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We study the probabilistic generative models parameterized by feedfor-
ward neural networks. An attractor dynamics for probabilistic inference
in these models is derived from a mean field approximation for large,
layered sigmoidal networks. Fixed points of the dynamics correspond to
solutions of the mean field equations, which relate the statistics of each
unit to those of its Markov blanket. We establish global convergence of the
dynamics by providing a Lyapunov function and show that the dynamics
generate the signals required for unsupervised learning. Our results for
feedforward networks provide a counterpart to those of Cohen-Grossberg
and Hopfield for symmetric networks.

1 Introduction

Attractor neural networks lend a computational purpose to continuous dy-
namical systems. Celebrated uses of these networks include the storage
of associative memories (Amit, 1989), the reconstruction of noisy images
(Koch, Marroquin, & Yuille, 1986), and the search for shortest paths in the
traveling salesman problem (Hopfield & Tank, 1986). In all of these exam-
ples, a distributed computation is performed by an attractor dynamics and
its flow to stable fixed points. These examples can also be formulated as
problems in probabilistic reasoning; indeed, it is well known that symmet-
ric neural networks can be analyzed as statistical mechanical ensembles or
Markov random fields (MRFs).

Attractor neural networks and MRFs are connected by the idea of an
energy surface. This connection has led to new algorithms for probabilis-
tic inference in symmetric networks, a problem traditionally addressed
by stochastic sampling procedures (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953; Geman & Geman, 1984). For example, in one of the
first unsupervised learning algorithms for neural networks, Ackley, Hin-
ton, and Sejnowski (1985) applied Gibbs sampling to estimate the statistics
of binary MRFs. Known as Boltzmann machines, these networks relied on
time-consuming Monte Carlo simulation and simulated annealing as an in-
ner loop of their learning procedure. Subsequently, Peterson and Anderson
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(1987) introduced a faster deterministic method for probabilistic inference.
Their method, based on the so-called mean field approximation from statis-
tical mechanics, transformed the binary-valued MRF into a network with
continuous-valued units. The continuous network, endowed with dynamics
given by the mean field equations, is itself an attractor network; in particu-
lar, it possesses a Lyapunov function (Cohen & Grossberg, 1983; Hopfield,
1984). Thus, one can perform approximate probabilistic inference in a binary
MRF by relaxing a deterministic, continuous network.

In this article, we show that this linkage of attractor dynamics and prob-
abilistic inference is not limited to symmetric networks or (equivalently) to
models represented as undirected graphs. We investigate an attractor dy-
namics for feedforward networks, or directed acyclic graphs (DAGs); these
are networks with directed edges but no directed loops. The probabilistic
models represented by DAGs are known as Bayesian networks, and to-
gether with MRFs, they comprise the class of probabilistic models known
as graphical models (Lauritzen, 1996). Like their undirected counterparts,
Bayesian networks have been proposed as models of both artificial and
biological intelligence (Pearl, 1988).

The units in Bayesian networks represent random variables, while the
links represent assertions of conditional independence. These independence
relations endow DAGs with a precise probabilistic semantics. Any joint dis-
tribution over a fixed, finite set of random variables can be represented by
a Bayesian network, just as it can be represented by an MRF. What is com-
pactly represented by one type of graphical model, however, may be quite
clumsily represented by the other. MRFs arise naturally in statistical me-
chanics, where they describe the Gibbs distributions for systems in thermal
equilibrium. Bayesian networks, on the other hand, are designed to model
causal or generative processes; hidden Markov models, Kalman filters, soft-
split decision trees—these are all examples of Bayesian networks.

The connection between Bayesian networks and neural network models
of learning was pointed out by Neal (1992). Neal studied Bayesian networks
whose units represented binary random variables and whose conditional
probability tables were parameterized by sigmoid functions. He showed
that these probabilistic networks have gradient-based learning rules that
depend only on locally available information (Buntine, 1994; Binder, Koller,
Russell, & Kanazawa, 1997). These observations led Dayan, Hinton, Neal,
and Zemel (1995) and Hinton, Dayan, Frey, and Neal (1995) to propose
the Helmholtz machine—a multilayered probabilistic network that learns
hierarchical generative models of sensory inputs. Helmholtz machines were
conceived not only as tools for statistical pattern recognition, but also as
abstract models of top-down and bottom-up processing in the brain.

Following the work on Helmholtz machines, a number of researchers
began to investigate unsupervised learning in large, layered Bayesian net-
works (Lewicki & Sejnowski, 1996; Saul, Jaakkola, & Jordan, 1996). As in
undirected MRFs, probabilistic inference in these networks is generally in-



Attractor Dynamics in Feedforward Neural Networks 1315

tractable, and approximations are required. Saul et al. (1996) proposed a
mean field approximation for these networks, analogous to the existing
one for Boltzmann machines. Their approximation transformed the binary-
valued network into a continuous-valued network whose statistics were
described by a set of mean field equations. These equations related the
statistics of each unit to a weighted sum of statistics from its Markov blan-
ket (Pearl, 1988), a natural generalization of the notion of neighborhood in
undirected MRFs. This earlier work did not, however, exhibit the solutions
of these equations as fixed points of a simple continuous dynamical system.
In particular, Saul et al. (1996) did not provide an attractor dynamics nor a
Lyapunov function for their mean field equations.

In this article, we bring this sequence of ideas full circle by forging a link
between attractor dynamics and probabilistic inference for directed net-
works. The link is achieved via mean field theory, just as in the undirected
case. In particular, we describe an attractor dynamics whose stable fixed
points correspond to solutions of the mean field equations. We also estab-
lish global convergence of these dynamics by providing a Lyapunov func-
tion. Our results thus provide an understanding of feedforward (Bayesian)
networks that parallels the usual understanding of symmetric (MRF) net-
works. In both cases, we have a satisfying semantics for the set of allowed
probability distributions; in both cases, we have a mean field theory that
sidesteps the intractability of exact probabilistic inference; and in both cases,
we have an attractor dynamics that transforms a discrete-valued network
into a continuous dynamical system.

