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Abstract

We study a complete information preemption game in continuous time. A finite

number of firms decide when to make an irreversible, observable investment. Upon

investment, a firm receives flow profits which decrease in the number of firms that have

invested. The cost of investment declines over time exogenously. We characterize the

subgame-perfect equilibrium outcome, which is unique up to a permutation of players.

When the preemption race among late investors is sufficiently intense, the preemption

incentive for earlier investors disappears, and two or more investments occur at the

same time. We identify a sufficient condition in terms of model parameters: clustering

of investments occurs if the flow profits from consecutive investments are sufficiently

close. This shows how clustering can occur in the absence of coordination failures,

informational spillovers or positive payoff externalities.
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1 Introduction

Consider a game of timing in which players have to decide when to make an investment. The

cost of investing declines over time. A firm earns a positive profit flow upon investment,

but profit flows decline in the number of investors. This is a preemption game: Delay

exogenously increases payoffs through lower investment cost, but each player also has an

incentive to invest early, because there is an early mover advantage.

In a preemption game, investment by a player reduces the post-investment flow profit

for later investors, and hence the incentive of the remaining players to invest. Therefore, our

intuition lets us expect a period of delay until the next investment occurs. This intuition

is correct for the case of two players (Fudenberg and Tirole (1985)) but, as we show in this

paper, may fail otherwise.

We study a general N -Player investment preemption game and identify a mechanism

that generates clustering of investment times: When the preemption race among late in-

vestors is very intense, the preemption incentive for earlier investors is reduced. If this effect

is sufficiently strong, two or more investments occur at the same time. This happens when

the flow profits of subsequent investments are sufficiently close.

The mechanism we identify is novel. Both the theoretical and the empirical literature

on timing games have focused on different factors that can generate clustering of investment

times. The theoretical explanations for the presence of clusters include coordination failures,

as in Levin and Peck (2003), positive network externalities, as in Mason and Weeds (2010),

and informational spillovers (e.g. Chamley and Gale (1994)), where rival investment signals

a high profitability of investment. Brunnermeier and Morgan (2010) show that “herding”

occurs in a preemptive “clock game”, but attribute this herding effect to private information

being (partially) revealed by the first player to act. In our model, clusters are due purely

to preemption and backward induction. Coordination failures are ruled out by assumption,

rival investment has no informational content, no positive externalities, and lowers the

post-investment flow profit for later investors.

Our analysis therefore provides an alternative interpretation of the empirical evidence.

A large body of empirical literature has examined how rival adoption or market entry

affects the timing of a firm’s own technology adoption or market entry. Several papers have

found that adoption by a rival accelerates the adoption by remaining firms (clusters are the
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most extreme form of acceleration).1 This acceleration has been interpreted as evidence of

positive payoff externalities or informational effects, but we provide a simpler alternative

explanation based purely on preemption.

The mechanism through which clusters arise in our model is the following. Suppose

there are three firms: if being the second investor is profitable relative to being the third,

the preemption race to be the second investor is intense, and in equilibrium the second

investment occurs early. In order to obtain monopoly profits for some time, a firm would

have to invest even earlier. If monopoly profits are not much higher than duopoly profits,

no firm wants to incur the extra-cost that is necessary to invest strictly before the second

investor, and the first and second investments are clustered. In a game with more than three

players, a similar mechanism can cause clusters of any size, at any point in the investment

sequence.

This simple mechanism, purely based on preemption, has useful implications for the

inference that can be drawn about firms profits, when the timing of investments and the

pattern of clustering are observed for a given market. Our result implies that if investment

times are generated by a preemption game and clustering is observed, a bound on the decline

in profits due to rival investment can be calculated.2

The remainder of the paper is organized as follows. Immediately below we dicuss the

related literature. Section 2 introduces the model. Section 3.1 illustrates the benchmark

case of a two-player game, in which investments are never clustered in equilibrium. Section

3.2 describes the mechanism that generates clustering, in the context of the three-player

game. Section 3.3 characterizes the unique equilibrium outcome of the N-player game.

Section 3.4 derives a sufficient condition on the primitives of the model for the presence of

a cluster of two or more investments. Section 4 concludes.
1These papers find that a firm’s adoption hazard increases when a rival adopts. Karshenas and Stoneman

(1993, p.521) interpret this acceleration of adoption as “epidemic effects” in the adoption of numerically
controlled machine tools. Hannan and McDowell (1987, p.186) speak of “spillover effects” in the context of
ATM adoption by banks, and Levin, Levin and Meisel (1992, p.347) argue that there is an informational
effect via customers in the case of optical scanners in grocery stores.

2 Identifying clusters empirically may be difficult because data often come in yearly intervals as it is the
case in the empirical literature mentioned above. Increasing access to administrative data sources alleviates
this problem. For example Kaniovski and Peneder (2008) use social security data to identify the date of hire
of the first employee as the day of entry of a firm.
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Related literature

Seminal papers by Reinganum (1981a) and Fudenberg and Tirole (1985) study technology

adoption games of unobservable and observable actions with two players respectively. Rein-

ganum (1981b) derives the equilibrium of a game of technology adoption with N firms and

unobservable actions. Anderson and Engers (1994) study a modified game where there is a

time window in which players decide to act and payoffs of a static game played only among

those who have acted are collected after expiration of this time window. In two related

papers, Park and Smith (2008, 2010) analyze a timing game with a general payoff structure

and more than two players. See Park and Smith (2008) for the case of unobservable actions,

and Park and Smith (2010) for the case of observable actions and a continuum of players.

Goetz (1999) discusses the case of a continuum of firms where the preemption motive is

absent.

Hoppe (2002) surveys the extensive literature on technology preemption games, changing

the assumptions on the information structure or the payoff structure. Hoppe and Lehmann-

Grube (2005) study a version of a two-player game with a general deterministic payoff

structure. More recently, Hopenhayn and Squintani (2011) consider a game with privately

observed payoffs. Bobtcheff and Mariotti (2011) study a game with uncertainty regarding

the presence of a competitor.

We rely on the equilibrium property of rent equalization to characterize conditions for

clustering. Fudenberg and Tirole (1985) show that in the technology adoption game with

observable actions and two players rent equalization must hold. They also illustrate why

it may not hold with more than two players. The case of two players is also studied in

Gilbert and Harris (1984) when analyzing a game where firms engage in lumpy capacity

investments. While positive profits are earned with unobservable actions, they show that

there exists a class of subgame perfect equilibria in the game with two players and observable

actions where rents are fully dissipated. They conjecture that their arguments extend to

the N-player game.

Mills (1988) shows that rent dissipation in a game of preemptive investment depends

crucially on the ability of firms to make costless credible threats. If credible threats are

costly, for example because investment must be made in temporarily separated steps, rents

are not dissipated and profits almost as high as monopoly profits can be achieved in equi-

librium. Mills (1991) analyzes a multiplayer model of lumpy capacity investment very close
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to ours. Arguing that rent equalization must hold in equilibrium, he discusses the welfare

implications of preemptive investment, and in particular the possibility that it leads to ex-

cessive and/or premature entry. Our paper contributes to this literature by establishing the

possibility of clusters of investments, investigating the mechanism behind them, and their

implications for the interpretation of industry data.

