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Abst rac t .  We survey and present new geometric and combinatorial 
propertiez of some polyhedra with application in combinatorial opti- 
mization, for example, the max-cut and multicommodity flow problems. 
Namely we consider the volume, symmetry group, facets, vertices, face 
lattice, diameter, adjacency and incidence relm :ons and connectivity of 
the metric polytope and its relatives. In partic~dar, using its large sym- 
metry group, we completely describe all the 13 o:bits which form the 275 
840 vertices of the 21-dimensional metric polytope on 7 nodes and their 
incidence and adjacency relations. The edge connectivity, the/-skeletons 
and a lifting procedure valid for a large class of vertices of the metric 
polytope are also given. Finally, we present an ordering of the facets of a 
polytope, based on their adjacency relations, for the enumeration of its 
vertices by the double description method. 

1 Introduct ion 

We first recall the definition of the m e t r i c  polytope m n  and some of its relatives 
and present some applications to well known optimization problems Of those 
polyhedra. The general references are BAYER AND LEE [8] and ZIEGLER [3i] for 
polytopes and BROUWER, COHEN AND NEUMAIER [9] for graphs. For a complete 
study of the applications and the combinatorial optimization aspects of those 
polyhedra, we refer, respectively, to the surveys DEZA AND LAURENT [17] and 
POLJAK AND TUZA [29]. 

For all 3-sets { i , j ,  k} C N = { 1 , . . . ,  n}, we consider the following inequalities: 

x i j  - x ik  - x j k  <_ 0 . (1) 

The inequalities (1) induce the 3(~) facets whicl; define the m e t r i c  cone M n .  

Then, bounding the later by the following inequal;l:ies: 

x i j  + xik  + xjk _< 2 (2) 

* Research supported by Japanese Ministry of Education, Science and Culture for the 
first author. 
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we obtain the metric polytope mri. The 3(~) facets defined by (1), which can be 
seen as triangle inequalities for distance xij on {1, 2 , . . . ,  n}, are called homo- 
geneous triangle facets. The (~) facets defined by the inequalities (2) are called 
non-homogeneous triangle facets, and by triangle facet we denote a facet of either 
type (1) or i2). 

While the cut cone Cn is the conic hull of all, up to a multiple, {0, 1}-valued 
extreme rays of the metric cone, the cut polytope Cn is the convex hull of all 
{0, 1}-valued vertices of the metric polytope. Those two polyhedra can also be 
defined independently from the metric cone and polytope in the following ways. 

Given a subset .S of N = .{1 ,  2 , . . . ,  n}, the cut defined by S consists of the 
pairs ( i , j )  of elements of N such that exactly one of i, j is in S. By 6(8) we 

denote both the cut and its incidence vector in IR(~), that  is, 5(S)ij  = 1 if exactly 
one of i, j is in S and 0 otherwise for 1 _< i < j < n. By abuse of language, we 
use the term cut for both the cu t ' i t sd f  ~.ad its incidence vector, so 6(S)ij  are 

considered as coordinates of a point in ]R/~). The cu tpo ly tope  of the complete 
graph ca, which is also called the complete bipartite subgraphs polytope, is the 
convex hull of all 2 a-1 cuts, and the cut cone Ca is the conic hull of all 2 a-1 - 1 
nonzero cuts. Those polyhedra were considered by many authors, see for instance 
[2, 7, 15, 16, 17, 18, 19, 21, 23, 24] and references therein. One of the motivations 
for the study of these polyhedra comes from their applications in combinatorial 
optimization, the most important  being the max-cut and multicommodity flow 
problems. 

Given a graph G = ( N, E)  and nonnegative weights we, e E E,  assigned 
to its edges, the max-cut problem consists in finding a cut 6(S ) whose weight 
~ee6(s)  we is as large as possible. It is a well-known NP-complete  problem. By 
setting we = 0 if e is not an edge of G, we can consider without loss of generality 
the complete graph K,~. Then the max-cut problem can be stated as a linear 
programming problem over the cut polytope Cn as follows: 

max w T . x 

subject to X E Cn �9 

Since the metric polytope is a relaxation of the cut polytope, optimizing w T . x  
over ca instead of mn provides an upper bound for the max-cut problem [7]. 

With E the set of edges of the complete graph Kni an instance of the mul- 
ticommodity flow problem is given by two nonnegative vectors indexed by E: a 
capacity cie ) and a requirement r(e) for ea:h e �9 E.  Let U = {e �9 E :  r(e) > 0}. 
If T denotes the subset of N spanned by the edges in U, then we say that  the 
graph G = (T, U) denotes the support of r. For each edge e = ( s, t) in the sup- 
port  of r, we seek a flow of t i e  ) units between s and t in the complete graph. The 
sum of all flows along any edge e ~ �9 E must not exceed cie~). If such a set of flows 
exists, we call c, r feasible. A necessary and sufficient condition for feasibility is 
given by the Japanese theorem of IRI [22] and ONAGA AND KAKUSHO [26]: a 
pair c, r is feasible if and only if (c - r ) W x  ~ 0 iS valid over the metric cone. For 
example, the triangle facet induced by (1) can be seen as an elementary solvable 
flow problem with c(ij)  = r(ik)  = r ( j k )  = 1 and c(e) ---r(e) = 0 otherwise, so 
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the inequalities (1) correspond to (c - r ) T x  ~_ 0 for x �9 Mn. In other words, the 
dual metric cone is the cone of all feasible multicommodity flow problems. 