While this article builds on previous work, we have tried to keep it self-
contained. The organization is as follows. In section 2, we introduce the
probabilistic models represented by DAGs and review the problems of in-
ference and learning. In section 3, we present the mean field theory for
these networks: the mean field equations, the attractor dynamics, and the
learning rule. In section 4, we describe some experiments on a database of
handwritten digits and compare our results to known benchmarks. Finally,
in section 5, we present our conclusions, as well as directions for future
research.

2 Probabilistic DAGs

Consider a feedforward network—or equivalently, a directed acyclic
graph—in which each unit represents a binary random variable Si ∈ {0, 1}
and each link corresponds to a nonzero, real-valued weight, Wij, to unit i
from unit j. Thus, Wij is a weight matrix whose zeros indicate missing links
in the underlying DAG. Note that by assumption, Wij is zero for j ≥ i.

We can view this network as defining a probabilistic model in which miss-
ing links correspond to statements of conditional independence. In particu-
lar, suppose that the instantiations of the random variables Si are generated
by a causal process in which each unit is activated or inhibited (i.e., set to
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one or zero) depending on the values of its parents. This generative process
is modeled by the joint distribution

P(S) =
∏

i
P(Si|S1,S2, . . . ,Si−1) =

∏
i

P(Si|πSi), (2.1)

where πSi denotes the parents of the ith unit. Equation 2.1 states that given
the values of its parents, the ith unit is conditionally independent of its
other ancestors in the graph. These qualitative statements of conditional in-
dependence are encoded by the structure of the graph and hold for arbitrary
values of the weights Wij attached to nonmissing links.

The quantitative predictions of the model are determined by the condi-
tional distributions, P(Si|πSi), in equation 2.1. In this article, we consider
sigmoid networks for which

P(Si = 1|πSi) = σ
∑

j

WijSj

 , (2.2)

where σ(z) = [1 + e−z]−1; thus the sign of Wij, positive or negative, de-
termines whether unit j excites or inhibits unit i in the generative process.
Although we have not done so here, it is straightforward to include a bias
term in the argument of the sigmoid function. Note that the weights in
the network induce correlations between the units in the network, with
higher-order correlations arising as information is propagated through one
or more layers. The sigmoid nonlinearity ensures that the multilayer net-
work does not have a single-layer equivalent. In what follows, we denote
by σi = σ(

∑
j WijSj) the squashed weighted sum on the right-hand side of

equation 2.2; this top-down signal, received by each unit from its parents,
can also be regarded as a random variable in its own right.

Layered networks of this form (see Figure 1) were introduced as hierar-
chical generative models by Hinton et al. (1995). In typical applications, one
imagines the units in the bottom layer to encode sensory data and the units
in the top layers to encode different dimensions of variability. Thus, for ex-
ample, in networks for image recognition, the bottom units might encode
pixel values, while the top units encode higher-order features such as ori-
entation and occlusion. The promise of these networks lies in their ability to
parameterize hierarchical, nonlinear models of multiple interacting causes.

Effective use of these networks requires the ability to make probabilistic
inferences. Essentially these are queries to ascertain likely values for certain
units in the network, given values—or evidence—for other units. Let V
denote the visible units for which values are known and H the hidden units
for which values must be inferred. In principle, inferences can be made from
the posterior distribution,

P(H|V) = P(H,V)
P(V)

, (2.3)
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Figure 1: A layered Bayesian network parameterizes a hierarchical generative
model for the data encoded by the units in its bottom layer.

where P(H,V) is the joint distribution over hidden and visible units, as
given by equation 2.1, and P(V) = ∑

H P(H,V) is the marginal distribu-
tion obtained by summing over all configurations of hidden units. Exact
probabilistic inference, however, is generally intractable in large Bayesian
networks (Cooper, 1990). In particular, if there are many hidden units, then
the sum to compute P(V) involves an exponentially large number of terms.
The same difficulty makes it impossible to compute statistics of the posterior
distribution, P(H|V).

Besides the problem of inference, one can also consider the problem of
learning, or parameter estimation, in these networks. Unsupervised learn-
ing algorithms in probabilistic networks are designed to maximize the log-
likelihood1 of observed data. The likelihood of each data vector is given
by the marginal distribution, P(V) = ∑H P(H,V). Local learning rules are
derived by computing the gradients of the log-likelihood, ln P(V), with re-
spect to the weights of the network (Neal, 1992; Binder et al., 1997). For each

1 For simplicity of exposition, we do not consider forms of regularization (e.g., penal-
ized likelihoods, cross-validation) that may be necessary to prevent overfitting.
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data vector, this gives the on-line update:

1Wij ∝ E
[
(Si − σi)Sj

]
, (2.4)

where E[· · ·] denotes an expectation with respect to the conditional distribu-
tion, P(H|V), and σi = σ(

∑
j WijSj) is the top-down signal from the parents

of the ith unit. Note that the update takes the form of a delta rule, with the
top-down signal σi being matched to the target value provided by Si. Intu-
itively, the learning rule adjusts the weights to bring each unit’s expected
value in line with an appropriate target value. These target values are spec-
ified explicitly by the evidence for the visible units in the network. For the
other units in the network—the hidden units—appropriate target values
must be computed by running an inference algorithm.

Generally in large, layered networks, we can compute neither the log-
likelihood ln P(V) nor the statistics of P(H|V) that appear in the learning
rule, equation 2.4. A learning procedure can finesse these problems in two
ways: (1) by optimizing the weights with respect to a more tractable cost
function, or (2) by substituting approximate values for the statistics of the
hidden units. As we shall see, both strategies are employed in the mean-
field theory for these networks.