Strategic investment has also been studied in a real options framework. Greater uncer-

tainty over the profitability of investment increases the option value of waiting and thus

the tendency to delay investment. For recent examples see Weeds (2002) and references

therein, as well as the survey by Hoppe (2002). In independent work, Bouis, Huisman and

Kort (2009) study dynamic investment in oligopoly in a real options framework and find

comparative statics result that are closely related to ours.3 The real options approach al-

lows aggregate uncertainty in the payoff process, but is restricted to a specific payoff growth

process for payoffs (a Brownian motion with drift).

Bulow and Klemperer (1994) study a model with a seller who has multiple identical

objects and multiple buyers with independent private values. They show that if buyers’

valuations are not too different, frenzies of simultaneous purchases can occur because a

purchase by a buyer increases the remaining buyers’ willingness to pay. In our model,

investment by a player lowers the flow profit achievable by the next investor. Nonetheless,

clusters are possible if this decrease is sufficiently small, and the ensuing preemption race

to take the role of the next investor is sufficiently intense.

2 Model

2.1 The investment game

We analyze an infinite horizon dynamic game in continuous time. At time 0, a new invest-

ment opportunity becomes available, and N identical players (firms) have to decide if, and

when, to seize this opportunity. The investment opportunity can be interpreted as adoption

of a new technology, or entry into a new market. Investment is observable and irreversible.

The set of firms is denoted by N = {1, ..., N} and a single firm is denoted by i ∈N.

The model corresponds to the one studied by Reinganum (1981a, 1981b) and Fudenberg

and Tirole (1985) except for the following: Until a firm invests, it receives constant flow

3Bouis et al. (2009) provide an explicit argument for existence of equilibrium, and for the existence of a
cluster for the case of N = 3. For the general N -player game they provide comparative statics results under
the assumption that equilibrium exists, and a numerical example.
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of profits π0 which we normalize to zero. This assumption that pre-investment payoffs are

independent of the number of earlier investments will be essential for obtaining a unique

outcome in each subgame, which in turn guarantees rent equalization.4 Upon investment, a

firm earns flow profits of π(m), where m is the number of firms that have already invested

at a given point in time. Let π = (π(1), π(2), ..., π(N)) denote a flow profit structure.

Let c(t) be the present value at time zero of the cost of investing at time t. If the

outcome of the game is that the vector of investment times is T j, for j = 1, ...N , and firm

i is the j-th investor, then firm i’s payoff is the following:

V j
i (T

1, T 2, ..., T j , ..., TN) =
N∑

m=j

π(m)

∫ Tm+1

Tm
e−rsds− c(T j) (1)

where r denotes the common discount rate, and TN+1 ≡ +∞.

We introduce the following assumptions:

Assumption 1

Flow profits π (m) are (i) strictly positive for any m and (ii) strictly decreasing in m.

Investing always increases period payoffs for a firm, but the benefits of investing decrease

in the total number of investors: as more firms invest, competition among the investors

becomes more intense.

Assumption 2

The current value cost function
(
c (t) ert

)
is (i) strictly decreasing and (ii) strictly convex.

The cost of investing declines over time. This may capture upstream process innovations

or economies of learning and scale. Moreover, cost declines at a decreasing rate.

Assumption 3

(i) At time zero, the investment cost exceeds discounted monopoly payoffs: c(0) > π(1)
r .

(ii) Eventually, investment is profitable for all players: ∃τ such that c (τ) erτ < π(N)
r .

Assumption 3(i) guarantees that investing at time zero is too costly. No firm would

invest immediately, even if it could thereby preempt all other firms and enjoy monopoly

profits π (1) forever. Assumption 3(ii) ensures that the value of investing becomes positive in

4However, the normalization of pre-investment payoffs to zero, rather than any positive constant, will
not affect the results of the paper.
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finite time: The cost of investing eventually reaches a level sufficiently low, that it becomes

profitable to invest, even for a firm facing maximum competition.5

In what follows, we will denote by tj the j-th equilibrium investment time.6 If the j-th

and (j + 1)-th investments occur at the same instant in time, i.e. tj = tj+1, we say that

they are clustered.

2.2 Strategies in continuous-time preemption games

We model strategies in a timing game with observable actions and continuous time adopting

the framework introduced by Simon and Stinchcombe (1989).7 Each player has two actions

available, “wait” and “invest.” Players can move at any time in [0,∞). A decision node is

a point in time paired with a complete description of past moves, and a pure strategy is

defined as a function that assigns an action to each node. An outcome is a complete record

of the decisions made throughout the game.

In this framework, the question of how to associate an outcome to a continuous-time

strategy profile is addressed in the following way. A continuous-time strategy here is inter-

preted as “a set of instructions about how to play the game on every conceivable discrete-

time grid”(Simon and Stinchcombe (1989), p. 1174). For any continuous-time strategy

profile, a sequence of outcomes is generated by restricting play to an arbitrary sequence of

increasingly fine discrete-time grids, and the limit of this sequence of outcomes is defined

as the continuous-time outcome of the profile. Simon and Stinchcombe (1989) identify con-

ditions for the existence and the uniqueness of this limit. The strategies we consider here

will satisfy these conditions.8

The Simon and Stinchcombe (1989) framework is defined for pure strategies only.9 A

well-known problem with modeling preemption games in continuous time is that typically

games in this class do not have an equilibrium in pure strategies, due to the possibility of

5We will discuss the implications of relaxing this assumption in Section 3.3.
6 In Proposition 1 we prove that the vector of equilibrium investment times (t1, ..., tN) is unique.
7Hoppe and Lehmann-Grube (2005) first showed how to adopt this framework to model a preemption

game.
8The conditions required are (F1) an upper bound on the number of moves, (F2) that strategies depend

piecewise continuously on time, and (F3) strong right continuity of the strategies with respect to histories.
Condition (F1) is naturally satisfied, because investment is a one-time irreversible decision. Condition (F2)
is an explicit restriction that we impose on the strategies. We satisfy condition (F3) by considering strategies
which depend only on how many firms have already invested but not on the time when they have invested.

9For N = 2 our model is a special case of Fudenberg and Tirole (1985). They develop an alternative
methodology for modeling games in continuous time, based on an extended definition of mixed strategies.
When applied to the two player case, their methodology generates the same equilibrium outcome. We
conjecture that this would be true also for the general N -player case.
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coordination failures. We explicitly rule out coordination failures introducing a randomiza-

tion device as in Katz and Shapiro (1987), Dutta, Lach and Rustichini (1995), and Hoppe

and Lehmann-Grube (2005):

Assumption 4

If n firms invest at the same instant t (with n = 2, 3, .,N), then only one firm, each with

probability 1
n , succeeds.

The randomization device is introduced for the purpose of ruling out the possibility that

simultaneous investments occur as a consequence of a coordination failure. At the same

time, it allows for the presence of simultaneous investments as long as they are optimal for

the firms involved.

