
17th ACM Symposium on Operating Systems Principles (SOSP ’99),
Published asOperating Systems Review, 34(5):140–153, Dec. 1999

Integrating segmentation and paging protection for safe,
efficient and transparent software extensions

Tzi-cker Chiueh Ganesh Venkitachalam Prashant Pradhan

Computer Science Department

State University of New York at Stony Brook

chiueh, ganesh, prashant@cs.sunysb.edu

Abstract

The trend towards extensible software architectures and
component-based software development demands safe, effi-
cient, and easy-to-use extension mechanisms to enforce pro-
tection boundaries among software modules residing in the
same address space. This paper describes the design, im-
plementation, and evaluation of a novel intra-address space
protection mechanism calledPalladium, which exploits the
segmentation and paging hardware in the Intel X86 archi-
tecture and efficiently supports safe kernel-level and user-
level extensions in a way that is largely transparent to pro-
grammers and existing programming tools. Based on the
considerations on ease of extension programming and sys-
tems implementation complexity,Palladiumuses different
approaches to support user-level and kernel-level extension
mechanisms. To demonstrate the effectiveness of thePalla-
dium architecture, we built a Web server that exploits the
user-level extension mechanism to invoke CGI scripts as lo-
cal function calls in a safe way, and we constructed a com-
piled network packet filter that exploits the kernel-level ex-
tension mechanism to run packet-filtering binaries safely in-
side the kernel at native speed. The currentPalladiumpro-
totype implementation demonstrates that a protected proce-
dure call and return costs 142 CPU cycles on a Pentium
200MHz machine running Linux.

1 Introduction

Two emerging trends in applications software development
call for operating systems support for establishing protec-
tion boundaries among program modules that execute in
the same address space. First, the notion ofdynamic ex-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
c1999 ACM 1-58113-140-2/99/0012. . . $5.00

tensibility has prevailed in almost every major category
of software systems, including extensible database systems
[26], to which third-party data blades can be added to per-
form type-specific data processing, extensible operating sys-
tems [6, 15, 23], which support application-specific resource
management policies, programmable active network devices
[1, 27] that allow protocol code running on network de-
vices to be tailored to individual applications, and user-level
applications that dynamically integrate third-party modules
to augment the applications’ core functionalities such as
Adobe’s Premiere [12] and Apache Web Server [2]. A dis-
tinct feature of extensible software systems is support oflive
addition and removal of software modules into and from a
running program. Because the host program and the exten-
sion software modules share the same address space, an ef-
fective and efficient mechanism to protect the core of the
running host program from dynamically inserted extension
modules is crucial to the long-term viability of extensible
software architecture. Second, component-based software
development (CBSD) [18] is emerging as the dominant soft-
ware development methodology because it significantly im-
proves software productivity by encouraging modularity and
re-usability. As software components produced by multi-
ple vendors are used to construct complete applications, a
proper level of protection among software components is es-
sential to address the key challenge of the CBSD method-
ology: prevention of interference among independently de-
veloped components and the resulting loss of system robust-
ness. Appropriate inter-component isolation makes it is eas-
ier to quarantine buggy components and pinpoint the cause
of application malfunctioning.

Although a number of approaches have been proposed
to provide intra-address space protection, such as software
fault isolation [29], type-safe languages [6], interpretive lan-
guages [17], and proof-carrying code [19], none satisfies
all the design goals of an ideal intra-address space pro-
tection mechanism: safety from corrupting extension mod-
ules, low run-time overhead, and programming simplicity.
The commonality among all the above approaches is the
use of software-only techniques to create protection do-
mains within an address space. The implicit assumption of
these approaches is that hardware-based protection mech-

140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24312025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

anisms are only applicable to inter address-space protec-
tion. In contrast, this paper describes an intra address-space
protection mechanism calledPalladium, which is based on
the segment-level and page-level protection hardware in the
Intel X86 architecture.Palladium is efficient, guarantees
the same level of safety as using separate address spaces,
and requires only modest efforts in the deployment and de-
velopment of software extensions. Although the proposed
mechanism is geared towards the Intel X86 architecture, the
fact that this architecture dominates more than 90% of the
world’s desktop computer market implies that it can have
wide applicability and thus see practical uses.

The basic idea ofPalladiumto protect an extensible ap-
plication from its extensions is to put the core program and
its extensions in disjoint segments that belong to the same
address space but are at different protection levels. Because
software extensions are put at a less privileged protection
level than the core program, they cannot access the core pro-
gram’s address space without proper authorization. This ap-
proach is possible because the Intel X86 architecture sup-
ports variable-length segments and multiple segment protec-
tion levels. Unfortunately, this approach significantly com-
plicates the interfaces between extensible applications and
their extensions because cross-segment references require
changes to the underlying pointers and thus put additional
burdens on application programmers and/or compiler writ-
ers. While the requirement of changing inter-segment point-
ers is acceptable for kernel extensions, it is considered too
drastic for user-level extensions. As a result, we developed
a separate protection mechanism that exploits the page-level
and segment-level protection hardware features of X86 ar-
chitecture to support user-level extensions without requiring
pointer modifications. This second mechanism significantly
improves the transparency of extensions programming com-
pared to the segment-only approach.

The rest of this paper is organized as follows. Section
2 reviews previous works on supporting intra-address space
protection. Section 3 details the virtual memory support
from the Intel X86 architecture. In Section 4, we describe
Palladium’s protection and protected control transfer mech-
anisms to support kernel and user-level extensions. Section
5 presents a comprehensive performance study ofPalladium
based on measurements from a user-level extensible appli-
cation for fast CGI script invocation, and a kernel-level ex-
tensible application for packet filtering. Section 6 concludes
this paper with a summary of main results and an outline of
the on-going work.

2 Related work

Previous approaches to fast communications between pro-
tection domains attempt to either establish protection bound-
aries within an address space or reduce the IPC overhead
between address spaces. Most of them focused mainly on
kernel-level extensions but not on user-level extensions. In
this section, we review important ideas from these efforts
and conclude with a comparison between them andPalla-
dium.

2.1 Providing protection within an address
space

Multics [4, 11] pioneered the use of segmentation and ring-
like protection hardware, which is available in GE-645 ma-
chines, in virtual memory architecture. Segments are visi-
ble to application programmers and are used to host code,
stack, data, and even files and directories. Data sharing
within a process or among processes is controlled through
segment-level protection checks. Unlike the X86 architec-
ture, the paging hardware in GE-645 does not support page-
level protection. Paging in GE-645 is mainly for perfor-
mance optimization rather than for protection.Palladium’s
kernel-level extension mechanism is similar to Multics, but
its user-level extension mechanism is quite different.Palla-
diumexploits both page-level and segment-level protection
checks to hide segmentation from application programmers
and existing programming tools.

HP’s PA-RISC architecture [21] provides the most com-
prehensive protection and security hardware support among
modern RISC machines. Like X86, PA-RISC has 4 privilege
levels. Similar to segments, PA-RISC supports the notion of
multiple protection identifiersper process. A page with a
given access identifieris only accessible to a process with
the matching protection identifier. By associating different
sets of protection identifiers with different code modules in
the same process, PA-RISC can support multiple protection
domains within a single address space. However, except a
brief mention in Brevix [30], no general OS extension mech-
anisms built on top of this architectural feature have been
reported in the literature. Opal, which is a single-address-
space OS [7], also used a similar protection-domain identi-
fier idea to enforce protection boundaries within an address
space.

