be

feasible with current technology. For the simple unilateral protocol �U , executions with up to 6 runs (3 of

each local protocol) need to be checked; this is feasible. For the corrected Needham-Schroeder public-key

9The fact that fOR(PS) > 1 reects the fact that the Otway-Rees protocol does not ensure key agreement [THG98].
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protocol, the dependence width is 5, so executions with up to 12 runs (6 of each local protocol) need to be

checked; I believe this is currently infeasible. For the transformed Yahalom protocol �Y 0 , executions with

up to 28 runs (7 each of PI and PS , and 14 of PR) need to be checked; this is currently infeasible. Symmetry

reductions and partial-order reductions can reduce the cost of this. Future work includes developing a more

careful analysis or stronger restrictions, in order to justify smaller bounds.
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