To illustrate how the randomization device works, consider the case N = 2. First,

suppose that at a given time t each firm would like to invest, provided that the rival does

not do so. Suppose that at time t both firms try to invest. Without the randomization

device, they would both be successful, i.e. they would both pay the cost c(t) and start

receiving flow payoffs π(2). This would constitute a coordination failure: ex-post, each firm

would regret having invested. With the randomization device instead, if at time t both

firms try to invest, “the clock stops”. The game proceeds as follows with time standing

still. First, only one of the two firms (each with probability 1/2) successfully invests, i.e.

only one actually pays the cost c(t). Then, the remaining firm observes that its opponent

has invested. It has two options. It can try to invest “consecutively but at the same instant

of time,”10 that is after observing the first investment, but at the same time t. Alternatively

it can let the clock restart and the game continue. Since the firm observes that its opponent

has invested at t, and investment at t was optimal only provided that the rival did not invest,

it selects the second option. Hence, at t only one firm invests and there is no coordination

failure.

Now suppose that at time t each firm finds it optimal to invest whether or not the rival

does so. If both firms try invest at t, the clock stops. Only one firm is successful. The

remaining firm has again the option to invest or let the clock restart. Now, however it will

choose to invest immediately because it is optimal to do so. Hence there will be a cluster

10See Simon and Stinchcombe (1989), p. 1177.
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of two investments, which does not constitute a coordination failure.11,12

2.3 The optimal “stand-alone” investment times

In this subsection we illustrate the basic trade-off of the investment problem, abstracting

from strategic considerations. Consider the hypothetical problem of a firm who acts as a

single decision maker and has to select the optimal time to make an investment which has

cost c (t) and guarantees flow payoff of π (j) forever, for j ∈ {1, ...,N}, where c (t) and π (j)

satisfy assumptions 1 to 3. This firm would choose t to maximize the following profit:

fj (t) ≡
π (j)

r
e−rt − c (t) . (2)

We denote the solution to this problem as T ∗j . Adopting the terminology in Katz and

Shapiro (1987), we define it as the stand-alone investment time for π(j). Observe that

fj (t) is strictly quasi-concave and that T ∗j is well-defined13 for every j ∈ 1, ...,N as the

solution to

f ′j (t) = 0⇐⇒ −π (j) e−rt − c′ (t) = 0. (3)

At time T ∗j , the marginal benefit from delaying investment, that is the cost reduction c′ (t),

is exactly equal to the marginal cost, that is the foregone discounted profit flow π (j) e−rt.

Before T ∗j , a player is willing to delay because the cost is decreasing at a speed that more than

compensates the foregone profit flow. After T ∗j , a player would rather invest immediately

than delay. It follows from the implicit function theorem that T ∗j < T ∗j′ for j < j′: For a

larger foregone profit flow, that is for j < j′, the stand-alone time is earlier.

3 Equilibrium analysis

We now return to the strategic environment, and solve for the equilibria of the game. A

feature of any equilibrium of the game that is built into our assumptions is the following:

11For an interpretation of this randomization device, we refer to Dutta, Lach and Rustichini (1995). An
alternative assumption is made in Dutta and Rustichini (1993): If two firms stop simultaneously, both
receive a convex combination of the payoff from being the only one to stop at that time, and the payoff from
stopping later, at the optimal time for a “follower”. This assumption introduces the possibility of clusters
of simultaneous investments through a mechanism that is unrelated to the one illustrated in our paper.

12An alternative formalization of continuous time strategies has been introduced recently by Murto and
Välimäki (2011). To be applied in this model, it also needs to be augmented with a randomization device
to avoid non-existence of equilibrium.

13For a proof, see Claim 1 in the Appendix.
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Lemma 1 In any pure-strategy SPNE, no firm invests at t = 0, all firms invest in finite

time, and the last investment takes place at the stand-alone investment time T ∗N .

Assumptions 1(ii) and 3(i) guarantee that investment at time zero is too costly.14 As-

sumptions 2(i) and 3(ii) guarantee that all firms invest in finite time. The result that

the last equilibrium investment time is exactly the stand-alone investment time T ∗N is not

surprising: when only one active firm is left, it maximizes the profit (2) for j = N .

Next, we introduce our benchmark: the two-player investment game analyzed by Fu-

denberg and Tirole (1985).

3.1 The benchmark case: two firms, no clustering

Suppose N = 2. The easiest way to capture the intuition for this game is to use a backward

induction approach. By Lemma 1, both firms invest no later than the second stand-alone

investment time T ∗2 . Therefore, each firm anticipates that if it invests first at some time

t < T ∗2 , the opponent will follow at T ∗2 . The payoff from this early investment will then be

what Fudenberg and Tirole define as the Leader Payoff :

L (t) = π(1)

∫ T ∗
2

t
e−rsds+ π(2)

∫ ∞

T ∗
2

e−rsds− c(t). (4)

Alternatively, a firm could wait until T ∗2 and receive the Follower Payoff:

F (t) = π(2)

∫ ∞

T ∗
2

e−rsds− c(T ∗2 ). (5)

The benefit from being the leader, rather than the follower, is that high profits π(1) are

earned for some period. The cost is that early investment is more expensive than late

investment. The fact that the cost of investment, although initially prohibitive, is decreasing

and convex, guarantees that the leader and follower payoff curves have the shape illustrated

in Figure 1. Fudenberg and Tirole (1985) prove that the first time at which an investment

occurs in equilibrium, t1, is the earliest time when the two curves intersect. In equilibrium,

firms invest at different points in time15 and payoffs are the same for both firms (there is

rent equalization).

14This fact is crucial in proving that all players receive the same payoff in equilibrium. Relaxing assumption
3(i), one could generate an equilibrium in which some players invest at time zero and receive a higher payoff
than the remaining players, who would instead invest later and receive all the same, lower payoff.

15The assumption that pre-investment payoffs are constant rules out the possibility of what Fudenberg
and Tirole (1985) define as “late joint adoption equilibria”.
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Figure 1: No clustering in the two-player game. The LPC brings the first investment forward

to t1. Earlier preemption is not profitable: before t1, F (t) exceeds L(t). The figure is drawn for

cost function c(t) = 2 · 104e−(α+r)t for α = 0.24, r = 0.1, and flow profits π= (440, 300).

The mechanism at work is the following: if unconstrained by strategic considerations,

a single firm would like to invest at the stand-alone time T ∗1 . Also in the presence of an

opponent, each firm would like to invest first, at T ∗1 . The opponent would then follow at T ∗2 .

The leader would receive a higher payoff than the follower. This cannot be an equilibrium

because the firm who takes the role of the follower could profitably deviate and preempt

the opponent by investing at T ∗1 − ε. The presence of a second player introduces a Leader

Preemption Constraint (LPC) on the time of the first investment: Leader investment

cannot take place at a time when earlier preemption is profitable. As a consequence, the

first investment must occur strictly earlier than T ∗1 . In particular, it must occur weakly

before the first intersection of the Leader and Follower payoff functions. Since the leader

payoff function is increasing in that interval, the first investment will occur at the latest

time that satisfies the LPC, i.e. the first intersection of the two curves.