One software-only approach to provide intra-address
space protection is to interpret rather than execute an exten-
sion. Protection can be guaranteed only if the interpreter
itself is correct. An example of this approach is Java-based
systems, where the language itself is type-safe and does not
allow arbitrary pointer accesses [10], and run-time interpre-
tation of Java programs can perform additional checks to
detect bugs such as those that cause denial of service [8].
For example, the HotJava Browser can be extended with ap-
plets written in Java [24]. Another example is the Berkeley
Packet Filter, in which the kernel interprets filtering rules
submitted by the applications [17]. There are two problems
with the interpretation approach. First, the safety/security
offered by this approach is only as strong as the interpreter
implementation. For example, there have been a number of
security-related bugs discovered in Java virtual machine im-
plementations. The problem is that software systems remain
difficult to verify. The second problem is that Java appli-
cations are still less efficient than their C counterparts, ei-
ther because of run-time interpretation [24] or because of
additional type checking and garbage collection cost when a
just-in-time compiler is used.

In software fault isolation (SFI), an extension issand-
boxedso that any memory accesses it makes are guaranteed
to fall within the memory region allocated to the extension
[29, 25]. Additional instructions are inserted to the exten-

141

sion’s binaries to force memory accesses to fall into the ex-
tension’s allocated region. The protection offered to appli-
cations can be write protection (only writes made by the ex-
tension are forced), or read-write protection (all memory ac-
cesses are forced). VINO [23] is an extensible kernel that
uses SFI. The overhead imposed by SFI ranges from under
1% to 220% of the execution time of an unprotected exten-
sion running in the same address space.

Another way to protect an extensible application from its
extensions is to write the extensions in a type-safe language,
such as Modula-3. Because of the language restrictions, the
extension cannot access the application memory and corrupt
the core program. This is the approach taken by SPIN [6].
The SPIN OS kernel itself is written in Modula-3, and it is
possible to extend the kernel at the granularity of individual
functions by dynamically linking code written in Modula-3
into the kernel. Protection is ensured by both compile-time
and run-time checking performed by the language compiler
and run-time system. The difference between this approach
and SFI is that the application depends on the Modula-3
compiler to generate code for run-time checking. A buggy
compiler can actually allow extension code to corrupt the
application, and at least once, such an incident has occurred
[24]. The overhead percentage of this approach depends on
the types of operations that extensions perform, and has been
found to range from 10% to 150% of the same code written
in C.

The protected shared libraries project [3] attempted to
build sensitive systems services as user-level libraries, rather
than into the kernel. The implementation on AIX 3.2.5 still
required context switching for protection-domain crossing,
and thus suffered from a much higher performance overhead
compared toPalladium.

2.2 Reducing IPC overhead

Lightweight RPC (LRPC) [5] reduces the overhead associ-
ated with making an RPC call to a server process execut-
ing in the local machine by optimizing data copying and
network-related processing operations. In LRPC, a server
module registers itself with the kernel and exports a set of
procedures to the kernel by creating a Procedure Descriptor
List. Each Procedure Descriptor in the list will have an asso-
ciated argument stack. The client and server share the argu-
ment stack when a procedure in the server is invoked. This
eliminates copying data multiple times. Since the client, the
kernel, and the server have foreknowledge that the partic-
ular RPC call is to a server running on the local machine,
argument marshaling overhead can be eliminated and sim-
ple byte copying can be used. Further, the server and client
stubs are directly invoked by the kernel with a simple upcall.
The result is that LRPC performs up to four times faster than
conventional RPC. On a C-VAX Firefly machine, LRPC re-
quires 125�secs for a Null function call to complete, com-
pared to 464�secs for a more conventional RPC call. Note
that two context switches and four protection domain cross-
ings must still be performed by the LRPC mechanism for a
request-reply transaction.

The L4 micro-kernel [16] achieved extremely fast IPC

performance by sharing page tables between multiple pro-
cesses. On the Intel Pentium Processor, the kernel ensures
that processes are protected from each other by reloading
the segment registers on a context switch. Thus a page table
switch and the associated TLB flush is avoided when pos-
sible. In an L4 micro-kernel running on an Intel Pentium
166MHz Processor, an IPC request-reply requires a mini-
mum of 242 cycles, or 1.46�secs in the ideal case. However,
four protection domain crossings are needed for a request-
reply transaction. Moreover, if the sum of the virtual address
spaces covered by the segments of active processes exceeds
the 4-GByte virtual address space available in the proces-
sor, the kernel either has to prevent further processes being
spawned or incurs the overhead of a page table switch. Ex-
plicit data copying is still inevitable in L4 for processes to
share data. Another single-address-space OS, Mungi [13], is
built on L4’s fast IPC to support sparse capabilities and fast
protected procedure calls on MIPS-R4600 64-bit micropro-
cessor.

2.3 Comparison

Software-only approaches to support intra-address space
protection that are based on SFI, interpretation, or type-safe
languages requiring dynamic typing checks, incur an over-
head that is approximately proportional to the amount of ex-
tension code executed. In addition, the protection guarantees
provided by software-only approaches is only correct if the
implementation of the compiler, the interpreter, or the binary
patching tool is bug-free. Past experiences indicate that this
need not always be the case.

Hardware-based protection mechanisms do not incur
per-instruction overhead beyond the processor-level perfor-
mance cost. The cost of invoking an extension is typically a
one-time cost associated with each protection-domain cross-
ing. Hardware design is also more likely to be tested exten-
sively or verified formally, and thus is less buggy compared
to software at the same level of product maturity. In addi-
tion, hardware-based approaches do not require substantial
changes to existing programming practices, and thus greatly
simplify extension programming. It is not necessary for de-
velopers to learn new programming languages or to drasti-
cally change current programming styles to compose safe
extension modules. Until now, very few extension mech-
anisms have exploited segmentation hardware support [16]
to support multiple protection domainswithin an address
space, especially at both the user and kernel levels. To the
best of our knowledge,Palladium is one of the first, if not
the first such successful attempts.

3 Protection hardware features in Intel X86
architecture

3.1 Protection checks

Intel X86 architecture’s virtual memory hardware supports
both variable-length segments and fixed-sized pages, as
shown in Figure 1. A virtual address consists of a 16-bit

142

DPL

16 0

Segment Selector Offset

GDT/LDT

310

+

Two-Level
Page Table

Address
Physical

Linear
Address

Virtual Address

Limit +4

31 16 0

07131516192431

+0

Descriptor Format

15:00
Base

15:00
Limit

19:16 23:16
Base

31:24
Base P

31

Page Table Entry Format

2 1 012

Page Frame Address PU W

T
I PL

2

Figure 1 . The virtual memory architecture of Intel X86 architecture, which provides both segment-level and page-
level protection checks, and supports variable-length segments as well as a 4-level protection ring. For each
memory access, the hardware performs checks for segment limit violation, segment-level and page-level protection
violation, and read/write permission. To speed up the translation and protection check process, modern X86-based
processors include a Translation Lookaside Buffer (TLB), which is automatically flushed on task switch.

segment selector, which is in one of the on-chip segment reg-
isters, and a 32-bitoffset. which is given byEIP register for
instruction references,ESPregister for stack operations, or
other registers/operands in the case of data references. The
segment selector is an index into theGlobal Descriptor Ta-
ble (GDT) or the current process’sLocal Descriptor Table
(LDT). The choice between GDT and LDT is determined
by a TI bit in the segment selector. The GDT or LDT entry
indexed by the segment selector contains asegment descrip-
tor, which, among other things, includes the start and limit
addresses of the segment, the segment’s descriptor privilege
level (DPL), and R/W read/write protection bits. The 32-bit
offset is added to the given segment’s start address to form a
32-bit linear address. The most significant 20 bits of a linear
address are a virtual memory page number and are used to
index into a two-level page table to identify the correspond-
ing physical page’s base address, to which the remaining 12
bits are added to form the final physical address. The page
size is 4 KBytes.

Each segment can be in one of four possible segment
privilege levels (SPL), which is specified in the DPL field
of the segment’s descriptor. Each virtual page can be in one
of two possible page privilege levels (PPL). SPL 0 is the
most privileged level and SPL 3 is the least privileged level.
Similarly, PPL 0 is more privileged than PPL 1. By default,
pages that belong to segments at SPL between 0 to 2 are
mapped to PPL 0 while pages that belong to segments at
SPL 3 are mapped to PPL 1. Therefore, code segments at

SPL 3 do not have the privilege to access pages at PPL 0.
The segment privilege level of the currently executing code
is stored in the last two bits of the Code Segment register.

