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EXTENDED ABSTRACT  
 
The prototypical sample selection model 
consists of a two-equation system: one equation 
representing the selection mechanism and the 
second a continuous outcome variable that is 
only observed for the selected cases. A variant 
of this model where the outcome variable is 
binary leads to a bivariate probit model with 
sample selection.  
 
A Monte Carlo experiment is undertaken to 
examine the small sample properties of three 
alternative estimators of a bivariate probit 
model with selection. The three estimators are 
the censored probit estimator, single-equation 
probit applied to the selected sub-sample and 
single-equation probit applied to the full sample. 
These estimators are compared in terms of 
properties of coefficient estimates and predicted 
probabilities.  
 
From a methodological perspective we 
emphasise the need to account for possible 
censoring in modelling choice. In practice, one 
could argue that in finite samples a simple 
single-equation approach might be just as 
effective as using a censored probit estimator 
that relies on a large sample justification. For 
example, one might claim that with only minor 
censoring the problem could be ignored. Our 
Monte Carlo results do not support this 
argument.  
 
While no one estimator dominates in all 
possible situations a clear recommendation 
follows from an overall evaluation of the 
relative performance of the three estimators. 
Ignoring the selection problem through use of a 
single-equation probit can often lead to very 
poor estimator and predictor performance. Both 
single equation probit estimators have properties 
that can vary dramatically over the different 
design points. The properties of censored probit 
vary much less than the two single equation 

estimators and this robustness characteristic 
tends to favour its use.  
 
The fluctuations in relative performance are 
more pronounced for full-sample probit than for 
sub-sample probit. Obviously, in order to avoid 
the use of full-sample probit, it is necessary to 
know the sample split into censored and non-
censored observations. In terms of survey 
design this may require the inclusion of 
questions that probe for reasons why people do 
not choose.  
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1. INTRODUCTION 
 
Selection problems abound in micro-
econometric modelling. The prototypical sample 
selection model consists of a two-equation 
system: one equation representing the selection 
mechanism and the second a continuous 
outcome variable that is only observed for the 
selected cases. A variant of this model where 
the outcome variable is binary leads to a 
bivariate probit model with sample selection. 
While there are various forms of censoring that 
could be considered as in Poirier (1980) and 
Meng and Schmidt (1985), we concentrate on 
the variant proposed by van de Ven and van 
Praag (1981).  
 
While recent surveys of Vella (1998), Puhani 
(2001) and Lee (2001) provide useful 
summaries of the extensive literature on 
selection models they include little by way of 
small sample properties of alternative estimators 
in the particular case of a bivariate probit model 
with selection. Our interest was stimulated by 
the applied work of Belkar et al. (2005) where 
two issues arose that seemed to have been 
downplayed in the existing examination of 
alternative estimators in prototypical selection 
models and hence justified the current Monte 
Carlo study.  
 
Belkar et al. (2005) were interested in 
determinants of whether women had ever 
screened for cervical cancer using a Pap test. 
Recent national surveys in Australia indicated 
that a small proportion (4% in 1995) of women 
had never heard of a Pap test. For these women, 
they have never had a test not because of any 
conscious choice but because they simply were 
not aware of its existence. There is a potential 
problem if the entire sample is used with no 
differentiation made between non-screeners 
who are there by choice and those that are non-
screeners because of lack of awareness.  
 
Piga and Vivarelli (2003) argue that previous 
studies of whether firms have undertaken 
cooperative R&D or not using a single equation 
framework have ignored the initial decision to 
carry out R&D in the first place. For their 
particular example, probit estimates for factors 
affecting whether firms undertake cooperative 
R&D appeared quite different depending on 
whether they were based on the selected sub-
sample of firms who carried out some R&D or 
on the full sample of firms. 
 
Thus, the first issue to be considered in our 
Monte Carlo comparisons is the relative 
performance of these two single-equation probit 
estimators that vary according to whether the 
selected sub-sample is used or whether the full 

sample is used including observations that are 
incorrectly coded as non-choosers. 
 