3 Mean Field Theory

Mean field theory is a general method from statistical mechanics for esti-
mating the statistics of correlated random variables (Parisi, 1988). The name
arises from physical models in which weighted sums of random variables,
such as

∑
j WijSj, are interpreted as local magnetic fields. Roughly speak-

ing, under certain conditions, a central limit theorem may be applied to
these sums, and a useful approximation is to ignore the fluctuations in
these fields and replace them by their mean value—hence the name, “mean
field” theory. More sophisticated versions of the approximation also ex-
ist, in which one incorporates the leading terms in an expansion about the
mean.

The mean field approximation was originally developed for Gibbs dis-
tributions, as arise in MRFs. In this article we develop a mean field ap-
proximation for large, layered networks whose probabilistic semantics are
given by equations 2.1 and 2.2. As in MRFs, our approximation exploits the
averaging phenomena that occur at units whose conditional distributions,
P(Si|πSi), are parameterized in terms of weighted sums, such as

∑
j WijSj.

Addressing the twin issues of inference and learning, the approximation
enables one to compute effective substitutes for the log-likelihood, ln P(V),
and the statistics of the posterior distribution, P(H|V).

The organization of this section is as follows. Section 3.1 describes the
general approach behind the mean field approximation. Among its many
interpretations, mean field theory can be viewed as a principled way of
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approximating an intractable probabilistic model by a tractable one. A vari-
ational principle chooses the parameters of the tractable model to minimize
an entropic measure of error. The parameters of the tractable model are
known as the mean field parameters, and they serve as placeholders for the
true statistics of the posterior distribution, P(H|V).

Our most important result for feedforward neural networks is a compact
set of equations for determining the mean field parameters. These mean field
equations relate the statistics of each unit to those of its Markov blanket.
Section 3.2 gives a succinct statement of the mean field equations, along
with a number of useful intuitions. A more detailed derivation is given in
the appendix.

The mean field equations are a coupled set of nonlinear equations whose
solutions cannot be expressed in closed form. Naturally, this raises the fol-
lowing concern: Have we merely replaced one intractable problem—that of
calculating averages over the posterior distribution, P(H|V)—by an equally
intractable one—that of solving the mean field equations? In section 3.3,
we show how to solve the mean field equations using an attractor dynam-
ics. This makes it quite straightforward to solve the mean field equations,
typically at much less computational cost than (say) sampling the statistics
of P(H|V).

Finally, in section 3.4, we present a mean field learning algorithm for these
networks. Weights are adapted by a regularized delta rule that depends only
on locally available information. Interestingly, the attractor dynamics for
solving the mean field equations generates precisely those signals required
for unsupervised learning.

3.1 A Variational Principle. We now return to the problem of proba-
bilistic inference in layered feedforward networks. Our goal is to obtain the
statistics of the posterior distribution, P(H|V), for some full or partial in-
stantiation V of the units in the network. Since it is generally intractable to
compute these statistics exactly, we adopt the following two-step approach:
(1) introduce a parameterized family of simpler distributions whose statis-
tics are easily computed; (2) approximate P(H|V) by the member of this
family that is “closest,” as determined by some entropic measure of dis-
tance.

The starting point of the mean field approximation is to consider the
family of factorial distributions:

Q(H|V) =
∏
i∈H

µSi
i (1− µi)

1−Si . (3.1)

The parameters µi represent the mean values of the hidden units under the
factorial distribution, Q(H|V). Note that by design, most statistics of Q(H|V)
are easy to compute because the distribution is factorial.
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We can measure the distance between the distribution Q(H|V) in equa-
tion 3.1 and the true posterior distribution P(H|V) by the Kullback-Leibler
(KL) divergence:

KL(Q||P) =
∑

H

Q(H|V) ln
[

Q(H|V)
P(H|V)

]
. (3.2)

The KL divergence is strictly nonnegative, vanishing only if Q(H|V) =
P(H|V). The idea behind the mean field approximation is to find the param-
eters {µi} that minimize KL(Q||P) and then to use the statistics of Q(H|V) as
a substitute for the statistics of P(H|V). The first step of this calculation is to
rewrite the posterior distribution P(H|V) using equation 2.3, thus breaking
the right-hand side of equation 3.1 into three terms:

KL(Q||P) =
∑

H

Q(H|V) ln Q(H|V)

−
∑

H

Q(H|V) ln P(H,V)+ ln P(V). (3.3)

The first two terms on the right-hand side of this equation depend on prop-
erties of the approximate distribution, Q(H|V). The first measures the (nega-
tive) entropy, and the second term measures the expected value of ln P(H,V).
The last term in equation 3.3 is simply the log-likelihood of the evidence,
which—importantly—does not depend on the statistics of Q(H|V). Thus,
this last term can be ignored when we minimize KL(Q||P) with respect to
the parameters {µi}. It nevertheless has important consequences for learn-
ing, a subject to which we return in section 3.4.

3.2 Mean Field Equations. The first-order statistics of Q(H|V) that min-
imize KL(Q||P) naturally depend on the weights of the network, Wij, and
the evidence, V. This dependence is captured by the mean field equations,
which are derived by evaluating and minimizing the right-hand side of
equation 3.3. In this work, we make two simplifying assumptions to derive
the mean field equations: first, that the weighted sum of inputs to each unit
can be modeled by a gaussian distribution in large networks, and second,
that certain intractable averages over Q(H|V) can be approximated by the
use of an additional variational principle. Details of these calculations are
given in the appendix. In what follows, we present the mean field equations
as a fait accompli so that we can emphasize the main intuitions that emerge
from the approximation of P(H|V) by Q(H|V).