Intel X86 architecture provides protection checks at both
segment and page levels. After a linear address is formed,
the hardware checks whether it is within the corresponding
segment’s limit as specified in the segment descriptor. Pro-
gram execution based on code residing at a less privileged
level, i.e., with a higher SPL, cannot access data segments
or jump to code segments that are at a more privileged level,
i.e., with a lower SPL. At the page level, the protection hard-
ware ensures that programs executing at SPL 3 cannot access
a page marked as PPL 0 and programs executing at SPL 0
to 2 can access all pages. With segmentation checks, each
segment can form an independent protection domain if seg-
ments are disjoint from one another.

CPU control registers that are related to protection, in-
cluding the base address registers for LDT and GDT, and
the registers that point to the starting address of the current
process’sTask State Segment(TSS) and page table, TR and
CR3 can only be modified by code running at SPL 0. The
TSS of a process holds, among other things, the base phys-
ical address of the process’s page table. On a task switch,
the hardware automatically loads CR3 using the informa-
tion from TSS, and flushes the TLB. Finally, a code segment
cannot lower its SPL without invoking a kernel service via
Interrupt gates.

143

3.2 Control transfer among protection do-
mains

While the protection mechanisms described in the previous
subsection successfully confine the instruction and data ac-
cesses of a code segment to domains at the same or less priv-
ileged levels, there are legitimate needs for less privileged
programs to access data or instructions at more privileged
levels. One of such mechanisms provided by Intel X86 ar-
chitecture is thecall gate. A call gate is described by a 8-
byte segment descriptor entry in the GDT or LDT. To make
an inter-segment or inter-privilege-level procedure call, the
lcall instruction is used in conjunction with a call gate
ID. Each call gate entry also contains a descriptor privilege
Level that specifies the minimum privilege level required to
access this call gate and an entry point to which the control is
first transferred in every invocation of this call gate. Because
call gates themselves reside in the GDT/LDT, and thus are
modifiable only by code running at SPL 0, normal user-level
code cannot change them to gain unauthorized accesses.

To prevent corruption through stacks in inter-privilege-
level procedure calls, each privilege level has its own stack.
Stack switching is required for procedure calls that cross
privilege levels. Each process’s TSS has three stack point-
ers, one for SPL 0, 1, and 2, and each consists of a segment
selector and an offset. TSS does not keep a separate stack
pointer for SPL 3, because X86 architecture doesnot allow
a more privileged routine to call a less privileged routine.
Note that there is still a stack specifically for SPL 3, but SPL
3’s stack pointer does not have to be explicitly stored in the
TSS.

4 Intra-address space protection

4.1 Extension programming model

Palladiumsupports safe and dynamic extensions at both user
and kernel levels and assumes the following extension pro-
gramming model:

� A core program, the kernel or an extensible applica-
tion, is protected from dynamically-linked extension
modules but not vice versa. Among extension mod-
ules, the protection is only for safety but not for secu-
rity.

� Extensions are protected function calls, which are
single-threaded and always run to completion. The
extensions of all existing extensible operating systems
[23, 6, 15] are also based on this function call model.

� To avoid data copying, extensions and the core pro-
gram can share data through specific data areas that
could be chosen at run time.

� User extensions cannot make arbitrary system calls
without going through hosting applications, and kernel
extensions can access only certain core kernel services
as determined by the kernel.

3GB

Data/Stack
Segment
SPL=3
PPL=1

SPL=3
PPL=1

Segment
Code
User

Kernel
Data/Stack
Segment
SPL=0
PPL=0

Kernel
Code

Segment
SPL=0
PPL=0

Kernel

0GB

4GB

Procedure Linkage Table

Text

Global Offset Table
Data

BSS

Heap

Relocated Shared Library

Stack

User

Figure 2 . The layout of a Linux process’s virtual ad-
dress space. The Procedure Linkage Table and Global
Offset Table used in dynamic loading/linking. Shared
libraries are memory mapped to the middle of the un-
used region between Heap and Stack. The shaded
areas are free regions.

4.2 Virtual address space structure in Linux

The current prototype implementation ofPalladiumis based
on Linux 2.0.34. In Linux, the 4GByte virtual address space
(VAS) is arranged as follows. The User Code segment spans
0 to 3GByte. The User Data/Stack segment also spans 0
to 3GByte. Both segments are accessible to user-level pro-
cesses and are set at SPL 3 and PPL 1. The Kernel Code and
Data/Stack segments both span 3GByte to 4GByte, and are
set at SPL 0 and thus protected from user processes. Ker-
nel segments are always present in the GDT and thus are
a part ofeveryrunning user process, but they are only ac-
cessible through Interrupt gates. In summary, a Linux pro-
cess’s VAS has 4 segments: two user segments spanning
0 to 3GByte and two kernel segments spanning 3GByte to
4GByte. The protection of kernel segments from user seg-
ments are through both segment limit and SPL checks.

Figure 2 shows the layout of the virtual address space
of a Linux process. The user code is loaded at a starting
address a little bit greater than 0, thus leaving a hole at
the bottom. This hole is to map the code/data inld.so
that performs relocation. Text is the code region, Data is
the initialized data region and BSS is the uninitialized data
region. Heap grows towards the Kernel segment whereas
Stack grows away from the Kernel segment. Global Offset
Table and Procedure Linkage Table are used to support dy-
namically linking/loading. The unused areas between Stack
and Heap are shown as shaded zones in Figure 2. Files can
be memory mapped into any free area in the 0-3GByte range.
For example, shared libraries are usually mapped into the
middle of the 0-3GByte range when they are loaded.

144

Kernel
Data/Stack
Segment
SPL=0
PPL=0

Kernel
Code

Segment
SPL=0
PPL=0

4GB

3GB

0GB

Extension-2

Extension-1

SPL=1, PPL=0

SPL=1, PPL=0

Kernel

User

Segment

Kernel
Extension

Segment

Kernel
Extension

Figure 3 . The layout of the kernel portion of a Palla-
dium process’s virtual address space. One or multiple
extension segments, in this case 2, can be loaded into
the kernel address space, i.e., 3-4GByte, and they are
put at SPL 1 and PPL 0.

4.3 Safe kernel extension mechanism based
on segment-level protection

Linux can load modules into the kernel dynamically using
theinsmod utility. A loadable kernel module, once loaded,
is effectively part of the kernel in the sense that it can access
anything accessible to the kernel. The goal ofPalladium’s
safe kernel extension mechanism is to prevent buggy kernel
extension modules from corrupting the kernel address space
and crashing the entire system. The basic idea of protecting
the kernel from its extension modules is simple: load each
extension module into a separate and less privileged seg-
ment that falls completely within the kernel address space,
as shown in Figure 3. Specifically, a specialextension seg-
mentthat spans a subrange of the kernel address space, i.e.,
between 3GByte and 4GByte, and has its SPL set at 1, is cre-
ated to hold extension modules. The kernel can still access
everything in the extension segment, but the extension mod-
ule is confined to its own segment because any attempts to
access the portion of the kernel address space that is outside
the extension segment will cause either segment limit check
or SPL check to fail.

Figure 4 illustrates the interaction between a user pro-
cess, the kernel, and a kernel extension. A user process re-
quests a specific kernel service by calling aninterrupt gate
(Step 1), which first performs necessary checks, switches to
a per-process kernel stack and saves the code/stack pointers
for the user process, and jumps to the corresponding kernel
routine by indexing into the System Call Table (Step 2 and
3). After the kernel service is completed, the user process’s
state is restored and the control returns to the user process
(Step 10).

