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Abstract

Aggregate visualization and manipulation enables the viewing and interaction of dynamically changing
data sets in a graphically meaningful way.  However, off-the-shelf applications typically provide only
limited ways to view static aggregates and generally do not support manipulation of aggregate data
through the resulting visualization.  To be fully dynamic, an aggregate visualization should be
customizable to suit the individual’s needs and should allow end-users to modify the data through direct
manipulation.  This paper describes a software system that empowers end-users to create interactive
aggregate visualizations through a visual language interface.  Included are mechanisms for specifying how
aggregate data is processed from multiple sources of a distributed application, providing functionality
similar to project, select, join, and cross product of relational databases.  This approach gives end-users
the power to create customized, interactive visualizations of dynamically changing aggregate data without
the need for textual programming.

Keywords:  aggregate data, constraints, direct manipulation, distributed computing, matching, multi-way
constraints, user interface management system, visualization

1. Introduction

Most large scale applications use aggregates to store collections of element data.  For example, an air
traffic control center may have a database that stores an aggregate of airplane information (e.g.,
identification, aircraft type, passenger/cargo classification, etc.); each airplane record represents an
element of the aggregate.  Visualization of an aggregate can make the information easier to comprehend,
and may give the end-user insight that may not have been achieved otherwise.  Direct manipulation with
the visualization gives the user the ability to modify the data in a natural way.  However, insight can only
be achieved if the visualization reflects what the end-user would like to see.  A visualization that includes
extraneous information or uses an unintuitive graphical representation can be more confusing than viewing
the aggregate information textually.  Since each end-user may be interested in a different aspect of an
aggregate, customization is the key to making an aggregate’s visualization effective to individuals.
Moreover, it is often the case that the user does not know in advance the most effective way to visualize the
data to lead to a meaningful understanding.  Therefore, it is also important to facilitate dynamic
modification of the visualization.

Communication networks, such as the Internet, allow distributed applications to be constructed from
communicating components (e.g., processes) running on separate computers.  Parallel processing and
support for multi-user applications are some of the benefits of a distributed approach.  Visualization and
manipulation of a distributed application’s data is particularly challenging.  Many times, aggregate data is
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spread across multiple components of a distributed application.  For example, the server component of a
client-server application commonly stores an aggregate of information obtained from each client
component.  The application’s visualization component may be completely separate from the other
components, requiring careful communication and synchronization among the visualization and other
components.

This paper discusses mechanisms that enable end-users to create customized, interactive visualizations of
dynamically changing aggregate data.  These mechanisms were developed in the context of state-based
distributed computing, but are equally applicable to non-distributed applications.  This process, known as
aggregate mapping, involves three distinct stages.  First, the method of how aggregate data is gathered and
processed from computation sources is specified.  Our goal here was to allow the visualization to be
decoupled from its underlying application.  End-users can visually specify how aggregate data is to be
processed from multiple aggregates, using mechanisms functionally similar to select, project, join, and
cross product of relational databases [1], [2].  Second, the relationship of the aggregate data to its
visualization is specified.  The goal of this stage was to enable end-users to create customized
visualizations through a visual language interface.  Third, the system maintains the relationship of the
visualization with the aggregate, and the aggregate with its computation sources.  The visualization must
always be consistent with the underlying data of the application, reacting to both changes to the application
data and end-user direct manipulation of the visualization.

The organization of this paper is as follows. Section 2 provides an overview of related work in the area of
aggregate visualization and manipulation. Section 3 gives a brief discussion and tutorial of the software
systems that this work was built upon.  It should be emphasized that this section is only presented as
background information to aid the reader in understanding aggregate mappings.  The contributions of this
work are presented in Section 4, which discusses aggregate mappings. Section 5 discusses future work,
and Section 6 provides a brief summary.

2. Related Work

Commercial products such as Microsoft Excel [12] and LabView [10] provide some support for end-user
aggregate visualization.  Excel users may choose from a number of pre-defined chart representations (e.g.,
pie charts, histograms) to view spreadsheet data.  Excel’s visualization is static; once a chart is created the
user cannot interact with the display.  Our system supports end-user interaction with the aggregate
visualization and automatic updates of the display in response to dynamically changing data sets.  The
LabView visual programming environment allows users to construct array types interactively and, like
Excel, allows plotting of the array data using built-in chart displays.  Although LabView’s chart displays
are updated when the underlying data is changed, aggregate data cannot be manipulated interactively.
Excel and LabView allow only limited customization of how the data is visualized.  For example, it is
possible to specify the color of a bar chart’s graphics in Excel.  However, more involved customization
such as creating a completely new type of chart representation is not supported in Excel or LabView.  Our
system gives end-users the ability to specify arbitrary graphical representations of aggregate data and how
it is “mapped” to the display.  This gives users the ability to create highly customized, interactive
visualizations.