For sigmoid DAGs, the mean field approximation works by keeping
track of two parameters, {µi, ξi}, for each unit in the network. Although
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only the first of these appears explicitly in equation 3.1, it turns out that
both are needed to evaluate and minimize the right-hand side of equa-
tion 3.3. Roughly speaking, these parameters are stored as approximations
to the statistics of the true posterior distribution. In particular, µi ≈ E[Si|V]
approximates each unit’s posterior mean, while ξi ≈ E[σi|V] approximates
the expected top-down signal in equation 2.2. In some trivial cases, these
statistics can be computed exactly. For visible units, E[Si|V] is identically
zero or one, as determined by the evidence, and for units with no parents,
E[σi|V] is constant, independent of the evidence. More generally, though,
these statistics cannot be exactly computed, and the parameters {µi, ξi} rep-
resent approximate values.

The values of the mean field parameters {µi, ξi} are computed by solving
a coupled set of nonlinear equations. For large, layered networks, these
mean field equations are:

µi = σ
∑

j

Wijµj +
∑

j

Wji(µj − ξj)− 1
2
(1− 2µi)

∑
j

W2
jiξj(1− ξj)

 , (3.4)

ξi = σ
∑

j

Wijµj + 1
2
(1− 2ξi)

∑
j

W2
ijµj(1− µj)

 . (3.5)

In certain cases, these equations may have multiple solutions. Roughly
speaking, in these cases, each solution corresponds to the statistics of a
different mode (or peak) of the posterior distribution.

The mean field equations couple the parameters of each unit to those
of its parents and children. In layered networks, this amounts to a direct
coupling between units in adjacent layers. The terms inside the brackets of
equations 3.4 and 3.5 can be viewed as effective influences on each unit in
the network. Let us examine these influences, concentrating for the moment
on the leading-order terms linear in the weights, Wij. In equation 3.4, we
see that the parameter µi depends on the statistics of its Markov blanket
(Pearl, 1988)—that is, on its parents through the weighted sum

∑
j Wijµj, on

its children through the weighted sum
∑

j Wjiµj, and on the parents of its
children through the weighted sum

∑
j Wjiξj. To some extent, the difference,∑

j Wji(µj − ξj), captures the effect of explaining away in which units in
one layer are coupled by evidence in the layers below. In equation 3.5, we
see that the parameter ξi depends on only the statistics of its parents, with
the leading dependence coming through the weighted sum

∑
j Wijµj. Thus,

we can interpret ξi as an approximation to the expected top-down signal,
E[σi|V]. The quadratic terms in equations 3.4 and 3.5, proportional to W2

ij,
capture higher-order corrections to the dependencies already noted. For
example, in equation 3.5, these terms cause any variance in the parents of
unit i to push ξi ≈ E[σi|V] away from the extreme values of zero or one.
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These directed probabilistic networks have twice as many mean field pa-
rameters as their undirected counterparts. For this we can offer the follow-
ing intuition. Whereas the parameters µi are determined by top-down and
bottom-up influences, the parameters ξi are determined only by top-down
influences. The distinction—essentially one between parents and children—
is meaningful only for directed graphical models.

3.3 Attractor Dynamics. The mean field equations provide a self-con-
sistent description of the statistics µi ≈ E[Si|V] and ξi ≈ E[σi|V] in terms
of the corresponding statistics for the ith unit’s Markov blanket. Except in
special cases, however, the solutions to these equations cannot be expressed
in closed form. Thus, in general, the values for the parameters {µi, ξi}must be
found by numerically solving equations 3.4 and 3.5. This is greatly facilitated
by expressing the solutions to these equations as fixed points of an attractor
dynamics; we can then solve the mean field equations by integrating a set of
differential equations. To this end, we associate with each unit the conjugate
parameters:

gi =
∑

j

Wijµj +
∑

j

Wji(µj − ξj)− 1
2
(1− 2µi)

∑
j

W2
jiξj(1− ξj), (3.6)

hi =
∑

j

Wijµj + 1
2
(1− 2ξi)

∑
j

W2
ijµj(1− µj), (3.7)

whose values are simply equal to the arguments of the sigmoid functions in
the mean field equations. The variables gi and hi summarize the influences
of the ith unit’s Markov blanket. We consider the dynamics:

τµµ̇i = −
[
µi − σ(gi)

]
, (3.8)

τhḣi = + [ξi − σ(hi)] , (3.9)

where τµ and τh are (positive) time constants and µ̇i and ḣi are the time
derivatives of µi and hi. Note that equation 3.9 specifies the time derivative
of hi, not ξi. As we show below, however, this does not present any difficulty
in integrating the dynamics.

By construction, the fixed points of this dynamics correspond to solutions
of the mean field equations. To prove the stability of these fixed points, we
introduce the Lyapunov function,

L =
∑

ij

[
−Wijµiµj + 1

2
W2

ijξ
2
i µj(1− µj)

]

+
∑

i

[∫ µi

0
σ−1(µ)dµ+

∫ hi

−∞
σ(h)dh

]
, (3.10)
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where σ−1(µ) is the inverse sigmoid function, that is, σ−1(σ (h)) = h. The
first and third terms in this Lyapunov function are identical to what Hop-
field (1984) considered for symmetric networks; the others are peculiar to
sigmoid DAGs. Consider the time derivative of this Lyapunov function un-
der the dynamics of equations 3.8 and 3.9. Note that this dynamics does not
correspond to a strict gradient descent in L, which would trivially give rise
to a proof of convergence. With some straightforward algebra, however, one
can show that

L̇ = −
∑

i

{[
σ−1(µi + τµµ̇i)− σ−1(µi)

]
µ̇i + τhḣ2

i

}
≤ 0, (3.11)

where the inequality follows from the observation that the sigmoid function
is monotonically increasing. Thus, the function L always decreases under the
attractor dynamics. As we discuss in the appendix, the flow to stable fixed
points can be viewed as computing the approximate distribution, Q(H|V),
that best matches the true posterior distribution, P(H|V).