2 S k e l e t o n s  a n d  D i a m e t e r s  

2.1 P r e v i o u s  R e s u l t s  

The polytope Cn is a (~) dimensional 0 -1  polyhedron with 2 n-1 vertices and mn 

is a polytope of same dimension with 4(~) facets inscribed in the cube [0, 1](~). 
We have cn C mn  with equality only for n < 4. It ;s easy to see that  the point 
~n = (�89 �89  �89 is the center of gravity of boti~ c~ and mn and is also the 

center of the sphere of radius r = � 8 9  - 1) where all the cuts lie. Another 
two geometric characteristics of the cut polytope cn are its width and geometric 
diameter.  We recall that  while the width of a polytope P is equal to the minimum 
distance between a pair of parallel hyperplanes containing P i n t h e  slice between 
them, the geometric diameter of P is the maximum distance between a pair of 
supporting hyperplanes. The width of cn is 1 and its geometric diameter is 

for n even and � 8 9  1) for n odd. Any facet, respectively subfacet ( that  is, 
a face of codimension 2), of the metric polytope contains a facet, respectively a 
subfacet, of the cut polytope and the vertices of the cut polytope are vertices 
of the metric polytope, in fact the cuts axe precisely the integral vertices of the 
metric polytope. Actually the metric polytope mn wraps the cut polytope c~ 
very tightly since, in addition to the vertices, all edges and 2-faces of c~ are also 
faces of ran, for 3-faces it is false for n > 4, see [14, 19]. In other words, c~ is a 
segment  of  order 2, but not 3, of mn and its dual, m*, is a segment of order 1 of 
c* in terms of [25]: a polytope P is a segment of order s of a polytope Q if they 
have the same dimension and if every/ - face  of P is a face of Q for 0 < i < s. 
The polytope cn is 3-neighbourly, see [19]. Any two cuts are adjacent both on 
Cn and on mn [7, 27]; in other words mn is quasi-integral in terms of [30], that  
is, the skeleton of the convex hull of its integral vertices, i.e. the skeleton of c~, 
is an induced subgraph of the skeleton of the metric polytope itself. While t h e  
diameter of m n is 2, the diameters of c n and mn a c respectively conjectured to  
be 4 and 3, see [13, 23]. We recall that  the skeletun of a polytope is the graph 
formed by its vertices and edges. 

The metric polytope and the cut polytope share the same symmetry group, 
that  is, the group of isometrics preserving a polytope. This group is isomorphic 
to the automorphism group of the folded n-cube: Aut([3~) ~ I s ( m p )  = Is(cp) ,  
see [15, 23]. We recall that  the folded n-cube is the graph whose vertices are 
the partitions of N = { 1 , . . . ,  n} into two subsets, two partitions being adjacent 
when their common refinement contains a set of size one, see [9]. More precisely, 
for n > 5, I s ( m n )  = I s (ca )  is induced by permutations on Y = {1 , . . . ,  n} and 
switching reflections by a cut. Given a cut 6(S), the switching reflection r6(s) 
is defined by y -- r~(s)(x)  where Ylj --- 1 - x i j  if ( i , j )  �9 5(S)  and Yij = x i j  
otherwise. These symmetries preserve the adjacency relations and the linear 
independency. Using the partit ion of the faces of m .  and c ,  into orbits of their 
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symmetry  group, the face lattice for small dimensions (d = 3, 6 and 10) was 
given in [14]. 

We finally mention the following link with metrics. There is an evident 1 - 1 
correspondence between the elements of the metric cone and all the semi-metrics 
on n points. Moreover the elements of th. cut cone correspond precisely to the 
semi-metrics on n points tha t  are isometrically e,nbeddable into some l~ n, see [1], 
it is easy  to check that  such minimal m is smaller or equal to (i)" 

Another relative of the metric cone is the solitaire cone SB, that  is, the cone 
generated by all the possibles moves of a Solitaire Peg gafiae played on a board 
B. This cone shares a lot of similar properties with the metric cone, see [5]. In 
particular, for a game played on the line graph Tn of the complete graph Kn,  
the complete solitaire cone ST~ equals the dual metric cone M*, see [5]. 

2.2 N e w  R e s u l t s  

T h e  M e t r i c  P o l y t o p e  o n  S e v e n  N o d e s .  In Table 1 we present the 13 orbits 
under permutat ions  and switching which form the 275 840 vertices of the metric 
polytope m7. For each orbit  0{, we give a representative vertex vi, the size of 
the orbit IOil, its size I0{ NF I restricted to a facet and the incidence Iv~ and the 
adjacency Av,of any vertex belonging to the orbit 0{. 

Table  1. The orbits of vertices of the metric polytope on seven nodes 

O, 

02 

Os 

O, 

05 

06 

Or 

Os 

09 

Olo 

Oll 

O12 

O13 

Total 

R~resentative vertex vi 

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)  

2 1 ~( ,I,I,I,I,I,1, I,I,I,I,I,I,I,I,.~,I,I,I,I,I) 
~(1,1,1,1,1,0,1,1,1,1,1,1,1,1, ,1,1,1,1,1,1,1) 

~(1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,111,1,1,1) 

~(1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  

~(1,2,3,1,2,1,1,2,2,1,2,1,1,2,3,2,3,2,1,2,1)  

~(I,I,I,I,I,I,2,2,1,1,1,2,1,1,1, I,I,I,2,2,2) 
~(2,1,1,1,1,2,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2)  