3.2 The three-firm game: When are the first two investments clustered?

In this section, we move away from the two-player benchmark and illustrate the possibility

of clustering in a the context of a three-player game. As in the two-player game, the first

investment must occur strictly earlier than T ∗1 . The key difference from the two-player game

is that t1 is identified by the presence of two constraints. One is the LPC constraint discussed

above. The second is what we call the Follower Preemption Constraint (FPC). The

latter reflects the fact that the first investment is followed by a preemption race among the

remaining two players. This race among followers determines an upper bound on the time

of the first investment.

The aim of this section is twofold. First, we show that the first and second investments

can be clustered or not clustered. Which case occurs depends on which of the two constraints
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on t1, the FPC or the LPC, is binding in equilibrium. Then, we examine how the model

primitives determine which constraint is binding. We proceed by solving the game by

backward induction. Figure 2 illustrates.

The two-firm subgame

Suppose that the first investment has occurred, and consider the ensuing two-firm subgame.

It is analogous to the two-firm game of Section 3.1. By Lemma 1, all firms must invest by

T ∗3 . Each firm anticipates that if it invests first at some time t < T ∗3 , the opponent will

follow at T ∗3 . The Leader Payoff and Follower Payoff for this subgame are

L2 (t) = π(2)

∫ T∗
3

t
e−rsds+ π(3)

∫ ∞

T ∗
3

e−rsds− c(t) and (6)

F2 (t) = π(3)

∫ ∞

T ∗
3

e−rsds− c(T ∗3 ) (7)

respectively. The threat of preemption guarantees that the first investment in the subgame

must take place at the earliest time when L2 (t) = F2 (t). The second investment time in

the game, t2, coincides with this intersection. The last investment occurs at T ∗3 .

The Follower Preemption Constraint (FPC)

The conclusion above that the second investment occurs at the earliest intersection of L2 (t)

and F2 (t) clearly assumes that the first investment must occur weakly before this intersec-

tion. We show by contradiction that this must be the case in equilibrium. Suppose that the

first investment took place strictly later, at some time τ ≤ T ∗3 . A two-firm subgame would

then start at τ . Because L2 (τ) > F2 (τ), both firms would prefer to be leader rather than

follower in this subgame. They would both try to invest at τ , one would succeed and the

other would invest later at T ∗3 . This cannot be an equilibrium because each of the last two

investors receives a lottery between L2 (τ) and F2 (τ) while it could deviate and guarantee

itself a payoff arbitrarily close to L2 (τ). Deviating by investing at τ − ε, a firm would

be the first investor in the game. It would trigger a two-firm subgame in which one more

investment would occur at τ − ε and the last one at T ∗3 . Therefore, the deviator would

receive a payoff of L2 (τ − ε).

We have established that the time of the first investment t1 is constrained by the presence

of a preemption race in the ensuing two-firm subgame: to guarantee that there is rent

equalization in this race, t1 must be no later than the first intersection of the leader and

follower payoff curves of the two-firm subgame, namely L2 (t) and F2 (t). We call this the
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Follower Preemption Constraint (FPC). As the second investment time t2 coincides

with this intersection, we say that the FPC is binding in equilibrium if the first investment

occurs exactly at t2, and not binding if it occurs strictly earlier than t2.
16

The Leader Preemption Constraint (LPC)

We now illustrate the LPC for the three-player game. It follows from the analysis above

that the second and third investments will occur at t2, with L2 (t2) = F2 (t2), and t3 = T ∗3

respectively. The FPC requires that the first investment occurs weakly earlier than the first

intersection of L2 (t) and F2 (t). Therefore, the Leader payoff in the three-player game, i.e.

the payoff of the first investor, is:

L1 (t) = π(1)

∫ t2

t
e−rsds+ π(2)

∫ T ∗3

t2

e−rsds+ π(3)

∫ ∞

T ∗
3

e−rsds− c(t). (8)

The Follower payoff in the three-firm game, i.e. the payoff from being either the second or

the third investor, is

F1 (t) = π(2)

∫ T ∗3

t2

e−rsds+ π(3)

∫ ∞

T ∗
3

e−rsds− c(t2) = π(3)

∫ ∞

T ∗
3

e−rsds− c(T ∗3 ). (9)

As in the two-player game, there is a LPC: the first investment cannot occur at a time

such that earlier preemption is profitable, because otherwise any of the followers would

have a profitable deviation. We say that the LPC on t1 is binding in equilibrium if given

the subsequent investment times t2 and t3, L1 (t) > F1 (t) for some t < t2. Otherwise,

preempting the leader is never profitable, and we say that the LPC is not binding.

The relationship between FPC and LPC

The FPC reflects the intensity of the follower preemption race that starts after the first

investment: The more intense this race, the earlier is the first intersection of L2 (t) and

F2 (t), i.e. the earlier is t2. The LPC instead reflects the intensity of the race to be the first

investor. These two constraints are not independent: The intensity of the race to be the

first investor is a direct consequence of the intensity of the follower preemption race between

the second and the third investors. Hence, the LPC is directly affected by the FPC.

To capture this relationship between the two constraints, notice that the more intense

the follower preemption race is, the earlier t2 is, hence the tighter the constraint on t1

16Observe that in the two-player game in Section 3.1 this constraint is absent: After the first investment,
there is a single follower left, whose investment time is not determined by a preemption race but by a
single-agent decision problem.
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imposed by the FPC becomes. At the same time, the earlier t2 is, the shorter the period

for which the first investor earns monopoly profits becomes: Early t2 makes the role of the

first investor less desirable. Therefore, the more intense the follower preemption race is, the

less intense is the race to be the first investor: the stronger the FPC, the weaker the LPC.

The key observation of our analysis is that for any given set of parameters, only one

of the two constraints is binding, and which constraint is binding is equivalent to whether

the first two investments are clustered or not. If the follower preemption race is sufficiently

intense, only the FPC is binding, and investments are clustered. Otherwise, only the LPC is

binding, and investment times are different. We discuss these two cases below, and illustrate

them in Figure 2.

First, observe that the leader payoff L1 (t) is strictly quasiconcave, and maximized at

T ∗1 . By construction, it intersects F1(t) in t2. Which constraint is binding depends on the

relative position of t2 with respect to T ∗1 . The intuition for this is that T ∗1 , being determined

by π (1), reflects the desirability of the role of the first investor, hence the strength of the

LPC, while t2 reflects the strength of the FPC.
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1
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*
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2
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3
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Figure 2: Clustering vs. No Clustering. In all three panels, the third investment occurs at T ∗3
and the second at the first intersection of L2(t) and F2(t). Duopoly profits decrease from panel

2(a) to 2(c), delaying the second investment time t2. In panels (2a) and (2b), t2≤ T ∗1, so in the

race to be first, F1(t) exceeds L1(t) before t2. Hence, only the FPC is binding and investments are

clustered. Panel (2b) represents the cut-off case with t2= T ∗1. In (2c), t2> T ∗1. Therefore, L1(t)
exceeds F1(t) before t2 and the LPC alone is binding. The cost function is as in Figure 1. Flow

profits π are (440, 300, 150) for (2a), (440, 280.2, 150) for (2b), (440, 240, 150) for (2c).

Case (i): t2 ≤ T
∗
1 (Figures 2a and 2b).