In practice, one solves the mean field equations by discretizing the attrac-
tor dynamics in equations 3.8 and 3.9. We experimented with two simple
schemes to compute updated values {µ̃i, ξ̃i} at time t+1t based on current
values {µi, ξi} at time t. One of these was a first-order Euler method:

µ̃i = µi + µ̇i1t, (3.12)

ξ̃i = 1
2
−
[∑

jW
2
ijµ̃j(1− µ̃j)

]−1 (
hi + ḣi1t−∑jWijµ̃j

)
, (3.13)

followed (when necessary) by clipping operations that projected {µi, ξi}
into the interval [0, 1]. The other scheme we tried was a slight variant
that sidestepped the division operation in equation 3.13. This was done by
making additional use of the sigmoid squashing function, replacing equa-
tion 3.13 by

ξ̃i = σ(hi + ḣi1t). (3.14)

This second method does not strictly reduce to the continuous attractor
dynamics in the limit 1t → 0; however, empirically it tended to converge
more rapidly to solutions of the mean field equations. For this reason, and
also because of its naturalness, we favored this method in practice. Figure 2
shows typical traces of L versus time for both methods. The traces were
computed from one of the networks learned in section 4.

3.4 Mean Field Learning. The Lyapunov function in equation 3.10 has
another interpretation that is important for unsupervised learning. Noting
that the KL divergence between two distributions is strictly nonnegative, it
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Figure 2: Typical convergence of the Lyapunov function, L, under the dis-
cretized attractor dynamics. The top curve shows the trace using equation 3.13
and the bottom curve using equation 3.14.

follows from equation 3.3 that

ln P(V) ≥ −
∑

H

Q(H|V) ln
[

Q(H|V)
P(H,V)

]
. (3.15)

Equation 3.15 gives a lower bound on the log-likelihood of the evidence,
ln P(V), in terms of an average over the tractable distribution, Q(H|V). The
lower bound on ln P(V) can be used as an objective function for unsu-
pervised learning in generative models (Hinton et al., 1995). Whereas in
tractable networks, one adapts the weights to maximize the log-likelihood
ln P(V), as in equation 2.4, in intractable networks, one adapts the weights
to maximize the lower bound.

In general, it is not possible to evaluate the right-hand side of equa-
tion 3.15 exactly; further approximations are required. In the appendix, we
evaluate equation 3.15 assuming that the weighted sum of inputs to each
unit has a gaussian distribution. We also make use of an additional vari-
ational principle to estimate intractable averages over Q(H|V). Evaluating
equation 3.15 in this way leads to the Lyapunov function in equation 3.10.
With this interpretation, we can view equation 3.10 as a surrogate objective
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function for unsupervised learning. Thus, in addition to computing approx-
imate statistics of the posterior distribution, P(H|V), the attractor dynamics
in equations 3.8 and 3.9 also computes a useful objective function. (Under
certain limiting conditions, the Lyapunov function in equation 3.10 actually
provides a lower bound on the log-likelihood, ln P(V) ≥ −L, as opposed to
merely an estimate.)

Note the dual role of the Lyapunov function in the mean field approxi-
mation: the attractor dynamics minimizes L with respect to the mean field
parameters {µi, ξi}, while the learning rule minimizes L with respect to the
weights Wij. A useful picture is to imagine these two minimizations occur-
ring on vastly different timescales, with the mean field parameters {µi, ξi}
tracking changes in the evidence much more rapidly than the weights, Wij.
Put another way, short-term memories are stored by the mean field param-
eters and long-term memories by the weights.

We derive a mean field learning rule by computing the gradients of the
Lyapunov function L with respect to the weights, Wij. Applying the chain
rule gives

dL
dWij

= ∂L
∂Wij

+
∑

k

∂L
∂µk

∂µk

∂Wij
+
∑

k

∂L
∂ξk

∂ξk

∂Wij
, (3.16)

where the last two terms account for the fact that the mean field parame-
ters depend implicitly on the weights through equations 3.4 and 3.5. (Here
we have assumed that the attractor dynamics are allowed to converge fully
before adapting the weights to new evidence.) We can simplify this expres-
sion by noting that the mean field equations describe fixed points at which
∂L/∂µk = ∂L/∂ξk = 0; thus the last two terms in equation 3.16 vanish.
Evaluating the first term in equation 3.16 gives rise to the on-line learning
rule:

1Wij ∝
[
(µi − ξi) µj −Wijξi(1− ξi)µj(1− µj)

]
. (3.17)

Comparing this learning rule to equation 2.4, we see that the mean field
parameters fill in for the statistics of Si and σi. This is, of course, what makes
the learning algorithm tractable. Whereas the statistics of P(H|V) cannot be
efficiently computed, the parameters {µi, ξi} are found by solving the mean
field equations.

Note that the right-most term of equation 3.7 has no counterpart in equa-
tion 2.4. This term, a regularizer induced by the mean field approximation,
causes Wij to be decayed according to the mean field statistics of σi and Sj. In
particular, the weight decay is suppressed if either ξi or µj is saturated near
zero or one; in effect, weights between highly correlated units are burned
in to their current values.
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Figure 3: (Left) Actual images from the training set. (Middle) Images sampled
from the generative models of trained networks. (Right) Images whose bottom
halves were inferred from their top halves.

4 Experimental Results

We used a database of handwritten digits to evaluate the computational abil-
ities of unsupervised neural networks represented by DAGs. The database
consisted of 11,000 examples of handwritten digits compiled by the U.S.
Postal Service Office of Advanced Technology. The examples were prepro-
cessed to produce 8 × 8 binary images, as in Figure 3. For each digit, we
divided the data into a training set of 700 examples and a test set of 400 ex-
amples. The partition of data into training and test sets was the same as
used in previous studies (Hinton et al., 1995; Saul et al., 1996).