Palladiumloads an untrusted kernel extension into an ex-
tension segment, including its code, data, and stack struc-
tures. Because the extension segment’s SPL is 1, it will
never be able to corrupt the part of the kernel address space
outside the extension segment. There is only one stack for
each extension segment; that stack is allocated when the first
module is loaded into that extension segment. One or more
modules can be loaded into an extension segment. Mod-
ules loaded into the same extension segment can share a sin-
gle stack becausePalladiumassumes that they will not run
concurrently.Palladiumdoes not provide protection among
software modules loaded into the same extension segment.
However, inter-module protection could be easily supported
by creating one extension segment per module. Modules
that share an extension segment can freely share data among
themselves without cross-segment data movement.

Whenever a new extension is loaded into the kernel, it
registers with the kernel one or multiple function pointers
as extension service entry points. The kernel keeps an Ex-
tension Function Table for these functions and invokes new
extension services as needed.Palladiumfirst checks for the
existence of a given extension by name (Step 4). If the re-
quired extension service has not yet been instantiated, no ac-
tion is taken; otherwise the corresponding service is invoked
(Step 5 and 9).

Although extension modules are confined to the exten-
sion segment, they may access kernel routines and states
through a pre-defined interface that resembles a conventional
user-kernel system-call interface (Step 6, 7, and 8), which in
the current implementation is designed specifically for a pro-
grammable network router [22]. The kernel service function
called by an extension module executes in the kernel stack of
the user process that triggers the kernel extension. If the ker-
nel does not act on any user process’s behalf when invoking a
kernel extension, such kernel service functions execute in the
stack of theidle process. The execution of a kernel extension
is expected to be entirely self-contained, i.e., without any
kernel service invocation. For example, packet filters, new
protocol stacks, and new device drivers have been shown to
be implementable in user space, where besides parameter
passing, interaction with the kernel is only needed during the
initial set-up and final result-passing phases, but not during
the execution of the main body of extensions. However, to
facilitate and simplify kernel extension programming,Palla-
diumchooses to expose a set of core kernel services without
compromising safety/security.

In addition to synchronous function calls,Palladiumalso
supports a primitive form ofasynchronousextensions. In
this case, the kernel puts a request into the target extension
module’s request queue, marks the modulebusy, and returns.
When extensions that are busy are scheduled for execution,
they pick up a request from their queue and run that request
to the completion before servicing the next. Asynchronous
extensions are used to support extension functions that are
not re-entrant but may be called independently from multi-
ple points in the kernel while the previous invocation is still
in progress. For example, an incoming packet can be queued
for the asynchronous service of protocol-specific packet fil-
tering, if the CPU is busy with other high-priority tasks on
packet arrival. Because each extension segment has its own

145

8
Table

Function
Extension

Function
Kernel

Area
Data

Shared

7

6

5

4

3

2

101

Extension

9

User Process P

Kernel

Table
Function
Kernel

Extension
Stack
Frame

Extension
Function

User

Service

Kernel

Per-Process

Call
System

Interrupt Gate

System
Call
Table

Stack
Kernel

.

.

.

.

Figure 4 . Interactions between a user process, the kernel, and a kernel extension. A simple system call that does
not involve kernel extensions takes the path 1-2-3-10. A system call that requires the service of a self-contained
kernel extension takes the path 1-2-3-4-5-9-10. Finally, a system call that requires the service of a kernel extension,
which in turns requires some kernel service, takes the path 1-2-3-4-5-6-7-8-9-10

stack, both synchronous and asynchronous extensions exe-
cute in the stack associated with their extension segments.

To facilitate data sharing and reduce data copying be-
tween the kernel and extension modules, an extension can al-
locate a shared data area inside its extension segment (shown
in Figure 4), to which the kernel can pass arguments into
and out of extension functions. The shared area is given a
well-known symbol, which the kernel checks for existence
at run time. This shared area is read/write accessible to both
the kernel and extension modules and is meant to hold non-
sensitive data during extension processing, e.g., the headers
of network packets that need to be examined by both the ker-
nel and its extensions.

Palladium’skernel extensions are written as kernel mod-
ules and are loaded into the kernel using a modified version
of insmod . Extension programming is identical to kernel
module programming, except that they can build on the set
of core kernel services exposed to kernel extensions.

4.4 Safe user-level extensions

4.4.1 Combining paging and segmentation protection

A user-level process in Linux can also dynamically load an
extension module into its address space usingdlopen,
dlsym and dlclose . Similar protection issues arise
between an extensible application, such as an extensi-
ble database management system, and its extension mod-
ules, such as type-specific access methods. Although the
segmentation-based kernel extension mechanism described

in the previous subsection could be applied to supporting
safe user-level extensions in theory, the following consider-
ations motivate us to develop a separate protection mecha-
nism for user-level extensions.

First, directly applying the segmentation-based approach
to user-level extensions makes it difficult to share code or
data between an extensible application and its extensions.
Because the extended program and the extensions have dif-
ferent base addresses, pointers need to be swizzled before
being passed among segments. In a similar vein, the Linux
kernel interprets the pointer arguments passed through sys-
tem calls with respect to the base address 0. If extensions
are allowed to make system calls directly, the Linux kernel
has to identify the calling code segment’s base address and
adjusts the pointer arguments accordingly, for every system
call.

Secondly, the relocation routines in the current dynamic
library package need to be modified to load extensions to
an extension segment with a different base address than 0.
Becausegcc and ld assume a linear virtual address space
architecture, they are not designed for segments.

Finally and most importantly, extensions cannot share
standard libraries with the extended program, because li-
brary routines such aslibc are in the application segment
but outside any extension segment. Puttinglibc inside
an extension segment is not a solution to this problem be-
cause there may be multiple extension segments. Actually,
this scheme leads to a potential security vulnerability since
extensions may corrupt the extended application by damag-
ing the data areas used bylibc functions that have internal

146

buffers such asfprintf . Linking each extension module
statically with all the library functions it needs is another
possibility. Unfortunately, this approach not only wastes
memory, but is also incorrect, because a buffering and thus
stateful library function may have multiple copies residing in
the same address space simultaneously. Note that thelibc
problem does not exist in the context of kernel extensions.

Instead of pure segmentation, we chose an approach that
uses both paging and segmentation protection hardware to
support safe user-level extensions, as shown in Figure 5.
An application process starts at SPL 3 by default and, if it
is meant to be extensible, it then promotes itself to SPL 2
through aninit PL system call which sets the PPL of all
the process’s writable pages to 0 and creates an extension
segment that is at SPL 3 and spans 0 to 3GByte. Finally,
the PPL of any pages that the extended application wants to
expose to user-level extensions, such as code in shared li-
braries or data regions shared between the application and
extension, is set to 1. This data sharing mechanism dictates
that the size of the shared data area be a multiple of the page
size. It may also lead to additional data copying unless the
shared data is carefully placed when they are generated.

Because the application and extension segments have the
same base address, a user-level extension can access any-
thing in the 0-3GByte address range at thesegmentlevel,
i.e., the segment-level protection checks will go through.
However, at thepagelevel, an extension cannot access those
pages that the application chooses to hide and therefore are
at PPL 0, because the paging hardware prevents SPL 3 code
segments from accessing PPL 0 pages. Therefore, exten-
sions can only access their own code, data, and stack, as well
as shared libraries and data regions exposed by the extensi-
ble application. On the other hand, although the pages in the
kernel address space (3-4GByte) and the user address space
(0-3GByte) are all at PPL 0, the extensible application can-
not access the kernel address space because of segment-level
protection. In summary, segment-level check ensures that
the kernel is protected from the extensible applications, and
page-level check protects the extensible applications from
their extensions, exactly the protection guarantees we are
looking for!

