
Synthesising and Implementing Tableau Calculi

for Interrogative Epistemic Logics
Ştefan Minică

Amstelveen, The Netherlands
stefan.minica@gmail.com

Mohammad Khodadadi, Renate A. Schmidt, Dmitry Tishkovsky∗

The University of Manchester, Manchester, UK
khodadadi,dmitry,schmidt@cs.man.ac.uk

Abstract

This paper presents a labelled tableau approach for deciding interrogative-epistemic
logics (IEL). Tableau calculi for these logics have been derived using a recently introduced
tableau synthesis method. We also consider an extension of the framework for a setting
with questioning modalities over sequences of formulae called sequential questioning logic
(SQL). We have implemented the calculi using two approaches. The first implementation
has been obtained with the tableau prover generation software MetTeL2, while the other
implementation is a prover implemented in Haskell.

1 Introduction

The paper focusses on developing and implementing automated reasoning tools for interrogative
epistemic logics (IEL). Interrogative or erotetic logics have a long tradition alongside declarative
and epistemic logics. Interrogative Epistemic Logic (henceforth, IEL) also referred to as DELQ
(for Dynamic Epistemic Logic of Questions), enriches a standard multi-agent epistemic modal
logic with interrogative components [15, 7]. Intuitively this is done by adding an “issue” relation
over a set of possible worlds. This relation is meant to represent structural changes brought
about by dynamic actions of raising and answering questions. Besides the standard epistemic
modality the logic also introduces a static modality over the issue relation. This gives rise to
interaction between the epistemic and interrogative components. Such aspects are captured by
an intersection modality which is then used to describe how dynamic questioning effects depend
on the structure of the issues raised and previous knowledge.

A second addition are the dynamic actions that express interrogative or epistemic events
explicitly in the language. Their effect is to change the interrogative and epistemic states and
to add more structure to the existing issue or epistemic relations.

While automated reasoning tools are widespread for declarative and epistemic modal logics,
for interrogative epistemic logics there are currently no implemented automated reasoning sys-
tems. The usefulness of automating reasoning for other logics, such as epistemic modal logics,
has been proven already by many applications. Very often in epistemic scenarios obtaining the
relevant information is an essential part. Adding an interrogative component makes modelling
and reasoning about obtaining relevant information possible.

For dynamic epistemic logics (DEL), automated reasoning tools focused so far on solving
model-checking tasks [17]. Other tableau-based provers for modal logics, e.g., [3], incorporate
dynamic modalities for informative actions, e.g., public announcements [4, 2]. However, none
of the existing software tools contain questioning modalities and moreover, none of them offer
a generic method to generate a prover for a logic starting from a semantic specifications.

∗This research is supported by UK EPSRC research grant EP/H043748/1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24068351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

Planning in contexts involving interaction between questions and knowledge is reducible
to testing validities of interrogative epistemic logic. However, the existing proof systems for
dynamic epistemic logics [4, 14] are not fully automated. They are usually Hilbert-style calculi
in which formulae with non factual content have special substitution rules.

A longstanding problem for dynamic logics is the fact that they are not closed under uniform
substitution, and therefore, they are not suitable for an algebraic treatment and do not lend
themselves well to automatic reasoning techniques. Previous research in this area focused on
identifying substitution closed fragments of such logics, which can still preserve some of the
features that have made dynamic logics so successful for modelling information exchange.

The approach of this paper gives an alternative solution based on first translating the se-
mantics of the modal language into many-sorted first-order logic and then turning it into a
tableau calculus for the corresponding first-order fragment. Based on this tableau calculus two
tableau based reasoning tools have been developed for interrogative-epistemic logics.

The paper is structured as follows. We start in Section 2 by introducing the details of IEL.
Then we apply the tableau synthesis framework to IEL in Section 3. In Section 4 we present an
extended logic, called SQL, which uses sequences of formulae inside the dynamic modalities. We
continue in Section 5 with introducing and discussing the MetTeL2 implementation for IEL.
In Section 6 we present and discuss the Haskell implementation Qtab.lhs for IEL which also
illustrates the extension to questioning sequences. We draw some conclusions in the final section.
Further implementation details and illustrative code output, which could not be included due
to space limitations, can be found in the long version of the paper [8].

2 Interrogative Epistemic Logics

The approach of IEL [15, 7] starts by enriching a standard multi-agent epistemic modal logic
with interrogative components. This is done in two stages. The first addition consists of a
static modality over an “issue” relation. The intuitive meaning of this modality is close to the
traditional epistemic notion, but instead of representing actual knowledge it stands for what
the agents would like to find out. It represents future epistemic goals that are expressed by
asking questions and will eventually be achieved by obtaining answers.

For technical reasons a third modality, expressing the interaction between the epistemic and
the interrogative components is also introduced using the intersection of the standard epistemic
relation and the newly introduce issue relation. This also has an intuitive meaning that goes
beyond the traditional epistemic notion. It expresses how the future knowledge depends on both
the current epistemic state of the agent and the epistemic goals guiding the ongoing questioning
dynamics. This is what the agent will come to know if all the questions he raised so far would
be answered one way or another.

In this paper nominals are added to the language alongside propositions. The second ad-
dition consists of two dynamic modalities, one for questioning actions or queries and one for
answering actions or resolution actions. Intuitively, such modalities change the underlying
structures by refining their component relations.

A formula ϕ in the language of IEL is defined by the following BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∨ ϕ | 2ϕ | [Q]ϕ

Here, n, p, a denoting nominals, propositions, and agent labels, respectively. 2 stands for
modalities, that is 2 ∈ {Qa, Xa,Ka}, respectively being static questioning, interaction, and
epistemic modalities. Finally, Q stands for actions that change the underlying models, that is

2

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

Q ∈ {ϕ?a, !a}, representing dynamic questioning actions and resolution actions, respectively.
This language is meant to express minimal interrogative-epistemic facts. The @ operator, which
is a standard addition for hybrid logics is introduced later in the specification language where
it is useful for both internalizing the semantics and formulating labeled tableau rules.

The language can express the interaction between questions and information in two ways.
First, by using a (static) intersection modality Xaϕ. Second, through the dynamic modali-
ties [Q], encoding model-changing operations by means of questioning and resolution actions.

The logic has a standard modal semantics over issue-epistemic models, M = 〈W,
a
≈, a∼, V 〉.

When used inside a tuple representing a model
a
≈ and

a∼ are meant as shorthand notations for

(
a
≈)a∈A respectively (

a∼)a∈A for A the set of all agent labels. We use the expected Boolean

clauses and the usual relational (modal) clauses involving
a
≈ for Qa and

a∼ for Ka. We also use
equivalence relations for ≈ and ∼ throughout the paper. However, if needed, the framework
can be generalized to other structures by correspondingly changing the background theory.

The intersection modality Xa is defined using
a
≈∩ a∼ as follows:

M |=w Xaϕ iff ∀v ∈W : w (
a
≈∩ a∼) v ⇒M |=v ϕ

Dynamic modalities express model changing operations of asking and resolution:

[ϕ?]aψ “after ϕ is asked, ψ is the case” M? =〈W,
a
≈?,

a∼, V 〉;
a
≈? =

a
≈∩

ϕ
≡M

[!]aϕ “after having answered the questions raised, ϕ is true”

M! =〈W,
a
≈, a∼!, V 〉;

a∼! =
a∼∩

a
≈

Here,
ϕ
≡M= {(w, v) | ||ϕ||Mw = ||ϕ||Mv } is the set of M -world pairs in which ϕ has the

same truth value. The intuitive reading for a questioning action represented by the modality
[ϕ?]aψ is that of splitting the domain into ϕ worlds and non-ϕ worlds, by raising a question,
or by making ϕ an issue. The intuitive reading for the resolution action represented by the
[!]aϕ modality is to add new knowledge by refining the epistemic relation in such a way that
afterwards all the issues raised so far are solved. Indexing the actions with agent labels can also
model privacy in questioning or can be used to add agent-specific preconditions for question
execution. However, we assume our actions to be ‘public’ and ‘preconditionless’, i.e., they
affect the epistemic/questioning states for all agents, and they do not require any conditions for
execution. For this reason, indexing the modalities with agent labels will only play a genuine
role in this paper for the static part of the logic.

The language of IEL has two parts. The static part is a hybrid modal logic with nominals
and intersection. The dynamic part adds the dynamic modalities capturing model changing
operations. The static part of the logic is axiomatised by a customary hybrid logic system [12]
with nominals, S5 axioms for ∼ and ≈, and an intersection axiom for static resolution expressed
by the following pure formula:

K̂ai ∧ Q̂ai↔ X̂ai, where i is a nominal.

Here, Q̂a, K̂a and X̂a are the diamond modalities defined as the duals of the box modalities
Qa,Ka, Xa introduced before.

The dynamic part of IEL introduces modalities which change the underlying static models.
The logical behaviour of this new kind of connectives is captured by reduction axioms. These
describe the relation between the underlying static structures before and after a questioning
action or resolution action takes place. Formulas containing dynamic modalities can be reduced

3

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

to equivalent static formulas using reduction axioms like the following ones (for b ∈ {n, p},
2 ∈ {Q,X} and q ∈ {ϕ?, !}):

[q]a b↔ b, [q]a¬ψ ↔ ¬[q]aψ, [q]a(ψ ∧ χ)↔ [q]aψ ∧ [q]aχ (1a)

[!]a2aψ ↔ 2a[!]aψ, [!]aKaϕ↔ Xa[!]aϕ, [ϕ?]aKaψ ↔ Ka[ϕ?]aψ (1b)

[ϕ?]aQaψ ↔ (ϕ ∧Qa(ϕ→ [ϕ?]aψ)) ∨ (¬ϕ ∧Qa(¬ϕ→ [ϕ?]aψ)) (1c)

[ϕ?]aXaψ ↔ (ϕ ∧Xa(ϕ→ [ϕ?]aψ)) ∨ (¬ϕ ∧Xa(¬ϕ→ [ϕ?]aψ)) (1d)

This treatment is in line with the generic DEL methodology introduced in [4, 14] extended
to include an additional interrogative component. Further technical details, possible extensions
and examples of applications of IEL can be found in [7, 15].

We start from IEL as minimal logic when synthesizing and implementing the tableau cal-
culus. Several extensions of the framework that handle various levels of privacy for epistemic-
questioning actions can be added in a modular way using the same general synthesis method.

• Multi-agent questioning preconditions

• Group-opaque dynamic questioning effects

• Epistemic indistinguishability in questioning

• Dynamic questioning sequences

Due to lack of space in this paper we will discuss in detail only the last extension.
The extension requires questioning actions of a more complex type capable to model modal-

ities over sequences of questions not just one formula. We briefly motivate now why such an
extension is desirable and useful. The concrete details of the extension method are introduced
later in Section 4, after all the needed details of the specification language are introduced.

Note that the standard IEL reduction axioms do not have cases for iterated modalities.
Indeed, such cases are not, at some level of abstraction, necessary since they can be dealt with
logically “from inside out”. For any formulae ϕ,ψ, χ of IEL, [ϕ?][ψ?]χ can be dealt with in the
following order, given the recursive structure of the reduction axioms:

[ϕ?][ψ?]χ↔ [ϕ?](trs([ψ?]χ))↔ trs([ϕ?](trs([ψ?]χ)))

Here trs stands for the translation of the right side in the reduction axioms from Equation 1, as
defined in Equation 4. While such a rule of thumb can be useful to some extent for human rea-
soning it is nevertheless not optimal for automatic reasoning. Even though we left out iterated
modalities during the exposition of the logic we later deal with them as the implementation
details require them. For this a direct recursion over the formulae would be optimal, and we
approach this aspect in both of our implementations in Sections 5 and 6. Here we only briefly
discuss some of the available modelling options.

One possible way to achieve this is by directly reducing iterated modalities to an equivalent
non-iterated dynamic modality and then use the existing reduction axioms. For instance, for
public announcement logic (PAL), which uses world-elimination instead of link-cutting, iteration
of dynamic modalities boils down to the following equivalence for announcement composition:

[!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ

However, there can be no such nor similar equivalent for IEL without sequences:

No single question can induce a 4-equivalence-classes partition.

4

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

All these complications are avoided by a language with questioning sequences:

[ϕ?][ψ?]χ↔ [〈ϕ,ψ〉?]χ

This can be achieved in a modular way by keeping the syntax and the semantics of the
language unchanged for both the static part and the dynamic resolution part and replacing our
initial questioning modality with a modality defined over sequences of questions. This is also a
dynamic modality for the collective action of asking questions or raising issues but the syntax
uses a list of formulae σ = 〈ϕ0, . . . , ϕn〉:

[σ?]ϕ “after the questions in σ are asked, ϕ is the case”.

The semantic definition of the dynamic modality is changed accordingly, the action’s effect is

to change an initial model M into a new model Mσ? =〈W,
x
≈?,

a∼, V 〉 with:

x
≈? =

x
≈〈〉? ∩

|σ|−1⋂
n=0

ϕn≡Mn
for any agent x.

For any model M and questioning sequence σ = 〈ϕ0, . . . , ϕn〉, the model Mk denotes the model
obtained after a questioning action using the sequence σk = 〈ϕ0, . . . , ϕk〉 for 0 ≤ k ≤ n. An
empty questioning sequence does not change a model: M〈〉? = M and, in particular, ≈〈〉? = ≈.
This allows one to deal with longer sequences recursively using a head-tail pattern:

[〈〉?]ϕ↔ ϕ and [〈ϕ0, ϕ1, . . . , ϕn〉?]ϕ↔ [〈ϕ0〉?][〈ϕ1, . . . , ϕn〉?]ϕ.

The case of iterating the resolution modality [!] is much simpler because sequences of any
length [〈!, !, . . . 〉] can be collapsed to a resolution sequence of length one [〈!〉]. This is so because
the resolution modality is idempotent: !; ! = !. Therefore, we only have to consider iteration
between sequential asking modalities and single, i.e., depth one, resolution modalities.

This leads to the more general reduction axioms we introduce in Section 4. The reduction
axioms in Equation 1 can be also seen as particular cases in which we take n = 1 inside the
dynamic questioning modality [σ(n)?]. We lift the restriction to single questions from the vanilla
version of the language and allow questioning sequences in two stages. First by introducing
special reduction axioms for minimal sequences, i.e., sequences of length two, in Section 5.
Second, we introduce questioning sequences of arbitrary length and give fully general reduction
axioms for them in Sections 4 and 6. We continue our exposition using the simplest version of
IEL and afterwards return in Section 4 to considering the SQL extension in more detail.

3 The Tableau Synthesis Framework Applied to IEL

In order to obtain a sound, complete and terminating tableau calculus for IEL we apply the
tableau synthesis framework introduced in [11, 10]. In brief, the tableau synthesis method works
as follows. The user defines the formal semantics of their logic in the first-order specification
language of the framework. The semantic specification can then be automatically transformed
into tableau rules that form a calculus which is sound and complete provided the semantic
specification satisfies certain conditions. In a next step the possibility to refine the tableau
calculus in two ways is explored. First, it may be possible to refine that tableau rules by reducing
their branching factor and, second, it may be possible to internalise semantic constructs of the
tableau language in the language of the logic. Finally, the unrestricted blocking mechanism

5

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

can be added to the obtained calculus. The blocking mechanism ensures termination of the
calculus if the logic has the finite model property. The final calculus is sound, complete and
terminating, and, hence, provides the basis for a decision procedure for the logic.