Graphics toolkits such as Garnet [18] and Interviews [11] provide programmatic support for visualizing
data sets such as lists and graphs.  Our work focuses on allowing end-users to create aggregate
visualizations without textual programming.  Research systems such as Pavane [20] and Weasel [3] allow
the visualization of aggregate data through the use of a high-level specification language.  With Swarm, a
specification language associated with Pavane, programmers can write formal textual specifications of
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concurrent algorithms.  The execution of the algorithms can be mapped to a visual display using Pavane.
However, Pavane visualizations cannot be manipulated.  Our system allows end-users to specify aggregate
visualization graphically at run-time.  Visualizations are created which reflect the state of distributed
applications in real-time, allowing the viewer to manipulate the data and change the state of the application
as it is running. GVL provides a functional specification language for Weasel, and is used to specify the
mapping from the program’s data state to the display.  Like our work, Weasel decouples the program state
from its visualization.  Weasel provides support for visualizing dynamically changing data in real time, but
does not support manipulation of the visualization.  However, it is not clear that end-users (i.e., non-
programmers) would be able to construct visualizations with Weasel.

Other systems such as Magic Lens [5], GQL [19], and Visage [4] have focused on the visual specification of
database queries.  While our system enables end-users to visually specify the functionality of project,
select, join, and cross product database operations, our primary contribution is in integrating this
functionality with end-user defined dynamic visualizations.  Our system allows end-users to define basic
operations on the data of distributed applications, to create a customized visualize of the result, and to
manipulate the underlying data interactively.

Magic Lens [5] provides the ability to filter a data set through the use of multiple, overlapping filters.  The
filtered data is visualized using 2D scatterplots.  The strength of this approach is that it allows users to
explore data by adjusting the filters interactively.  Although our system includes a data filtering
mechanism, it does not address methods of “browsing” data through the modifications of visual queries.
Instead, our system focuses primarily on creating customized visualizations and reacting to dynamic
updates of the data.

The Visage system [4] enables users to specify visual queries on multiple data sets.  Used in conjunction
with the SageBrush tool [21], visualizations of a visual query may be created, browsed, and refined.  Like
our work, the Visage system provides the ability to work with multiple data sets, providing the
functionality of a relational database’s project and select operations.  Like our work, Visage’s visualization
system operates directly in terms of a database query’s source data rather than a derived result (see Section
4.5.2).  This allows changes of a query’s resultant data to be coordinated with its original data set.  The
main difference between our work and Visage/SageBrush is that our work focuses on dynamically
changing aggregate visualizations for “live” distributed applications, whereas Visage focuses on interactive
visualization and browsing of shared databases.  Visage supports direct manipulation of visual query
specifications, but does not offer direct manipulation of the data itself through the visualization.
Supporting this direct manipulation feedback to the application is particularly challenging because it
means that all of the visualization steps are invertible so that changes of the resulting visualization can be
mapped back to the application.  In addition, our system supports creating interactive user interfaces for
distributed applications.  User interfaces constructed in this way respond to both continuously changing
aggregate data of a distributed application and end-user manipulation of the data through the visualization.

3. Background

This section describes the software systems that this work was built upon, including a distributed
programming environment and a user interface management system. Section 4 presents aggregate
mappings, the central research contribution of this paper.
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3.1 The Programmers’ Playground

The Programmers’ Playground (Playground) [9] is a software library and run-time system that supports the
I/O abstraction programming model for distributed applications.  I/O abstraction provides a separation of
computation from communication that is well-suited for end-user construction of customized distributed
applications from computational building blocks.  Playground users do not need to write any source code
to establish communication among the components of a distributed application, nor do they need to
understand the details of how communication occurs.