~(2,2,1, I,I,2,2,1, I,I,1,2,1, I,I,2,1, I,2,1,2) 
~(1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,2,1,1,2,2,2)  

~(1,2,3,2,1,2,1,2,1,2,1,1,2,1,1,1,2,2,1,1,1)  

~(3,2,3,3,1,1,1,2,2,2,2,3,3,3,3,4,4,2,2,4,2) 
~(1,2,4,2,2,2,1,3,3,3,3,2,2,2,4,2,2,2,4,4,4)  

64 48 105 55 226 

64 16 J35 896 

1 344 384 40 763 

6720 2 160 45 594 

2 240 784 49 496 

20 160 4320 30 96 

4 480 832 26 76 

23 040 4608 28 57 

40 320 6336 22 46 
i 

!40 320 6 624 23 39 

40 320 7200 25 30 

16 128 2 880 25 27 

80 640 13 248 23 24 

275 840 49 440 
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L e m m a l .  For any vertex vi o f  mn, with [Oil denoting the size of the orbit of 
vi, [Oi f3 F I the size of its restriction to a facet a, .l Iv, the incidence of vl, we 
have: (') [Oil" Iv, = IOi f'l F I �9 4 3 (a) 

Proof. Let { v l , . . . ,  vh.} and {F1 , . . . ,  FL} be respectively an ordering of the orbit 
Oi and of the triangle facets, mad set Xkt = 1 if the vertex vk belongs to the 
triangle facet Ft and 0 otherwise. We have: 

(:) lO nFI.4 
k , I  1 k I 

and also, 

= E ( E  = E(I.,)= IO,1. * v ,  �9 
[] 

T a b l e  2. Orbit-wise adjacencies relations of a cut in the skeleton of mr 

0 , 0 ~ 0 3  04 05 O~ O, Os 09 01o O n l O 1 2 l O l a  I 
63 56 945 3 570 980 7 560 1 120 5 400 8 820 6 930 6 930 2 772 10 080 

In Table 2 we present orbit-wise the 55 226 neight mrs  of a vertex belonging to 
the orbit O1, that  is a cut. For example, 945 in dm third column means that  
a cut is adjacent to 945 vertices belonging to the orbit O3, see Section 4 for 
details. Siffce all the facets incident to the origin 6(0) are precisely the 3(3 ) 
homogeneous triangle facets, to each vertex adjacent to 6(0) corresponds an 
extreme ray of the metric cone. In other words, the adjacency Art of a cut 
equals the number of extreme rays of the metric cone M, .  We recall that  the 41 
orbits under permutations of the extreme rays of 21//7 were previously found by 
GRISHUI<I~IN[21]. Table 2 also implies that  the cuts form a dominating clique in 
the skeleton of m7, that  is, every vertex is adjacent to a cut, as conjectured by 
LAURENT AND POLJAK [24]. We have: 

C o r o l l a r y  2. The metric cone on seven nodes has exactly 55 226 extreme rays. 

C o r o l l a r y  3. The diameter of the metric polytope on seven nodes is 6(m7) = 3. 

Proof. The cuts forming a dominating clique, we have 6(m7) _< 3. Then, t'13 and 
its switching by 5(3) having no common neighbour, see [12], we have ~(mT) _> 3. 

C o n n e c t i v i t y .  A graph is said to be c edge connected provided it has at least 
c + 1 vertices and no two vertices can be separated by removing fewer that  c 
edges. With C such maximal c, let C(P)  denote the edge connectivity of the 
skeleton of a polytope P.  We have: 
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Theorem 4. The edge connectivity of thc metric and cut polytope is: 

1. C(mn) = 2 (n-3)(n2-7) for n > 4 and C(m~) = 3. 
3 

2. C(m4) = 7, C(mh) = 10, C(m6) = 35, 21 g C(m7) < 24. 

s. C(c:)= (2) 

4. C(cn) -- 2 n-1 - 1. 

Proof. We recall the following result of PLESNfK [28]. The connectivity of a graph 
of diameter 2 equals its minimum degree. Then, the skeleton of m* being of 

diameter 2 and with constant degree k = 2 (n-3)(n2-7) for n > 4, it implies 1. 
3 

The diameter of m4, m5 and m6 being 2, it also implies 2 for n < 6. The facet 
Fn of cn induced by the following inequality: 

Z bibjxl j<2 where b = ( - ( n - 4 ) , l ,  1 , . . . , 1 )  
l<_i<j<n 

is a simplex facet which contains exactly the (2) cuts 5({i}) for 2 < i < n and 
5({i,j}) for 2 _< i < j _< n. This implies that 'C(c*)  _< (2)" Then, BALINSKI'S 
theorem [6] stating that  the connectivity Cf the skeleton of a polytope is at least 
its dimension, we obtain 3. The skeleton of Cn being the complete graph, 4 is 
straightforward. [] 

The i-Skeletons. We consider the following two families of graphs, while G i (P) 
denotes the graph which vertices are all the/-faces of a polytope P,  two/-faces 
being adjacent if and only if f/1 N f2 is a (i - 1)-face of P, Gi(P) is the graph 
which vertices are all the i-faces of P,  two/-faces being adjacent if and only if 
f :  and f? belong to the same (i + 1)-face of P. We have: 

Proposit ion 5. 

1. Vo(c . )  = K2~-1. 

2. Gl(cn) = L(K2,-1).  

3. G2(cn) has (2~3-1) vertices and two vertices f~ and f22 are adjacent if and 
only if: 

ill fq f21 = 2 or if1 U f21 = 4, and f l  U f~ is a face ore4. 