The LPC is not binding, because the follower payoff F1(t) exceeds the leader payoff L1(t)

at any t < t2. The first investment occurs exactly at t2: the FPC is binding. The payoffs

of all players are equalized. The first two investment times are clustered : t1 = t2.
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Case (ii): t2> T
∗
1 (Figure 2c).

The LPC is binding: The leader payoff L1 (t) exceeds the follower payoff F1(t) to the left of

t2. The preemption race to be the first investor brings t1 forward to the earliest intersection

of leader and follower payoffs. The payoffs of all players are equalized. The FPC instead,

is not binding. The first two investments are not clustered: t1 < T ∗1 < t2.

How model primitives determine the presence of a cluster

As can be seen in Figure 2, whether case (i) or case (ii) will occur is equivalent to whether

L2(t)−F2(t), the incentive to preempt in the 2-player subgame that follows the first invest-

ment, is positive or negative when evaluated at T ∗1 .

In the cut-off case of Figure (2b), the preemption incentive evaluated at T ∗1 is zero:

the first intersection of L2(t) and F2(t), that identifies t2, coincides exactly with T ∗1 . The

follower preemption race is just intense enough to make the FPC binding and the LPC not

binding. If instead the first intersection of L2(t) and F2(t) occurs to the left of T ∗1 , as in

Figure (2a), then the preemption incentive L2(t)−F2(t) evaluated at T ∗1 is strictly positive.

Conversely, if it occurs to the right of T ∗1 , as in Figure (2c), then L2(t)−F2(t) evaluated at

T ∗1 is strictly negative.

The previous observation allows us to identify the parameter range for which case (i)

and case (ii) occur, respectively. Evaluating the preemption incentive L2(t)− F2(t) at T ∗1 :

L2(T
∗
1 )− F2(T

∗
1 ) = π(2)

∫ T ∗
3

T ∗
1

e−rsds+ π(3)

∫ ∞

T ∗
3

e−rsds− c(T ∗1 )−

[
π(3)

∫ ∞

T ∗
3

e−rsds− c(T ∗3 )

]

=
π(2)

r

[
e−rT

∗
1 − e−rT

∗
3

]
− [c(T ∗1 )− c(T ∗3 )] (10)

Recalling that T ∗1 is a decreasing function of π (1) and T ∗3 is a decreasing function of π (3),

we observe that the preemption incentive evaluated at T ∗1 is a function of the three profit

parameters π (1), π (2), π (3). For profit structures such that the preemption incentive

(10) is nonnegative, the first two investments are clustered, for all other profit structures,

clustering does not occur.

The preemption incentive (10) is monotone in each of the profit parameters π (1), π (2)

and π (3). The intuition is captured by looking at how each of them affects the relative

strength of the two constraints. First, the preemption incentive (10) is decreasing in π (1).

Hence, starting from the cut-off case, increasing π (1) we fall into case (ii) (no cluster-

ing). The intuition is that an increase in π (1) makes the role of leader of the three-player

14



preemption race more attractive. Hence, the LPC becomes binding.

Next, consider π (2) and π (3). The preemption incentive (10) is increasing in π (2) and

decreasing in π (3). Hence, starting from the cut-off case, increasing π (2) or decreasing

π(3) there continues to be a cluster. The intuition is that an increase in π(2) or a decrease

in π(3) makes the role of the second investor more attractive relative to the role of third

investor. The preemption race among the followers becomes more intense, and this brings

t2 forward. The FPC constraint becomes stronger. At the same time, earlier t2 makes the

role of the first investor less attractive so the LPC becomes weaker.

In Section 3.4, we will show that the intuition above can be translated into a sufficient

condition for the presence of a cluster: given any pair (π (1) , π (3)), if π (2) is sufficiently

close to π (1), then the first and second investments are clustered.

3.3 The general case: N firms

In this section, we formalize and generalize our characterization of the equilibrium outcome

of the game with three players to the general case of N players.

After the first j − 1 investments have taken place, two constraints determine the next

investment time tj . First, the LPC: preempting the leader of the current subgame, i.e. the

j-th investor, by investing earlier than tj , must not be profitable. Second, the FPC: tj must

be weakly earlier than the time of the next investment, tj+1, which is determined by the

preemption race in the subgame played by the followers after the j-th investment.17

Proposition 1 below establishes that the equilibrium outcome of the game is unique,

that the rent equalization result is preserved even for a general number of players, and

allows us to construct a simple recursive algorithm to compute the equilibrium investment

times and determine the presence of clusters.

Proposition 1 The game admits a unique pure-strategy SPNE outcome, up to a permuta-

tion of players. The equilibrium has the following properties:

(i) All players receive the same payoff.

(ii) The j-th and the (j + 1)-th investments are clustered if and only if the (j + 1)-th

investment time tj+1 is weakly earlier than the j-th stand-alone investment time T ∗j .

In equilibrium, all players earn a payoff equal to the last investor’s: π(N)
r e−rT

∗
N −c (T ∗N).

17The above discussion holds for j ≤ N − 2. In equilibrium, the last two investment times are the
equilibrium outcome of a subgame that resembles the two-firm game illustrated in Section 3.1.
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The Fudenberg and Tirole (1985) rent-equalization result extends to the N -player game

because we assume that pre-investment payoffs are constant. This in turn implies that

in each preemption race the Follower payoff is independent of the exact time of earlier

investments. While the game admits a unique equilibrium outcome in terms of investment

times and equilibrium payoffs, the role taken by each investor in the investment sequence

is not uniquely identified.18

Lemma 1 and Proposition 1 suggest the following simple recursive algorithm to compute

the equilibrium investment times (t1, t2..., tN) and determine the presence of clusters:

1. The last investment time is equal to the last stand-alone investment time: tN = T ∗N ,

2. For j < N ,

(i) if tj+1 ≤ T ∗j , then there is a cluster: tj = tj+1.

(ii) If tj+1 > T ∗j , then tj < tj+1, and tj solves the rent equalization condition:

Lj (t)− Fj (t) = π(j)

∫ tj+1

tj

e−rsds− c(tj) + c(tj+1) = 0

where Lj (t) and Fj (t) are defined analogously to L1 (t) and F1 (t).
19

Case 2(i) is analogous to Case (i) in Section 3.2: the FPC alone is binding. Case 2(ii)

is analogous to Case (ii) in Section 3.2: the LPC alone is binding.

Proposition 1 has two implications that go beyond the features of the three-player

example. First, for N > 3 clusters can include more than two simultaneous investments:

suppose that the preemption race for the role of (j + 1)-th investor is sufficiently intense

that not only tj+1 < T ∗j , but tj+1 < T ∗j−1 < T ∗j : in this case, the (j − 1)-th, j-th and

(j + 1)-th investments will be clustered. In Section 3.4 we illustrate how model primitives

affect the size of a cluster.

Second, clusters can occur not only at the beginning, but at any point of the investment

18 In a symmetric equilibrium all firms that have not invested yet try to invest at every equilibrium
investment time. The realized order of investments is determined by the randomization device. In an
asymmetric equilibrium the order of investments can be pre-determined or partially random. For instance,
the randomization device can be used to determine only the first investor. Firms could then coordinate on
the identity of later investors based on this outcome. We thank a referee for pointing this out.