In the I/O abstraction model, each module of a distributed application has a data boundary containing
published variables that may be externally observed and/or changed.  Modules are written in a standard
programming language (e.g., C++) using the Playground library.  This library provides publishable data
types, including base types (e.g., integer, real, string), tuples, and aggregates (e.g., arrays, lists).  These
types may be arbitrarily nested to form new publishable tuple types, and new types of publishable
aggregates may be defined as well.  Playground modules have a visual representation that was designed as
part of a visual configuration language for interprocess and intraprocess communication [15]. Figure 1a
shows the visual representation of a module with three published variables.  The color of a published
variable is used to represent its data type.

A distributed application consists of a collection of independent modules (i.e., processes, each of which
may run on a separate computer) and a communication configuration.  The communication structure is
established by creating logical connections among the published variables of the modules.  The
configuration of connections is determined dynamically at run-time, rather than statically at compile time.
In the visual configuration language, end-users simply draw logical connections among the modules to
specify how the modules communicate.  In this way, users have the ability to create distributed applications
by combining a number of “off the shelf” components interactively, rather than by textual programming.
Figure 1b shows the visual representation of an application consisting of three modules and a configuration
of logical connections, shown as arrows.

Whenever a module updates one of its published data items, the new value is implicitly communicated to
all connected variables of other modules.  The details of how the communication is handled are hidden
from the creator and users of the module.  For example, the application shown in Figure 1b represents an
planetary orbits simulation.  Two Orbiter modules are used to simulate the orbits of the Earth and Moon,

Figure 1:  (a) Visual representation of a module. (b)  An application with three modules and a communication
structure of logical connections.

(a) (b)

Published
Variables
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respectively.  Each Orbiter module has a POS published variable that represents a computed (x, y)
position that is updated over time.  The first Orbiter module, representing the Earth, has its POS variable
connected to the Epos (Earth position) variable of the GUI module.  Whenever this Orbiter module
updates the value of its POS variable, this new value is communicated to the GUI module and is stored in
the Epos variable.  The GUI module, described in the next section, uses these updates to animate the
movement of the Earth within a graphical interface.

3.2 EUPHORIA User Interface Management System

EUPHORIA, Playground’s user interface management system [13], [16], is a specialized module for
creating customized direct manipulation graphical user interfaces (GUIs) without the need to write user
interface source code.  In EUPHORIA, end-users simply draw GUIs using an interactive graphics editor.
GUIs can consist of various types of graphics items, including simple shapes, text, images, and end-user
defined widgets (encapsulated grouping of graphics items). Figure 2 shows the EUPHORIA editor during
the creation of the planetary orbits GUI for the application described in the previous section.  The editor
contains a drawing area, tool palette, and data boundary for publishing variables (note that the published
variables in Figure 2 correspond to the published variables of the GUI module in Figure 1b). GUIs are
created and associated with their underlying application interactively; there are no separate “design” and
“run” modes.  When a GUI is complete, the tool palette and data boundary may be hidden.

Each graphics item drawn in EUPHORIA has a number of associated attributes (e.g., position, size, etc.).
These attributes can be used in forming multi-way constraints relationships [7] to other shapes and to
external Playground modules.  The “handles” of a selected graphics item act as data ports to the item’s
attributes, allowing end-users to define the constraints.  For example, Figure 3 shows how the Earth
graphical object from Figure 2 is constrained to be strictly circular and fixed in size.  In Figure 3a, the
Earth is selected, showing its handles; the user constrains the Earth to be strictly circular by drawing a
constraint between the height and width handles. Figure 3b shows the result of applying this constraint.
EUPHORIA allows end-users to optionally view the established constraint relationships among graphics

Figure 2:  Interactive Orbital Simulation in EUPHORIA.
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objects.  The constraint between the width and height is shown as an arrow in Figure 3b.  One can also
“anchor” an attribute, preventing its value from being changed.  In Figure 3c, the “width” handle is
anchored; this constraint is shown as a square around the width handle.  Also note that the direction of the
width-height constraint changes as a result of anchoring the width.  Since constraints are multi-way, the
computation flow of the constraints changes dynamically based on the addition/deletion of constraints,
user interaction, and external updates from published variables.  More information about EUPHORIA’s
constraint system may be found in [13], [16].