4. The complement of G(~)-l(mn) is locally the bouquet of ( n -  3) (3• 
with common K3. 

Proof. The cut polytope being 3-neighbourly, 1 and 2 are straightforward. The 

(2n 
~ l  

3 ) 2-faces of Cn are partitioned into the orbits respectively represented by 
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f2 r's't {6(0), 6 ( 1 , . . . ,  r + s), 6(r + 1 , . . ,  r + s + t)} for all triplets of integers 
{r,s,t} such that  1 < r < [~J, 0 < s < r, r < t < min([~-~J, [ ~ J - s , n - 2 r - s )  
and their incidence relations follows. For 4, that  is the skeleton of the dual metric 
polytope, see [13]. [] 

V o lum e s .  In Table 3 we give the volumes of m ,  and c~ for n _< 6. Both volumes 
seam to quickly vanish to 0 and their ratio, which can be consider as a measure 
of the tightness of the relaxation of cn by m , ,  seams to stay relatively close to 1. 
For n > 5, the volumes were computed using the reverse search method for ver- 
tex enumeration using lexicographic pivoting, implemented by Avis. The code 
used was lrs Version 2.5i, an earlier version of the code is described in [3]. Since 
all facets of mn are equivalent under permutat ion and switching, the volume of 
mn equals 4(~) times the volume of the pyramid with basis one facet and apex 
the center of gravity w, of mn. Comparing the volume of this pyramid and of 
Cn to the volume of the standard (1)-simplex of edge length 2, we have: 

VoZ(m.)(~)! = 2_4, 2_5, 5.2-3 7.281 for  n : 3 , . . .  , 6 .  
(n) (3) 3 ' 3 '  2 2 4  

2(~) = 2 -2, 2 -1, 23, 11. 149 for n := 3 , . . . , 6 .  

Table 3. Volumes of small metric and cut polytopes 

# n  nodes Volume (m.)  Volume (c.) Vol(cn)/Vol(m.) 

3 1/3 1/3 100% 

4 2/45 2/45 100% 

5 4/1 701 32/14 175 ~ 96% 

6 71 936/1 477 701 225 2 384/58 046 625 84% 

2.3 S u m m a r y  Tables 

In Tables 4, 5 and 6 we sum up known and conjectured results concerning the 
skeletons and diameters of the metric and cut polytopes. In particular, we give 
the number of vertices # V  and facets # F  of those polytopes, the incidences I .  
and I / o f  their vertices and facets, the adjazencies Av and Af  of their vertices 
and facets, and the diameter and connectivity of mn and cn and of their dual 
polytopes m* and c~. For example, the last value of the column I /  of Table 5 
means that  a facet of the cut polytope contains at least ( i)  vertices, that  is, is a 
simplex and at most 3 .2  n-3 vertices, that  is 3 of the total number of vertices of 
en, this bound being reached only by the 4(~) triangle facets, see [13]. In the last 
row of Tables 4 and 5, A6(8), ATr and # F c .  respectively denote the adjacency 
of a cut in m , ,  the adjacency of a triangle facet in c ,  and the number of facets 
of the cut cone. 
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T a b l e  4. Skeletons and diameters of metric polytopes 

3 4 3 

4 8 12 

5 32 10~30 

6 544 20~60 

7 275 840 22~105 

n ( ; )7  ~ 3 ( ; )  

3 4 3 

7 16 6 

10~25 40 16 

35~296 80 176 

24~55  226 140 49 440 

4 ( ; )  

3 1 1 

6 1 2 

24 2 2 

58 2 2 

112 3 2 

2(.-3)(. 2-7) 3? 2 
3 

T a b l e  5. Skeletons and diameters of cut polytopes 

3 4 3 3 

4 8 12 7 

5 16 40 15 

6 32 210 31 

7 64 38 780 63 

8 128 49 604 520 127 

n 2 "-I #Fc. 2"-' - 1 

3 

4 

5 

6 

7 

n 

#F  h AS 

4 3 3 

1 6  6 6 

56 10~12 10,,,28 

368 15,,,24 15,~142 

116 764 21,,,48 21~11 432 

217 093 472 28,,,96 28,,~? 

( ; )  ~ (;) ~ 

1 1 

1 2 

1 2 

1 3 

1 3 _< 6(c$) _< 4 

1 ? 

1 4? 

C(m.) C(m:) 

3 3 '  

7 

10 24 

35 

21 _< C(mT) <_ 24 

3 3 

7 6 

15 10 

58 31 15 

112 63 21 

2 ~ a  2 " - 1 - 1  (~) (;)? 

C o n j e c t u r e  6. 

1. The adjacency of a cut, that is, the number of extreme rays of the metric 
cone, is maximal'in the skeleton of m,,. It holds for n < 7. 

2. For n large enough, at least one vertex of mn is simple, (that is, the inci- 
dence equals the dimension of the polytope). If true, it would imply that the 
edge connectivity, the minimal incidence and the minimal adjacency o f  the 
skeleton of mn are equal to (~). It holds for n = 3 and 5. 