19For a formal definition, see proof of Proposition 1 in the Appendix.
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sequence, except for the last. 20

3.4 The condition for a cluster

In Section 3.2 we have illustrated the mechanism that leads to clustered investments in the

special case of N = 3. We introduced the LPC and the FPC and provided an intuitive

discussion of how the model parameters affect these two constraints and determine the

presence or absence of a cluster. In this section, we formally investigate how the mechanism

illustrated in Section 3.2 relates to the model primitives. More precisely, we ask under

which condition on the parameters of the model two or more subsequent investments, at

any point in the investment sequence, are clustered.

The answer is that they are clustered if the associated flow profits are sufficiently close.

To obtain this result, we first argue that whether two subsequent investments are clustered or

not depends only on a subvector of the profit structure π. Second, we present a comparative

statics result relating investment times and flow profits. Third, we identify a sufficient

condition on the profit structure for a cluster of two or more investments. Figure 3 illustrates

the analysis.

We start by observing that the equilibrium characterization in Proposition 1 implies the

following:

Remark 1 The condition for a cluster of two subsequent investments is independent of the

flow-profit parameters associated with earlier investments.

Proposition 1 states that whether the j-th and (j + 1)-th investments are clustered is

determined by the comparison of the stand-alone investment time T ∗j and the (j + 1)-th

equilibrium investment time tj+1. Hence, the condition for a cluster depends only on the

flow-profit parameters affecting T ∗j and tj+1. As illustrated in section 2.3, T ∗j depends only

on the flow-profit parameter π (j). To see which profit parameters determine tj+1, consider

the algorithm identifying the equilibrium investment times. The last investment occurs

at tN = T ∗N , hence it depends only on one flow-profit parameter, π (N). The previous

20 If investment is not profitable for all players, so that entry is effectively endogenous, then a cluster can
also occur at the end of the investment sequence. Suppose we relax Assumption 3(ii) so that only M < N

can profitably invest. After the (M − 1)-th investment, there is a race among the remaining active players
to secure the last profitable investment possibility. By rent equalization, the last investor (as well as all the
predecessors) must earn the same equilibrium payoff as the (N −M) players who do not invest, which is
zero. The last investment is thus brought forward to a time tM earlier than the stand-alone time T ∗M . If
tM < T ∗M−1, then there is cluster at tM−1 = tM . In the baseline model instead, the last investment time tN
is T ∗N , therefore it is always strictly later than T ∗N−1.
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investment time, tN−1, depends on π(N − 1) and on the flow-profit parameters that affect

tN , that is on π (N). Continuing to apply the algorithm, it follows that tj+1 depends only

on π(j + 1) and on the flow profit parameters that affect later investments, that is on the

vector (π(j + 1), π (j + 2) , ..., π (N)).

We now present a comparative statics result that will play a key role in the construction

of the sufficient condition for a cluster:

Proposition 2 Each equilibrium investment time is decreasing in the associated flow profit.

For expositional purposes consider a profit structure such that the equilibrium invest-

ment times tj and tj+1 are different. An increase in π(j) makes the role of the j-th investor

more profitable. Rent equalization requires that the j-th investor receives the same equi-

librium payoff as the (j + 1)-th investor. The latter is unaffected by the increase in π(j).

Hence, in equilibrium an increase in π(j) has to be offset by an increase in the investment

cost. This implies bringing tj forward, because the investment cost is decreasing in time.

The monotonicity of equilibrium investment times in flow profits leads to our main

result. An increase in π (j) brings tj forward. For sufficiently large π (j), that is for π (j)

sufficiently close to π (j − 1), tj occurs at a time earlier than T ∗j−1: This results in a cluster

of the j-th and (j − 1)-th investment. By the same mechanism, if π (j) is sufficiently close

to π (j − 2), the investment time tj is brought forward to a time even earlier than T ∗j−2.

This results in a cluster of three investments: tj−2 = tj−1 = tj. Figure 3 illustrates this

mechanism. More generally, for any j ∈ {2, ..,N − 1} and k ∈ {1, .., j − 1}, the sufficient

condition for a cluster of two or more investments is as follows:

Proposition 3 If π (j) is sufficiently close to π (j − k), then the j-th investment is clustered

with the previous k investments.

To capture the intuition for this result, consider the simplest case of a cluster of two

investments. Suppose that the parameter values are such that the j-th investment is not

clustered with the previous one. Consider an increase in the flow profits π (j). How does it

affect the preemption incentives in the game? The same reasoning illustrated in Section 3.2

and Figure 2 for N = 3 and j = 2 applies here. The (j − 1)-th investment time is determined

by the Follower and Leader Preemption Constraints (FPC and LPC). Everything else equal,

an increase in π (j) makes the role of the j-th investor more attractive. Therefore, the

follower preemption race in the subgame starting after the (j − 1)-th investment becomes
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more intense. This brings forward the investment time tj, which constitutes the upper

bound on the investment time tj−1 stemming from the FPC. In turn, an earlier investment

time tj makes the role of the (j − 1)-th investor less attractive, so the preemption race

for the role of the (j − 1)-th investor is less intense, and the LPC becomes weaker. The

natural question is whether one can increase π (j) to such an extent that the FPC becomes

binding and the LPC not binding. Proposition 3 provides a positive answer: for any value

of the remaining primitives of the model, one can always find a π (j) strictly smaller than

π (j − 1) but sufficiently close to it, such that the FPC is binding, the LPC is not, and the

j-th investment is clustered with the previous one.
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Figure 3: The Size of a Cluster. In all three panels, N = 5, the cost function is c(t) = 2 · 104e−(α+r)t

with α = 0.4 and r = 0.1 and flow profits (π(1), π(2), π(4), π(5)) are (340, 320, 280, 270). Tri-

opoly profits π(3) increase from 300 in (3a) to 308 in (3b) and to 316 in (3c). The investment

times t4 and t5 are unaffected by this increase (Remark 1). Also, T ∗1 and T ∗2 are the same in all

panels. In (2a), T ∗1< T ∗2< t3 and no cluster occurs. In (2b) and (2c), the larger π(3) brings the

third investment time t3 forward (Proposition 2). In (2b), π(3) is sufficiently close to π(2) such

that T ∗1< t3< T ∗2 and the second and third investments are clustered. In (2c) a further increase of

π(3) makes it sufficiently close to π(1), such that t3< T ∗1< T ∗2 and the first three investments are

clustered (Proposition 3).

We conclude with a remark regarding what can be learned about profits, when data on

the timing of investments are observed. Our result says that clustering of entry or adoption

times does not imply that payoffs are not declining in rival investment. If investment times

are generated by a preemption game and clustering is observed, this implies a bound on

the decline in profits due to rival investment. In the case where only time aggregated

information is available, for instance in the form of annual data, bounds could nevertheless
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be obtained but would be less informative the higher the level of temporal aggregation.

Consider the case N = 3 and fix the investment cost function and the interest rate.