Because the extended application’s segment and the ex-
tension segments cover exactly the same virtual address
space range, all the problems associated with the segmen-
tation approach disappear. The relocation mechanism in
dlsym is directly applicable without any modification. Data
and function pointers can be passed among the kernel, the
extended application, and extensions without swizzling. Ex-
tensions can call directly non-bufferinglibc routines such
asstrcpy , because their pages are set at PPL 1. The data
areas oflibc are at PPL 0. Therefore, extensions cannot
call buffering library routines such asfprintf directly. In-
stead,Palladiumallows applications to exposeapplication
servicesto extensions, much as the kernel exposes core ker-
nel services to to kernel extensions as shown in Figure 4.
Only buffering library functions inlibc are required to be
encapsulated as applications services, which extensions can
call but cannot corrupt. Unlike in the segmentation-only ap-
proach, extensions can call non-buffering library functions
without crossing protection domains.

User
Data/Stack
Segment
SPL = 2
PPL = 0

Segment
Code
User

SPL = 2
PPL = 0

SPL = 3
PPL = 1

SPL = 3
PPL = 1

4GB

0GB

Kernel
3GB

Extension-1

Extension-2

User

SPL = 2
PPL = 1 shared

SPL = 0
PPL = 0

Extension
Segment

User

Figure 5 . The layout of the user portion of a Palladium
process’s virtual address space. One or multiple exten-
sion segments, in this case 2, can be loaded into the
user address space (0-3GByte) and put at SPL 3, and
the pages therein are at PPL 1. The extended applica-
tion itself is at SPL 2, and its pages at PPL 0, except
those that are to be shared with extensions, which are
at PPL 1.

4.4.2 Programming interface

To usePalladium’s user-level extension mechanism, exten-
sible applications are required to use a safe version of the
dynamic loading package, i.e.,seg dlopen , seg dlsym ,
and seg dlclose , to load, access, and close shared li-
braries. However,seg dlsym should be used only for ac-
quiring function pointers. To resolve pointers to data struc-
tures inside an extension segment,dlsym should be used in-
stead. In addition, the extensible application should call the
init PL function in the beginning of the program to pro-
mote itself to SPL 2 and mark all its writable pages as PPL
0. To expose shared pages to extensions, the application can
use theset range system call to mark those pages as PPL
1. To expose an application service that user-level extensions
could use, the application uses theset call gate system
call to set up a call gate with a pointer to the corresponding
application service function.

Programming user-level extensions is identical to devel-
oping a user-level library routine, except thatxmalloc in-
stead ofmalloc should be used to ensure that it’s the ex-
tension segment’s heap that is being allocated.Palladium’s
extensions are compiled withgcc , just like conventional
shared libraries. Calling an extension function from an ap-
plication and returning from a called extension back to the
calling application follow exactly the standard C syntax, al-
though applications and extensions reside at different privi-
lege levels.

147

Each dynamically-linked function has a corresponding
Global Offset Table entry (GOT) and Procedure Linkage
Table (PLT) entry. When a dynamically linked function is
called, control first goes to the corresponding PLT entry,
which contains ajmp instruction that jumps where the asso-
ciated GOT entry points. The first time a dynamically-linked
function is invoked, its GOT entry points to the relocation
function in ld.so , which loads the function, performs nec-
essary relocation, and modifies the GOT entry to point where
the function is actually loaded so that all subsequent invoca-
tions would transfer control directly to the function. Because
extensions need to access GOT to invoke shared libraries,
the GOT should be marked as PPL 1 and should be put in
a separate page to protect its neighboring regions, such as
BSS.Gcc uses an internal linker script to define the place-
ment of various sections of the program image, such as Text
and Data. Palladium requires applications to be compiled
with a specificgcc linker script that ensures that the GOT is
aligned on a page boundary. To protect the GOT from being
corrupted by extensions,Palladiummarks the GOT page as
read-only by requiring that all modifications to the GOT be
made in the beginning of program execution. This means
that when the application and its extensions are loaded, the
symbols within them should be resolved eagerly, not lazily.

4.5 Implementation

4.5.1 Control transfer

Palladiumhas to solve two problems related to transferring
control between extended programs and their extensions.
First, the X86 architecture assumes that the control between
protection domains always starts from a less privileged level
to a more privileged level and back, as a standard system
call does. That is, a more privileged code segment can only
return to a less privileged code segment thatcalled on its
service previously. A more privileged code segment cannot
directly call a less privileged code segment. However,Pal-
ladium’s extension model is meant for less privileged mod-
ules to extend the functionality of more privileged extended
programs (the kernel or extensible applications), so the con-
trol transfer is actually initiated by the more privileged core
programs. Second,gcc andld have no knowledge of seg-
ments, and it is essential to keepPalladiumcompletely trans-
parent togcc andld to increase its applicability.

The solution to both problems is to add one level of
code indirection. Specifically, three code sequences are
added to hide the details of inter-domain control transfers
and the call/return semantics mismatch between Intel’s hard-
ware andPalladium’s requirements, as shown in Figure 6.
These code sequences basically perform inter-domain con-
trol transfer and stack pointers save/restore to twist X86’s
lret and lcall instructions to achieve the desired ef-
fects. To invoke an extension function, the application
first makes a normal function call to an extension-function-
specificPrepare routine, running at SPL 2, which passes
the input argument to the extension stack, saves the appli-
cation’s stack and base pointers, constructs a phantom ac-
tivation record that corresponds to the targetTransfer
function’s stack and code pointers, and finally executes a

lret . The phantom activation record is set up such that the
control wouldreturn to another extension-function-specific
Transfer routine, which is at SPL 3, as if thisTransfer
routine calledPrepare previously. TheTransfer rou-
tine then simply makes a local function call to the target ex-
tension function to perform the extension service. When the
extension function is completed, it returns to theTransfer
routine, which makes an inter-domain call via a call gate to
an application-specificAppCallGate routine, which re-
stores the extensible application’s stack and base pointers,
and makes a localret to transfer control back to the ex-
tended application.

In summary, a logicalcall from a more-privileged to a
less-privileged domain is implemented physically via two
intra-domaincall s and an inter-domainlret instruction,
whereas a logicalreturn from a less-privileged to a more-
privileged domain is implemented physically as two intra-
domainret s and an inter-domainlcall instruction. Note
that theTransfer andPrepare routines are specific to
each extension function, butAppCallGate is per applica-
tion. Whenseg dlsym is invoked to resolve a function
symbol, it generates theTransfer and Prepare rou-
tines, and returns a pointer to the correspondingPrepare
function, rather than to the original extension function. Be-
cause only function pointers in extension segments need to
be “massaged” when they are loaded, data pointers in exten-
sion segments can still be resolved bydlsym .

Saving and restoring the application’s base and stack
pointers inPrepare andAppCallGate is mandatory, be-
cause Intel hardware automatically restores the stack pointer
of the corresponding SPL from the process’s Task State
Segment after anlcall. However, because the correspond-
ing Prepare routine does not save the application stack
pointer to the TSS, the stack pointer that the hardware re-
stores afterAppCallGate is called isnot the calling ap-
plication’s stack. Consequently, explicit saving and restor-
ing is required. WhilePalladiumcould have chosen to save
the extended application’s stack pointers to the TSS so that
what the hardware restore is correct, doing so would incur an
expensive system call overhead required to access the TSS,
and defeats the whole purpose of using segmentation hard-
ware for fast protected extension calls. Instead,Palladium
saves the stack/base pointers in the application segment, and
spends two additional instructions inAppCallGate to put
them back.