3. The adjacency of a triangle facet is maximal in the skeleton of c*. It holds 
for n <_ 7. 

T a b l e  6. Connectivity of the metric and cut polytopes 
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Tab l e  7. Skeletons and diameters of metric cones 

3 3 2 

4 7 8 " 9  

5 25 9",24 

6 296 16"~50 

7 55 226 20'~90 

n A , ' ~ )  ( ; )  - 1? ,~ (n  - 1 ) ( " 2 '  ) 

I r  Ar 

2 3 2 2 1 1 

6 12 5 5 1 2 

9~20  30 14 19 2 2 

23,,,190 60 113 45 2 2 

20--18 502 105 12 821 86 3 2 

( ; ) - 1 ? ~ ~ . ~ ( ( ~ D ?  3 ( ; ) A  ~ ' ~  3? 2 6(S)/FI 2 

Ta bl e  8. Skeletons and diameters of cut cones 

3 3 2 2 

4 7 8~9 6 

5 15 27~30 14 

6 31 I14~130 30 

7 63 I I  343~16 460 62 

8 127 ? 126 

n 2 " - l  - -  1 /~{E)? ~ 16r 2 " - I - - 2  

#F i 
3 

12 

40 

210 

38 780 

49 6O4 52C 
Cu 

/~ls} 

h AI 

2 2 

5 5 

9~11 9~22 

14~23 14~98 

20,~47 20~4 928 

27~'95 27~? 

( ; ) - - 1 ' , , 3 . 2 " - 3 - I  ( ; ) - 1 ~  AT,? 

1 1 

1 2 

1 2 

1 3 

1 a < $(C~) < 4  

1 ? 

1 4? 

Table  9. Connectivity of the metric and cut cones 

#nodes  I C(M.) C(M:) C(C.) ]C(C~) 

3 2 2 2 2 

4 6 5 6 5 

5 9 19 14 9 

6 23 45 30 14 

7 20 86 62 20 

n (;)  - 1 7  2  -1-2 - ,  

In Tables  7, 8 and  9 we give cor responding  res'ults" conce /n ihg  the skeletons 
and d iameters  of  the  met r ic  and cut  cones. Those  resul ts  can be a lmost  direct ly 
deduced f rom the ones given in Tables  4, 5 and 6. In the  last  row of Table  7, 

f l l n  m n A6({1}), A~(s) and A6(S)/F respect ively  denote  the ad jacency  of the  cut 6({1}) in 
Mn, the  ad jacency  of a cut  in mn and its restr ic t ion to  a facet  of ran. In the last  
row of Table  8, I6({1}), I6(E), I~S) and  AT, respect ively  denote  the  incidence of 

the  cut  6(S) with IS[ = 1 and  IS[ = [~J in Cn, the  incidence of a cut in cn and 
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the adjacency of a triangle facet in Cn. For example, the column IN of Table 7 
gives that  the maximal  incidence of the extreme rays of Mn equals the one of a 
cut 6(S) with IS] = 1, that  is, Imax = I6({1}) = ( n  --  1 ) ( n 2 1 ) .  

Remark. The values # F  for n = 8 in Tables 5 and 8 are due to CHRISTOF AND 
REINELT who recently computed the facets of cs and Cs, see [10, 11]. The 217 093 
472 facets of cs form 147 orbits under its symmet ry  group; for more information 
about  those facets and the 49 604 520 on. ~ of Cs see the following W W W  site: 
ht tp:  / /www. iwr . un i -he ide lbe rg .de  / i w r  / c o m o p t  / so f t  / S M A P O .  

T h e o r e m  7. The edge connectivity of the metric and cut cone is: 

1. C(M*) = (n-a)(n2-8) for n > 4 and C(M~) = 2. 2 

2, C(M4) = 6, C(Ms)  = 9, C(M~) = 23, C(M7) = 20. 

s. c ( c ; ) =  1. 

4- C ( C n )  - -  2 n - 1  - 2 .  

Proof. The cuts forming a clique and the skeleton of M~ being of diameter  2 
with constant degree k = (n - 3)(n 2 - 6)/2 for n _> 4, we have 1 and 4. h 
switching of the facet Fn given in the proof of Theorem 4 is a simplex facet 
of Cn, this implies 3. Applying BALINSKI'S theorem [6] to a section of C .  by a 
bounding hyperplane, we have C(C*) -- (2) - 1. The same arguments  as for the 
proof of Theorem 4 give i tem 2. [] 

P r o p o s i t i o n  8. 

1. A facet of Cn contains at most 3 . 2  n-3 - 1 extreme rays; this bound being 
reached only by the 3(3) triangle face~,. 

2. At least one facet of Cn is a simplex. This implies that the mi'nimal incidence 
and the minimal adjacency of the skeleton of C* are equal to (2) - 1. 

3. An extreme ray of Mn belong to at most (n -1) (n21)  facets; this bound being 
reached by only the n cuts 5(S) of size ISI = 1. 

4. The cuts 6(8) and the extreme rays 6(S) defined for 2 < ISI < n - 2 by 
6(8) = d (gs ,$ )  (that is 6(S)st = 1 if s and t adjacent and 2 otherwise)form 
a subgraph of diameter 2 in the skeleton of Mn. 

Proof. I t em I can be easily deduced form the corresponding result for cn. A 
switching of the facet Fn given in the proof of Theorem 7 is a simplex facet of 
Cn stated in 2. To prove i tem 3, we first recall the following proper ty  of the 
vertices of mn given in [13]. A vertex v of mn belongs to at  most 3(3 ) facets, 
tha t  is 43- of the total  number  of facets of mn, this bound being reached only by 
the cutsl More precisely, for v a vertex of mn and any 3-set ~r = {i, j ,  k} C N,  
we have: 
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1, either v belongs to exactly 3 of the 4 facets supported by a; and then 
{vij, c {0,1},  

2. or v belongs to exactly 2 of the 4 facets supported by a; and then, with 
0 < a < 1, we have {vi i ,v lk ,v jk}  = {0, c~,a} o: {1,oz, 1 --o~}, 

3. o r  v belongs to at most 1 of the 4 facets supported by a; and then we have 
v k, v M  n {0, I} = O. 