The object language of specification of syntax of the logic IEL has several distinct sorts. The
main sort of the language is the sort of formulae (sort f) which are denoted as ϕ,ψ, Other
sorts are individuals (sort i) denoted i, j, . . ., propositional atoms (sort p) denoted p, q, . . ., and
agent labels (sort a) denoted as a, a0, a1,

For reasons of economy and simplicity, we fix a (minimal) set of connectives for the syntax
specification of IEL. The connectives and their types are listed in Figure 1.

Useful additions to the specification language include the singleton set operator {·} and
the operator #·, which respectively link the individual and formula sorts, and the proposition
and formula sorts. The operator @·· is the at (or satisfaction) operator, which is useful for
internalising the semantic specification.

The meta-language of IEL for the specification of the semantics extends the object language
of IEL with an additional domain sort d and the following symbols: binary predicate symbols
(of type (d, d)) R a

≈, R a
≈∩ a∼, and R a∼; the equality symbol

.
≈ (we use a dot to distinguish equality

from the issue relation); domain variables x, y, z, . . .; and the first-order quantifiers ∀ and ∃.
Finally, the meta-language contains three interpretation symbols νi, νf, and νp. For every
nominal i of sort i, νi(i) is a term of sort d. For every IEL-formula ϕ of sort f, proposition p of
sort p, and term t of sort d, νf(ϕ, t) and νp(p, t) are atomic formulae in the semantic specification
language for IEL.

Figure 2 shows the definition of the semantics of the IEL connectives in the meta-language.
We give the standard Boolean and modal semantic definitions in the right column and the
semantics of the sort-bridging connectives in the left column. Both are followed by definitions
for the dynamic modalities. We denote the set of all these formulae by S0.

Additionally there are conditions which specify properties of relations and equality. They
are captured by the background theory axioms Sb which are listed in Figures 3 and 4.

The described semantic specification captures in first-order sentences the semantic condi-
tions for IEL from Section 2. In particular, the difference between the semantic definition of
the static modalities and the dynamic modalities becomes more apparent. While the static
modalities are dropped by the definitions, the dynamic ones are only dropped in the definitions
for atomic components in their scope. However, for complex formulae the dynamic modality is
applied in the right hand side of the definition to a formula with lower complexity. This is also
reflected in the semantic specifications that the reduction axioms vary depending on whether
they are for propositional atoms, for singletons, and for formulae.

The next step is to transform the semantic specification into a normalised implicational
form [11]. This is done by decomposing each logical equivalence of the specification S0 into the
left-to-right implication and the contrapositive of the right-to-left implication. The resulting
sets of formulae are denoted by S+ and S−.

Connective Type

{·} i 7→ f

@·· (i, f) 7→ f

¬· f 7→ f

· ∧ · (f, f) 7→ f

Connective Type

#· p 7→ f

Q·· (a, f) 7→ f

K·· (a, f) 7→ f

X·· (a, f) 7→ f

Connective Type

[·?]·· (f, a, f) 7→ f

[!]·· (a, f) 7→ f

Figure 1: Connectives of the object language of IEL.

6

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

∀x(νf({i}, x)↔ x
.
≈ νi(i)) ∀x(νf(¬ϕ, x)↔ ¬νf(ϕ, x))

∀x(νf(#p, x)↔ νp(p, x) ∀x(νf(ϕ ∧ ψ, x)↔ νf(ϕ, x) ∧ νf(ψ, x)))

∀x(νf(@iϕ, x)↔ νf(ϕ, νi(i))) ∀x(νf(Qaϕ, x)↔ ∀y(Ra
≈

(x, y)→ νf(ϕ, y)))

∀x(νf([ϕ?]a#p, x)↔ νf(#p, x))) ∀x(νf(Kaϕ, x)↔ ∀y(Ra∼(x, y)→ νf(ϕ, y)))

∀x(νf([q]a{i}, x)↔ νf({i}, x))) ∀x(νf(Xaϕ, x)↔ ∀y(Ra
≈∩a∼

(x, y)→ νf(ϕ, y))))

∀x(νf([q]a¬ψ, x)↔ νf(¬[q]aψ, x))) ∀x(νf([q]a(ψ ∧ χ), x)↔ νf([q]aψ, x) ∧ νf([q]aχ, x))

∀x(νf([ϕ?]aKaψ, x)↔ νf(Ka[ϕ?]ψ, x)) ∀x(νf([!]aQaψ, x)↔ νf(Qa[!]aψ, x))

∀x(νf([!]aKaψ, x)↔ νf(Xa[!]aψ, x)) ∀x(νf([!]aXaψ, x)↔ νf(Xa[!]aψ, x))

∀x(νf([ϕ?]aQaψ, x)↔ (νf(ϕ ∧Qa(¬ϕ ∨ [ϕ?]aψ), x) ∨ νf(¬ϕ ∧Qa(ϕ ∨ [ϕ?]aψ), x))

∀x(νf([ϕ?]aXaψ, x)↔ (νf(ϕ ∧Xa(¬ϕ ∨ [ϕ?]aψ), x) ∨ νf(¬ϕ ∧Xa(ϕ ∨ [ϕ?]aψ), x))

Figure 2: Semantic specification S0 of connectives for IEL (q ∈ [ϕ?], [!])

∀x∀y(Ra
≈∩ a∼

(x, y)↔ Ra
≈

(x, y) ∧Ra∼(x, y)),

∀x∀y∀z((Ra
≈

(x, y) ∧Ra
≈

(y, z))→Ra
≈

(x, z)), ∀x∀y∀z((Ra∼(x, y) ∧Ra∼(y, z))→Ra∼(x, z)),

∀x∀y∀z((Ra
≈∩ a∼

(x, y) ∧Ra
≈∩ a∼

(y, z))→Ra
≈∩ a∼

(x, z)),

∀x∀y(Ra
≈

(x, y)→Ra
≈

(y, x)), ∀x∀y(Ra
≈∩ a∼

(x, y)→Ra
≈∩ a∼

(y, x)),

∀x∀y(Ra∼(x, y)→Ra∼(y, x)), ∀xRa
≈

(x, x), ∀xRa
≈∩ a∼

(x, x), ∀xRa∼(x, x)

Figure 3: Semantic specification of background theory axioms for the relations

It is not difficult to check that the semantic specification is well-defined in the sense of [11].
A semantic specification S is well defined iff S is normalized and the following conditions hold:

(wd1) ∀S0,∀Sb |= ∀S,

(wd2) the relation ≺ induced by S is a well-founded ordering on formulae, and

(wd3) for every formula ϕ = σ(ϕ1, . . . , ϕm), defining a connective σ:

∀S0,∀Sb � sub≺(ϕ) |=c ∀x
((∧

Φϕ+ → φσ(ϕ1, . . . , ϕm, x)
)
∧
(
φσ(ϕ1, . . . , ϕm, x)→

∨
Φϕ−
))

Here Φϕ+ is the set obtained by collecting all instantiations of consequents from S+ (the pos-
itive specifications in S) matching the formula ϕ. Φϕ− is the set obtained by collecting all
instantiations of antecedents from S− (the negative specifications in S) matching formula ϕ.

Condition (wd1) expresses the decomposition of the specification S to S0 and Sb after
normalization. The set S0 contains the connective definitions, and the set Sb contains the
background theory conditions. The set S0 is further decomposed in two disjoint sets S+ and S−.
Since the semantic specification is the union of the connective definitions and the background

∀x(x
.
≈x), ∀x∀y(x

.
≈y→y

.
≈x), ∀x∀y∀z(x

.
≈y ∧ y

.
≈z → x

.
≈z),

∀p̄∀x̄∀yi(xi
.
≈ yi → f(p̄, x̄)

.
≈ f(p̄, x1, ..., xi−1, yi, xi+1, ..., xn)),

∀p∀x∀y(νf(#p, x) ∧ x
.
≈ y → νf(#p, y)), ∀p∀x∀y(νp(p, x) ∧ x

.
≈ y → νp(p, y)).

Figure 4: Semantic specification of equality axioms

7

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

Tableau Expansion Rules (generated from S0 = S+ ∪ S−):

@l[ϕ?]2aψ

@lϕ,@l2a(¬ϕ ∨ [ϕ?]ψ) | @l¬ϕ,@l2a(ϕ ∨ [ϕ?]ψ)
(2 ∈ Q,X),

@l[!]Kaψ

@lXa[!]ψ
, (3a)

@l¬[ϕ?]2aψ

@l(¬ϕ ∨ ¬2a(¬ϕ ∨ [ϕ?]ψ)), @l(ϕ ∨ ¬2a(ϕ ∨ [ϕ?]ψ))
(2 ∈ Q,X),

@l¬[!]Kaψ

@l¬Xa[!]ψ
. (3b)

@l�b

@lb
,

@l�¬ϕ
@l¬�ϕ

,
@l�(ϕ ∧ ψ)

@l�ϕ, @l�ψ
,

@l[ϕ?]Kaψ

@lKa[ϕ?]ψ
,

@l[!]2aϕ

@l2a[!]ϕ
(2 ∈ Q,X), (3c)

@l¬�b
@l¬b

,
@l¬�¬ϕ

@l�ϕ
,

@l¬�(ϕ ∧ ψ)

@l¬�ϕ | @l¬�ψ
,

@l¬[ϕ?]Kaψ

@l¬Ka[ϕ?]ψ
,

@l¬[!]2aϕ

@l¬2a[!]ϕ
(2 ∈ Q,X), (3d)

@l¬2aϕ

@l3a{f¬2(l, a, ϕ)},@f¬2(l,a,ϕ)¬ϕ
(2 ∈ Q,K,X),

@l2aϕ,@l3a{l2}
@l2ϕ

(2 ∈ Q,K,X), (3e)

@l¬¬ϕ
@lϕ

,
@lϕ ∧ ψ

@lϕ, @lψ
,

@l¬(ϕ ∧ ψ)

@l¬ϕ | @l¬ψ
, (3f)

Background Theory Rules (generated from Sb):

@lX̂a{l2}
@lQ̂a{l2}, @lK̂a{l2}

,
@lQ̂a{l2}, @lK̂a{l2}

@lX̂a{l2}
, (3g)

@l3a{l2},@l2{l3}
@l3a{l3}

,
@l{l}

@l3a{l}
,

@l3a{l2}
@l23a{l}

,
@l3a{l2}, @l23a{l3}

@l3a{l3}
, (3h)

@l3a{l2}
@l2{l2}

,
@l{l2}
@l2{l}

,
@l¬{l2}
@l2¬{l}

,
@lϕ

@l{l}
,

@lϕ,@l{l2}
@l2ϕ

, (Clash):
@lϕ, @l¬ϕ

⊥ . (3i)

Figure 5: Refined calculus for IEL, where � ∈ {[ϕ?]a, [!]a}, b ∈ {#p, {n}}, 3 ∈ {Q̂, K̂, X̂}

theory, conditions (wd1) and (wd3) are trivially satisfied. Showing condition (wd2), i.e., well-
foundedness of the ordering ≺ induced by the normalised specification, is more involved than
usual because of the statements capturing the reduction axioms. Well-foundedness of the order
can be established by assigning IEL formulae the following complexity measure:

c(p) = 1, c(!) = 1, c(¬ϕ) = 1 + c(ϕ), c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ)), (2a)

c(2aϕ) = 1 + c(ϕ) for 2a ∈ {Ka, Qa, Xa}, and (2b)

c([q]ψ) = (c(q) + 5) · c(ψ) for q ∈ {ϕ?, !}. (2c)

Turning the normalised semantic specification into tableau rules in accordance with [11]
then produces a sound and complete tableau calculus for checking satisfiability for IEL. We
do not present this calculus here, but present (in Figure 5) immediately the calculus obtained
after refinement.

Two refinements described in [11] have been applied. The first refinement is the internali-
sation of the domain symbols including interpretation symbols νi, νf, and νp in the language of
the logic. For example, the rules generated for the 2 operators are (2 ∈ {Q,K,X}):

νf(¬2aϕ, l)
R(l, f¬2(l, a, ϕ)), νf(¬ϕ, f¬2(l, a, ϕ))

and
νf(2aϕ, l), l2

.
≈ l2

¬R(l, l2) | νf(ϕ, l2)

8

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

R denotes the appropriate accessibility relation associated with 2a. f¬2 represents one of three
fixed Skolem functions used as a convenient way to create witnesses for formulae of existential
extent. Because IEL is a hybrid logic it fully supports individuals and the rules can be rewritten
as

@l¬2aϕ
@l3a{f¬2(l, a, ϕ)}, @f¬2(l,a,ϕ)¬ϕ

and
@l2aϕ, @la3a{l2}
@l¬3a{l2} | @l2ϕ

.

Similarly for the other rules.
The second refinement attempts to replace branching rules by rules with fewer or no

branches. For example, the rule for positive occurrences of 2,

@l2aϕ, @la3a{l2}
@l¬3a{l2} | @l2ϕ

, is refined to
@l2aϕ, @l3a{l2}

@l2ϕ
.

Other refined rules in the presented calculus are the rules expressing triangular properties in (3g)
and (3h). These rule refinements are justified because the (†) condition from [11] can be shown
to hold in each case. The presented calculus is therefore sound and complete for IEL.

Finally, if the logic has the finite model property then the generated tableau calculus can
be turned into a decision procedure by adding the blocking mechanism introduced in [9] which
is based on the following unrestricted blocking rule:

(UB):
@l{l}, @l0{l0}

@l{l0} | @l¬{l0}

For the static part of IEL the finite model property is obtained by a standard filtration argument.
The reduction axioms introduced before provide a way to translate formulae from the dynamic
part to equivalent formulae in the static language. The translation is:

t(p) = p, t(¬ϕ) = ¬t(ϕ), t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ), (4a)

t(2aϕ) = 2at(ϕ) for 2a ∈ {Ka, Qa, Xa}, (4b)

t(lhs) = t(rhs) for the reduction axioms in (1a)–(1d). (4c)

This implies that IEL has the finite model property and we can obtain the following result:

Theorem 1. The calculus listed on Figure 5 is sound and complete for IEL satisfiability and
it is also terminating if equipped with the unrestricted blocking mechanism.

4 Extension to Sequential Questioning Logic

In this section we generalize the IEL/DELQ framework to a setting using questioning sequences
and we call the emerging theory Sequential Questioning Logic (henceforth, SQL).

The language of SQL is recursively defined by the following BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∨ ϕ | 2ϕ | [σ(k)?]ϕ | [!]ϕ

with n, p, a,¬,∨,2, [!] as before and σ(n)? representing dynamic questioning actions where
σ(n) = 〈ϕ0, . . . , ϕn−1〉 is a sequence of SQL formulae. The semantics of the operators is also as
before with the generalized intersection already introduced in Section 2 used for sequences. The
fact that the questioning modalities are the only ones different between IEL and SQL dialects
allows us to add questioning sequences while preserving all the other components.