Palladiumalso allows applications to provide applica-
tion services to user extensions. The control transfer be-
tween user extensions and application services is similar to
control transfer in standard system call invocations, except
the following differences. Unlike system calls, which typ-
ically run in per-process kernel stacks, the application ser-
vice called by an extension executes against the extension
segment’s own stack rather than against the application seg-
ment’s stack. This design choice improves transparency be-
cause the standard parameter passing mechanism used by
gcc is directly applicable, including the support for func-
tions with variable numbers of arguments. In addition, no
cross-segment data copying is required. The currentPalla-
dium implementation assumes that extensions take one 4-
byte input argument, which is passed through the stack, and

148

 pushl 0x4(%esp)
 popl ExtensionStack
 movl %esp, SP2
 movl %ebp, BP2
 push ExtensionStackSegment
 pushl ExtensionStackPointer
 push ExtensionCodeSegment
 push Transfer
 lret

Prepare:

 mov SP2, %esp
 mov BP2, %ebp
 ret

AppCallGate:

 call ExtensionFunction
 lcall AppCallGateNum

Transfer:

(SPL = 3)
Segment

(SPL = 2)
Segment

Extension

Application

local
call

return

inter-domain
call

return

local
call

local
return

inter-domain

local

Application

Extension Function

Figure 6 . Calling an extension goes through Prepare and Transfer , whereas the return path goes through
Transfer and AppCallGate . Prepare ’s first two instructions copy the extension call’s input argument to the
extension’s stack. The next four instructions save the stack and base pointers of the application segment so that
later on AppCallGate can restore them. Finally the four instructions above lret synthesizes an artificial activation
record in the extension stack for lret .

return one 4-byte result, which is passed through the regis-
ter file. More complicated data structures are stored in the
shared data area, and input and result arguments are pointers
to them.

4.5.2 Other kernel modifications

In addition to the new system calls described above,Palla-
diumalso requires several kernel modifications. First, to en-
sure that an extensible application process’s writable pages
are always marked as PPL 0,mmapis modified to mark all
the pages in a memory region to be mapped as PPL 0 if the
memory region is writable and the process that invokes the
mmapis at SPL 2. The actual marking is performed at the
page fault time. Similarly,mprotect is changed to pre-
vent an SPL 3 extension from tampering with the PPL of a
memory segment at SPL 2.

In Palladium, the standard page fault handler needs to
check whether an extension attempts to access the extended
application’s memory that is outside the extension segment.
This check is based on the application’s SPL, the SPL of the
code segment of the routine that causes the page fault, and
the page’s PPL and permission bits. If this check fails, a
SIGSEGVfault is delivered to the corresponding user pro-
cess.

The segment/page privilege levels of a process are inher-
ited acrossfork calls along with the entire memory map.
This allows an extensible application that is already at SPL
2 to fork a copy of itself. The forked clone continues to ex-
ecute at SPL 2 and inherit all the loaded extensions. On the

other hand, the segment/page privilege levels of a process
are not inherited acrossexec calls, because new processes
by default should start at SPL 3 and only move to SPL 2
when they plan to load untrusted extensions.

To prevent extension routines at SPL 3 from making
arbitrary system calls,Palladium first adds a new field,
taskSPL , to each process’stask struct as its logical
SPL. When a process starts up, itstaskSPL is 3 until it
promotes itself throughinit PL, at which pointtaskPL
is 2. Whenever the kernel receives a system call, the ker-
nel rejects the call if calling process’staskPL is 2 and the
return code segment’s SPL is 3. Note that for those applica-
tions that do not callinit PL at start-up, the above check
would fail because these applications’taskPL is 3. There-
fore, non-Palladiumapplications still can make system calls
as usual. We chose to run non-Palladiumapplications at SPL
3, as in standard Linux, to avoid disruptions to the large num-
ber of existing Linux applications.Palladiumapplications
can allow their user extensions to make a selective subset of
system calls by encapsulating them as application services.

To prevent “infinite loop” bugs in extension routines,
Palladiumsets a time limit on the maximal amount of CPU
time that a user/kernel extension module can get in each in-
vocation. This limit is a system parameter set by the sys-
tem administrator and is enforced through explicit checks at
timer interrupts. When the timer expires or when a protec-
tion error is detected, the kernel aborts the offending kernel
extension and, in the case of user extensions, sends a sig-
nal to the extensible application, which is supposed to have
a signal handler to deal with such errors. The currentPal-

149

Component Inter Intra Hardware
Setting up stack 26 2 5
Calling function 34 3 22

Returning to caller 75 3 44
Restoring state 7 2 5

Total Cost 142 10 89

Table 1 . Comparison between the invocation costs for
function calls within the same protection domain (In-
tra), across protection domains, with (Inter) and without
software overhead (Hardware). All measurements are
in terms of numbers of CPU cycles from the Pentium
counter.

ladiumprototype does not perform any clean-up for aborted
kernel extensions, beyond reclaiming the system resources
previously allocated to these extensions.

5 Performance evaluation

We have built two applications on thePalladiumprototype,
one based on the user-level extension mechanism, and the
other based on the kernel extension mechanism, to eval-
uatePalladium’s performance at the application level. In
this section, we report the performance results from micro-
benchmark and applications measurements.

5.1 Micro-benchmarking results

BecausePalladium’s protection mechanism is based on
hardware checks, its performance overhead consists of the
cost of invoking an extension function and the one-time ex-
tension module loading time. To measure the protected func-
tion call overhead, we wrote a null function with an empty
body and compiled it withgcc 2.7.2.3 into a shared li-
brary. The code generated for this function contains only
the function prologue and epilogue code. Using the Pentium
counter, we measured the number of CPU cycle required to
invoke this null function call usingPalladium’s user-level
extension mechanism on a Pentium 200MHz machine. The
results are shown in Table 1.

The number of CPU cycles required for a protected or
inter-domain procedure call inPalladium is 142, or 0.71
�sec for a 200MHz machine. TheSetting up stackrow is
the time required to create a faked activation record and save
registers. TheCalling function row shows the time required
to do the actual control transfer to the extension function.
This step involves alret and acall instruction inPalla-
dium. TheReturn to caller row is the time needed to return
control to the caller. This is essentially anlcall instruc-
tion in Palladium. TheRestoring staterow shows the time
to restore the application to the state before it calls the ex-
tension. For unprotected function calls, this corresponds to
popping registers off the stack. ForPalladium, this involves
popping registers and executing an additionalret instruc-
tion. Over half ofPalladium’s inter-domain procedure call
overhead is due to the time taken to return control to the
application from an extension because switching the privi-
lege level from SPL 3 to SPL 2 requires additional checks.

Size of string Unprotected Palladium Linux
(Bytes) call call RPC

32 2.20 2.79 349.19
64 4.06 4.65 352.55
128 7.78 8.37 374.20
256 15.22 15.97 423.33

Table 2 . Comparison between unprotected function
call, protected extension function call, and Linux RPC.
All measurements are in microseconds. Each data
point is an average of the results from 100 runs, with
a standard deviation of less than 2% of the mean in all
cases.

This one instruction,lcall , takes about 75 cycles. Table
1 also shows the theoretical cycle counts required for the in-
struction sequences used inPalladium’s control transfer, ac-
cording to the Pentium architecture manual. The difference
between the measured and theoretical cycle counts is mainly
due to data/control pipeline hazards.

To the best of our knowledge, the fastest IPC mechanism
on Pentium machines is reported on L4 micro-kernel [16].
L4 takes 242 cycles on a Pentium 166MHz machine for an
request-reply IPCin the best case. This cycle count assumes
that all the parameters can be passed via registers. In L4,
processes share page tables as much as possible. Hence an
IPC does not require a page table switch. Still, a request-
reply IPC in L4 involves four protection-domain crossings,
whereasPalladiumtakes only two. As a result,Palladiumas
measured on the Linux kernel is faster than the best case of
L4 by 100 cycles.

To evaluatePalladium’s performance in a more realistic
context, we wrote an artificial extension function that ac-
cepts a pointer to a string and reverses the string. We com-
piled this function as an extension shared library, as an un-
protected function call within the address space, and as a
client-server program with client and server running on the
same machine using Linux’s Remote Procedure Call (RPC)
facility, which is socket-based and is not optimized for intra-
machine RPC. We then measured the time it takes from call-
ing such a function until control is returned to the calling
program, with the size of the string varied from 32 to 256
bytes in powers of two. The results are shown in Table 2 and
expressed in microseconds. Each data point in the table is
an average of the results of 100 runs, with a standard devi-
ation of less than 2% of the mean in all cases. During the
experiments, the CPU cache is fully warmed up.