Then one can find π(3) as it is the unique solution to the stand-alone problem in (2) given

T ∗3 . Knowing T ∗3 and π(3), one can find π(2) by plugging the observed t2 into the rent-

equalization condition L2(t2) = F2(t2). If t1 < t2, one can repeat the same procedure and

use L1(t1) = F1(t1) to find π(1). If instead t1 = t2, i.e. there is a cluster, one can infer that

π(1) must be small enough, such that T ∗1 > t2. Thus, an upper bound π̄(1) for π(1) as a

function of t2 can be obtained This implies that π(1) must lie in the interval [π(2), π̄(1)].

4 Conclusions

This paper analyzed an N -player preemption game in which players’ payoff before investing

are constant (and normalized to zero). The game has a unique equilibrium outcome, and

the rent equalization result of the two-player game analyzed by Fudenberg and Tirole (1985)

is preserved.

We find that clusters of simultaneous investments are possible. When the preemption

race among late investors is very intense, the preemption incentive for earlier investors is

reduced. If this effect is sufficiently strong, two or more investments occur at the same time.

We characterize a sufficient condition on the model primitives for two or more investments

to be clustered: The flow profits of subsequent investments must be sufficiently close. Our

results imply that the observation of investment clustering in preemptive environments need

not reflect informational spillovers, positive externalities, or coordination failures. Instead,

clustering implies a bound on the decline in profits due to rival investment.

Appendix

Claim 1 For any j ∈ {1, 2..., N}: (a) the function fj (t) is strictly quasi-concave in t.

(b) It admits a unique global maximum in T ∗j , defined as the solution to

f ′j (t) = 0⇐⇒ −π (j) e−rt − c′ (t) = 0.

(c) fj
(
T ∗j

)
> 0 and T ∗j < T ∗j′ for j < j′.

Proof of Claim 1. Part (a) We prove that the function is strictly quasiconcave, by
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showing that in every critical point of the function the second derivative is strictly negative.

The first derivative f ′j (t) is equal to
[
−π (j) e−rt − c′ (t)

]
and the second derivative f ′′j (t)

is equal to
[
rπ (j) e−rt − c′′ (t)

]
. Using f ′j (t) = 0 we can rewrite f ′′j evaluated at any critical

point as

f ′′j (t) = −c′ (t) r − c′′ (t) . (11)

By Assumption 2, ert [c′ (t) + rc (t)] < 0 and ert
[
2c′ (t) r + c (t) r2 + c′′ (t)

]
> 0. Together,

these two inequalities imply that expression (11) is negative.

Part (b) We prove that the first order condition f ′j (t) = 0 admits a solution and hence

characterizes the unique global maximum of the function by showing that f ′j (t) is positive at

zero and negative for sufficiently large values of t. Assumptions 1 and 3 guarantee that fj (t)

is negative at zero and positive at a later time. Quasiconcavity then implies that f ′j (0) > 0.

Moreover, since fj (t) is continuous and either always increasing or single peaked, it admits

a limit as t goes to infinity. This limit must be greater than or equal to zero by assumption

3(ii). It must also be smaller than or equal to zero because limt→+∞ fj (t) = − limt→+∞ c (t).

Hence, the only possible candidate limit is zero. But if that is the case, since the function

is positive from some τ onwards, as t goes to infinity it must approach zero from above.

Hence it must be decreasing for t sufficiently large. We therefore conclude that the function

fj (t) admits a critical point.

Part (c) Assumptions 2(i) and 3(ii) imply that fN(t) is strictly positive for any t ≥ T ∗N .

Thus, Assumption 1(ii) implies that fj
(
T ∗j

)
> 0 for all j.

Finally, note that by the implicit function theorem

∂T ∗j
∂π(j)

= −
−e−rT

∗
j

f ′′j

(
T ∗j

) < 0,

where the inequality holds because T ∗j is a maximum, hence the denominator is negative.

Therefore, Assumption 1(ii) implies that T ∗1 < T ∗2 < ... < T ∗N .�

Proof of Lemma 1. Assumptions 1(ii) and 3(i) guarantee that there is no investment at

time zero: the cost of investing immediately is higher than the maximum amount of profits

a firm can obtain in this game.

The proof of the result that all firms invest in finite time, and the last investment takes

place at the stand-alone investment time T ∗N is split into two parts. First, we show that in

equilibrium, at any decision node with one active firm and calendar time t, the firm plays
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“wait” if t < T ∗N and “invest” otherwise. Then, we show that in any decision node with

t ≥ T ∗N any number of active firms play “invest”.

The payoff of a single active firm from investing at time t is fN(t), defined in equation

(2). From Claim 1, fN(t) has a strict global maximum in T ∗N and its maximum value is

strictly positive. Therefore, a single active firm will optimally play “wait” if t < T ∗N and

“invest” otherwise.

Next, consider decision nodes with t ≥ T ∗N and two active firms. We show that both

firms must invest exactly at t.

First, suppose that at t they both play “invest”. By assumption 4 only one of them

succeeds and the game enters a subgame with one active firm. As we proved above, this firm

invests immediately, so both firms invest at time t and receive payoff fN(t). No firm has

an incentive to deviate from these strategies. With two active firms, deviating and playing

“wait” would not change the outcome, nor the deviator’s payoff. The non-deviating firm

would invest immediately. The game would therefore enter a subgame with one active firm

in which the deviator would optimally invest immediately, as we proved above.

Next, suppose that at time t only one of the two active firms plays “invest”. The

outcome is again that both firms invest at t, because after one firm invests the game enters

a subgame with one active firm in which it is optimal to invest immediately. No firm has

an incentive to deviate from these strategies. The firm who plays “wait” has no incentive

to deviate because the outcome, hence its payoff, would be unchanged. Now suppose that

the firm who plays “invest” deviates. It would get either a payoff of zero, if it never invests,

or fN(τ) if it invests at some τ > t. Since fN(·) is positive and strictly decreasing in the

interval considered, the deviation is not profitable.

Finally, suppose that at time t both firms play “wait”. The argument immediately

above shows that each firm would be better off by deviating and playing “invest” at t.

Repeating the same argument for � = 3, ...,N , it follows that in any SPNE, at any

decision node with t ≥ T ∗N and any number � of active firms, at least one of them plays

“invest”, and the claim follows immediately. �

Proof of Proposition 1. Through a series of Lemmata we show that the game admits

a unique SPNE outcome, and characterize its properties. The proof is articulated in the

following steps:

Denote by tj the SPNE investment time of the j-th investor, for j ∈ {1, .., N}. In
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Definition 1, we introduce three functions, Lj(t), Fj(t), and their difference Dj (t). In

Lemma 2 and Lemma 3 we characterize their properties. Over a well-defined subset of their

domain, Lj(t) and Fj(t) can be interpreted as the payoff of the j-th investor and the (j + 1)-

th investor, respectively, if the j-th investment takes place at t and the following investments

take place at tj+1,..., tN respectively. In the definition, the existence and uniqueness of the

SPNE investment times is assumed. In the development of the proof, they will be proved.

The existence and uniqueness of tN = T ∗N was proved in Lemma 1.