End-users can publish Playground variables from EUPHORIA and form constraints among the variables
and graphics item attributes.  This allows other Playground modules to selectively observe or control the
state of EUPHORIA’s display.  Also, this decouples the application from the visualization since external
modules only operate in terms of their published state rather than the specifics of the graphical display.
Figure 4 shows how the position of the Earth may be exposed to external modules: by forming a constraint
between the Earth’s center attribute and an Epos published variable.  When an external change is received
for the Epos variable (i.e., communicated through a logical connection), the system responds by animating
the Earth’s picture to the appropriate location.  Similarly, manipulating graphics items associated with
EUPHORIA’s published variables results in communication of the new state information to external
modules.  For example, in Figure 2, there are three points that control the shape of the Earth’s orbit.
Manipulating these points results in a communication of the updated state information to the Earth’s
orbiter module through the Ecntl variable, resulting in a change to the simulation.

Figure 3:  Defining constraints on the Earth graphical object.

Figure 4:  Publishing the position of the Earth.

(a) (b) (c)
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The features of EUPHORIA described in this section allow end-users to construct GUIs that consist of a
fixed number of graphical components.  This is presented as background information to aid in the
understanding of the remainder of this paper.  Many applications require the visualization and
manipulation of an arbitrary number of graphical items.  For example, a graph visualization GUI must be
capable of viewing many vertices and edges; it is not reasonable to force the GUI designer to draw each
item separately.  The research contributions of this paper concern the use of aggregate mappings, an
interactive technique that enables end-users to define how aggregate data is to be visualized and
manipulated.  The next section describes the design and implementation of aggregate mappings.

4. Aggregate Mappings

For the purposes of this paper, an aggregate is a data structure that is a collection of element data.
Examples of aggregates include arrays and lists.  Aggregate mapping is a mechanism to define how an
aggregate is to be represented in an interactive graphical display.  In EUPHORIA, an aggregate mapping
mechanism was designed and implemented according to the following goals:

• Creation of aggregates and their associated mappings should not involve textual programming.

• Aggregate data are to be sent and received through Playground published variables, providing a sep-
aration of the visualization from its underlying application.

• An aggregate mapping visualization should be dynamic and bidirectional, responding interactively
to both updates in underlying data elements and user manipulation during application execution.

• The relational database techniques of project, select, join, and cross product [1], [2] should be avail-
able to allow basic processing of a mapping’s aggregate data.

We intended aggregate mappings to be definable by a broad class of end-users.  Visual programming
techniques enable end-users to create aggregate mappings that visualize aggregate data received from any
Playground module.  In addition, we also wanted to provide sufficient capabilities for creating non-trivial,
interactive visualizations from scratch.  The following subsections describe the aggregate mappings in the
context of examples.

4.1 Collaborative Medical Imaging Example

As an example usage of aggregate mappings, consider the following collaborative medical imaging
application.  Given a shared graphical display, physicians at different locations (e.g., a city and its suburb)
wish to discuss a medical image while using cursors to point to areas of interest.  That is, each physician’s
GUI has a picture of the shared image, a labelled cursor that can be moved, and a number of other cursors
that are controlled by collaborating physicians.

For example, Figure 5 shows the GUIs of two application participants, Paul and Ken.  Paul’s display shows
a yellow cursor that he can move as well as the cursors of Ken and the other participants, shown in blue.
When Paul moves his cursor, the updated state information is communicated to the other participants,
resulting in real-time animation1.  This distributed application consists of a server module and a client GUI
module for each participant.  These components are launched and configured through an Application

1. Due to Internet communication delays, updates take time to be received by other participants.
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Management System [13] that is accessible through a World Wide Web interface.  However, the details of
how the application is started is not important to this discussion.

Each participant’s GUI has a published variable, Cursors, which is a list aggregate containing information
about all of the participant’s cursors.  This representation allows an arbitrary number of participants to be
present in a session, and supports the incremental addition and removal of participants.  An aggregate
mapping in each participant’s GUI defines how this aggregate is represented graphically.  In this case, each
cursor is represented as a labelled graphics item.

4.2 End-User Specification of Aggregate Mappings

In EUPHORIA, new data types can be created interactively and published by end-users through standard
“dialog box” style user interfaces [16]. EUPHORIA supports the construction all Playground types,
including arbitrarily complex nested types.  Playground supports the following aggregate types: static
array (fixed size), dynamic array (adjustable size), list, and mapping2.  Each of these types can be used in
forming aggregate mappings.