9

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

Figure 6: SQL specific dynamic connectives, semantics and tableau rules

conn. type semantics rules

[·?] [f] 7→ f

∀x(νf([σ?]#p, x)↔ νf(#p, x)))

As in Figure 5 with [σ?] instead of [ϕ?]

∀x(νf([σ?]{n}, x)↔ νf({n}, x)))

∀x(νf([σ?]¬ϕ, x)↔ νf(¬[σ?]ϕ, x)))

∀x(νf([σ?](ϕ ∧ ψ), x)↔ νf([σ?]ϕ, x) ∧ νf([σ?]ψ, x))

∀x(νf([σ?]Kaϕ, x)↔ νf(Ka[σ?]ϕ, x))

∀x(νf([σ(n)?]Qaϕ, x)↔ see below
See the generalized rules below

∀x(νf([σ(n)?]Xaϕ, x)↔ see below

The static part of SQL brings nothing new, it is axiomatized, as before in IEL, by standard
hybrid logic axioms for nominals and intersection. The dynamic part of SQL brings some new
features that generalize the initial setting from IEL, and we do not require formulae in σ(n) to
induce a partition of the domain.

The significant new feature in SQL relative to IEL is the presence of dynamic questioning
modalities over sequences of questions. This has to bring about new reduction axioms. For
formulae ϕ with factual content the jump to questioning sequences is an obvious generalization
of the pattern in previous reduction axioms. For such ϕ0, ϕ1 in a minimal sequence we have:

[ϕ0, ϕ1]Xϕ↔ (ϕ0 ∧ ϕ1 ∧X((ϕ0 ∧ ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (ϕ0 ∧ ¬ϕ1 ∧X((ϕ0 ∧ ¬ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (¬ϕ0 ∧ ϕ1 ∧X((¬ϕ0 ∧ ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (¬ϕ0 ∧ ¬ϕ1 ∧X((¬ϕ0 ∧ ¬ϕ1)→ [ϕ0, ϕ1]ϕ)).

This generalizes in the expected way to longer factual sequences. However, this cannot be
extended beyond factual formulae, not even for minimal questioning sequences of length two.
This approach fails for complex formulae that have questioning content or, in general, extra-
factual or higher-order content. Consider as an illustration the following complex questioning
formula: ξ := (Q̂i → (j ∨ k)) ∧ ((Q̂j ∧ p) → Q̂i). A model with a domain of three worlds
i, j, k, universal issue and epistemic relations, and a valuation that makes p true at k provides
a counterexample when we make the following substitutions: ϕ0 7→ ξ, ϕ1 7→ ξ, ϕ 7→ ¬p.

For questioning sequences the disjunctive structure of the reduction axiom has to induce
a partition of the domain. However, the questioning sequence does not have to give rise to a
partition. This difference is not always fully understood and appreciated. If the questioning
sequence has a more complex structure, for instance, if it induces a cover of the domain, more
complex patterns are needed in the reduction axiom, that can ensure that the right hand side
remains an exhaustive exclusive disjunction. In this way, fully general reduction axioms for
SQL can be obtained and they will have the pattern given below.

We present the new additions in a synthetic way in Table 6. The questioning modalities
have a different type than before as they are now defined over lists of formulae. Except for this

10

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

type difference most of the tableau rules will be as before. The new connectives using sequences
will have new reduction axioms and new rules as specified in the table.

The reduction axioms will have the following pattern, for � ∈ {Q,X}:

[σ(n)]�aϕ↔
2|σ(n)|∨
i=0

(|σ(n)|∧
k=0

([σ(k − 1)]ϕk)β(i)(k) ∧ �a(

|σ(n)|∧
k=0

([σ(k − 1)]ϕk)β(i)(k) → [σ(n)]ϕ)
)
,

where |σ(n)| is the length of the questioning sequence σ(n) = 〈ϕ0, .., ϕn−1〉,

and the value of ϕβ(k)(i) is determined by: ϕβ(k)(i) =

{
¬ϕ if β(k)(i) = 1, and

¬ϕ if β(k)(i) = 0.

β(k)(i) represents the i-th position in the binary encoding β(k) of the decimal number k.

The corresponding tableau rules are obtained as follows, for χki =
∧|σ(n)|
k=0 ([σ(k−1)]ϕk)β(i)(k):

@l[σ?]�aϕ

@l

∧|σ(n)|
k=0 χk1 ∧ �a(

∧|σ(n)|
k=0 χk1 → [σ(n)]ϕ) | · · · | @l

∧|σ(n)|
k=0 χkn ∧ �a(

∧|σ(n)|
k=0 χkn → [σ(n)]ϕ)

In addition the complexity function for formulae has to add to Equation 2 values that take
into account the length of the questioning sequences.

5 Implementing an IEL Prover with MetTeL2

In this section, we describe our experience in using MetTeL2 [13] to generate a tableau prover
for the tableau calculus derived in the previous section. MetTeL2 is a prototypical tableau
prover generator developed with the tableau synthesis framework as its theoretical founda-
tion. Given the specification of a logic and the specification of a tableau calculus for this
logic MetTeL2 generates Java code for a tableau prover implementing the tableau calculus.
MetTeL2 has been successfully applied to several of logics, including Boolean logic, modal log-
ics K, KT, S4, description logics ALCO and ALBOid, and a hybrid logic with global counting
operators [6]. The list is constantly growing. These test cases and downloadable copies of the
generated provers are publicly available from the MetTeL website.

The underlying language for syntax specification of IEL in MetTeL2 is in line with the
tableau synthesis framework object specification language. As the object language is settled in
Section 3, preparing the syntax specification for MetTeL2 is straightforward. For example, the
syntax specification contains declaration of four sorts.

sort formula, agent, prop, individual;

Further, declarations of each connectives follow their representation in Figure 1. For instance,
the connective # is specified by the following declaration.

formula proposition = ’#’ prop;

The declaration of the dynamic modality for questioning is given by:

formula query = ’[?’ formula ’]’ agent formula;

The syntax for Skolem terms which are fresh labels introduced during the application of
diamond rules is given as follows.

11

http://www.mettel-prover.org/

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

individual fq = ’fq’ ’(’ individual ’,’ agent ’,’ formula ’)’;
individual fk = ’fk’ ’(’ individual ’,’ agent ’,’ formula ’)’;
individual fx = ’fx’ ’(’ individual ’,’ agent ’,’ formula ’)’;

The specification of the tableau calculus in MetTeL2 reflects all the rules of Figure 5.
There are decomposition rules for positive as well as negative occurrences of all connectives.
The exception is negation, which only has a rule for negative occurrence, namely elimination of
double negation. For example, the rules for the three static modalities are specified as follows.

@l<q> A P / @l <q> A {fq(l,A,P)} @fq(l,A,P)P priority 7$;
@l<k> A P / @l <k> A {fk(l,A,P)} @fk(l,A,P)P priority 7$;
@l<x> A P / @l <x> A {fx(l,A,P)} @fx(l,A,P)P priority 7$;
@l ~(<q> A P) @l <q> A {l2} / @l2~P priority 2$;
@l ~(<k> A P) @l <k> A {l2} / @l2~P priority 2$;
@l ~(<x> A P) @l <x> A {l2} / @l2~P priority 2$;

The rules for dynamic modalities have specific cases for atomic formulae, i.e., propositional
atoms or nominals, and cases for complex formulae with non-factual content: questioning,
epistemic or both. The cases for atomic formulae are specified as follows.

@l ([?P] A #B) / @l #B priority 2$; @l ~([?P] A #B) / @l ~(#B) priority 2$;
@l ([?P] A {l2 }) / @l ({l2 }) priority 2$; @l ~([?P] A {l2 }) / @l ~{l2} priority 2$;
@l ([!] A {l2 }) / @l {l2} priority 2$; @l ~([!] A {l2 }) / @l ~{l2} priority 2$;
@l ([!] A #B) / @l #B priority 2$; @l ~([!] A #B) / @l ~(#B) priority 2$;

Having the rules for intersection of accessibility relations in the background theory is im-
portant because it plays a crucial role in the reduction rule for the dynamic modalities:

@l<q> A {l2} @l<k> A {l2} / @l<x> A {l2} priority 2$;
@l<x> A {l2} / @l<q> A {l2} @l<k> A {l2} priority 2$;

In MetTeL2, appearance of an equality formula in a branch immediately triggers ordered
rewriting within the branch. The unrestricted blocking rule is implemented with use of this
feature and the equality formula on its left branch forces the branch to be rewritten with respect
to the additional equality.

An important feature provided by the MetTeL2 implementation is the possibility to assign
priorities to the tableau rules. This can be used to control the way the rules are applied in
the generated prover. Each rule is followed by a number, which defines the rule application
priority. Rules with smaller priority values have higher priority and applied more eagerly.
Use of this feature is essential for the efficiency of the generated provers and especially in the
case of IEL because the rules corresponding to reduction axioms with disjunctive patterns can
be assigned lower priorities (higher priority values), thus reducing the branching factor and
improving efficiency.

From the syntax specification and the tableau calculus, a tableau prover for IEL is automat-
ically generated by MetTeL2 according to the process described in detail in [13]. The generated
prover can be used like most other tableau provers. Given a set of formulae as an input, the
prover returns an answer Satisfiable or Unsatisfiable together with a model in the
first case or with a set of contradictory formulae in the latter case.

We have tested the generated prover on a small set of sample formulae, where all the answers
were correct.

12

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

6 Implementing IEL and SQL in Haskell

The second implementation uses the literate Haskell script Qtab.lhs. In this section, we
provide a brief description of this implementation and include the implementation itself in the
long version of the paper [8]. The implementation started from a pre-existing tableau prover
for hybrid logic [16], to which we have added the details needed to model dynamic questioning
actions. The tableau construction functionality was also completely changed. The current
setting is more congenial with the framework from [11], which includes having a background
theory for intersection and using unrestricted blocking.

We give next a broad view of the modules contained in the Qtab.lhs architecture and
their functionality. Syntax.hs: Preliminary module containing the data structures for modal
and first-order logic formulae as well as the tableaux. Qtab.lhs: The module containing the
main functionality for the tableau prover such as the decide function that takes a formula
in the IEL language and decides if it is or is not a tautology. Also functions controlling the
order in which the formulae are analysed. Decomp.hs: The module containing the functionality
associated with tableau expansion rules by logical decomposition. This proceeds either by
standard logical analysis or by rules synthesized from reduction axioms. Backgrd.hs: The
module containing the main components of the IEL background theory. In particular, the
rules governing the behaviour of nominals and the rules for intersection are defined here. Also
the unrestricted blocking mechanism is handled by functions in this module. Divide.hs: The
order in which branches in a tableau are expanded is determined by their syntactic structure.
The module contains functions used to recognize structural properties of formulae and to divide
tableau nodes into component lists of prioritised formulae. Auxilar.hs: The module containing
auxiliary functionality (such as displaying tableaux and translating formulae).

One particular aspect in which the Haskell implementation proved to be useful was in deal-
ing with questioning sequences. Questioning sequences can also be added in MetTeL2, see the
rules for sequences of length two in the appendix of the long version. The features of functional
programming and the way in which recursion is implicitly built in Haskell definitions makes
working with arbitrary sequences of questions easier. It also made it obvious that modalities
capturing questioning sequences can be modelled as fully functional algebraic data structures
suitable for recursive manipulation. The decomposition rules for the static connectives and res-
olution are as in Figure 5. We include several illustrations of Qtab.lhs output for questioning
sequences of length two in the long version. The decomposition rules for the general case of
arbitrarily long sequences follow the pattern of the rules from Table 6. We include below some
illustrative examples of prover output for some paradigmatic examples of SQL formulae:

*Sql> deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 2 (Disj [Prop (P 0), Prop (Q 0)])))

(False,5)

*Sql> deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 1 (Disj [Prop (P 0), Prop (Q 0)])))

(False,14)

*Sql> deciden (Quest [Prop (P 0)] (Reso (Box 2 (Prop (P 0)))))

(False,12)

The first example illustrates a questioning sequence of length two combined with the static
knowledge modality, which has a commutating behaviour. The second example illustrates a
questioning sequence of length two in combination with the static issue modality, which uses
reduction axioms based on the disjunction pattern: The third example illustrates a questioning
sequence combining both asking actions and resolution actions. Because the resolution modality
is idempotent, all resolution sequences are equivalent to a sequence of length one. Therefore
the following reduction axioms are used for dealing with the aspect of the interaction between

13

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

a questioning-sequence followed by a resolution-sequence:

[σ?][!]Qaψ ↔ [σ?]Qa[!]ψ, [σ?][!]Kaψ ↔ [σ?]Xa[!]ψ, [σ?][!]Xaψ ↔ [σ?]Xa[!]ψ (5a)

The final illustration shows the difference between knowing that and knowing whether.
After a yes/no question about p the issue relation decides whether p, this turns out to be a
SQL validity, however, it does not settle that p holds.

*Sql> (deciden (Neg (Quest [Prop (P 0), Neg (Prop (P 0))] (Box 1 (Prop (P 0))))))

(False,40)

*Sql> (deciden (Neg (Quest [Prop (P 0), Neg (Prop (P 0))]

(Disj [Box 1 (Prop (P 0)), Box 1 (Neg (Prop (P 0)))]))))

(True,84)

More detailed code output, traces of step-by step inference and tableau generation, and
further explanation of the code functionality is included in the long version of the paper.

7 Concluding Remarks

In this paper we have shown what can be achieved when applying tableau synthesis and imple-
mentation for dynamic modalities of the simplest kind. This is only an initial illustration that
serves as a case study for further extensions. We have considered one such extension to ques-
tioning sequences. Further extensions that we want to consider in the future include dynamic
questioning actions that can model privacy and insecure communication and employ product
update [2, 1] for computing issue relations [7] and a richer repertoire of questioning actions that
go beyond the propositional case and include wh-questions [5, 18].

MetTeL2 provides a robust and efficient platform for automatically generating a tableau
prover for IEL. On the small set of formulae we used for testing, MetTeL2 was faster than the
Haskell prover, because it implements clever backtracking techniques and other optimisations,
currently not supported in the Haskell implementation.

On the other hand, the Haskell implementation provides a framework in which more ex-
perimental features of further extensions can be easily programmed and tested before they
are ready to become mainstream conditions. We used the case of SQL to illustrate such an
extension. We conclude with two main points about the overall significance of our approach.

We have shown how a dynamic component, in particular, dynamic questioning actions, can
be integrated in the tableau synthesis framework. Based on the synthesised tableau calculus,
two implementations have been developed: MetTeL2 and Qtab.lhs. This dynamic extension
relies on rules in which the complexity of the formulae inside the scope of the dynamic modalities
is reduced, even if the complexity of the conclusion formula in the rule can increase.

The second contribution facilitated by the implementations is an extension of the underlying
dynamic logic itself. Implementing the reduction details made it obvious that a logical language
containing sequences of questions, not just modalities for questioning actions, can be modelled
in the framework, and extends the dynamic logic in a useful direction.

14

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

References

[1] A. Baltag. Logics for insecure communication. In Proceedings of the 8th Conference on Theoretical
Aspects of Rationality and Knowledge, pages 111–121. Morgan Kaufmann, 2001.