Then, one can easily check that ,  in Mn, a cut ~f(S) of size ISI = s belongs to 
exactly 3(~) - (n - s)(~) - s(n2 s) triangle facets with the  convention ( i )  = 0 
for i < j .  This, with above items 1 and 2, implies that  the incidence in Mn of a 
cut is higher than the one of any other extreme rays. A cut of size IS I - 1 being 
of maximal incidence among the cuts, this completes the proof of item 3. Using 
the same notation for the extreme rays of Mn and the corresponding vertices of 
mn, the relation in m , :  6(0) not adjacent to 6(S) if and only if ISI < 1 implies 
the following relation in M, :  6({i}) not adjacent to 6(S) if and only if S = {i} 
or { i , j } .  Then, for example, a common neighbour of 6({i , j})  and 6({k,l}) and 
of 6({i , j})  and 6({ i , j } )  is 6({r}) for any 5-tuple {i , j ,  k , l , r } .  This implies 4. [:] 

C o n j e c t u r e  9. 

1. The adjacency of a cut 6(S) with ISI = 1 is maximal in the skeleton of Mn. 
It holds for n <_ 7. 

2. For n large enough, at least one extreme ray of Mn is simple, (that is, the 
incidence plus one equals the dimension of the cone). I f  true, it would imply 
that the edge connectivity, the minimal incidence and the minimal adjacency 
of the skeleton of Mn are equal to (~) - 1. It holds for n = 3, 5 and 7. 

3. The incidence of a cut 5(8) in Cn is mini~,. :l, respectively maximal, for 
ISl = L~J, respectively for ISI = 1. It holds for n < 7. 

4. The adjacency of a triangle facet is maximal in the skeleton of C*. It holds 
for n < 7. 

3 Lifting Construction 

In this section we present a construction which, under given conditions on a 
vertex v of mn, maps v to a vertex of a higher dimensional metric polytope. Let 

v be a point in IR(~), the diameter 6(v) and radius r(v) of v axe defined by: 

6 ( v )  = 2r(v)= max vij �9 (4) 
l < _ i < j ( n  

We consider the following mapping: 

] R  ( ~ ) t ,, + ,,, ~ Am: 2 .-~ IRt ~ ] 
ot  

m V " "  A a ( ),~ = vii 
~ O ~  

- -  2Ol 

for l <_i < j <_n 
f o r l  < i < n < j < _ n + m  
forn  < i < j < _ n + m  
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Then,  AT(v  ) is a vertex of m , + m  if and o,.ly if codim(T,+m(A~(v)))  = 0 where 
T,+m(v) is the set of all triangle facets of mn+m containing v. 

C a s e  m = 1. With  Tij,k and Pijk respectively denoting the facet induced by 
(1) and (2), we have by construction: 

T,+I(A~(v)) = T, (v)  U T . (5) 

Where 

T= U {T/j , .+I} LJ {Ti(n+l),J ) U {TJ(n+l),i) U {Pij(n+l)}. 
vlj----2~ vii----0 vlj----0 v l j = 2 - 2 a  

The equality (5) clearly implies 

and 

A~(v) �9 ran+  1 r ( v )  < < 1 -- r ( v )  

r ( v )  < a < 1 --  r ( v )  codim(T.+l(A (v))) > n . 

(6) 

(7) 

This means tha t  a necessary condition for A~(v) to be a vertex of mn+l is 
a = r(v) or a = 1 - r(v). Since we have A~_a(v) = r6({,+l})(Al(v)), we can 
consider only the case a = r(v)  (we recall tha t  r~({,+l}) is the switching by the 
cut ~f({n + 1}), see Sect. 2.1.). We call Alr(v)(v) the radial extension of v and 

denote it by A 1 (v). 
Before stat ing the conditions on v to " f t  it to m , + l ,  we need the following 

two definitions. Call a graph G = (N ,E)  good, N = { 1 , 2 . . . , n } ,  if it has a 
partial  subgraph G'  = (N, E ' )  with [E'[ = [N[ which does not admit  a non-zero 
edge-weighting f :  E'  --~ IR with ~ve~eE,  f~ = 0 for each v �9 N.  The graph F(v) 
on N is defined by: s and t adjacent if and only if vst = 8(v). For example,  if 
v = �89 for a graph G of diameter  2 ( that  is Vst = ~ if s and t adjacent and 2 
otherwise), then F(v) is the complement  of G and A~(v) = �89 where V G  
is the suspension of G, that  is, G plus one vertex adjacent to all vertices of G. 

T h e o r e m  10. For any vertex v of m ,  such that F(v) is good, the radial exten- 
sion A 1 (v) is a vertex of m,+l .  