One might expect that selection problems would 
be minor given only limited censoring. This 
would have to be a conjecture because existing 
Monte Carlo work typically includes much 
more dramatic censoring amongst its designs. 
This conjecture proved to be incorrect in the 
empirical work of Belkar et al (2005). Thus, the 
second issue to be addressed is whether there 
are situations routinely found in practice where 
modest censoring makes a substantial difference 
for inferences if ignored in the modelling.  
 
In what follows, we consider the estimation of a 
bivariate probit model with selection. The finite 
sample properties of three estimators are 
compared: the censored probit estimator, the 
single-equation probit applied to the selected 
sub-sample, which we call sub-sample probit, 
and single-equation probit applied to the full 
sample which is called full-sample probit. 
 
2. THE MODEL AND EXPERIMENTAL 
DESIGN 
 
Denote the latent variable representing the 
outcome choice by y1* and that representing 
selection by y2* and assume a simple model 
specification of the form: 
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where the realisation of the latent variable yji* is 
defined by yji  = 1 if yji* > 0 and yji  = 0 
otherwise and xji are exogenous variables. 
Under the assumption that the disturbance term 
(u1, u2) is bivariate normal with: 
 
var (uj) = 1 and cov (u1, u2) = ρ  
 
(1) specifies a bivariate probit model. The 
sample selection or censored probit variant of 
this model occurs when both y1 and y2 are only 
observed if y2 = 1.  
 
Given this structure, univariate probit analyses 
of outcome choice will typically produce 
inconsistent estimates of the model’s 
coefficients. If the available data allow us to 
separate cases into those that are selected and 
this sub-sample is used to estimate the outcome 
model then this will produce inconsistent 
estimates unless ρ = 0.  
 
In some cases there is no information that 
enables this split of the sample. If non-selectors 
are automatically treated as non-choosers and 
full-sample probit is applied, inconsistent 
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parameter estimates will be produced because of 
the inflation of the number of non-choosers in 
the sample. The problem is similar to that which 
occurs with a misclassified binary dependent 
variable. See Hausman, Abrevaya and Scott-
Morton (1998) who emphasise that small levels 
of misclassification can lead to substantial 
estimation biases.  
 
Previous studies of sample selection with a 
continuous censored variable [see Nelson 
(1984), Zuehlke and Zeman (1991), Leung and 
Yu (1996) and Nawata and Nagase (1996)] have 
isolated correlation between the variables in the 
two equations, dependence between the 
disturbances, and the degree of censoring as key 
factors in any comparison of alternative 
estimators.  
 
Values of the independent variables are 
generated as bivariate normal as follows: 
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Varying π, allows for various levels of 
correlation between the variables in the outcome 
and selection equations. π = 0 corresponds to 
independent regressors and is expected to be the 
most conducive for estimation. An intermediate 
value of π = 0.8 is probably more representative 
of situations likely to occur in practice.  
 
Dependence between the outcome and selection 
equations is varied according to ρ = -0.8, -0.4, 
0, 0.4, 0.8.  
 
Given true regression parameter values of β12 = 
β22 = 1, the intercept parameter β21 governs the 
degree of selection (or conversely censoring) 
while the other intercept, β11, governs the 
outcome penetration. Three pairs of values were 
chosen where β11 = β21 = 2.33, 0.96 and 0 
corresponding to equal degrees of selection and 
penetration of 95%, 75% and 50% respectively. 
A fourth pair was chosen as β11 = 2.33, β21 = 
0.96 in order to gauge the separate impact of 
higher penetration in the outcome choice 
holding selection or censoring fixed. The 
sample size was fixed at n = 400 and there were 
250 replications for all cases.  
 
3. MONTE CARLO RESULTS 
 
The estimators are compared on the basis of 
four criteria, three of which refer to estimation 
of β12, the key parameter in the outcome 
equation. These criteria are the percentage bias, 
relative efficiency as measured by the RMSE 
and a measure of how well the asymptotic 

standard errors (ASE) reflect the true variability 
of the estimators, represented by the ratio of the 
ASE and the RMSE. The fourth criterion relates 
to predicting probabilities and is represented by 
the mean probability of success in the outcome 
equation. 
 