We used the mean field algorithm from the previous section to learn
generative models of each digit class. The generative models were param-
eterized by three-layer networks with 8 × 24 × 64 architectures. In 100 in-
dependent experiments,2 we trained 10 networks, one for each digit class,
and then used these networks to classify the images in the test set. The test
images were labeled by whichever network returned the highest value of
−L, used as a stand-in for the true log-likelihood, ln P(V). The mean classi-
fication error rate in these experiments was 4.4%, with a standard deviation
of 0.2%. These results are considerably better than standard benchmarks
on this database (Hinton et al., 1995), such as k-nearest neighbors (6.7%)
and backpropagation (5.6%). They also improve slightly on results from the
wake-sleep learning rule (4.8%) in Hemholtz machines (Hinton et al., 1995)
and from an earlier version (4.6%) of the mean field learning rule (Saul et
al., 1996).

2 The experimental details were as follows. Each network was trained by five passes
through the training examples. The weights were adapted using a fixed learning rate
of 0.05. Mean field parameters were computed by 16 iterations of the discretized
attractor dynamics, equations 3.12 and 3.14, with τµ = τh = 1 and a step size of 1t =
0.25. The mean field parameters were initialized by a top-down pass through the net-
work, setting ξi = σ(

∑
j Wijξj) and µi = ξi for the hidden units. The weights Wij were

initialized by random draws from a gaussian distribution with zero mean and small
variance.
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The classification results show that the mean field networks have learned
noisy but essentially accurate models of each digit class. This is confirmed
visually by looking at images sampled from the generative model of each
network (see Figure 3). The three columns in this figure show, from left to
right, actual images from the training set, fantasies sampled from the gener-
ative models of trained networks, and images whose top halves were taken
from those in the first column and whose bottom halves were inferred, or
filled in, by the attractor dynamics. These last images show that probabilistic
DAGs can function as associative memories in the same way as symmetric
neural networks, such as the Hopfield model (1984).

5 Discussion

In this article we have extended the attractor paradigm of neural computa-
tion to feedforward networks parameterizing probabilistic generative mod-
els. The probabilistic semantics of these networks (Lauritzen, 1996; Neal,
1992; Pearl, 1988) differ in useful respects from those of symmetric neural
networks, for which the attractor paradigm was first established (Cohen &
Grossberg, 1983; Hopfield, 1982; Geman & Geman, 1984; Ackley et al., 1985;
Peterson & Anderson, 1987). Borrowing ideas from statistical mechanics, we
have derived a mean field theory for approximate probabilistic inference.
We have also exhibited an attractor dynamics that converges to solutions of
the mean field equations and that generates the signals required for unsu-
pervised learning.

While learning and dynamics have been twin themes of neural network
research since its inception, it often appears that the field is divided into
two camps: one studying symmetric networks with energy functions, the
other studying feedforward networks that do not involve iterative forms
of relaxation. In our view, this split has prevented researchers from com-
bining the benefits of both approaches to computation. We note that de-
spite the strong convergence results available for symmetric networks, there
have been few applications for these networks involving any significant
element of learning. Likewise, despite the powerful learning abilities of
feedforward networks, there have been few applications involving more
complex forms of inference and decision making. In the remainder of this
section, we discuss the many compelling reasons for combining these two
approaches and suggest how this might be done using the ideas in this
article.

Let us begin by considering feedforward networks. Many practical learn-
ing algorithms have been developed for feedforward networks, and nu-
merous theoretical results are available to characterize their properties for
approximation and estimation. The usual framework for feedforward net-
works is one of supervised learning, or function approximation. In partic-
ular, a network induces a functional relationship between x and y based
on a training set consisting of (x, y) pairs. Subsequent x inputs can be used
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as queries, and the network interpolates or extrapolates to provide a re-
sponse y.

Although useful and general, this framework also has limitations. In par-
ticular, it is not always the case that the form of future queries is known in
advance of training, and indeed, as in the classical setting of associative
memory, it can be useful to allow arbitrary components of the joint (x, y)
vector to serve as queries. For example, in control and optimization appli-
cations, one would like to use y as a query and extract a corresponding x.
In missing data problems, one would like to fill in components of the x vec-
tor given y or other components of x. In applications involving diagnosis,
model critiquing, explanation, and sensitivity analysis, one would often
like to find values of hidden units that correspond to particular input or
output patterns. Finally, in problems with unlabeled examples, one would
like to do some form of unsupervised learning. In our view, these manifold
problems are best treated as general inference problems on the database of
knowledge stored by the network. Moreover, as is suggested by the heuris-
tic iterative techniques that have been employed to “invert” feedforward
networks (Hoskins, Hwang, & Vagners, 1992; Jordan & Rumelhart, 1992),
we expect issues in dynamical systems to become relevant when inference
is performed in an “upstream” direction.

Even in the classical setting, where feedforward networks are used for
function approximation, an inferential perspective can be useful. Consider
two logistic hidden units with strong, positive connections to a logistic out-
put unit. If the output unit has a target value of one, then we can exploit
the fact that only one hidden unit suffices to activate the output unit. In
particular, if we have additional evidence that (say) the first hidden unit is
activated, perhaps via its connection to another output unit, then we can
infer that the second hidden unit is not required to be activated, and thus
can be used for other purposes. This explaining-away phenomenon reflects
an induced correlation between the hidden units, and it is natural in many
diagnostic settings involving hidden causes (Pearl, 1988). It and other in-
duced correlations between hidden units can be exploited if we augment our
view of feedforward network learning to include an “upstream” inferential
component.

While classical feedforward networks are powerful learning machines
and weak inference engines, the opposite can be said of symmetric neural
networks. Properly configured, symmetric networks can perform inferences
as complex as solving the traveling salesman problem (Hopfield & Tank,
1986), yet few have emerged in applications involving a significant element
of learning. In our view, the reasons for this are twofold (Pearl, 1988). First,
it is a general fact that undirected graphical models—of which symmetric
neural networks, such as the Boltzmann machine, are a special case—are
less modular than directed graphical models. In a directed model, units
that are downstream from the queried and observed units can simply be
deleted; they have no effect on the query. In undirected networks no such
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modularity generally exists; units are generally coupled via the partition
function. Second, in a directed network, it is possible to use causal intuitions
to understand representation and processing in the model. This can often
be an overwhelming advantage. Moreover, if the domain being modeled
has a natural causal structure, then it is natural to use a directed model that
accords with the observed direction of causality.