The Linux-RPC version is more than two orders of mag-
nitude slower than the protected and unprotected function
call versions when the input size is 32 bytes. When the data
size increases to 256 bytes, the RPC version is still about
14 times slower than the protected and unprotected function
call versions. This shows that the constant overhead associ-
ated with IPC is quite significant. The performance differ-
ence between a unprotected procedure call and aPalladium’s
protected remains largely constant, about 118 cycles for the
string size between 32 bytes and 128 bytes. The difference
increases to 153 cycles when the string size is 256 bytes. We
believe this discrepancy is due to factors unrelated toPalla-
dium, because some of the 256-byte runs do show a differ-

150

ence of 118 cycles. Because the total processing time of this
extension increases with the data size, the constant exten-
sion invocation overhead becomes less and less significant
in relative terms.

Palladiumincurs a slightly higher overhead when load-
ing an extension module:dlopen andseg dlopen take
400�sec and 420�sec, respectively. The additional step that
seg dlopen performs compared todlopen is setting the
PPL of those pages that the extended application exposes to
1. PPL marking has a start-up cost of 3000 to 5000 cycles,
plus 45 cycles per page marked. That is, marking 10 pages
takes 3450 to 5450 cycles, or 17.25 to 27.25�sec, which is
completely overshadowed by the dynamic library open cost.

BecausePalladiumallocates separate segments for ker-
nel extensions, cross-segment memory references incur an
additional overhead for loading the segment register, which
is 2 to 3 cycles according to Intel’s architecture manual, but
is consistently 12 cycles from our own measurement. Since
Palladiumsupports shared data areas between the kernel and
kernel extensions, we expect the frequency of cross-segment
data references in typical kernel extensions to be low. Note
that cross-segment references are not necessary in the case
of user-level extensions, because extended applications and
their extension segments span the same address space range.

5.2 Measurements from extensible applica-
tions

We have built on top of the Apache Web server a fast Com-
mon Gateway Interface (CGI) invocation mechanism called
LibCGI [28], which allows a CGI script written in C to be
invoked as a function call rather than as a separate process
as in standard CGI implementation. FastCGI [9] attempts to
reduce the invocation overhead of CGI scripts by re-using
existing CGI processes, thus eliminating the costs associ-
ated withfork andexec . Palladium’s user-level extension
mechanism provides the necessary protection for the Web
server fromLibCGI scripts.

We measured the number of CGI requests that a Web
server can support per second from a conventional CGI
script, a FastCGI script, a LibCGI script, a protected LibCGI
script usingPalladium, and a static HTML file. Fetching
a static HTML file does not involve the CGI, and thus its
performance serves as the best-case reference point. Perfor-
mance measurements on ApacheBench benchmark [2] were
taken from a modified Apache Web Server running on a Pen-
tium 200MHz machine with 64 MBytes of SDRAM and 2
GBytes of Disk Space. In each run, a total of 1000 requests
were sent to the Web server with up to 30 requests being
serviced concurrently. The Web server and its clients are
connected via a 100 Mbps Fast Ethernet link, which is qui-
escent in all runs. Each request involves an access to a fixed
HTML file that is memory-resident. The Web server can ser-
vice each request directly by opening the static HTML file,
reading it into memory, and writing it back to the requesting
client, or by invoking a CGI script that does exactly the same
thing using different CGI execution models.

Table 3 shows the throughputs when the requests are ser-
viced by the Web Server directly and by CGI scripts under

0 1 2 3 4
Number of Terms

0.0

200.0

400.0

600.0

800.0

1000.0

Cy
cle

s

BPF
Palladium

Figure 7 . Performance comparison of a compiled fil-
ter extension and the interpreted BPF filter for a filter
with a varying number of terms linked by a conjunc-
tion, when all terms are true. The measurements are
in CPU cycles.

different execution models. TheWeb Servercolumn estab-
lishes a bound on the CGI script execution throughput, since
there is no CGI script invocation overhead in this case. For
all data sizes, unprotected LibCGI and protected LibCGI are
within 3% and 5% of the bound, respectively. This shows
that LibCGI is effective in reducing the overhead of invoking
CGI scripts. On the other hand, protected LibCGI is at least
twice as fast as FastCGI for data size smaller than 10KBytes.
A more interesting comparison is that between protected and
unprotected LibCGI. The throughput of protected LibCGI is
about 97.5% of that of unprotected LibCGI when the data
size is 28 bytes. In all cases, protected LibCGI performs
within 4% of unprotected LibCGI. This performance result
demonstrates that the additional overhead thatPalladiumin-
curs is minimal.

When a user-level extension attempts to access pages
outside its domain, such an access generates a page fault,
and a SIGSEGV signal is delivered to the extended applica-
tion. The latency from detecting an offending access to com-
pleting the delivery of the associated SIGSEGV signal to the
application takes 3,325 cycles on the average with a standard
deviation of 0.3%. In the case of kernel extensions, an of-
fending access would cause a general protection exception,
because the extension is attempting to access data beyond
its segment limit. The average cost of processing such an
exception is 1,020 cycles (0.5% standard deviation), exclud-
ing the extension-specific overhead associated with systems
resource de-allocation. While these costs are relatively high,
they are present only for misbehaving extensions and thus
would not affect the critical path delay in the common case.

To evaluate the effectiveness ofPalladium’s safe kernel
extension mechanism, we built a compiled packet filter [22]
that allows a filtering program written in C to be loaded into
the kernel as an extension, and we measured the time to exe-
cute a packet filter rule consisting of a conjunction of multi-
ple terms. We compared these measurements to the times re-
quired by the standardbpf filter function used in TCPdump.
The BPF filter essentially compiles the filter expression into

151

Throughput (requests/sec)
Size of HTML CGI FastCGI LibCGI LibCGI Web
file requested (Protected) (Unprotected) Server

28 Bytes 98 193 437 448 460
1 KBytes 92 188 423 431 436
10 KBytes 76 130 311 312 315
100 KBytes 33 52 57 57 57

Table 3 . Comparison of CGI, FastCGI and LibCGI in their execution throughput as measured by numbers of scripts
completed per second. The client and server are connected with a 100 Mbps Ethernet link.

its own machine language and interprets the resulting ex-
pressions to evaluate the conditions. The performance com-
parisons are shown in Figure 7. Beyond a fixed invocation
overhead, the performance overhead of the kernel-extension-
based packet filter increases with a very small slope, staying
almost constant. On the other hand, BPF’s interpretation
overhead increases significantly with the number of terms
in the test packet filter rule. When the number of terms
in the filter rule is 4, the extension-based packet filter is
more than twice as fast as the interpreter-based packet fil-
ter. These measurements demonstrate the efficiency ofPal-
ladium’s kernel extension mechanism.

6 Conclusion

This paper describes the design, implementation, and eval-
uation of of an intra-address space protection mechanism
calledPalladium, which is based on the paging and segmen-
tation protection hardware available in Intel X86 architec-
ture. Palladiumproves that safe and efficient user-level and
kernel-level extensions that could be programmed in a sim-
ilar way to standard library functions are feasible. In ad-
dition, Palladium’s protection domain switching overhead
is the smallest among all known methods. Finally, to the
best of our knowledge,Palladiumis the first system that has
successfully exploited the segmentation feature in Intel pro-
cessors in a useful way. To demonstrate the effectiveness
of Palladium, we have built a fast and safe CGI invocation
mechanism that allows CGI routines to be invoked from a
Web server as local function calls, and an efficient packet
filter that allows packet filtering programs to run on native
hardware safely inside the kernel.