Aggregate mappings are defined by specifying relationships among the aggregate’s element type and a
prototype instance of the visualization.  An aggregate mapping is similar to the “project” operation of
relational databases, since a subset of the element data fields may be “projected” onto the visualization.  In
EUPHORIA’s data boundary, the element type is displayed as part of the published aggregate variable.  In
the collaborative imaging example, each GUI has a published Cursors variable (Figure 5).  The element
type of this aggregate is Cursor, a tuple which contains coordinate and label information (Figure 6a).  A
prototype instance is a set of graphics items and constraints that are used to specify how each aggregate
element is to be represented graphically.  In the collaborative imaging example, the prototype instance is a
cursor widget consisting of various simple shapes (Figure 6b).  As described in [16], widgets are
constructed interactively by the end-user in EUPHORIA.

2. Playground’s “mapping” datatype should not to be confused with “aggregate mappings.”  The mapping
datatype is a function, in the mathematical sense, from domain values to range values.  Aggregate map-
ping is a mechanism for defining how aggregate data is to be represented graphically.

Figure 5:  Collaborate medical imaging application.  Each participant’s GUI has a published Cursors aggregate.
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Recall that graphics object handles are used for forming constraint relationships in EUPHORIA (Section
3.2).  Handles are also used in defining the equality relationships between the aggregate’s element type and
the prototype instance.  This is done by drawing connection lines between the prototype instance’s handles
and the fields of the element type.  For example, Figure 7a shows how the relationships for the incoming
cursors of the collaborative imaging application are created.  The prototype instance’s center handle is
connected to the position field of the element type.  The instance’s text handle is connected to the label
field of the element type.  As shown in Figure 7b, each aggregate has a pop up menu that is used to define
aggregate operations.  In this case, choosing “Map Aggregate” is used to specify that the required
relationships are complete and the aggregate can be visualized.

For each aggregate element, EUPHORIA creates a copy of the prototype instance and inserts it into the
visualization.  Each copy’s attributes are constrained to the corresponding element fields according to the
specified relationships between the element type and the prototype instance.  The result is a collection of
graphics instances whose attributes are associated with the aggregate’s elements.  In the collaborative
imaging example, a cursor widget is created for each aggregate element.  The position and label fields
of each element are connected to the attributes of each cursor through constraints.  For example, the label
field is connected to the text handle, meaning that the text of the cursor displays the value of the label
field.  Since multi-way constraints are used, consistency between the aggregate and its visualization is
automatically enforced.  External updates to the aggregate are propagated to visualization instances
through constraints, resulting in display updates or animation (Figure 8).  Similarly, user direct
manipulation with the visualization instances causes state changes to be propagated back to the aggregate.
In Playground, this results in the updated state being sent out to external modules3.

3. In the collaborative imaging application, the Cursors aggregate mapping is used only for displaying the
cursors of other participants.  A separate cursor is created for each individual to control.  This configura-
tion adds the restriction that each participant can only move and change the label of their own cursor.

Figure 6:  (a) Aggregate with its associated element type exposed.  (b) Prototype instance of the aggregate mapping.

Figure 7:  (a) Creating relationships between the element type and prototype.  (b)  Performing the mapping
operation.
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Related Features

EUPHORIA offers other features that enable further customization of an aggregate mapping visualization.
Since these features are general to EUPHORIA, and not specific to aggregate mappings, we list only a brief
description of each in this paper.  For more information on these and other features of EUPHORIA, see [13],
[14], [16].  Other features include:

• Customizable coordinate systems.

• Hierarchical constraints (priority based).

• Implicit aggregate indices.

• Arbitrary multi-way constraint computations.

First, it is possible to change the properties of the visualization coordinate system.  This allows the data of
the aggregate to be mapped using arbitrary, application-oriented coordinates, rather than the physical pixel
values of the display.  Second, in establishing constraints among prototype items and the element type, one
can assign a priority “strength” value to each constraint.  This can be used to customize the update and
interaction behavior of mapping items.  For instance, one could create anchor constraints on the prototype
with a particular strength so that aggregate mapping items can only be modified by external modules and
not by the user.  Third, it is possible to use the “implicit index” value of each aggregate element (i.e., the
index representing an element’s order in the aggregate) while forming an aggregate mapping.  One use of
this feature would be to create a layout of an aggregate’s elements. Fourth, in addition to the equality and
anchor constraints described previously, EUPHORIA also allows end-users to create multi-way constraint
computations from algebraic formulas (e.g., “x = y2 + 10”) using a “calculator” like interface.  These
constraints can be used to establish arbitrary relationships among prototype graphic items and the
aggregate’s element type.