Proof. Since F(v) is good, it has a partial  subgraph F '  = (N, E ' )  with [E'[ = n 
which does not admit  a non-zero edge-weighting. Clearly, any connected graph 
with n vertices and less than n edges is either a tree, or an odd cycled tree or 
an even cycled tree, where an odd cycled tree, respectively even cycled tree, is 
a tree plus one edge forming with it an odd, respectively even, cycle. Since a 
tree has n - 1 edges and an even cycled tree admits  unwanted edge-weighting, 
they are both  not good and therefore F '  can only be a odd cycled forest, tha t  
is, contains for each connected components  of F its spanning odd cycled tree. 
Now, since v is a vertex of mn, T,(v)  contains (2) linearly independent triangle 

nT1 facets which form the set Tin(v). Then, the (~) + n = ( 2 ) facets of the set 
Tin(v) UijeE' Tij,n+l are linearly independent facets containing Al(v),  since if 
not, F '  admits  a non-zero weighting and therefore F is not good. This implies 
codim(T,+l (A l(v)))  -- 0 and completes tl.e proof. [] 
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C a s e  m _> 2. As for the case m = 1, we need to consider only the  case c~ = r(v) .  
Similarly, Ar'~ ) (v) is called the  radial m-ex tens ion  of v and  denoted by Am(v) .  
By const ruct ion ,  for m > 2 we have: 

Tn+m(Am(v ) )  = Tn(v)  U T . (s) 

Where  

T =  U �9 {Tij'k } U {Tik'j} U {Tjk'i} 
vij=~(v), l<_i<j<_n<k<rn t, ij=O, l<i<j<_n<k<m vii=O, l<i<j<_n<k<m 

U {P,~} U {T,~,~} U {P,~} 
v, j=l ,  l <i<j<n<k<m l <k<n<i<j<n+m 6(v)=l, l <k<_n<i<j<n+m 

U {Pijk}. 
rn>3, n<i<j<k<n+m, 6(v)=~ 

The  equal i ty  (8) implies: 

2 
AS(v) e m.+2 and, for m >_ 3, Am(v) ~ m.+m *=~ ~(v) < J (9) 

T h e o r e m  11. Fo r  any ver tex  v of m n  such that F ( v )  is good and, for  m >_ 3, 
6(v) < 2 _ ~, the radial m-ex tens ion  Am(v )  is a vertex Of ran+re. 

Proof. T h e  proof  is similar  to the  one of T h e o r e m  10. We consider the  fol- 
�9 ( ~ ) t r iangle facets  containing Am(v):  lowing set  of (~) + n m -}- (~n) = n+m 

Ttn(v) U (UijeE',n<k<n+mTij,k ) Ul<n<i<j Tij,k. T h e  graph  F ( v )  being good,  they  
are l inearly independen t  and  therefore  we have cod im(Tn+m(Al ( v ) ) )  = O. [] 

Remark ,  

1. T h e  condi t ion t h a t  v is a ver tex  of mn is not  necessary.  For example ,  
v = 2d(K4)  is not  a ver tex  of m4 bu t  Al(v)  = 32-d(Ks) is a ver tex  of m 5. 

2. We do not know any ver tex  of mn with no good g raph  F ( v )  such t ha t  A l (v)  
is a ver tex  of mn+l .  

3. A m o n g  the 13 representa t ives  given in Table  1, for i = 2,3,4,  5 ,8 ,9  the  
vert ices vi are bo th  good and sat isfy df(v) < 3" We have v2 = ~d( / t~) ,  
v7 = �89 - C2,3,4 - C5,~,7), v8 = 2 d ( g 7  - ( 7 ) ,  v0 = �89 - (77 - P1,3) 
and Vl0 = ~d(K7 - C2,3,4 - C5,6,7 - P4,5) waere  Cs and Ps. respect ively  
denotes  the  cycle and  the pa th  on the  subset  s C {1, 2 . . . .  ,7},  C7 being the 
cycle on 7 nodes.  
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4. For n > 5, v a vertex of m~ and F(v) = T for a tree T which is not a star, 
LAURENT [23] proved that  A 1 (v) is a vertex of mn+l. 

5. With G an almost complete t-parti te graph, AVlS [2] proved that  �89 
i s  a vertex of mn, Theorem 11 implies that AI(ld(G)) and A2(�89 are 
vertices of, respectively, mn+l and mn+2 as well. 

P r o p o s i t i o n  12. For G a complete t-partite graph on 8 nodes, v = �89 is a 
vertex of m8 only for G = K4,3,1 and/f~,3,2. The point v = l d(Ge) is also a 
vertex of ms for Ge --- K3,3,1,1 - e,/(4,2,2 - e and/(6,1,1 - e where e is an edge 
of, respectively, the subgraph K3,3, K4,2 and K1,1. 

Proof. Theorem 11 gives that  v = �89 is a vertex of m8 for G = K4,3,1, K3,3,2 
and K3,3,1,1 - e. To check if the others complete t-parti te graphs induce a vertex 
of ms, we built the set T(v) of triangle facets containing the point v = �89 and 
then check by computer if they in te r sec t ,  :a a vertex. Considering some subsets 
of T(v), we found that  the graphs K4,2,2 - e and K6,1,1 - e induce a vertex of 
m8. 

4 C o m p u t a t i o n a l  A s p e c t s  

All facets of the metric polytopes being equivalent under permutations and 
switching, it is enough to compute all the vertices belonging to one facet. In [21] 
GRISHUKHIN used this technique to compute the 41 orbits of extreme rays 
under permutations of the metric cone on 7 nodes. This vertex enumeration 
problem was solved using the double description method cdd implemented by 
FUKUDA [20]. The algorithm first constructs a simplex starting with a non-dege- 
nerate subset of d + 1 inequalities where d is the dimension, then at each step 
one inequality is inserted. The efficiency of this algorithm highly depends on the 
order in which the inequalities are inserted. It is observed that  the results seem 
to be good when the size of the intermediate polytope produced at each step 
stay as small as possiblel For this important  ordering issues we refer to Avis, 
BREMMER AND SEIDEL [4] where, in pax'ticular, wors tcase  behavior polyhedra 
are constructed. 