[2] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common knowledge,
and private suspicions. In Proceedings of the 7th Conference on Theoretical Aspects of Rationality
and Knowledge, TARK ’98, pages 43–56. Morgan Kaufmann, 1998.

[3] L. del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin, and F. Massacci. Lotrec: the generic
tableau prover for modal and description logics. In Proceedings of the First International Joint
Conference on Automated Reasoning, pages 453–458. Springer, 2001.

[4] H. Ditmarsch, W. Hoek, and B. Kooi. Dynamic epistemic logic. Springer, 2007.

[5] J. Hintikka, I. Halonen, and A. Mutanen. Interrogative logic as a general theory of reasoning.
In D. M. Gabbay, R. H. Johnson, H. J. Ohlbach, and J. Woods, editors, Handbook of logic of
argument and inference: The turn towards the practical, pages 295–337. Elsevier, 2002.

[6] M. Khodadadi, R. A. Schmidt, D. Tishkovsky, and M. Zawidzki. Terminating tableau calculi
for modal logic K with global counting operators. Manuscript, http://www.mettel-prover.org/
papers/KEn12.pdf, 2012.

[7] Ş. Minică. Dynamic Logic of Questions. PhD thesis, ILLC, University of Amsterdam, 2011.

[8] Ş. Minică, M. Khodadadi, D. Tishkovsky, and R. A. Schmidt. Synthesising and implementing
tableau calculi for interrogative epistemic logics, 2012. Long version of the present paper, http:
//www.mettel-prover.org/papers/IEL-long.pdf.

[9] R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description logics with role
negation. In Proc. ISWC 2007 + ASWC 2007, volume 4825 of LNCS, pages 438–451. Springer,
2007.

[10] R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding description logics,
modal logics and related first-order fragments. In Proc. IJCAR 2008, volume 5195 of LNCS, pages
194–209. Springer, 2008.

[11] R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. Logical Methods in
Computer Science, 7(2):1–32, 2011.

[12] B. D. ten Cate. Model Theory for Extended Modal Languages. PhD thesis, ILLC, University of
Amsterdam, 2005.

[13] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. MetTeL2: Towards a tableau prover generation
platform. In these Proceedings, 2012.

[14] J. van Benthem. Logical dynamics of information and interaction. Cambridge Univ. Press, 2011.

[15] J. van Benthem and Ş. Minică. Toward a dynamic logic of questions. In Logic, Rationality, and
Interaction, volume 5834 of Lecture Notes in Computer Science, pages 27–41. Springer, 2009.

[16] J. van Eijck. Hylotab: Tableau-based theorem proving for hybrid logics, 2002. Manuscript, CWI,
Amsterdam.

[17] J. van Eijck. DEMO: A demo of epistemic modelling. In Interactive Logic. Selected Papers from
the 7th Augustus de Morgan Workshop, London, pages 303–362, 2007.

[18] A. Wísniewski. Erotetic search scenarios, problem solving, and deduction. Logique & Analyse,
185-188:139–166, 2004.

15

http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/IEL-long.pdf
http://www.mettel-prover.org/papers/IEL-long.pdf

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

A Appendix: Implementation Details and Illustrations

A.1 MetTeL2 Specification of IEL

The specification of the syntax of IEL for input to MetTeL2 is the following:

1 specification IEL;

2

3 syntax IEL{

4 sort formula, individual, prop, agent;

5

6 formula true = ’true’;

7 formula false = ’false’;

8 formula singleton = ’{’ individual ’}’;

9 formula atom = ’#’ prop;

10 formula negation = ’~’ formula;

11 formula diamondQ = ’<q>’ agent formula;

12 formula diamondK = ’<k>’ agent formula;

13 formula diamondX = ’<x>’ agent formula;

14 formula at = ’@’ individual formula;

15

16 formula query = ’[?’ formula ’]’ agent formula;

17 formula resol = ’[!]’ agent formula;

18 formula disjunction = formula ’|’ formula;

19 formula equality = ’[’ individual ’=’ individual ’]’;

20

21 individual fq = ’fq’ ’(’ individual ’,’ agent ’,’ formula ’)’;

22 individual fk = ’fk’ ’(’ individual ’,’ agent ’,’ formula ’)’;

23 individual fx = ’fx’ ’(’ individual ’,’ agent ’,’ formula ’)’;

24 }

A.2 MetTeL2 Specification of the Tableau Calculus for IEL

The tableau rules of the IEL calculus for input to MetTeL2 are given below:

1 //Equality rules

2 @l{l2} / @l2{l} priority 1$;

3 @l~{l2} / @l2{l2} priority 1$;

4 @l P / @l{l} priority 1$;

5 @l <q> A {l2} / @l2 {l2} priority 1$;

6 @l <k> A {l2} / @l2 {l2} priority 1$;

7 @l <x> A {l2} / @l2 {l2} priority 1$;

8 @l P @l{l2} / @l2 P priority 2$;

9 @l <x> A {l2} @l2 {l3} / @l <x> A {l3} priority 2$;

10 @l <q> A {l2} @l2 {l3} / @l <q> A {l3} priority 2$;

11 @l <k> A {l2} @l2 {l3} / @l <k> A {l3} priority 2$;

12

13 //Decomposition rules

14 @l ~(~P) / @l P priority 1$;

15 @l(P|Q) / @l P $| @l Q priority 3$;

16 @l~(P|Q) / @l~P @l~Q priority 1$;

17 @l<q> A P / @l <q> A {fq(l,A,P)} @fq(l,A,P)P priority 7$;

18 @l<k> A P / @l <k> A {fk(l,A,P)} @fk(l,A,P)P priority 7$;

19 @l<x> A P / @l <x> A {fx(l,A,P)} @fx(l,A,P)P priority 7$;

20 @l ~(<q> A P) @l <q> A {l2} / @l2~P priority 2$;

21 @l ~(<k> A P) @l <k> A {l2} / @l2~P priority 2$;

22 @l ~(<x> A P) @l <x> A {l2} / @l2~P priority 2$;

23

16

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

24 @l ([?P] A #B) / @l #B priority 2$;

25 @l ~([?P] A #B) / @l ~(#B) priority 2$;

26 @l ([?P] A {l2}) / @l ({l2}) priority 2$;

27 @l ~([?P] A {l2}) / @l ~{l2} priority 2$;

28 @l ([!] A {l2}) / @l {l2} priority 2$;

29 @l ~([!] A {l2}) / @l ~{l2} priority 2$;

30 @l ([!] A #B) / @l #B priority 2$;

31 @l ~([!] A #B) / @l ~(#B) priority 2$;

32

33 @l ([?P] A ~Q) / @l ~([?P] A Q)$;

34 @l ([!] A ~Q) / @l ~([!] A Q)$;

35 @l ([?P] A (P1 | P2)) / @l ([?P] A P1) $| @l ([?P] A P2)$;

36 @l ([!] A (P1 | P2)) / @l ([!] A P1) $| @l ([!] A P2)$;

37 @l ([!] A ~(<q> A ~P)) / @l ~(<q> A ~([!] A P))$;

38 @l ([!] A ~(<x> A ~P)) / @l ~(<x> A ~([!] A P))$;

39 @l ([?P] A ~(<k> A ~Q)) / @l ~(<k> A ~([?P] A Q))$;

40 @l ([!] A ~(<k> A ~P)) / @l ~(<x> A ~([!] A P))$;

41 @l ([?P] A ~(<q> A ~Q)) / @l ~(~P | <q> A ~(~P | [?P] A Q)) $| @l ~(P | <q> A ~(P | [?P] A Q))$;

42 @l ([?P] A ~(<x> A ~Q)) / @l ~(~P | <x> A ~(~P | [?P] A Q)) $| @l ~(P | <x> A ~(P | [?P] A Q))$;

43

44 @l ~([?P] A ~Q) / @l ([?P] A Q)$;

45 @l ~([!] A ~Q) / @l ([!] A Q)$;

46 @l ~([?P] A (P1 | P2)) / @l ~([?P] A P1) @l ~([?P] A P2)$;

47 @l ~([!] A (P1 | P2)) / @l ~([!] A P1) @l ~([!] A P2)$;

48 @l ~([!] A ~(<q> A ~P)) / @l <q> A ~([!] A P)$;

49 @l ~([!] A ~(<x> A ~P)) / @l <x> A ~([!] A P)$;

50 @l ~([?P] A ~(<k> A ~Q)) / @l (<k> A ~([?P] A Q))$;

51 @l ~([!] A ~(<k> A ~P)) / @l (<x> A ~([!] A P))$;

52 @l ~([?P] A ~(<q> A ~Q)) / @l (~P | <q> A ~(~P | [?P] A Q)) @l (P | <q> A ~(P | [?P] A Q))$;

53 @l ~([?P] A ~(<x> A ~Q)) / @l (~P | <x> A ~(~P | [?P] A Q)) @l (P | <x> A ~(P | [?P] A Q))$;

54

55 // Theory rules

56 @l<q> A {l2} @l<k> A {l2} / @l<x> A {l2} priority 2$;

57 @l<x> A {l2} / @l<q> A {l2} @l<k> A {l2} priority 2$;

58 @l {l} / @l <q> A {l} priority 1$;

59 @l {l} / @l <k> A {l} priority 1$;

60 @l {l} / @l <x> A {l} priority 1$;

61 @l <q> A {l2} @l2 <q> A {l3} / @l <q> A {l3} priority 2$;

62 @l <q> A {l2} / @l2 <q> A {l} priority 3$;

63 @l <k> A {l2} @l2 <k> A {l3} / @l <k> A {l3} priority 2$;

64 @l <k> A {l2} / @l2 <k> A {l} priority 3$;

65 @l <x> A {l2} @l2 <x> A {l3} / @l <x> A {l3} priority 2$;

66 @l <x> A {l2} / @l2 <x> A {l} priority 3$;

67

68 // Closure rule

69 @l P @l~P / priority 0$;

70

71 //Blocking related

72 @l{l0} / [l=l0] priority 1$;

73 [l=l0] / @l{l0} priority 1$;

74 @l~{l0} / ~([l=l0]) priority 1$;

75 ~([l=l0]) / @l~{l0} priority 1$;

76 @l{l} @l0{l0} / [l=l0] $| ~([l=l0]) priority 6$;

A.3 MetTeL2 Extension for Handling Questioning Sequences

The calculus can be extended to questioning sequences by adding more rules to MetTeL2. We
include below the rules for SQL questioning sequences of length two in positive format:

17

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

1 // Dynamic Sequences (Length Two)

2 @l ([Qp] A P1 ([Qp] A P2 {{B}})) / @l {{B}} priority 2$;

3 @l ([Qp] A P ([Rp] A {{B}})) / @l {{B}} priority 2$;

4 @l ([Qn] A P1 ([Qn] A P2 {l2})) / @l {l2} priority 2$;

5 @l ([Qn] A P ([Rn] A {l2})) / @l {l2} priority 2$;

6 @l ([Q] A P1 ([Q] A P2 ~Q)) / @l ~([Q] A P1 ([Q] A P2 Q))$;

7 @l ([Q] A P ([R] A ~Q)) / @l ~([Q] A P ([R] A Q))$;

8 @l ([Q] A P1 ([Q] A P2 (P3 & P4))) / @l ([Q] A P1 ([Q] A P2 P3)) @l ([Q] A P1 ([Q] A P2 P4))$;

9 @l ([Q] A P ([R] A (P1 & P2))) / @l ([Q] A P ([R] A P1)) @l ([Q] A P ([R] A P2))$;

10 @l ([Q] A P ([R] A [q] A P)) / @l (P & [q] A (P -> [Q] A P ([R] A Q))) $|

11 @l (~P & [q] A (~P -> [Q] A P ([R] A Q)))$;

12 @l ([Q] A P ([R] A [x] A P)) / @l (P & [x] A (P -> [Q] A P ([R] A Q))) $|

13 @l (~P & [x] A (~P -> [Q] A P ([R] A Q)))$;

14 @l ([Q] A P1 ([Q] A P2 [k] A Q)) / @l ([k] A ([Q] A P1 ([Q] A P2 Q)))$;

15 @l ([Q] A P ([R] A [k] A Q)) / @l (P & [x] A (P -> [Q] A P ([R] A Q))) $|

16 @l (~P & [x] A (~P -> [Q] A P ([R] A Q)))$;

17 @l ([Q] A P1 ([Q] A P2 [q] A Q)) / @l ((P & [Q] A P1 P2) & [q] A ((P & [Q] A P1 P2) -> [Q] A P1 ([Q] A P2 Q))) $|

18 @l ((~P & [Q] A P1 P2) & [q] A ((~P & [Q] A P1 P2) -> [Q] A P1 ([Q] A P2 Q))) $|

19 @l ((P & ~([Q] A P1 P2)) & [q] A ((P & ~([Q] A P1 P2)) -> [Q] A P1 ([Q] A P2 Q))) $|

20 @l ((~P & ~([Q] A P1 P2)) & [q] A ((P & ~([Q] A P1 P2)) -> [Q] A P1 ([Q] A P2 Q))) $;

21 @l ([Q] A P1 ([Q] A P2 [x] A Q)) / @l ((P & [Q] A P1 P2) & [x] A ((P & [Q] A P1 P2) -> [Q] A P1 ([Q] A P2 Q))) $|

22 @l ((~P & [Q] A P1 P2) & [x] A ((~P & [Q] A P1 P2) -> [Q] A P1 ([Q] A P2 Q))) $|

23 @l ((P & ~([Q] A P1 P2)) & [x] A ((P & ~([Q] A P1 P2)) -> [Q] A P1 ([Q] A P2 Q))) $|

24 @l ((~P & ~([Q] A P1 P2)) & [x] A ((P & ~([Q] A P1 P2)) -> [Q] A P1 ([Q] A P2 Q))) $;

A.4 Sample Invocations of the Generated Prover

We include below output of two runs of the MetTeL2 generated prover. The examples illustrate
the difference in expressive power between a logic with nominals and one without nominals.
The intersection modality cannot be defined in a language without names for worlds.

//Give input for satisfiability check

@l ~(~(<q> a P) | ~(<k> a P) | (<x> a P))

Satisfiable.