4.3 End-user Interaction with Aggregate Mappings

Given a mapped aggregate, the user can change the element data by manipulating the visualization.
Depending on how the aggregate was mapped, visualization instances can be modified by moving,
resizing, modifying textual values through typing, interacting with widgets, loading image data, and
forming additional constraint relationships.  Each of these actions can result in the propagation of updated

Figure 8:  Communication among Playground modules and aggregate mappings.
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values through the mapping’s underlying multi-way constraint graph.  These updates may then modify the
aggregate’s underlying data elements.  If the aggregate has outgoing logical connections, the modifications
are communicated to external Playground modules (i.e., the underlying application components).  In
addition, users may also add or delete visualization elements to the aggregate mapping, resulting in the
addition or deletion of data elements to the underlying aggregate.

End-users may edit how an aggregate is mapped at any time during the application’s execution.  This is
done by “unmapping” the aggregate through the aggregate’s pop-up menu, editing the prototype instance
and its relationships, and remapping the aggregate.

4.4 Filtered Aggregate Mappings

It is often advantageous to view only a subset of an aggregate’s elements.  Filtering of extraneous elements
results in a faster display that is easier to comprehend.  For this reason, we have developed a mechanism
that allows the end-user to filter an aggregate mapping’s displayed elements based on a predicate.  This
filtering operation is functionally similar to the “select” operation of relational databases.

Figure 9 shows how a filter is specified on an example aggregate.  A calculator interface, mentioned earlier,
allows the user to enter arbitrary computation formulas, including boolean expressions.  At the bottom of
the calculator, boxes are shown representing the variables of the computation.  These variables can be
connected to the aggregate’s element type fields and prototype instance attributes.  In this example, a filter
is created specifying “(val < 100) and not(st = 5).”  The val and st variables are connected to
the value and state fields of the aggregate’s element type.  Once specified, the user can identify that this
expression represents a filter of the aggregate mapping (i.e., as opposed to just a computation on values of
the mapping) by choosing “Set Filter” from the aggregate’s pop-up menu.  Once mapped, the calculator
interface is hidden and only the elements of the aggregate satisfying the predicate are visualized by the
aggregate mapping.

Some may argue that this approach is not consistent with standard visual programming methods of
constructing computation components.  We feel that since virtually all users are fluent with standard
mathematical notation, this is the fastest and easiest way for end-users to specify simple computation and
boolean predicates.

Figure 9:  Specifying a filter on an aggregate.
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4.5 Joined Aggregate Mappings

Many times, single aggregates do not contain all of the relevant information needed to make a desired
aggregate mapping.  Instead, information may be spread among multiple aggregates and, in Playground,
among modules of a distributed application.  This is especially true of an application that is constructed
from different components that were created by multiple programmers.  With a joined aggregate mapping,
the data of multiple aggregates is coordinated within an aggregate mapping based on matching operations.

4.5.1 Motivating Example

We present the following example to motivate joined aggregate mappings.  The Gallager-Humblet-Spira
algorithm [8] is a distributed algorithm for computing the minimum spanning tree among a number of
independent processes.  Each process, implemented as a Playground module for this example, represents a
vertex of a complete graph.  The vertex modules work together to find the minimum spanning tree of the
graph according to the Euclidean distance among the vertices.  A message passing mechanism is used to
coordinate the computation of the minimum spanning tree.  Concurrently, tree fragments are formed by
merging adjacent fragments, starting with single vertex fragments and ending with the minimum spanning
tree.

Figure 10 shows a EUPHORIA interactive visualization of the Gallager-Humblet-Spira algorithm during
the execution of a 20 vertex graph.  The visualization consists of vertex widgets, edge lines, and message
text strings.  As the algorithm progresses, EUPHORIA continuously updates the display to reflect the state
of the application’s modules.  The vertex widgets display the state of their underlying modules by changing
shape (i.e., circles or squares), color, and level number (text value).  Edge lines are added as the algorithm
progresses and are removed upon resetting the computation.  Message strings are used to show message
passing communication between vertex pairs.  When a vertex passes a message to another vertex, a textual
representation is added to the display and is animated to move from the source vertex to the destination

Figure 10:  Interactive visualization of Gallager-Humblet-Spira distributed minimum spanning tree algorithm.
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vertex.  Users can interact with the visualization by moving vertices, adding vertices, or deleting vertices.
Each of these actions resets the state of the graph and re-executes the algorithm.