We are currently pursuing several directions based on
the Palladiumprototype. First, we are planning to build a
mobile code system based onPalladium. Combined with
restricted OS services,Palladium could provide the secu-
rity guarantee for mobile applets that are written in a com-
piled language such as C. Although binary portability poses
a problem for this approach, the fact that a vast majority of
desktop computers are Intel-based PC’s renders this prob-
lem less an issue in practice. Second, we are leveraging our
experiences in exploiting segmentation hardware for other
purposes. For example, we are building aprotected mem-
ory service that uses segmentation to prevent wild pointers
or random software errors from corrupting specific physical
memory regions. Third, better programming tools for exten-
sions programming are needed, in particular, segmentation-

aware debuggers and stub code generators to synthesize ap-
plication or kernel services for extensions. Finally, we are
building more extensible applications, especially in the ar-
eas of database systems and 3D graphics software, to gain
more usage and performance experiences onPalladium.

Acknowledgment

This paper has benefited significantly from the comments
from SOSP reviewers, especially from several iterations
of detailed reviews from our SOSP shepherd, Dr. Fred
Schneider. This research is supported by an NSF Ca-
reer Award MIP-9502067, NSF MIP-9710622, NSF IRI-
9711635, NSF EIA-9818342, NSF ANI-9814934, a con-
tract 95F138600000 from Community Management Staff’s
Massive Digital Data System Program, USENIX student re-
search grants, as well as fundings from Sandia National Lab-
oratory, Reuters Information Technology Inc., and Computer
Associates/Cheyenne Inc.

References

[1] Alexander, D.S.; Arbaugh, W.A.; Keromytis, A.D.;
Smith, J.M., “A secure active network environment ar-
chitecture: realization in SwitchWare,”IEEE Network,
12(3):37-45, May-June 1998.

[2] Apache Server project, http://www.apache.org/

[3] Banerji, A.; Tracey, J.M.; Cohn, D.L., “Protected
shared libraries-a new approach to modularity and
sharing,” Proceedings of the USENIX 1997 Annual
Technical Conference, p. 59-75, Anaheim, CA, Jan.
1997.

[4] Bensoussan, A.; Clingen, C.T.; Daley, R.C., “The Mul-
tics virtual memory: concepts and design,”Communi-
cations of the ACM, 15(5):308-18, May 1972.

[5] Bershad, B.N.; Anderson, T.E.; Lazowska, E.D.,
“Lightweight remote procedure call”,ACM Transac-
tions on Computer Systems, 8(1):37-55, Feb. 1990.

[6] Bershad, B.N.; Savage, S.; Pardyak, P.; Sirer, E.G.;
Fiuczynski, M.E.; Becker, D.; Chambers, C.; Eggers,
S., “Extensibility, safety and performance in the SPIN
operating system ,”ACM Operating Systems Review,
29(5):267-84, Dec. 1995.

152

[7] Chase, J.S.; Levy, H.M.; Feeley, M.J.; Lazowska, E.D.,
“Sharing and protection in a single-address-space op-
erating system,”ACM Transactions on Computer Sys-
tems, 12(4):271-307, Nov. 1994.

[8] Chiueh, T.; Sankaran, H.; Neogi, A., “Spout: A Dis-
tributed Engine for Safe Execution of Java Applets,”
ECSL-TR-59, Experimental Computer Systems Lab.,
Computer Science Department, SUNY at Stony Brook,
June 1999.

[9] The FastCGI Homepage, http://fastcgi. idle.com/.

[10] Gosling, J.; McGilton, H., “The Java Language Envi-
ronment”, http://java.sun.com/docs/white/index.html,
May 1996.

[11] Green, P., “Multics Virtual Mem-
ory - Tutorial and Reflections,”
ftp://ftp.stratus.com/pub/vos/multics/pg/mvm.html.

[12] Heid, J., “Mastering Adobe Premiere 5,”Macworld,
16(1):115-17, Jan. 1999.

[13] Heiser, G.; Elphinstone, K.; Vochteloo, J.; Russell,
S.; Liedtke, J., “The Mungi Single-Address-Space Op-
erating System,”Software - Practice and Experience,
28(9):901-28, July 1998.

[14] Intel Pentium Processor Family Developer’s Manual,
Volume 3: Architecture and Programming Manual, In-
tel Corporation, Santa Clara, CA, 1995.

[15] Kaashoek, M.F.; Engler, D.R.; Ganger, G.R.; Briceno,
H.M.; Hunt, R.; Mazieres, D.; Pinckney, T.; Grimm,
R.; Jannotti, J.; Mackenzie, K., “Application perfor-
mance and flexibility on exokernel systems,”ACM Op-
erating Systems Review, 31(5):52-65, Dec. 1997.

[16] Liedtke, J.; Elphinstone, K.; Schonberg, S.; Hartig, H.;
Heiser, G.; Islam, N.; Jaeger, T., “Achieved IPC perfor-
mance (still the foundation for extensibility),”Proceed-
ings of the 6-th Workshop on Hot Topics in Operating
Systems(HotOS - VI), p. 28-31, May 1997.

[17] McCanne, S.; Jacobson, V., “The BSD packet filter:
a new architecture for user-level packet capture,”Pro-
ceedings of the Winter 1993 USENIX Conference, p.
259-69, Jan. 1993.

[18] Mendelsohn, N., “Operating systems for component
software environments,”Proceedings of the 6-th Work-
shop on Hot Topics in Operating Systems(HotOS-VI),
p. 49-54, Cape Cod, MA., May 1997.

[19] Necula, G.C.; Lee, P., “Safe kernel extensions without
run-time checking,”ACM Operating Systems Review,
30(special issue):229-43, Oct. 1996.

[20] Olson, M. A., “DataBlade extensions for the Informix-
Universal server,”Proceedings IEEE COMPCON 97,
p. 143-8, Feb. 1997.

[21] PA-RISC 2.0 Architecture Reference Manual, Hewlett
Packard Corporation, Palo Alto, CA, 1994.

[22] Pradhan, P.; Chiueh, T.; “Operating System Support for
Cluster-Based Routers,”Proceedings of the 7-th Work-
shop on Hot Topics in Operating Systems(HotOS -
VII), p. 76-81, Rio Rico, AZ, March 1999.

[23] Seltzer, M.I.; Endo, Y.; Small, C.; Smith, K.A., “Deal-
ing with disaster: surviving misbehaved kernel ex-
tensions,”ACM Operating Systems Review, 30(special
issue):213-27, Oct. 1996.

[24] Small, C.; Seltzer, M.I.; “A comparison of OS exten-
sion technologies,”Proceedings of the USENIX 1996
Annual Technical Conference, p. 41-54, San Diego,
CA, Jan. 1996.

[25] Small, C.; Seltzer, M., “MiSFIT: constructing safe
extensible systems,”IEEE Concurrency, 6(3):34-41,
July-Sept. 1998.

[26] Stonebraker, M.; Kemnitz, G., “The POSTGRES next-
generation database management system ,”Communi-
cations of the ACM, 34(10):78-92, Oct. 1991.

[27] Tennenhouse, D.L.; Smith, J.M.; Sincoskie, W.D.;
Wetherall, D.J.; Minden, G.J., “A survey of active
network research,”IEEE Communications Magazine,
35(1):80-6, Jan. 1997.

[28] Venkitachalam, G.; Chiueh, T.; “High Performance
Common Gateway Interface Invocation,”Proceedings
of 1999 IEEE Workshop on Internet Applications
(WIAPP ’99), p. 4-11, San Jose, CA, July 1999.

[29] Wahbe, R.; Lucco, S.; Anderson, T.E.; Graham, S.L.,
“Efficient software-based fault isolation,”ACM Oper-
ating Systems Review, 27(5):203-16, Dec. 1993.

[30] Wilkes, J.; Fouts, M.; Corrors, T.; Hoyle, S.; Sears, B.;
Sullivan, T., “Brevix design 1.01,” HPL-OSR-93-22,
Hewlett-Packard Laboratories, Palo Alto, Apr. 1993.

153