Model: [(~ ([(fq (l , a , P)) = l])), (@ (fq (l , a , P)) (~ ({ l }))),

(@ l ({ l })), (@ l (~ P)), (@ l (~ (~ (a P)))), (@ l (~ (~ (a P)))),

(@ l (~ (a P))), (@ l (~ ((~ (a P)) | (~ (a P))))),

(@ l (~ (((~ (a P)) | (~ (a P))) | (a P)))), (@ l (A ({ l }))),

(@ l (a P)), (@ l (a ({ l }))), (@ l (a ({ (fq (l , a , P)) }))),

(@ l (A ({ l }))), (@ l (a P)), (@ l (a ({ l }))),

(@ l (a ({ (fk (l , a , P)) }))), (@ l (A ({ l }))), (@ l (a ({ l }))),

(@ (fq (l , a , P)) P), (@ (fq (l , a , P)) ({ (fq (l , a , P)) })),

(@ (fq (l , a , P)) (A ({ (fq (l , a , P)) }))), (@ (fq (l , a , P)) (a ({ l }))),

(@ (fq (l , a , P)) (a ({ (fq (l , a , P)) }))), (@ (fq (l , a , P))

(A ({ (fq (l , a , P)) }))), (@ (fq (l , a , P)) (A ({ (fq (l , a , P)) }))),

(@ (fk (l , a , P)) P), (@ (fk (l , a , P)) ({ (fk (l , a , P)) })),

(@ (fk (l , a , P)) (A ({ (fk (l , a , P)) }))), (@ (fk (l , a , P))

(A ({ (fk (l , a , P)) }))), (@ (fk (l , a , P)) (a ({ l }))),

(@ (fk (l , a , P)) (a ({ (fk (l , a , P)) }))), (@ (fk (l , a , P))

(A ({ (fk (l , a , P)) }))), ([l = l]), ([(fq (l , a , P)) = (fq (l , a , P))]),

([(fk (l , a , P)) = (fk (l , a , P))]), (~ ([l = (fq (l , a , P))])),

(@ l (~ ({ (fq (l , a , P)) }))), (~ ([(fk (l , a , P)) = l])),

(@ (fk (l , a , P)) (~ ({ l }))), (~ ([(fk (l , a , P)) = (fq (l , a , P))])),

(@ (fk (l , a , P)) (~ ({ (fq (l , a , P)) }))), (~ ([l = (fk (l , a , P))])),

(@ l (~ ({ (fk (l , a , P)) }))), (~ ([(fq (l , a , P)) = (fk (l , a , P))])),

(@ (fq (l , a , P)) (~ ({ (fk (l , a , P)) })))]

18

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

//Give input for satisfiability check

@l ~(~(<q> a {l2}) | ~(<k> a {l2}) | (<x> a {l2}))

Unsatisfiable.

Contradiction: [(@ l (~ (~ (a ({ l2 }))))), (@ l (~ (~ (a ({ l2 }))))),

(@ l (~ (a ({ l2 })))), (@ l (~ ((~ (a ({ l2 }))) | (~ (a ({ l2 })))))),

(@ l (~ (((~ (a ({ l2 }))) | (~ (a ({ l2 })))) | (a ({ l2 }))))),

(@ l (a ({ l2 }))), (@ l (a ({ l2 }))), (@ l (a ({ l2 })))]

@l ~(~([!] a {l2}) | {l2})

Input file: Test120531191010/Input120531191915

Unsatisfiable.

Contradiction: [(@ l ({ l2 })), (@ l (~ ({ l2 }))), (@ l (~ (~ ([!] a ({ l2 }))))), (@ l (~ ((~ ([!] a ({ l2 }))) | ({ l2 })))), (@ l ([!] a ({ l2 })))]

@l ~(~([!] a # P) | # P)

Input file: Test120531191010/Input120531192253

Unsatisfiable.

Contradiction: [(@ l (# P)), (@ l (~ (# P))), (@ l (~ (~ ([!] a (# P))))), (@ l (~ ((~ ([!] a (# P))) | (# P)))), (@ l ([!] a (# P)))]

@l ~(~([? Q] a # P) | # P)

Input file: Test120531191010/Input120531192505

Unsatisfiable.

Contradiction: [(@ l (# P)), (@ l (~ (# P))), (@ l (~ (~ ([? Q] a (# P))))), (@ l (~ ((~ ([? Q] a (# P))) | (# P)))), (@ l ([? Q] a (# P)))]

@l ~(~([? Q] a P) | P)

Input file: Test120531191010/Input120531192623

Satisfiable.

Model: [(@ l ({ l })), (@ l (~ P)), (@ l (~ (~ ([? Q] a P)))), (@ l (~ ((~ ([? Q] a P)) | P))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l ([? Q] a P)), ([l = l])]

@l ([?Q] a (<k> a P | <k> a ~P))

Input file: Test120531191010/Input120531193048

Satisfiable.

Model: [(@ l ([? Q] a (a P))), (@ l ({ l })), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l ([? Q] a ((a P) | (a (~ P))))), ([l = l])]

@l ([?Q] a ~(~(<x> a ~Q) | ~(<x> a Q)))

Input file: Test120531194002/Input120531194030

Satisfiable.

Model: [(@ l (~ (~ Q))), (@ l (~ ([? Q] a Q))), (@ l (~ ((~ Q) | ([? Q] a Q)))),

(@ l (a ({ l }))), (@ l (a ({ l }))), (@ l (a ({ l }))), (@ l (a (~ ((~ Q) |

([? Q] a Q))))), (@ l ({ l })), (@ l (~ ([? Q] a (~ (a Q))))),

(@ l (~ ([? Q] a (~ (a (~ Q)))))), (@ l (~ ([? Q] a ((~ (a (~ Q))) | (~ (a Q)))))),

(@ l (A ({ l }))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l ([? Q] a (~ ((~ (a (~ Q))) |

(~ (a Q)))))), (@ l ([? Q] a (a Q))), (@ l ([? Q] a (a (~ Q)))),

(@ l (Q | (a (~ (Q | ([? Q] a Q)))))),

(@ l ((~ Q) | (a (~ ((~ Q) | ([? Q] a Q)))))), ([l = l]), (@ l Q)]

@l (~(#P) | [?(#P)] A ~(<q> A ~(#P)))

Input file: Test120531194002/Input120531202324

Satisfiable.

Model: [(@ l (~ (# P))), (@ l ({ l })), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l ((~ (# P)) | ([? (# P)] A (~ (A (~ (# P))))))), ([l = l])]

@l (~({l2}) | [?{l2}] A ~(<q> A ~({l2})))

Input file: Test120531194002/Input120531202854

Satisfiable.

Model: [(~ ([l2 = l])), (@ l2 (~ ({ l }))), (@ l ({ l })), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l (A ({ l }))), (@ l ((~ ({ l2 })) | ([? ({ l2 })] A (~ (A (~ ({ l2 }))))))), ([l = l]), (~ ([l = l2])), (@ l (~ ({ l2 }))), (@ l2 ({ l2 })), (@ l2 (A ({ l2 }))), (@ l2 (A ({ l2 }))), (@ l2 (A ({ l2 }))), ([l2 = l2])]

@l ~(~(#P) | [?(#P)] A (~(<q> A ~(#P))))

Input file: Test120531194002/Input120531205512

Unsatisfiable.

Contradiction: [(@ l (~ (~ (# P)))), (@ l (~ ([? (# P)] A (~ (A (~ (# P))))))), (@ l (~ ((~ (# P)) | ([? (# P)] A (~ (A (~ (# P)))))))), (@ l ((~ (# P)) | (A (~ ((~ (# P)) | ([? (# P)] A (# P)))))))]

19

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

A.5 Implementing a Tableau Prover for IEL in Haskell

Before diving into implementation details we continue the presentation of SQL with a concrete
illustration questioning sequence having length two, the simplest structure. In this case the
sequential reduction axiom gives rise to the following equivalence.

[ϕ0, ϕ1]Rϕ ↔ ¬ϕ0 ∧ ¬[ϕ0]ϕ1 ∧R((¬ϕ0 ∧ ¬[ϕ0]ϕ1)→ [ϕ0, ϕ1]ϕ) ∨
↔ ¬ϕ0 ∧ ¬[ϕ0]ϕ1 ∧R((¬ϕ0 ∧ ¬[ϕ0]ϕ1)→ [ϕ0, ϕ1]ϕ) ∨
↔ ¬ϕ0 ∧ ¬[ϕ0]ϕ1 ∧R((¬ϕ0 ∧ ¬[ϕ0]ϕ1)→ [ϕ0, ϕ1]ϕ) ∨
↔ ¬ϕ0 ∧ ¬[ϕ0]ϕ1 ∧R((¬ϕ0 ∧ ¬[ϕ0]ϕ1)→ [ϕ0, ϕ1]ϕ)

It is not difficult to see that in the reduction axiom above the disjunction pattern gives rise
indeed to a partition, however, the questioning sequence does not.

Sometimes it is useful to allow more expressive power and use sequences of pairs of formulae
and formula sequences. In such cases we use the notation σ(n) = 〈ϕ0/σ0

, . . . , ϕn−1/σn−1
〉.

Of course there are many advantages in considering questioning sequences that correspond
to (diachronic) partitions. We can also introduce a (in)dependence operator ·/· to capture
questioning sequences that correspond to (synchronic) partitions. For instance, given a sequence
of length three that corresponds to a partition we have the following equivalence:

[ϕ0, ϕ1/ϕ0 , ϕ2/ϕ0,ϕ1]Rϕ ↔ ϕ0 ∧R(ϕ0 → [ϕ0, ϕ1/ϕ0 , ϕ2/ϕ0,ϕ1]ϕ) ∨
ϕ1 ∧R(ϕ1 → [ϕ0, ϕ1/ϕ0 , ϕ2/ϕ0,ϕ1]ϕ) ∨
ϕ2 ∧R(ϕ2 → [ϕ0, ϕ1/ϕ0 , ϕ2/ϕ0,ϕ1]ϕ)

The particular case of yes-no partition questions from DELQ can be obtained as a particular
case of a synchronic partition sequence of length two:

[ϕ0, ϕ1/ϕ0
]Rϕ ↔ ϕ0 ∧R(ϕ0 → [ϕ0, ϕ1/ϕ0

]ϕ) ∨ ϕ1 ∧R(ϕ1 → [ϕ0, ϕ1/ϕ0
]ϕ)

by applying the following substitution ϕ1 7→ ¬ϕ0, ϕ 7→ ψ:

[ϕ0,¬ϕ0/ϕ0]Rϕ ↔ ϕ0 ∧R(¬ϕ0 → [ϕ0,¬ϕ0/ϕ0]ψ) ∨ ϕ1 ∧R(¬ϕ0 → [ϕ0,¬ϕ0/ϕ0]ϕ).

We proceed now towards discussing the theoretical background behind the functionality
contained in each of the modules and simultaneously introducing the concrete implementation
details. The level of detail in which implementation details are discussed, in general, mirrors
their theoretical relevance. When discussing code constructs we also refer to their context and
include the number of the code line where they are introduced.

A.6 The Syntax.lhs Module

The first module contains the main syntactic constructs used in specifying and synthesizing the
tableau calculus. We start with the hybrid modal and dynamic specification object language,
defined starting at line 14. This contains the nominals and propositional sorts as well as the
static query, epistemic and interaction modalities and the dynamic questioning and resolution
modalities.

1 module Syntax where
2

3 type Agent = Id

20

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

4 type Seq0 = [Form]

5 type Seq1 = [(Form,Seq0)]

6 type Seq2 = [(Seq1,(([Seq1],[Agent]),([Seq1],[Agent])))]

7

8 answerDep :: [a] -> Int -> a

9 answerDep s n = s!!n

10

11 questionIqqAcc :: [(a, b)] -> Int -> a

12 questionIqqAcc s n = fst (s!!n)

13

14 type Id = Integer
15 data Nom = C Id | N Id | V Id deriving (Eq,Ord)
16 data Prop = P Id | Q Id deriving (Eq,Ord)
17 data Form = Bool Bool | Prop Prop | Nom Nom | Neg Form | Impl Form Form

18 | Conj [Form] | Disj [Form] | Box Rel Form | Dia Rel Form | Sat Nom Form

19 | Set Nom | Atom Prop | Quest Seq0 Form | Reso Form deriving (Eq,Ord)
20

21 type Rel = Integer
22 data DomS = D Id | X Id | Y Id | Z Id deriving (Eq,Ord)
23 data Term = DomS DomS | Fun0 Nom | Fun1 Term | Fun2 Term | Fun3 Term

24 | Fun77 Term | Fun22 Term Term deriving (Eq,Ord)
25 data FOF = FBool Bool | SRel Id Term Term | Holds Form Term | Mark Id

26 | FNeg FOF | FConj [FOF] | FDisj [FOF] −−−− | FImpl FOF FOF
27 | Equal Term Term | Forall DomS FOF | Exists DomS FOF deriving (Eq,Ord)
28

29 type Node = [FOF]

30 type Tableau = [Node]

The second code block, starting at line 21, introduces the syntactic components in the
first-order specification meta-language. This contains the domain sort, the “holds” predicate,
an interpretation function for nominals, and functions and predicates that are used in lifting
semantics to the modal logic connectives.

The final components in the module are the data structures for nodes, line 29, and tableaux,
line 30. A node in a tableau is represented as a list of formulae and a tableau is a list of nodes.
By construction, these lists have further structure, for instance, formulas inside a node are
ordered by their syntactic structure, which is used later during expansion.

A.7 The Qtab.lhs Module

This module contains the main tableau functionality. We start, at line 2, by importing some
basic list processing functionality to be used later on and by importing all the other modules,
line 3. The decide function, line 5, provides the main functionality, it takes a formula and
returns True if all branches of its corresponding tableau are closed, it also returns the number
of steps needed to build the fully expanded tableau.

In order to retrieve further information about the structure of the tableau and the decom-
position process the function analyze can be used, line 11. It returns a list containing, for
all expansion steps their number, the “closed” and “expanded” decisions as Booleans and the
content of the resulting tableau as a list of nodes.

The “closed” decision is made by the function at line 36 which takes a list of nodes as
formula lists and checks it for contradictions using the auxiliary functionality provided by the
functions at lines 21, 4, 14 and 17.

1 module Sql where
2 import Data.List (nub, zip4)

21

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

3 import Syntax; import Decomp; import Backgrd; import Divide; import Auxilar

4

5 decide :: Form -> (Bool)
6 decide f = trd (last (analyze f))

7

8 deciden :: Form -> (Bool, Integer)
9 deciden f = (trd (last (analyze f)), fst4 (last (analyze f)))

10

11 analyze :: Form -> [(Integer, Bool, Bool, Tableau)]

12 analyze f = take (1 + length (takeWhile (not . snd4) (zip4 [0 :: Integer ..]

13 (map (exhausted . (\ x -> expand (snd x) (fst x))) (zip [0 ..] (repeat f)))

14 (map (closed . (\ x -> expand (snd x) (fst x))) (zip [0 ..] (repeat f)))

15 (map (\x -> expand (snd x) (fst x)) (zip [0..] (repeat f)))))) (zip4 [0..]

16 (map (exhausted . (\ x -> expand (snd x) (fst x))) (zip [0 ..] (repeat f)))

17 (map (closed . (\ x -> expand (snd x) (fst x))) (zip [0 ..] (repeat f)))

18 (map (\x -> expand (snd x) (fst x)) (zip [0..] (repeat f))))

19

20 expandTableau :: Tableau -> Tableau

21 expandTableau = foldr ((++) . expandBranch) []

22

23 expandBranch :: Node -> Tableau

24 expandBranch n | all (\ x -> atom x || mark x) n = [n]

25 | line (head (divide n)) = map ((nub . divide) .