When the estimated correlation between the 
disturbances is close to 1 or -1 complications 
such as non-convergence or a non-invertible 
Hessian (resulting in missing standard errors) 
can occur. This problem most often arises when 
there is concurrent minor censoring and extreme 
penetration. Conditions for when the estimated 
correlation approaches the boundaries ±1 are 
discussed in Butler (1996). Consequently, the 
cases of non-convergence and missing standard 
errors have been excluded from the analysis. As 
a result some of the conclusions discussed 
below are based on less than 250 observations.  
 
There are two sets of results; the first set 
comprising Tables 1 and 2 containing bias and 
RMSE and the second comprising Tables 3 and 
4 where the ASE and RMSE ratios and mean 
probabilities are presented. Each set of results 
has the same structure. Each table refers to a 
different level of correlation between the 
variables in the outcome and selection 
equations. Within each table the results are 
provided for each level of censoring and for the 
range of disturbance correlations considered.  
 
Consider Table 1 which refers to the case where 
π = 0. Here censored probit clearly dominates 
the other two estimators both in terms of bias 
and relative efficiency. As expected, the 
differences between censored probit and sub-
sample probit are minor when ρ = 0, but as the 
disturbance correlation increases in magnitude 
the bias of sub-sample probit increases. For π = 
0, full-sample probit performs poorly 
irrespective of the degree of censoring or 
disturbance correlation exhibiting severe 
downward bias in the estimation of β12. Holding 
the degree of censoring constant, a higher 
outcome penetration leads to poorer small 
sample properties for each of the three 
estimators. 
 
The case of positive correlation between the 
regressors in the outcome and selection 
equations is shown in Table 2. In this case, the 
relative performance of the three estimators is 
less clear-cut. Censored probit continues to 
dominate the other two estimators in terms of 
bias although its superiority is not uniform. 
However, in terms of RMSE the two single 
equation estimators perform well. In particular, 
full-sample probit, despite biases that can be 
quite large, performs best overall in terms of 
RMSE. 
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4. CONCLUSION  
 Obviously the variance of full-sample probit for 

these design points is small relative to the other 
two estimators. The censored observations that 
are being added to the selected sample and 
being treated as non-choosers will tend to be 
observations with relatively extreme x1 
(negative) values. Because of the positive 
correlation between the explanatory variables in 
the outcome and selection equations these 
observations will provide added leverage and 
hence increase estimation precision. This 
tendency is reinforced when there are large 
correlations between the disturbances. 

From a methodological perspective we have 
emphasised the need to account for possible 
censoring in modelling choice. In practice, one 
could argue that in finite samples a simple 
single-equation approach might be just as 
effective as using a censored probit estimator 
that relies on a large sample justification. For 
example, one might claim that with only minor 
censoring the problem could be ignored. Our 
Monte Carlo results do not support this 
argument.  
 
While no one estimator dominates in all 
possible situations a clear recommendation 
follows from an overall evaluation of the 
relative performance of the three estimators. 
Ignoring the selection problem through use of a 
single-equation probit can often lead to very 
poor estimator and predictor performance. Both 
single equation probit estimators have properties 
that can vary dramatically over the different 
design points. The properties of censored probit 
vary much less than the two single equation 
estimators and this robustness characteristic 
tends to favour its use.  

 
The patterns in Tables 3 and 4 are reasonably 
clear. Except for a few exceptions, censored 
probit performs extremely well. The estimated 
asymptotic standard errors tend to provide an 
accurate picture of actual variability (measured 
by RMSEs), indicated by ASE/RMSE ratios that 
tend to be close to unity. In terms of predicted 
probabilities, censored probit almost always 
provides predictions close to the theoretical 
values of 50% (extensive censoring), 75% 
(moderate censoring), 95% (minor censoring) 
and 95% (high outcome penetration and 
moderate censoring).   

The fluctuations in relative performance are 
more pronounced for full-sample probit than for 
sub-sample probit. Obviously, in order to avoid 
the use of full-sample probit, it is necessary to 
know the sample split into censored and non-
censored observations. In terms of survey 
design this may require the inclusion of 
questions that probe for reasons why people do 
not choose. For the screening example that has 
been discussed, this involved asking a question 
about screening awareness. 