To obtain the 275 840 vertices of the 21-dimensional polytope m7 we used 
the following ordering. The 140 facets were inserted such that  F1 - F4, F5 - 
F8 , . . .  ,F137 ~ F140 form the 35 maximai cocliques of the skeleton of m~, that  
is, by set of 4 facets with the same support. Then to order those cocliques, we 
consider the following Hausdorff distance between cocliques of facets. With C 
and C'  two cocliques, we have d(C, C') =max  d(F, G) where F, respectively G, is 
a facet of C, respectively C'  and d(F, G) = 0 if codim(Ff3G) = 2 and 1 otherwise. 
The cocliques are then ordered by the maximal cocliques (of cocliques) of the 
graph which nodes axe the cocliques of facets and edges given by the  previous 
Hausdorff distance. The same operation being repeated for cocliques of cocliques 
of facets and so on. 
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This ordering gave us much better  results that  the classical lexico-graphic, 
rain-cut offand max-cut offordering which respectively selects a facet which cuts 
off the minimum, respectively maximum, number of vertices of the intermediate 
polytope, see [20]. This ordering by maximal cocliques of the dual skeleton gave 
also excellent results for the computation of the Solitaire cone and its relatives, 
see [5]. In all those cases, including the metric polytope, the maximal size of the 
intermediate polyhedra was less than twice the size of the final one. 

C o m p u t a t i o n  o f  T a b l e  2. For each representative vertex v i we computed the 
cone Ci generated by the set T(vi) of all triangle facets containing vi. Clearly, 
to each extreme ray of this cone pointed on Vi c~rresponds a neighbour of vi, 
in other words, the size of Ci equals the adjacency Av~ of vi in my. Then, by 
a tedious one by one checking of all the extreme rays of Ci, we listed all rays 
pointing to a cut. Finally, using the r e l a t i o n  IOi l .a i j  --. IOj[. ajl where IOi] and 
aij respectively denotes the size of the orbit Oi and the number of vertices of Oj 
adjacent to vi, we filled Table 2. For example, the 30 facets containing v6 form 
the cone C6 which have 96 extreme rays, that is, A. 6 -- 96. Out of those 96 rays, 
exactly 24 point to a cut. Then, 64 x al,6 = 20160 x 24 implies a],6 = 7560. 

Remark. Clearly we have al,1 = 2n-1-1;  the values a2,1 = 2 n - l - n - 1  and a3,1 = 
2 " - 1 - 3 n + 2  were given in [13]. So we have ai,1 = 63, 56, 45, 34, 28, 24, 16, 15, 14, 
11, 11, 11, 8 for i = 1 ,2 , . . .13 .  The complete list of cuts adjacent to vi for 
i = 4 , . . . , 1 3  is: 

- v4 adjacent to 6(S) for S = { i , j}  with 3 < i < j < 5 and for S = { i , j , k }  
with {i, j ,  k} N {3, 4, 5} # 0, 

- vs, '~6(S) f o r S = { i , j } w i t h 2 < i < j < 5 ,  S = { 1 , i , j } w i t h 2 < i < j < 5  
and for S = { i , j , k }  with 2 < i < j < k < 7 and j # 6. 

- v6 ~ &(S) for S = 0, {1}, {4},.{6}, {1, 2}, {1, 5}, {1, 7}, {2, 6}, {3, 4}, {4, 7}, 
{5, 6}, {6, 7}, {1, 2, 3}, {1, 2,7}, {1, 3, 5}, {1, 4, 7}, {1, 5, 7}, {2, 3, 4}, {2, 3, 6}, 
{2, 6, 7}, {3, 4, 5}, {3, 5, 6}, {4, 6, 7}, {5, 6, 7}, 

- v7 ~ 6 ( S )  f o r S = @ , S = { i } w i t h i # l a n d f o r S = { i , j } w i t h i = 2 , 3 , 4  
and j = 5, 6, 7, 

- vs "~ ~(S) for S = 0, {1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3,6}, {4,7}, {1,3,5}, 
{1, 3,6}, {1, 4,6}, {2, 4, 6}, {2,4, 7}, {2, 5, 7}, {3, :5, 7}, 

- v9 "~ ~(S) for S = 0,{1}, {3}, {1,4},{1,5}, {3,6},{3,7},{1,3 ,5},{1,3 ,6},  
{1, 4, 6}, {2, 4, 6}, {2, 4, 7}, {2, 5,7}, {3, 5, 7}, 

- -  V lO  ~ (~(S) for S = 0, {4}, {5}, {2, 5}, {2, 6}, {2, 7}, {3, 5}, {3, 6}, {3, 7}, {4, 6}, 
{4, 7}, 

- vll ~ 6(S) for S - 0,{1}, {3}, {1,2},{1,6}, {3,4},{4,5},{2,3 ,7},{2,5 ,7},  
{3,6,7},{5,6,7}, 

- v12 "" 6(S) for S = {3},{5}, {1,3},{4,5}, {4,7},{5,6},{1,3,4},{1,4, 7}, 
{1, 5, 6}, {1, 6, 7}, {2, 3, 5}, 

- -  V l  3 "~ (~(S) for S = 0, {5}, {6}, {7}, {4, 7}, {1, 2, 7}, {4, 5, 7}, {4, 6, 7}. 
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