We take two lessons from the previous successes of neural computation:
(1) from the abilities of symmetric networks, that complex forms of infer-
ence require an element of iterative processing; and (2) from the abilities
of feedforward networks, that the capacity to learn is greatly enhanced by
the element of directionality. We believe that the formalism in this article
combines the best aspects of symmetric and feedforward neural networks.
The models we study are represented by directed acyclic graphs and thus
have the natural advantages of modularity and causality that accrue to feed-
forward networks. Moreover, because they are endowed with probabilistic
semantics, they also support complex types of inference and reasoning. This
allows them to be applied to a broad range of problems involving diagno-
sis, explanation, control, optimization, and missing data. Our formalism
also reconciles the problems of unsupervised and supervised learning in
a manner reminiscent of the Boltzmann machine (Ackley et al., 1985). The
supervised case simply emerges as the limiting case in which all of the input
and output units are contained in the set of visible units. Finally, as in sym-
metric neural networks, approximate probabilistic inference is performed
by relaxing a continuous dynamical system. Our formalism thus preserves
the many compelling features of the attractor paradigm, including the guar-
antees of stability and convergence, the potential for massive parallelism,
and the physical analogy of an energy surface.

We have contrasted the networks in this article to standard backpropaga-
tion networks, which do not make use of probabilistic semantics or attractor
dynamics. Another representational difference is that the units in backprop-
agation networks take on continuous values, whereas the units in sigmoid
Bayesian networks represent binary random variables. Our focus on binary
random variables, as opposed to continuous ones, however, should not be
construed as a fundamental limitation of our methods. Ideas from mean
field theory can be applied to probabilistic models of continuous random
variables, and such applications may be of interest for more sophisticated
generative models (Hinton & Ghahramani, 1997).

Note that our analysis transforms a feedforward network into a recurrent
network that possesses a Lyapunov function. This recurrent network (es-
sentially equations 3.8 and 3.9 viewed as a recurrent network) is not a sym-
metric network, and its Lyapunov function does not follow directly from
the theorems of Cohen and Grossberg (1983) and Hopfield (1984). We have
derived the attractor dynamics for these networks by combining ideas from
statistical mechanics with the probabilistic machinery of directed graphi-
cal models. Of course, one can also study recurrent networks that possess
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a Lyapunov function, independent of any underlying probabilistic formu-
lation. In fact, Seung, Richardson, Lagarias, and Hopfield (1998) recently
exhibited a Lyapunov function for excitatory-inhibitory neural networks
with a mixture of symmetric and antisymmetric interactions. Interestingly,
their Lyapunov function has a similar structure to the one in equation 3.10.

A general concern with dynamical approaches to computation involves
the amount of time required to relax to equilibrium. Although we found em-
pirically that this relaxation time was not long for the problem of recognizing
handwritten digits (16 iterations of the discretized differential equations),
the issue requires further attention. Beyond general numerical methods for
speeding convergence, one obvious approach is to consider methods for
providing better initial estimates of the mean field parameters. This general
idea is suggestive of the Helmholtz machine of Hinton et al. (1995). The
Helmholtz machine is a pair of feedforward networks, a top-down gen-
erative model that corresponds to the Bayesian network in Figure 1, and
a bottom-up recognition model that computes the conditional statistics of
the hidden units induced by the input vector. This latter network replaces
the mean field equations in our approach. The recognition model is itself
learned, essentially as a probabilistic inverse to the generative model. This
approach obviates the need for the iterative solution of mean field equa-
tions. The trade-off for this simplicity is a lack of theoretical guarantees,
and the fact that the recognition model cannot handle missing data or sup-
port certain types of reasoning, such as explaining away, that rely on the
combination of top-down and bottom-up processing. One attractive idea,
however, is to use a bottom-up recognition model to make initial guesses
for the mean field parameters, then to use an attractor dynamics to refine
these guesses.

Even without such enhancements, however, we believe that the attractor
paradigm in directed graphical models is worthy of further investigation.
Attractor neural networks have provided a viable approach to probabilis-
tic inference in undirected graphical models (Peterson & Anderson, 1987),
particularly when combined with deterministic annealing. We attribute the
lack of learning-based applications for symmetric neural networks to their
representational limitations for modeling causal processes (Pearl, 1988) and
the peculiar instabilities arising from the sleep phase of Boltzmann learning
(Neal, 1992; Galland, 1993). By combining the virtues of attractor dynamics
with the probabilistic semantics of feedforward networks, we feel that a
more useful and interesting model emerges.

Appendix: Details of Mean Field Theory

In this appendix we derive the mean field approximation for large, layered
networks whose probabilistic semantics are given by equations 2.1 and 2.2.
Starting from the factorized distribution for Q(H|V), equation 3.1, our goal
is to minimize the KL divergence in equation 3.3, with respect to the param-
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eters {µi}. Note that this is equivalent to maximizing the lower bound on
ln P(V), given in equation 3.15.

The first term on the right-hand side of equation 3.3 is simply minus the
entropy of the factorial distribution, Q(H|V), or:∑

H

Q(H|V) ln Q(H|V) =
∑

i

[
µi lnµi + (1− µi) ln(1− µi)

]
. (A.1)

Here, for notational convenience, we have introduced parameters µi for all
the units in the network, hidden and visible. For the visible units, we use
these parameters simply as placeholders for the evidence. Thus, the visible
units are clamped to either zero or one, and they do not contribute to the
entropy in equation A.1.