26 (\ x -> tail n ++ x)) (decompose (head n) (tail n))

27 | fresh (head (divide n)) = map ((nub . divide) . (\ x -> x ++ tail n))

28 (let n0 = tail n ++ head (decompose (head n) (tail n));

29 n1 = nub (nomicol n0 ++ n0); n2 = nub (equality n1 ++ n1);

30 n3 = nub (valuation n2 ++ n2); n4 = nub (epistemic n3 ++ n3);

31 n5 = nub (intersection n4 ++ n4); n6 = nub (urBlockng n5 ++ n5)

32 in [nub (divide n6)])

33 | otherwise = map ((nub . divide). (\ x -> x ++ tail n))

34 (decompose (head n) (tail n))

35

36 closed :: Tableau -> Bool
37 closed = all contradiction

The “closed” decision is made by the function at line 36 which takes a list of nodes as
formulae lists and checks it for contradictions using the auxiliary functionality provided by the
functions at lines 21, 4, 14 and 17 from the Auxilar module in Section A.12.

Correspondingly, the function at line 49 decides whether or not a tableau is fully expanded by
mapping the auxiliary function defined at line 46 over all the nodes in the tableau. Expansion for
a given number of steps only is performed by the function from line 39. The tableau expansion,
line 20, proceeds by expanding its component branches one by one, line 23.

39 expand :: Form -> Int -> Tableau

40 expand f 0 = let n0 = (head (initiate f)); n1 = nub (nomicol n0 ++ n0);

41 n2 = nub (equality n1 ++ n1); n3 = nub (valuation n2 ++ n2);

42 n4 = nub (epistemic n3 ++ n3); n5 = nub (intersection n4 ++ n4);

43 n6 = nub (urBlockng n5 ++ n5) in [nub (divide n6)]

44 expand f n = expandTableau (expand f (n-1))

45

46 expanded :: Node -> Bool
47 expanded = all (\ x -> atom x || mark x)

48

49 exhausted :: Tableau -> Bool
50 exhausted = all expanded

22

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

A.8 The Decomp.lhs Module

The tableau expansion process defined in the previous module proceeds by logical decomposition
rules. The current module defines the functionality needed for expanding tableau branches by
means of logical decomposition of component formulae in their constituent subformulae.

1 module Decomp where
2 import CombinatoricsGeneration(cartProd); import Data.List(inits,(\\))
3 import Syntax; import Auxilar

4

5 ominus s1 s2 = s1 \\ s2

6 delta s = ominus (map fst (init s)) (snd (last s))

7 d2seq1 s = zip (delta s) (repeat [])

8

9 subseq :: [Form] -> [[[([Form], Form)]]]

10 subseq s = cartProd (map (\x-> cartProd [[([Bool False],Bool False),([Bool True],Bool True)],[x]]) (zip (inits s) s))

11

12 liter :: [([Form], Form)] -> Form

13 liter l | snd (l!!0)==Bool False = Quest (fst (l!!1)) (snd (l!!1))

14 |otherwise = Neg (Quest (fst (l!!1)) (snd (l!!1)))

15 −− | snd (l!!0)==Bool True = Neg (Quest (fst (l!!1)) (snd (l!!1)))
16

17 boolSubseq :: [Form] -> [[Form]]

18 boolSubseq l = map (map (\x-> liter x)) (subseq l)

19

20 conjSubseq :: [Form] -> [Form]

21 conjSubseq l = map Conj (boolSubseq l)

22

23 decompose :: FOF -> [FOF] -> [[FOF]]

24 decompose (Holds (Prop p) x) _ = [[(Holds (Prop p) x)]]

25 decompose (FNeg (Holds (Prop p) x)) _ = [[FNeg (Holds (Prop p) x)]]

26 decompose (Holds (Neg (Prop p)) x) _ = [[FNeg (Holds (Prop p) x)]]

27 decompose (Holds (Nom n) x) _ = [[Holds (Nom n) x]]

28 decompose (FNeg (Holds (Nom n) x)) _ = [[FNeg (Holds (Nom n) x)]]

29 decompose (Holds (Neg (Nom n)) x) _ = [[FNeg (Holds (Nom n) x)]]

30 decompose (Equal t1 t2) _ = [[Equal t1 t2]]

31 decompose (FNeg (Equal t1 t2)) _ = [[FNeg (Equal t1 t2)]]

32 decompose (FNeg (FNeg (Equal t1 t2))) _ = [[Equal t1 t2]]

33 decompose (SRel n t1 t2) _ = [[SRel n t1 t2]]

34 decompose (FNeg (SRel n t1 t2)) _ = [[FNeg (SRel n t1 t2)]]

35 decompose (FNeg (FNeg (SRel n t1 t2))) _ = [[SRel n t1 t2]]

36 decompose (Holds (Bool b) x) _ = [[Holds (Bool b) x]]

37 decompose (FNeg (Holds (Bool b) x)) _ = [[FNeg (Holds (Bool b) x)]]

38 decompose (Holds (Neg (Bool b)) x) _ = [[FNeg (Holds (Bool b) x)]]

The main function of the module is decompose, line 23, which specifies for every possible
formula type its corresponding logical decomposition. In the first code block we deal with the
atomic components. These can be either nominal atoms, line 7, propositional atoms, line 24, or
atomic expressions of equality between terms, line 30, or binary applications of the relational
predicates to terms, line 33. We also have boolean atoms, line 36.

39 decompose (Holds (Conj l) x) _ = [map (‘Holds‘ x) l]

40 decompose (Holds (Neg (Conj l)) x) _ = map (\z -> [Holds (Neg z) x]) l

41 decompose (Holds (Disj l) x) _ = map (\z -> [Holds z x]) l

42 decompose (Holds (Neg (Disj l)) x) _ = [map (\ z -> Holds (Neg z) x) l]

43 decompose (Holds (Impl f1 f2) x) _ = [[Holds (Neg f1) x],[Holds f2 x]]

44 decompose (Holds (Neg (Impl f1 f2)) x) _ = [[Holds f1 x,Holds (Neg f2) x]]

45 decompose (Holds (Sat n f) _) _ = [[Holds f (Fun0 n)]]

46 decompose (Holds (Neg (Sat n f)) _) _ = [[Holds (Neg f) (Fun0 n)]]

23

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

47 decompose (Holds (Quest _ (Prop p)) x) _ = [[Holds (Prop p) x]]

48 decompose (Holds (Neg (Quest _ (Prop p))) x) _ = [[Holds (Neg (Prop p)) x]]

49 decompose (Holds (Reso (Prop p)) x) _ = [[Holds (Prop p) x]]

50 decompose (Holds (Neg (Reso (Prop p))) x) _ = [[Holds (Neg (Prop p)) x]]

51 decompose (Holds (Quest _ (Nom n)) x) _ = [[Holds (Nom n) x]]

52 decompose (Holds (Neg (Quest _ (Nom n))) x) _ = [[Holds (Neg (Nom n)) x]]

53 decompose (Holds (Reso (Nom n)) x) _ = [[Holds (Nom n) x]]

54 decompose (Holds (Neg (Reso (Nom n))) x) _ = [[Holds (Neg (Nom n)) x]]

55 decompose (Holds (Quest _ (Bool b)) x) _ = [[Holds (Bool b) x]]

56 decompose (Holds (Reso (Bool b)) x) _ = [[Holds (Bool b) x]]

57 decompose (Holds (Quest l (Neg f)) x) _ = [[Holds (Neg (Quest l f)) x]]

58 decompose (Holds (Reso (Neg f)) x) _ = [[Holds (Neg (Reso f)) x]]

The boolean connectives are dealt with as follows: conjunction at line 39, disjunction at line
41, and implication at line 43. The satisfaction operator is decomposed at line 45.

The decomposition rules for the questioning modalities depend on the logical structure of
the formula inside the scope of the questioning modality. These can be applyed to propositional
atoms, line 47, nominals, line 51, boolean atoms, line 55 or negated formulae 57.

59 decompose (Holds (Dia 1 f) x) _ = [[SRel 1 x (Fun1 x), Holds f (Fun1 x)]]

60 decompose (Holds (Dia 2 f) x) _ = [[SRel 2 x (Fun2 x), Holds f (Fun2 x)]]

61 decompose (Holds (Dia 3 f) x) _ = [[SRel 3 x (Fun3 x), Holds f (Fun3 x)]]

62 decompose (Holds (Dia r f) x) _ = [[SRel r x (Fun77 x), Holds f (Fun77 x)]]

63 decompose (Holds (Neg (Dia r f)) x) _ = [[Holds (Box r (Neg f)) x]]

64 −−decompose (Holds (Neg (Dia r f)) x) _ = [[Holds (Box r (Neg f)) x]]
65 decompose (Holds (Box 1 f) x) fs = [map
66 (\ z -> FDisj [FNeg (SRel 1 x z), Holds f z]) (image x 1 (rels2pairs fs))]

67 decompose (Holds (Box 2 f) x) fs = [map
68 (\ z -> FDisj [FNeg (SRel 2 x z), Holds f z]) (image x 2 (rels2pairs fs))]

69 decompose (Holds (Box 3 f) x) fs = [map
70 (\ z -> FDisj [FNeg (SRel 3 x z), Holds f z]) (image x 3 (rels2pairs fs))]

71 decompose (Holds (Box r f) x) fs = [map
72 (\ z -> FDisj [FNeg (SRel r x z), Holds f z]) (image x r (rels2pairs fs))]

73 −−decompose (Holds (Neg (Box r f)) x) _ = [[Holds (Dia r (Neg f)) x]]
74 decompose (Holds (Neg (Box 1 f)) x) _ = [[SRel 1 x (Fun1 x), Holds (Neg f) (Fun1 x)]]

75 decompose (Holds (Neg (Box 2 f)) x) _ = [[SRel 2 x (Fun2 x), Holds (Neg f) (Fun2 x)]]

76 decompose (Holds (Neg (Box 3 f)) x) _ = [[SRel 3 x (Fun3 x), Holds (Neg f) (Fun3 x)]]

77 decompose (Holds (Neg (Box r f)) x) _ = [[SRel r x (Fun77 x), Holds (Neg f) (Fun77 x)]]

Next come the modal formulae for each of the basic static questioning modalities: questions,
line 59, knowledge 60 and intersection 61, as well as generic modalities 62. These use the
semantic definitions of the modal connectives and introduce new terms. Correspondingly, the
uiversal modalities are decomposed at lines 65, 67, 69 and 71 following their semantic definitions,
by tableau rules branching into relational and propositional disjuncts.

The logical connectives in the first-order specification metalanguage are treated next. Con-
junctions, line 151, and disjunctions, 153, are standard, the double negation needs to consider
both oject- and metalanguage levels, line 155.

78 decompose (Holds (Quest [] f) x) _ = [[Holds f x]]

79 decompose (Holds (Neg (Quest [] f)) x) _ = [[Holds (Neg f) x]]

80 decompose (Holds (Quest _ (Prop p)) x) _ = [[Holds (Prop p) x]]

81 decompose (Holds (Neg (Quest _ (Prop p))) x) _ = [[Holds (Neg (Prop p)) x]]

82 decompose (Holds (Quest l (Neg f)) x) _ = [[Holds (Neg (Quest l f)) x]]

83 decompose (Holds (Neg (Quest l (Neg f))) x) _ = [[Holds ((Quest l f)) x]]

84 decompose (Holds (Quest l1 (Conj l)) x) _ = [[FConj (map
85 (\ y -> (Holds (Quest l1 y) x)) l)]]

86 decompose (Holds (Neg (Quest l1 (Conj l))) x) _ = map (\y -> [Holds (Neg (Quest l1 y)) x]) l

87 decompose (Holds (Reso (Conj l)) x) _ = [[FConj (map

24

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

88 (\ y -> Holds (Reso y) x) l)]]

89 decompose (Holds (Neg (Reso (Conj l))) x) _ = map (\y -> [Holds (Neg (Reso y)) x]) l

90 decompose (Holds (Quest l1 (Disj l)) x) _ = map (\y -> [Holds (Quest l1 y) x]) l

91 decompose (Holds (Neg (Quest l1 (Disj l))) x) _ = [[FConj (map
92 (\ y -> (Holds (Neg (Quest l1 y)) x)) l)]]

93 decompose (Holds (Reso (Disj l)) x) _ = map (\y -> [Holds (Reso y) x]) l

94 decompose (Holds (Neg (Reso (Disj l))) x) _ = [[FConj (map
95 (\ y -> Holds (Neg (Reso y)) x) l)]]

96 decompose (Holds (Quest f1 (Impl f2 f3)) x) fs = decompose (Holds fs)

97 (Quest f1 (Disj [Neg f2, f3])) x) fs

98 decompose (Holds (Neg (Quest f1 (Impl f2 f3))) x) fs = decompose (Holds

99 (Quest f1 (Conj [f2, Neg f3])) x) fs

100 decompose (Holds (Reso (Impl f2 f3)) x) fs = decompose (Holds (Reso (

101 Disj [Neg f2, f3])) x) fs

102 decompose (Holds (Neg (Reso (Impl f2 f3))) x) fs = decompose (Holds (Reso (

103 Conj [f2, Neg f3])) x) fs

104

105 decompose (Holds (Quest f1 (Reso (Prop p))) x) fs = decompose (Holds

106 (Quest f1 (Prop p)) x) fs

107 decompose (Holds (Quest f1 (Reso (Nom n))) x) fs = decompose (Holds

108 (Quest f1 (Nom n)) x) fs

109 decompose (Holds (Neg (Quest f1 (Reso (Prop p)))) x) fs = decompose (Holds

110 (Neg (Quest f1 (Prop p))) x) fs

111 decompose (Holds (Neg (Quest f1 (Reso (Nom n)))) x) fs = decompose (Holds

112 (Neg (Quest f1 (Nom n))) x) fs

113 decompose (Holds (Quest f1 (Reso (Neg f))) x) fs = decompose (Holds

114 (Quest f1 (Neg (Reso f))) x) fs

115 decompose (Holds (Neg (Quest f1 (Reso (Neg f)))) x) fs = decompose (Holds

116 (Neg (Quest f1 (Neg (Reso f)))) x) fs

117 decompose (Holds (Quest f1 (Reso (Conj l))) x) fs = decompose (Holds

118 (Quest f1 (Conj (map (\y -> Reso y) l))) x) fs

119 decompose (Holds (Neg (Quest f1 (Reso (Conj l)))) x) fs = decompose (Holds

120 (Neg (Quest f1 (Conj (map (\y -> Reso y) l)))) x) fs

121

122 decompose (Holds (Quest f1 (Reso (Box 1 f))) x) fs = decompose (Holds

123 (Quest f1 (Box 1 (Reso f))) x) fs

124 decompose (Holds (Quest f1 (Reso (Box 3 f))) x) fs = decompose (Holds

125 (Quest f1 (Box 3 (Reso f))) x) fs

126 decompose (Holds (Quest f1 (Reso (Box 2 f))) x) fs = decompose (Holds

127 (Quest f1 (Box 3 (Reso f))) x) fs

128 decompose (Holds (Neg (Quest f1 (Reso (Box 1 f)))) x) fs = decompose (Holds

129 (Neg (Quest f1 (Box 1 (Reso f)))) x) fs

130 decompose (Holds (Neg (Quest f1 (Reso (Box 3 f)))) x) fs = decompose (Holds

131 (Neg (Quest f1 (Box 3 (Reso f)))) x) fs

132 decompose (Holds (Neg (Quest f1 (Reso (Box 2 f)))) x) fs = decompose (Holds

133 (Neg (Quest f1 (Box 3 (Reso f)))) x) fs

134

135 decompose (Holds (Quest l (Box 1 f)) x) _ = [[Holds

136 (Disj (map (\y -> (Conj [y, Box 1 (Impl y (Quest l f))])) (conjSubseq l))) x]]