 
Neither of the single equation probit estimators 
do overly well in these comparisons. As 
expected, sub-sample probit is fine when the 
disturbance correlation is small. But for larger 
disturbance correlations, there is a tendency for 
the asymptotic standard errors to understate the 
true variability in the estimator of β12 and to 
produce predicted probabilities that are biased 
down for negative disturbance correlations and 
biased up when the correlations are positive. 
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Table 1: Bias and RMSE of alternative probit estimators of β12: Independent regressors (π = 0) 
  % Bias    RMSE  
ρ Censored 

probit 
Sub-

sample 
probit 

Full-
sample 
probit 

Censored 
probit 

Sub-
sample 
probit 

Full-
sample 
probit 

 Extensive censoring: β11= β21= 0 
-0.8 0.66 13.60 -33.86 0.147 0.206 0.349 
-0.4 1.26 4.46 -42.71 0.137 0.145 0.433 
0.0 2.00 3.12 -47.22 0.147 0.153 0.477 
0.4 1.90 5.12 -51.22 0.146 0.154 0.517 
0.8 2.65 17.20 -54.48 0.160 0.240 0.549 

 Moderate censoring: β11= β21= 0.96 
-0.8 2.07 9.62 -43.59 0.149 0.185 0.442 
-0.4 0.80 3.38 -48.21 0.131 0.136 0.487 
0.0 0.55 1.84 -51.53 0.130 0.130 0.520 
0.4 -0.11 3.48 -55.28 0.135 0.140 0.557 
0.8 2.45 14.93 -56.29 0.146 0.215 0.567 

 Minor censoring: β11= β21= 2.33 
-0.8 5.27 7.33 -54.26 0.236 0.244 0.554 
-0.4 2.42 4.42 -54.70 0.229 0.234 0.557 
0.0 2.45 5.21 -55.29 0.230 0.247 0.564 
0.4 3.53 7.59 -56.49 0.266 0.278 0.576 
0.8 6.21 13.85 -59.22 0.261 0.291 0.603 

 High outcome penetration and moderate censoring: β11= 2.33, β21= 0.96 
-0.8 8.27 12.32 -79.59 0.258 0.282 0.798 
-0.4 3.75 6.26 -81.41 0.245 0.255 0.817 
0.0 4.02 6.68 -83.61 0.265 0.274 0.839 
0.4 8.08 13.72 -84.72 0.341 0.374 0.850 
0.8 14.84 29.49 -88.08 0.584 0.685 0.883 

 
Table 2: Bias and RMSE of alternative probit estimators of β12: Correlated regressors (π = 0.8) 

  % Bias    RMSE  
ρ Censored 

probit 
Sub-

sample 
probit 

Full-sample 
probit 

Censored 
probit 

Sub-
sample 
probit 

Full-
sample 
probit 

 Extensive censoring: β11= β21= 0 
-0.8 2.21 47.80 26.64 0.236 0.526 0.295 
-0.4 1.61 18.52 9.19 0.219 0.246 0.138 
0.0 -0.53 1.39 -1.16 0.183 0.151 0.101 
0.4 1.36 -6.86 -8.71 0.157 0.172 0.131 
0.8 2.13 -12.46 -15.29 0.140 0.206 0.177 

 Moderate censoring: β11= β21= 0.96 
-0.8 4.07 34.96 18.67 0.180 0.381 0.220 
-0.4 2.26 14.82 7.18 0.201 0.217 0.126 
0.0 -1.29 2.02 -1.12 0.175 0.145 0.094 
0.4 -0.28 -7.76 -8.50 0.150 0.168 0.125 
0.8 0.07 -13.30 -14.71 0.127 0.196 0.171 

 Minor censoring: β11= β21= 2.33 
-0.8 9.55 19.89 8.08 0.231 0.300 0.182 
-0.4 4.54 10.38 4.94 0.207 0.225 0.158 
0.0 1.96 4.01 -0.96 0.209 0.208 0.153 
0.4 0.36 -2.91 -6.53 0.214 0.206 0.167 
0.8 1.96 -6.20 -10.86 0.235 0.253 0.174 