Evaluating the second term on the right-hand side of equation 3.3 is not
as straightforward as the entropy. In particular, for each unit, let

zi =
∑

j

WijSj (A.2)

denote its weighted sum of parents, and let σi = σ(zi) denote its squashed
top-down signal. From equations 2.1 and 2.2, we can write the joint distri-
bution in these networks as

ln P(S) =
∑

i
[Si ln σi + (1− Si) ln(1− σi)] (A.3)

=
∑

i

(
Sizi − ln

[
1+ ezi

])
. (A.4)

Note that to evaluate the second term in equation 3.3, we must average the
right-hand side of equation A.4 over the factorial distribution, Q(H|V). The
logarithm term in equation A.4, however, makes it impossible to compute
this average in closed form.

Clearly, another approximation is needed to compute the expected value
of ln[1+ ezi ], averaged over the distribution, Q(H|V). We can make progress
by studying the sum of inputs, zi, as a random variable in its own right.
Under the distribution Q(H|V), the right-hand side of equation A.2 is a
weighted sum of independent random variables with means µj and vari-
ances µj(1−µj). The number of terms in this sum is equal to the number of
hidden units in the preceding layer. In large networks, we expect the statis-
tics of this sum—or, more precisely, the distribution Q(zi|V)—to be governed
by a central limit theorem. In other words, to a very good approximation,
Q(zi|V) assumes a gaussian distribution with mean and variance:

〈zi〉 =
∑

j

Wijµj, (A.5)

〈
δz2

i

〉
=
∑

j

W2
ijµj(1− µj), (A.6)
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where 〈·〉 is used to denote the expected value. The gaussianity of Q(zi|V)
emerges in the thermodynamic limit of large, layered networks where each
unit receives an infinite number of inputs from the hidden units in the
preceding layer. In particular, suppose that unit i has Ni parents and that
the weights Wij are bounded by

√
Ni|Wij| < c for some constant c. Then

in the limit Ni → ∞, the third- and higher-order cumulants of
∑

j WijSj

vanish for any distribution under which Sj are independently distributed
binary variables. The assumption that

√
NiWij < c implies that the weights

are uniformly small and evenly distributed throughout the network; it is a
natural assumption to make for robust, fault-tolerant networks whose com-
puting abilities do not degrade catastrophically with random “lesions” in
the weight matrix. Although only an approximation for finite networks, in
what follows we make the simplifying assumption that Q(zi|V) is a gaus-
sian distribution. This assumption—specifically tailored to large, layered
networks whose evidence arrives in the bottom layer—leads to the simple
mean field equations and attractor dynamics in section 3.3

The asymptotic form of Q(zi|V) and the logarithm term in equation 4.4
motivate us to consider the following lemma. Let z denote a gaussian ran-
dom variable with mean 〈z〉 and variance 〈δz2〉, and consider the expected
value, 〈ln[1 + ez]〉. Then, for any real number ξ , we have the upper bound
(Seung, 1995):

〈ln[1+ ez]〉 = 〈ln[eξze−ξz(1+ ez)]〉, (A.7)

= ξ〈z〉 + 〈ln[e−ξz + e(1−ξ)z]〉, (A.8)

≤ ξ〈z〉 + ln〈e−ξz + e(1−ξ)z〉, (A.9)

where the last line follows from Jensen’s inequality. Since z is gaussian,
it is straightforward to perform the averages on the right-hand side. This
gives us an upper bound on 〈ln[1+ ez]〉 expressed in terms of the mean and
variance:

〈ln[1+ ez]〉 ≤ 1
2
ξ2〈δz2〉 + ln

[
1+ e〈z〉+(1−2ξ)〈δz2〉/2

]
. (A.10)

The right-hand side of equation A.10 is a convex function of ξ whose mini-
mum occurs in the interval ξ ∈ [0, 1].

We can use this lemma to compute an approximate value for 〈ln[1+ ezi ]〉,
where the average is performed with respect to the distribution, Q(H|V).
This is done by introducing an extra parameter, ξi, for each unit in the
network, then substituting ξi and the statistics of zi into equation A.10. Note

3 One can also proceed without making this assumption, as in Saul et al. (1996), to de-
rive approximations for nonlayered networks. The resulting mean field equations, how-
ever, do not appear to lend themselves to a simple attractor dynamics.
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that the terms ln[1 + ezi ] appear in equation A.4 with an overall minus
sign; thus, to the extent that Q(zi|V) is well approximated by a gaussian
distribution, the upper bound in equation A.10 translates into a lower bound
on 〈ln P(S)〉. In particular, from equation A.4, we have:

〈ln P(S)〉 ≈
∑

ij

Wijµiµj − 1
2

∑
ij

W2
ijξ

2
i µj(1− µj)

−
∑

i
ln
{

1+ e
∑

j

[
Wijµj+ 1

2 (1−2ξi)W2
ijµj(1−µj)

]}
. (A.11)

The right-hand side of equation A.11 becomes a lower bound on 〈ln P(S)〉
in the thermodynamic limit where Q(zi|V) is described by a gaussian dis-
tribution.

The objective function for the mean field approximation is the difference
between equations A.1 and A.11; these expressions correspond to the first
two terms of equation 3.3. The difference of these two equations is in fact the
Lyapunov function, L, from equation 3.10. This can be shown by appealing
to the definition of hi in equation 3.7 and by noting that∫

σ(h) dh = ln[1+ eh], (A.12)∫
σ−1(µ) dµ = µ lnµ+ (1− µ) ln(1− µ), (A.13)

where σ−1(µ) = ln[ µ
1−µ ] is the inverse sigmoid function. Thus we have

derived the Lyapunov function by evaluating the KL divergence in equa-
tion 3.2. It follows that the Lyapunov function measures the discrepancy
between the distributions Q(H|V) and P(H|V) in terms of the mean field
parameters, {µi, ξi}. Optimal values for these parameters are found by min-
imizing L; in particular, computing the gradients ∂L/∂µi and ∂L/∂ξi and
equating them to zero leads to the mean field equations, equations 3.4
and 3.5.
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