Figure 11 shows relationships among the modules of this application.  The EUPHORIA module, which
represents the visualization from Figure 10, is connected to each vertex module through the use of
element-to-aggregate connections [9].  In this way, EUPHORIA gathers vertex information from each vertex
module and combines it into a list published variable called Vertices (Figure 10).  An intermediary
module, called the “Middle Man,” is used to intercept messages passed among the vertices, providing
EUPHORIA with the Messages and Edges aggregates (Figure 10).  This module also monitors the
Vertices aggregate, and launches or terminates vertex modules in response to user addition or deletion of
vertices.

A general purpose “Animator” module is used to animate the movement of the messages in EUPHORIA.
EUPHORIA receives the animation positions of the active messages through the MessPos published list
variable.  Having EUPHORIA’s animation generated by separate modules gives application designers a
great deal of flexibility in creating visualizations, allowing “plug-in” components.  In addition, handing off
complex animation computations to separate modules (running on different computers) can increase
performance.

In this example, three aggregate mappings are used to visualize the vertices, edges, and messages,
respectively, from the published variables described in the previous paragraphs.  However, both the edges
and the messages aggregate mappings require the use of joined aggregate mappings, as described in the
next section.

4.5.2 End-user Specification of Joined Aggregate Mappings

The purpose of a joined aggregate mapping is to combine the data from multiple aggregates through the
use of matching operations.  The combined aggregate data is then used in creating an aggregate mapping.
As an example, consider the visualization of the Edges aggregate of the minimum spanning tree
application.  This aggregate stores edge information in an aggregate containing reference ID pairs of
vertices (Figure 12).  In this case, vertex state information is not known to the module that provides the
edge information (the Middle Man module).  Instead, the Vertices aggregate containing the state of each
vertex is only available in EUPHORIA.  The edge ordered pairs alone do not provide sufficient information
to visualize the edges since the positions of each edge’s end points are not included.  A joined aggregate

Figure 11:  Modules of the minimum spanning tree application.
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mapping allows the information of the Vertices aggregate to be used within the Edges aggregate
mapping through a matching operation with the Vertices id field.

In EUPHORIA, end-users specify matching operations by connecting key fields of the element types of
published aggregates.  Connecting key fields is achieved in a way that is similar to how aggregate mapping
relationships are formed: by drawing connection lines between fields of the aggregates’ element types.
Connections are drawn from a key field in a primary aggregate to a key field in a indexed aggregate.  This
has the effect of creating a virtual representation of the indexed aggregate’s element type in place of the
primary aggregate’s key field.  The virtual representation of the element type can then be used in forming
an aggregate mapping.

For example, Figure 13 shows how an Edges aggregate (primary) is joined twice with a Vertices
aggregate (indexed). Figure 13a shows the unjoined representation of the Edges and Vertices
aggregates.  Joining the first id field of the Edges element type with the id field of Vertices element
type creates a virtual representation of the Vertex type in the Edges aggregate Figure 13b.  Similarly,
joining the second id field of the Edges element type with the id field of the Vertices element type
creates another virtual representation in the Edges aggregate.

Figure 14 illustrates how the joined Edges aggregate can be used in creating an aggregate mapping.  In
Figure 14a, the Vertex virtual representations are expanded, revealing the fields of that element type.
Given a prototype instance of the aggregate mapping, a line graphics item in this case, the relationship
between the joined aggregate and the prototype can be established by connecting the pos element fields

Figure 12:  Using join to visualize graph edges.

Figure 13:  Joining Edges and Vertices aggregates.
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(position of vertices) to the handle attributes of the prototype.  Once these relationships are established, the
aggregate can be mapped in the usual way (Figure 14b), resulting in the visualization of the graph’s edges.