137 decompose (Holds (Neg (Quest l (Box 1 f))) x) _ = [[Holds

138 (Conj (map (\y -> (Neg (Conj [y, Box 1 (Impl y (Quest l f))]))) (conjSubseq l))) x]]

139 decompose (Holds (Quest l (Box 3 f)) x) _ = [[Holds

140 (Disj (map (\y -> (Conj [y, Box 3 (Impl y (Quest l f))])) (conjSubseq l))) x]]

141 decompose (Holds (Neg (Quest l (Box 3 f))) x) _ = [[Holds

142 (Conj (map (\y -> (Neg (Conj [y, Box 3 (Impl y (Quest l f))]))) (conjSubseq l))) x]]

143 decompose (Holds (Quest l (Box 2 f)) x) _ = [[Holds (Box 2 (Quest l f)) x]]

144 decompose (Holds (Neg (Quest l (Box 2 f))) x) _ = [[Holds (Neg (Box 2 (Quest l f))) x]]

145 decompose (Holds (Reso (Box 2 f)) x) _ = [[Holds (Box 3 (Reso f)) x]]

146 decompose (Holds (Neg (Reso (Box 2 f))) x) _ = [[Holds (Neg (Box 3 (Reso f))) x]]

147 decompose (Holds (Reso (Box 1 f)) x) _ = [[Holds (Box 1 (Reso f)) x]]

148 decompose (Holds (Neg (Reso (Box 1 f))) x) _ = [[Holds (Neg (Box 1 (Reso f))) x]]

25

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

149 decompose (Holds (Reso (Box 3 f)) x) _ = [[Holds (Box 3 (Reso f)) x]]

150 decompose (Holds (Neg (Reso (Box 3 f))) x) _ = [[Holds (Neg (Box 3 (Reso f))) x]]

151 decompose (FConj l) _ = [l]

152 decompose (FNeg (FConj l)) _ = map (\x -> [FNeg x]) l

153 decompose (FDisj l) _ = map (: []) l

154 decompose (FNeg (FDisj l)) _ = [map FNeg l]

155 decompose (Holds (Neg (Neg f)) x) _ = [[Holds f x]]

156 decompose (FNeg (FNeg (Holds f x))) _ = [[Holds f x]]

157 decompose (FNeg (Holds (Neg f) x)) _ = [[Holds f x]]

158 decompose (FNeg (FNeg f)) _ = [[f]]

159 decompose (FNeg f) _ = [[FNeg f]]

160 decompose _ _ = [[Mark 77]]

The final and most relevant decomposition cases are the ones synthesized from the reduction
axioms. As the effects of the dynamic actions are different on the underlying relations for the
static modalities the decomposition rules have a different structure. The questioning action
applied to the issue relation requires a disjunction, line 135. For the epistemic modality we
have a commutating behaviour, line 143 and for the interaction modality a disjunctive pattern
again, line 139. The dynamic modalities interact with the conjunction, line 91, disjunction, line
90, and implication, line 96, in the expected way.

A.9 The Backgrd.lhs Module

The current module contains the background theory related functions. They are applied when
the tableau is initialized and whenever the third clause of the branch expanding function at
line23 returns a matching pattern, this also means that a new term has been introduced.

The first two functions at lines 4 and 7 apply equality constraints to nominals, using auxiliary
functionality defined by the functions at lines 28, 31, 34, 38, 41 in Section A.12.

1 module Backgrd where
2 import Data.List(nub); import Syntax; import Auxilar

3

4 nomicol :: [FOF] -> [FOF]

5 nomicol l = concatMap collapseq (nomiclasses l)

6

7 nominals :: [FOF] -> [FOF]

8 nominals = filter nominal

9

10 equality :: [FOF] -> [FOF]

11 equality l = nub (reflex (domain l) ++ symetry l ++ transit l)

12

13 valuation :: [FOF] -> [FOF]

14 valuation l = map (uncurry Holds) (valpar l)

15

16 valpar :: [FOF] -> [(Form, Term)]

17 valpar l = nub ([(x,y) | x <- propdom l, y <- domain l, z <- domain l,

18 Holds x z ‘elem‘ l, Equal z y ‘elem‘ l] ++

19 [(x,y) | x <- propdom l, y <- domain l, z <- domain l,

20 Holds x z ‘elem‘ l, Equal y z ‘elem‘ l])

21

22 epistemic :: [FOF] -> [FOF]

23 epistemic l = nub (reflexive (domain l) ++ symetric l ++ transitive l)

Next the conditions ensuring that the equality between terms is an equivalence relation are
applied, line 10, using the corresponding functions for symetry, line 44, transitivity, line 48, and
reflexivity, line 52, defined in the Auxilar module in from Section A.12.

26

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

Since the previous step might have introduced new nominal equalities, the function at line
13 makes sure that indiscernable nominals have identical propositional valuations using the
auxiliary functions from line 16 and lines 55 and 59 from the Auxilar module, Section A.12.
The next function, line 22, also ensures that the background theory properties for the underlying
relations are aplied, in this case we have a reflexive line 63, symetric, line 67, and thransitive
relation, line 71 as defined in Section A.12.

A very important background theory component is the crucial property of intersection which
is essential for the reduction axioms. The function at line 25 ensures that this is the case using
the auxiliry functions from line 76 and line 82 in the Auxilar module, Section A.12.

25 intersection :: [FOF] -> [FOF]

26 intersection l = nub (map (uncurry (SRel 3)) (intersec l) ++

27 map (uncurry (SRel 1)) (intersback l) ++ map (uncurry (SRel 2)) (intersback l))

28

29 urBlockng :: [FOF] -> [FOF]

30 urBlockng l = recursivetermal (domain l)

31

32 recursivetermal :: [Term] -> [FOF]

33 recursivetermal [] = []

34 recursivetermal l = nub (termal l ++ recursivetermal (tail l))

A final component is the application of the unrestricted blocking mechanism, line 29, which
is relevant for termination and uses the auxiliary function at line 32 as well as the extra functions
defined in the Auxilar module at lines 88, 91 and 106, see Section A.12.

A.10 The Divide.lhs Module

The Divide module contains a modicum of functionality aimed at making the tableau con-
struction more efficient. This is achieved by superimposing an order on the list of formulae
based on their syntactic structures, line 4. The main classes of formulae are atomic ones, line
9, formulae that require the introduction of fresh terms, line 24, branching formulae, line 28,
and non-branching ones, line 48. Finally, a set of marking formulae is maintained to facilitate
the application of further heuristic principles.

1 module Divide where
2 import Syntax

3

4 divide :: [FOF] -> [FOF]

5 divide [] = []

6 divide l = filter line l ++ filter fresh l ++ filter split l ++

7 filter atom l ++ filter mark l

8

9 atom :: FOF -> Bool
10 atom (Holds (Prop _) _) = True
11 atom (FNeg (Holds (Prop _) _)) = True
12 atom (Holds (Nom _) _) = True
13 atom (FNeg (Holds (Nom _) _)) = True
14 atom (Equal _ _) = True
15 atom (FNeg (Equal _ _)) = True
16 atom (SRel{}) = True
17 atom (FNeg (SRel{})) = True
18 atom (Holds (Bool _) _) = True
19 atom (FNeg (Holds (Bool _) _)) = True
20 atom (FBool _) = True
21 atom (FNeg (FBool _)) = True
22 atom _ = False
23

27

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

24 fresh :: FOF -> Bool
25 fresh (Holds (Dia _ _) _) = True
26 fresh _ = False

Since the node expansion function is always applied to the head of the list the divide

function ensures that nonbranching formulae are processes first. Then the fresh term rules are
applyed, and each fresh term introduction also triggers an application of all the background
theory rules plus the rule of unrestricted blocking.

28 split :: FOF -> Bool
29 split (Holds (Neg (Conj _)) _) = True
30 split (Holds (Disj _) _) = True
31 split (FNeg (FConj _)) = True
32 split (Holds (Impl _ _) _) = True
33 split (Holds (Box _ _) _) = True
34 split (FDisj _) = True
35 split (Holds (Quest _ (Disj _)) _) = True
36 split (Holds (Reso (Disj _)) _) = True
37 split _ = False
38

39 mark :: FOF -> Bool
40 mark (Mark _) = True
41 mark (FNeg (Mark _)) = True
42 mark (Forall _ _) = True
43 mark (FNeg (Forall _ _)) = True
44 mark (Exists _ _) = True
45 mark (FNeg (Exists _ _)) = True
46 mark _ = False
47

48 line :: FOF -> Bool
49 line f = ((atom f) || (fresh f) || (split f) || (mark f)) == False

Finally, the branching rules have the lowest priority: their application is always postponed
until they are the only ones left. This is repeated until all the formulae in the list are atomic.

A.11 Illustrations of Using the Qtab.lhs Implementation

The first example illustrates a questioning sequence of length two combined with the static
knowledge modality, which has a commutating behaviour:

deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 2 (Disj [Prop (P 0), Prop (Q 0)])))

(False,5)

it :: (Bool, Integer)

(0.08 secs, 10087116 bytes)

*Sql> dpl (analyze (Quest [Prop (P 0), Prop (Q 0)] (Box 2 (Disj [Prop (P 0), Prop (Q 0)]))))

(0,False,False,[[H({[p0,q0]?}[2](p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(1,False,False,[[H([2]{[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(2,False,False,[[(-R2(x0,x0) v H({[p0,q0]?}(p0 v q0),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(3,False,False,[[-R2(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H({[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(4,False,False,[[-R2(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H({[p0,q0]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H({[p0,q0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(5,True,False,[[-R2(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0)]])

it :: ()

(0.11 secs, 5284652 bytes)

The second example illustrates a questioning sequence of length two in combination with
the static issue modality, which uses reduction axioms based on the disjunction pattern:

28

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

*Sql> deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 1 (Disj [Prop (P 0), Prop (Q 0)])))

(False,14)

it :: (Bool, Integer)

(0.23 secs, 6327936 bytes)

*Sql> dpl (analyze (Quest [Prop (P 0), Prop (Q 0)] (Box 1 (Disj [Prop (P 0), Prop (Q 0)]))))

(0,False,False,[[H({[p0,q0]?}[1](p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(1,False,False,[[H(((({[]?}p0 & {[p0]?}q0) & [1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0))) v (({[]?}p0 & -{[p0]?}q0) & [1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0))) v ((-{[]?}p0 & {[p0]?}q0) & [1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0))) v ((-{[]?}p0 & -{[p0]?}q0) & [1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(2,False,False,[[H((({[]?}p0 & {[p0]?}q0) & [1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H((({[]?}p0 & -{[p0]?}q0) & [1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(((-{[]?}p0 & {[p0]?}q0) & [1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(((-{[]?}p0 & -{[p0]?}q0) & [1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(3,False,False,[[H(({[]?}p0 & {[p0]?}q0),x0),H([1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(({[]?}p0 & -{[p0]?}q0),x0),H([1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H((-{[]?}p0 & {[p0]?}q0),x0),H([1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H((-{[]?}p0 & -{[p0]?}q0),x0),H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(4,False,False,[[H({[]?}p0,x0),H({[p0]?}q0,x0),H([1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H({[]?}p0,x0),H(-{[p0]?}q0,x0),H([1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(-{[]?}p0,x0),H({[p0]?}q0,x0),H([1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(-{[]?}p0,x0),H(-{[p0]?}q0,x0),H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(5,False,False,[[H({[p0]?}q0,x0),H([1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-{[p0]?}q0,x0),H([1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H({[p0]?}q0,x0),H(-p0,x0),H([1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(-{[p0]?}q0,x0),H(-p0,x0),H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(6,False,False,[[H([1](({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-q0,x0),H([1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-p0,x0),H([1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0)],[H(-p0,x0),H(-q0,x0),H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(7,False,False,[[(-R1(x0,x0) v H((({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H([1](({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H([1]((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(-q0,x0),H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)]])

(8,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H((({[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[(-R1(x0,x0) v H((({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[(-R1(x0,x0) v H(((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H([1]((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)]])

(9,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-({[]?}p0 & {[p0]?}q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H({[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H((({[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(((-{[]?}p0 & {[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[(-R1(x0,x0) v H(((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)]])

(10,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-{[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H({[p0,q0]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H({[p0,q0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H(-({[]?}p0 & -{[p0]?}q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(-(-{[]?}p0 & {[p0]?}q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H({[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H(((-{[]?}p0 & -{[p0]?}q0) -> {[p0,q0]?}(p0 v q0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)

,-H(q0,x0)]])

(11,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[H(-q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H(-{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H(--{[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(--{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(-{[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H({[p0,q0]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H({[p0,q0]?}q0,x0),R3(x0,x0),R1(x0,

x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H(-(-{[]?}p0 & -{[p0]?}q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}(p0 v q0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)]])

(12,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H(-p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[H({[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H({[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[H(-q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(

x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H(--{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H(--{[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H({[p0,q0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)]])

(13,False,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,

-H(p0,x0),-H(q0,x0)],[H({[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[H({[p0]?}q0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(q0,x0)]])

(14,True,False,[[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(q0,x0),H(q0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(q0,x0),-H(p0,x0)],[-R1(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-

H(p0,x0),-H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(q0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),-H(q0,x0),H(q0,x0)]])

it :: ()

(0.53 secs, 15716944 bytes)

x0=x0, -
The next example illustrates a questioning sequence combining both asking actions and

resolution actions. Because the resolution modality is idempotent, all resolution sequences are
equivalent to a sequence of length one:

*Sql> deciden (Quest [Prop (P 0)] (Reso (Box 2 (Prop (P 0)))))

(False,12)

it :: (Bool, Integer)

(0.16 secs, 5290132 bytes)

*Sql> dpl (analyze (Quest [Prop (P 0)] (Reso (Box 2 (Prop (P 0))))))

(0,False,False,[[H({[p0]?}{!}[2]p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(1,False,False,[[H((({[]?}p0 & [3]({[]?}p0 -> {[p0]?}{!}p0)) v (-{[]?}p0 & [3](-{[]?}p0 -> {[p0]?}{!}p0))),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(2,False,False,[[H(({[]?}p0 & [3]({[]?}p0 -> {[p0]?}{!}p0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H((-{[]?}p0 & [3](-{[]?}p0 -> {[p0]?}{!}p0)),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(3,False,False,[[H({[]?}p0,x0),H([3]({[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(-{[]?}p0,x0),H([3](-{[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(4,False,False,[[H({[]?}p0,x0),H([3]({[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0],[H(-{[]?}p0,x0),H([3](-{[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(5,False,False,[[H([3]({[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-p0,x0),H([3](-{[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0]])

(6,False,False,[[(-R3(x0,x0) v H(({[]?}p0 -> {[p0]?}{!}p0),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H([3](-{[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)]])

(7,False,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(({[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[(-R3(x0,x0) v H((-{[]?}p0 -> {[p0]?}{!}p0),x0)),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)]])

(8,False,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H({[p0]?}{!}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[H((-{[]?}p0 -> {[p0]?}{!}p0),x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)]])

(9,False,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[H(--{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[H({[p0]?}{!}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)]])

(10,False,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[H(-p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[H(--{[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),H(p0,x0)]])

(11,False,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[H({[]?}p0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),H(p0,x0)]])

(12,True,False,[[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0),-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,H(p0,x0)],[-R3(x0,x0),R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),H(p0,x0)],[R3(x0,x0),R1(x0,x0),R2(x0,x0),x0=x0,-H(p0,x0),H(p0,x0)]])

it :: ()

(0.28 secs, 8403804 bytes)

The final illustration shows the difference between knowing that and knowing whether.
After a yes/no question about p the issue relation decides whether p, this turns out to be a
SQL validity, however, it does not settle that p holds.