 High outcome penetration and moderate censoring: β11= 2.33, β21= 0.96 
-0.8 13.35 50.39 -11.58 0.326 0.608 0.149 
-0.4 6.17 20.70 -17.70 0.323 0.345 0.198 
0.0 3.14 5.30 -21.26 0.326 0.299 0.230 
0.4 4.28 -2.44 -25.91 0.338 0.363 0.274 
0.8 8.48 26.57 -30.34 0.644 2.265 0.315 
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Table 3: Inference and prediction with alternative probit estimators: Independent regressors (π =0) 
 ASE/RMSE Predicted probabilities 
ρ Censored 

probit 
Sub-

sample 
probit 

Full-
sample 
probit 

Censored 
probit 

Sub-
sample 
probit 

Full-
sample 
probit 

 Extensive censoring: β11= β21= 0 
-0.8 1.010 0.774 0.281 0.507 0.369 0.176 
-0.4 1.070 1.015 0.206 0.498 0.435 0.209 
0.0 0.983 0.947 0.176 0.500 0.505 0.243 
0.4 0.998 0.954 0.155 0.509 0.573 0.274 
0.8 0.942 0.679 0.141 0.508 0.647 0.310 

 Moderate censoring: β11= β21= 0.96 
-0.8 0.837 0.706 0.296 0.759 0.713 0.522 
-0.4 0.978 0.940 0.155 0.758 0.736 0.540 
0.0 1.004 1.000 0.143 0.762 0.764 0.562 
0.4 1.019 0.984 0.132 0.760 0.792 0.582 
0.8 1.028 0.726 0.130 0.762 0.824 0.606 

 Minor censoring: β11= β21= 2.33 
-0.8 0.895 0.883 0.183 0.954 0.954 0.899 
-0.4 0.921 0.909 0.184 0.954 0.956 0.902 
0.0 0.934 0.876 0.182 0.954 0.957 0.903 
0.4 0.845 0.816 0.178 0.954 0.959 0.905 
0.8 0.931 0.854 0.170 0.957 0.964 0.910 

 High outcome penetration and moderate censoring: β11= 2.33, β21= 0.96 
-0.8 0.874 0.834 0.089 0.952 0.944 0.696 
-0.4 0.935 0.923 0.087 0.953 0.950 0.700 
0.0 0.919 0.903 0.084 0.952 0.956 0.703 
0.4 0.841 0.788 0.084 0.953 0.966 0.712 
0.8 0.606 0.576 0.080 0.956 0.977 0.721 

 
Table 4: Inference and prediction with alternative probit estimators: Correlated regressors (π =0.8) 

 
 ASE/RMSE Predicted probabilities 
ρ Censored 

probit 
Sub-

sample 
probit 

Full-
sample 
probit 

Censored 
probit 

Sub-
sample 
probit 

Full-
sample 
probit 

 Extensive censoring: β11= β21= 0 
-0.8 0.935 0.363 0.431 0.477 0.486 0.235 
-0.4 0.952 0.647 0.789 0.475 0.554 0.266 
0.0 0.992 0.965 0.978 0.480 0.621 0.300 
0.4 0.976 0.838 0.695 0.481 0.693 0.336 
0.8 0.930 0.749 0.483 0.485 0.786 0.380 

 Moderate censoring: β11= β21= 0.96 
-0.8 0.995 0.415 0.490 0.720 0.731 0.537 
-0.4 0.893 0.659 0.788 0.716 0.760 0.560 
0.0 0.960 0.951 1.007 0.727 0.794 0.584 
0.4 0.976 0.816 0.724 0.721 0.832 0.612 
0.8 1.025 0.754 0.511 0.729 0.880 0.649 

 Minor censoring: β11= β21= 2.33 
-0.8 0.907 0.694 0.797 0.933 0.938 0.889 
-0.4 1.006 0.879 0.900 0.933 0.942 0.890 
0.0 1.015 0.964 0.914 0.937 0.949 0.897 
0.4 0.972 0.971 0.826 0.936 0.955 0.905 
0.8 0.901 0.885 0.799 0.939 0.967 0.914 

 High outcome penetration and moderate censoring: β11= 2.33, β21= 0.96 
-0.8 0.942 0.486 0.616 0.930 0.940 0.692 
-0.4 0.939 0.765 0.448 0.928 0.952 0.703 
0.0 0.950 0.929 3.421 0.931 0.967 0.714 
0.4 1.000 0.933 2.705 0.928 0.980 0.723 
0.8 1.339 0.421 2.648 0.931 0.993 0.732 
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