In a conventional join operation, a new aggregate representing the result of the join is created using the
source aggregate data.  However, this approach is not sufficient if one wants to manipulate the
visualization, since changing a copy of the data will not affect the original.    Our join operation does not
create such copies.  Instead, visualization instances are associated directly with both the original primary
and indexed aggregates through the use of multi-way constraints.  In this way, visualization instances may
be “linked,” providing consistency among the aggregates and their visualizations.  For example, in the
minimum spanning tree application, the Edges aggregate is visualized using line graphics items through a
join with the Vertices aggregate.  Separately, the Vertices aggregate is visualized as vertex widgets.
Since both visualizations use portions of same underlying data (vertex positions), manipulating either of
these visualizations can affect the other.  For instance, moving a vertex has the effect of changing the end
point of each incident edge, updating the visualization of the edges as a result.  Moving an edge has a
similar effect on its end point vertices, and in turn, the edges connected to those vertices.  Deleting a vertex
also affects the edge mapping, removing all incident edges from the visualization.

4.5.3 Join Algorithm Overview

For each primary aggregate element (e.g., edge pair from the previous example), a matching operation is
performed to find the indexed aggregate elements (e.g., vertices from the previous example) matching each
of the key fields.  The primary aggregate element and its matches are used to create aggregate mapping
visualization instances (e.g., edge lines from the previous example).  Since each key field can have
multiple matches, a cross product operation may be used to create multiple visualization instances.  For
example, if half of the vertices have id=0 and half have id=1, specifying an edge of (0, 1) would result in
the visualization of a bipartite graph (i.e., an edge between each 0 vertex and each 1 vertex).  In this way,
joined aggregates are functionally similar to “join” and “cross product” operations of relational databases.

A joined aggregate’s matches may change incrementally over time in several different ways.  For example,
key field values of one or more primary and/or indexed aggregate elements may be changed at any time by
its application.  Also, values from primary and/or indexed aggregates may be added or removed at any time
by either the application or the user.  For reasonable performance, the storage for matches must be fast,
must support cross products efficiently, must keep track of existing matches to avoid redundancy, and must
be able to quickly remove matches in a variety of ways.  See [13] for details on our algorithm for managing
the matches of a joined aggregate.

Figure 14:  Defining the Edges aggregate mapping.
(a) (b)
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5. Future Work

It would be helpful to have an end-user mechanism to specify the layout of aggregate mapping instances.
Although the end-user can currently specify simple layouts through the use of an aggregate’s implicit
indices and arbitrary constraint computations (Section 4.2), this approach can be cumbersome.  Another
approach to this problem would be to specify the layout graphically through induction-style rules.  With
this strategy, similar to a demonstrational approach [6], [17], the end-user would specify the mapping of the
first aggregate element (base case) and the relationship between an aggregate instance k and the next
element k+1.  From this information, the system would inductively place each instance element of the
aggregate.  In addition, a number of boundary conditions could be included to deal with special cases.  For
example, consider the visualization of items in a row-column organized table.  The position of each item is
determined by the size of previous items and the dimensions of the table (i.e., for wrapping).  With layout
rules, the end-user could specify this organization in EUPHORIA without relying on external modules to
explicitly set the position of each item.

6. Summary

We have presented aggregate mapping, a mechanism that enables end-users to visualize and manipulate the
data of an aggregate, such as an array or a list.  End-users specify aggregate mapping visualizations
through visual programming techniques in the EUPHORIA user interface management system.  No textual
programming is required.  Used in conjunction with The Programmers’ Playground distributed
programming environment, aggregate mappings offer a way to customize distributed applications,
enabling end-user construction of graphical user interfaces and visualizations.  User interfaces and
visualizations constructed in this way respond to both continuously changing aggregate data of a
distributed application and end-user manipulation of the data through the visualization.  Supporting this
direct manipulation feedback to the application is particularly challenging because it means that all of the
visualization steps are invertible so that changes of the resulting visualization can be mapped back to the
application.

By nature, a distributed application’s state is divided among potentially many components.  This property
makes it difficult to construct visualizations since information must be combined from different sources in
a meaningful way.  We have presented several mechanisms to address this problem.  Playground’s element-
to-aggregate connection type enables data to be aggregated from many distributed application components.
Filtered aggregate mappings enable the end-user to selectively view only certain aggregate elements,
resulting in an display that is easier to understand.  Joined aggregate mappings provides a way to combine
data from multiple aggregates into a single aggregate mapping, using an end-user defined matching.  These
mechanisms are powerful tools in the construction of aggregate visualizations, providing functionality
similar to that of project, select, join, and cross product of relational databases.
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