29

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

*Sql> (deciden (Neg (Quest [Prop (P 0),Neg (Prop (P 0))] (Box 1 (Prop (P 0))))))

(False,40)

it :: (Bool, Integer)

(0.84 secs, 63160048 bytes)

*Sql> (deciden (Neg (Quest [Prop (P 0),Neg (Prop (P 0))] (Disj [Box 1 (Prop (P 0)), Box 1 (Neg (Prop (P 0)))]))))

(True,84)

it :: (Bool, Integer)

(93.55 secs, 6657552984 bytes)

A.12 The Auxilar.lhs Module

The remaining code blocks contain functionality that has only an auxiliary role in the im-
plementation. They are included here in order to make the file self contained as a literate
programming Haskell script. Some of the functions have already been discussed in the main
text.

1 module Auxilar where
2 import Data.List (intersect,nub,partition); import Syntax

3

4 content :: FOF -> FOF

5 content (FNeg (Equal t1 t2)) = Equal t1 t2

6 content (FNeg (SRel n t1 t2)) = SRel n t1 t2

7 content (FNeg (Holds f t)) = Holds f t

8 content (Equal t1 t2) = Equal t1 t2

9 content (SRel n t1 t2) = SRel n t1 t2

10 content (Holds f t) = Holds f t

11 content (FNeg f) = f

12 content (f) = f

13

14 negative :: [FOF] -> [FOF]

15 negative = filter negation

16

17 negation :: FOF -> Bool
18 negation (FNeg _) = True
19 negation _ = False
20

21 contradiction :: Node -> Bool
22 contradiction n = intersect (filter (not . negation) n) (

23 map content (filter negation n)) /= []

24

25 nomiterms :: [FOF] -> Nom -> [Term]

26 nomiterms l n = [x | x <- domain l, Holds (Nom n) x ‘elem‘ l]

27

28 nomiclasses :: [FOF] -> [[Term]]

29 nomiclasses l = map (nomiterms l) (nomivals l)

30

31 nomivals :: [FOF] -> [Nom]

32 nomivals = concatMap nomi

33

34 nomi :: FOF -> [Nom]

35 nomi (Holds (Nom x) _) = [x]

36 nomi _ = []

37

38 collapseq :: [Term] -> [FOF]

39 collapseq l = map (uncurry Equal) [(x,y) | x <- l, y <- l, x == head l]

30

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

40

41 nomiclass :: [FOF] -> Nom -> [[FOF]]

42 nomiclass l n = [fst (partition (\x -> nomi x==[n]) l)]

43

44 symetry :: [FOF] -> [FOF]

45 symetry l = nub (map (uncurry Equal) [(x,y) | x <- domain l, y <- domain l,

46 Equal y x ‘elem‘ l])

47

48 transit :: [FOF] -> [FOF]

49 transit l = nub (map (uncurry Equal) [(x,z) | x <- domain l, z <- domain l,

50 y <- domain l, Equal x y ‘elem‘ l, Equal y z ‘elem‘ l])

51

52 reflex :: [Term] -> [FOF]

53 reflex = map (\ x -> Equal x x)

54

55 props :: FOF -> [Form]

56 props (Holds p _) = [p]

57 props _ = []

58

59 propdom :: [FOF] -> [Form]

60 propdom l = nub (concatMap props l)

61

62

63 reflexive :: [Term] -> [FOF]

64 reflexive l = map (\ x -> SRel 1 x x) l ++

65 map (\ x -> SRel 2 x x) l ++ map (\ x -> SRel 3 x x) l

66

67 symetric :: [FOF] -> [FOF]

68 symetric l = nub (map (\x -> SRel (fst3 x) (snd3 x) (trd3 x)) [(r,y,x) |

69 x <- domain l, y <- domain l, r <- map fst3 (rels2pairs l), SRel r x y ‘elem‘ l])

70

71 transitive :: [FOF] -> [FOF]

72 transitive l = nub (map (\x -> SRel (fst3 x) (snd3 x) (trd3 x)) [(r1,y,z) |

73 x <- domain l, y <- domain l, z <- domain l, r2 <- map fst3 (rels2pairs l),

74 r1 <- map fst3 (rels2pairs l), SRel r1 x y ‘elem‘ l, SRel r2 y z ‘elem‘ l, r1==r2])

75

76 intersec :: [FOF] -> [(Term,Term)]

77 intersec l = nub ([(x,y) | x <- domain l, y <- domain l, z <- domain l,

78 SRel 1 x y ‘elem‘ l, SRel 2 x z ‘elem‘ l, Equal y z ‘elem‘ l] ++

79 [(x,y) | x <- domain l, y <- domain l, z <- domain l,

80 SRel 1 x y ‘elem‘ l, SRel 2 x z ‘elem‘ l, Equal z y ‘elem‘ l])

81

82 intersback :: [FOF] -> [(Term,Term)]

83 intersback l = nub ([(x,y) | x <- domain l, y <- domain l, z <- domain l,

84 SRel 3 x z ‘elem‘ l, Equal y z ‘elem‘ l] ++

85 [(x,y) | x <- domain l, y <- domain l, z <- domain l,

86 SRel 3 x z ‘elem‘ l, Equal z y ‘elem‘ l])

87

88 termal :: [Term] -> [FOF]

89 termal l = map (\x -> FDisj [Equal (head l) x, FNeg (Equal (head l) x)]) (tail l)

90

91 terms :: FOF -> [Term]

92 terms (Holds _ t) = [t]

93 terms (FNeg (Holds _ t)) = [t]

94 terms (SRel _ t1 t2) = [t1,t2]

95 terms (FNeg (SRel _ t1 t2)) = [t1,t2]

96 terms (Equal t1 t2) = [t1,t2]

97 terms (FNeg (Equal t1 t2)) = [t1,t2]

98 terms (Mark _) = []

99 terms (FBool _) = []

100 terms (FNeg _) = []

31

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

101 terms (FConj _) = []

102 terms (FDisj _) = []

103 terms (Forall _ _) = []

104 terms (Exists _ _) = []

105

106 domain :: [FOF] -> [Term]

107 domain l = nub (concatMap terms l)

108

109 initiate :: Form -> Tableau

110 initiate (Disj l) = [[Holds (Disj l) (DomS (X 0))]]

111 initiate (Impl f1 f2) = [[Holds (Disj [Neg f1, f2]) (DomS (X 0))]]

112 initiate (Conj l) = [[Holds (Conj l) (DomS (X 0))]]

113 initiate (Neg f) = [[Holds (Neg f) (DomS (X 0))]]

114 initiate (Box r f) = [[Holds (Box r f) (DomS (X 0))]]

115 initiate (Dia r f) = [[Holds (Dia r f) (DomS (X 0))]]

116 initiate (Sat n f) = [[Holds (Sat n f) (DomS (X 0))]]

117 initiate (Bool b) = [[Holds (Bool b) (DomS (X 0))]]

118 initiate (Prop p) = [[Holds (Prop p) (DomS (X 0))]]

119 initiate (Nom n) = [[Holds (Nom n) (DomS (X 0))]]

120 initiate (Quest f1 f2) = [[Holds (Quest f1 f2) (DomS (X 0))]]

121 initiate (Reso f) = [[Holds (Reso f) (DomS (X 0))]]

122

123 type Pairs = [(Id, Term, Term)]

124

125 rels2pairs :: [FOF] -> Pairs

126 rels2pairs = foldr ((++) . rel2pair) []

127

128 rel2pair :: FOF -> Pairs

129 rel2pair (SRel n t1 t2) = [(n,t1,t2)]

130 rel2pair _ = []

131

132 image :: Term -> Id -> Pairs -> [Term]

133 image _ _ [] = []

134 image x n r = nub (map snd (filter (\z -> fst z == x)

135 [(v,w) | (z,v,w) <- r, z == n]))

136

137 nominal :: FOF -> Bool
138 nominal (Holds (Nom _) _) = True
139 nominal _ = False
140

141 showT :: Tableau -> [String]
142 showT = map show
143

144 display :: Tableau -> IO ()

145 display = putStrLn . init . unlines . showT

146

147 dpl :: Show a => [a] -> IO ()

148 dpl x = putStrLn (init (unlines (map show x)))

149

150 instance Show DomS where
151 show (D n) = ’d’: show n

152 show (X n) = ’x’: show n

153 show (Y n) = ’y’: show n

154 show (Z n) = ’z’: show n

155

156 instance Show Term where
157 show (DomS d) = show d

158 show (Fun0 n) = "F0" ++ "(" ++ show n ++ ")"
159 show (Fun1 t) = "F1" ++ "(" ++ show t ++ ")"
160 show (Fun2 t) = "F2" ++ "(" ++ show t ++ ")"
161 show (Fun3 t) = "F3" ++ "(" ++ show t ++ ")"

32

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

162 show (Fun77 t) = "F77" ++ "(" ++ show t ++ ")"
163 show (Fun22 t1 t2) = "FF" ++ "(" ++ show t1 ++ "," ++ show t2 ++ ")"
164

165 instance Show FOF where
166 show (SRel r t1 t2) = "R" ++ show r ++ "(" ++ show t1 ++","++ show t2 ++ ")"
167 show (Holds f t) = "H"++"("++ show f ++","++ show t ++")"
168 show (Equal t1 t2) = show t1 ++"="++ show t2

169 show (FBool b) = show b

170 show (FNeg f) = ’-’ : show f

171 show (FConj []) = "T"
172 show (FConj [f]) = show f

173 show (FConj (f:fs)) = "("++ show f ++" & "++ showCtail fs ++ ")"
174 where showCtail [] = ""
175 showCtail [fm] = show fm

176 showCtail (fm:fms) = show fm ++ " & " ++ showCtail fms

177 show (FDisj []) = "F"
178 show (FDisj [f]) = show f

179 show (FDisj (f:fs)) = "(" ++ show f ++ " v " ++ showDtail fs ++ ")"
180 where showDtail [] = ""
181 showDtail [fm] = show fm

182 showDtail (fm:fms) = show fm ++ " v " ++ showDtail fms

183 show (Forall v f) = "A" ++ show v ++"("++ show f ++")"
184 show (Exists v f) = "E" ++ show v ++"("++ show f ++")"
185 show (Mark n) = "Mk" ++ show n

186

187 instance Show Nom where
188 show (C n) = ’c’: show n

189 show (V n) = ’x’: show n

190 show (N n) = ’n’: show n

191

192 instance Show Prop where
193 show (P n) = ’p’: show n

194 show (Q n) = ’q’: show n

195

196 instance Show Form where
197 show (Bool True) = "T"
198 show (Bool False) = "F"
199 show (Prop i) = show i

200 show (Nom i) = show i

201 show (Neg f) = ’-’ : show f

202 show (Conj []) = "T"
203 show (Conj [f]) = show f

204 show (Conj (f:fs)) = "(" ++ show f ++ " & " ++ showCtail fs ++ ")"
205 where showCtail [] = ""
206 showCtail [fm] = show fm

207 showCtail (fm:fms) = show fm ++ " & " ++ showCtail fms

208 show (Disj []) = "F"
209 show (Disj [f]) = show f

210 show (Disj (f:fs)) = "(" ++ show f ++ " v " ++ showDtail fs ++ ")"
211 where showDtail [] = ""
212 showDtail [fm] = show fm

213 showDtail (fm:fms) = show fm ++ " v " ++ showDtail fms

214 show (Impl f1 f2) = "(" ++ show f1 ++ " −> " ++ show f2 ++ ")"
215 show (Box name f) = "[" ++ show name ++ "]" ++ show f

216 show (Dia name f) = "<" ++ show name ++ ">" ++ show f

217 show (Sat nom f) = ’@’: show nom ++ show f

218 show (Quest f1 f2) = "{" ++ show f1 ++ "?}" ++ show f2

219 show (Reso f) = "{!}" ++ show f

220

221 fst3 :: (t1,t2,t3) -> t1

222 fst3 (z,_,_) = z

33

Tableau Synthesis for Interrogative Epistemic Logics Minică, Khodadadi, Schmidt, and Tishkovsky

223

224 snd3 :: (t1,t2,t3) -> t2

225 snd3 (_,z,_) = z

226

227 trd3 :: (t1,t2,t3) -> t3

228 trd3 (_,_,z) = z

229

230 fst4 :: (t1,t2,t3,t4) -> t1

231 fst4 (z,_,_,_) = z

232

233 snd4 :: (t1,t2,t3,t4) -> t2

234 snd4 (_,z,_,_) = z

235

236 trd :: (t1,t2,t3,t4) -> t3

237 trd (_,_,z,_) = z

238

239 lst :: (t1,t2,t3,t4) -> t4

240 lst (_,_,_,z) = z

241

242 translate :: Form -> FOF

243 translate (Disj l) = Holds (Disj l) (DomS (X 0))

244 translate (Impl f1 f2) = Holds (Disj [Neg f1, f2]) (DomS (X 0))

245 translate (Conj l) = Holds (Conj l) (DomS (X 0))

246 translate (Neg f) = Holds (Neg f) (DomS (X 0))

247 translate (Box r f) = Holds (Box r f) (DomS (X 0))

248 translate (Dia r f) = Holds (Dia r f) (DomS (X 0))

249 translate (Sat n f) = Holds (Sat n f) (DomS (X 0))

250 translate (Bool b) = Holds (Bool b) (DomS (X 0))

251 translate (Prop p) = Holds (Prop p) (DomS (X 0))

252 translate (Nom n) = Holds (Nom n) (DomS (X 0))

253 translate (Quest f1 f2) = Holds (Quest f1 f2) (DomS (X 0))

254 translate (Reso f) = Holds (Reso f) (DomS (X 0))

34

	Introduction
	Interrogative Epistemic Logics
	The Tableau Synthesis Framework Applied to IEL
	Extension to Sequential Questioning Logic
	Implementing an IEL Prover with MetTeL2
	Implementing IEL and SQL in Haskell
	Concluding Remarks
	Appendix: Implementation Details and Illustrations
	[t]MetTeL.7ex2 Specification of IEL
	[t]MetTeL.7ex2 Specification of the Tableau Calculus for IEL
	[t]MetTeL.7ex2 Extension for Handling Questioning Sequences
	Sample Invocations of the Generated Prover
	Implementing a Tableau Prover for IEL in Haskell
	The Syntax.lhs Module
	The Qtab.lhs Module
	The Decomp.lhs Module
	The Backgrd.lhs Module
	The Divide.lhs Module
	Illustrations of Using the Qtab.lhs Implementation
	The Auxilar.lhs Module