In Lemma 4 we establish that in any subgame with one active firm, it plays “wait” before

T ∗N and “invest” from T ∗N on. In Lemma 5, we prove that there exists a time TN−1 < T ∗N

in which LN−1(TN−1) = FN−1(TN−1) and in Lemma 6 we prove that this is the unique

(N − 1)-th equilibrium investment time. Therefore, the equilibrium payoff of the last two

investors is the same.

Finally, in Lemmata 7, 8 and 9 we identify the algorithm for the construction of the

equilibrium investment times tj for j ∈ {1, ...,N−2}, identifying the condition for clustering,

and prove that rent equalization holds in equilibrium for all players. The argument is based

on the induction principle. Lemma 7 proves that there exists an algorithm to identify the

unique tN−2, given tN−1 and tN , and that the equilibrium payoff of the last three investors

is the same. Lemma 8 shows that if an analogous algorithm can be used to identify a unique

value of tN−l, given tN−l+1,...,tN , and rent equalization holds for the last l players, then the

same algorithm identifies a unique value for tN−l−1, given tN−l,...,tN , and rent equalization

holds for the last l + 1 players. Lemma 9 applies the induction principle to prove that

the algorithm can be used to construct the SPNE investment times t1,..., tN−2 and rent

equalization holds for all players. This concludes the proof of the Proposition.

Definition 1 For each j ∈ {1, ..,N − 1}, we define the following three functions over the

interval [0, T ∗N ]:

Lj(t) ≡ π(j)

∫ tj+1

t
e−rsds+

N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(t)

Fj(t) ≡
N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(tj+1)

Dj (t) ≡ Lj(t)− Fj(t) = π(j)

∫ tj+1

t
e−rsds− c(t) + c(tj+1)

where tN+1 ≡ +∞.

23



Notice that Fj(t) is constant with respect to t.

Lemma 2

(i) The function Dj (t) attains a unique global maximum in T ∗j , for j ∈ {1, ..,N − 1}

(ii) Dj(T
∗
j ) ≥ 0 for j ∈ {1, .., N − 1}.

Proof.

Part (i). Notice that

Dj (t) = π(j)

∫ tj+1

t
e−rsds− c(t) + c(tj+1) (12)

and fj(t) as defined in equation (2) differ by a finite constant. By Claim 1, fj(t) attains a

unique global maximum in T ∗j , hence the same is true for Dj (t).

Part (ii). Since Dj (tj+1) = 0 and T ∗j is the unique global maximizer, it holds that

Dj(T
∗
j ) ≥ 0. �

Lemma 3

(i) If T ∗j ≤ tj+1, then ∃Tj ∈ (0, T ∗j ], such that Dj(Tj) = 0,

(ii) If T ∗j > tj+1, then Dj(t) < 0 and D′
j(t) > 0 ∀t < tj+1.

Proof. Since Dj(t) and fj(t) differ by a finite constant, Claim 1 implies that Dj(t) is

strictly quasi-concave. Also, Dj (0) < 0, since

Lj(0) = π(j)

∫ tj+1

0
e−rsds+

N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(0)

<
π(1)

r
− c(0)

< 0

≤ V j+1(t1, ...tN)

=
N∑

m=j+1

π(m)

∫ tm+1

tm

e−rsds− c(tj+1)

= Fj(0)

Here the second inequality holds by assumption 3(i) and the third because no firm gets a

negative payoff in equilibrium as it could always delay investment indefinitely ensuring a

payoff of zero. Moreover, Dj (tj+1) = 0. Therefore, two cases are possible:

(i): T ∗j ≤ tj+1, in which case ∃Tj ∈ (0, T ∗j ], such that Dj(Tj) = 0, and Dj(t) > 0 in the
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interval t ∈ (Tj, tj+1) ,

(ii) T ∗j > tj+1, in which case Dj(t) < 0 and D′
j(t) > 0 ∀t < tj+1. �

In the next Lemma, we analyze decision nodes with one active firm.

Lemma 4 In equilibrium, if at time t there is one active firm, it plays “wait” if t < T ∗N

and “invest” if t ≥ T ∗N .

Proof. The result follows immediately from the proof of Lemma 1. �

In the next Lemma, we show that for the case j = N − 1, case (i) of Lemma 3 applies.

Lemma 5 T ∗N−1 < tN = T ∗N and ∃TN−1 < T ∗N−1 < T ∗N such that DN−1 (TN−1) = 0.

Proof. T ∗N−1 < T ∗N by Claim 1 and tN = T ∗N by Lemma 1. The rest of the statement

follows from Lemma 3. �

In the next Lemma we show that the (N − 1)-th equilibrium investment time is TN−1.

Lemma 6 In equilibrium, it holds that:

(i) In all subgames starting at t ∈ [TN−1, T
∗
N), if there are n > 1 active firms, n − 1

investments take place at t.

(ii) In all subgames starting at t ∈ [0, TN−1), if there are n = 2 active firms, each of them

plays “wait”.

(iii) tN−1 = TN−1 and the equilibrium payoff of the last two investors is the same.

Proof.

Part (i) We start from the observation that if t belongs to the interval (TN−1, T
∗
N), then

DN−1(t) > 0, while if t = TN−1, then DN−1(t) = 0. The proof now consists of three steps:

Step (a) identifies two strategy profiles that generate the same outcome and constitute an

equilibrium for any subgame with n > 1 active firms starting at t ∈ (TN−1, T
∗
N). Step (b)

rules out any other candidate equilibrium for subgames with n > 1 active firms starting at

t ∈ (TN−1, T
∗
N) . Step (c) considers subgames with n > 1 active firms starting exactly at

t = TN−1.

(a) We first show that it is an equilibrium for any subgame with n > 1 active firms

starting at t ∈ (TN−1, T
∗
N) that each active firm plays “invest” at all times τ ≥ t, unless it

is the only active firm.21 The outcome of this candidate equilibrium is that all active firms

21The proof that the above profile is an equilibrium also proves that the following strategy profile, which
generates the same outcome, is an equilibrium: In all subgames with n > 1 active firms starting at t ∈
(TN−1, T

∗
N) each active firm plays “wait” at t and “invest” at all times τ > t, unless it is the only active

one.
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try to invest immediately at t, until only one is left. The last active firm will then wait to

invest until time T ∗N by Lemma 4. The associated payoff for each firm is a lottery between

LN−1 (t) and FN−1 (t) with probability 1
n assigned to FN−1 (t).

Suppose one firm deviates and plays “wait” at t although it is not the only active firm.

We show that any deviation involving the play of “wait” at t when one or more other firms

are active gives a smaller payoff than the payoff in the candidate equilibrium. We need to

distinguish three possible classes of deviations according to the specific circumstances when

the deviator plays “wait”.

First, consider the class of deviations in which the firm plays “wait” at t if at least one

other firm is active. At t, the n − 1 non-deviating firms follow the given strategies, hence

n− 1 investments occur at t and the deviating firm becomes the last active one. By Claim

1, the most profitable deviation in this class is the one in which the deviator later invests at

T ∗N . The associated payoff is FN−1 (t) which is smaller than the lottery between LN−1 (t)

and FN−1 (t) given by the candidate equilibrium.

Second, consider the class of deviations in which the firm plays “wait” at t if the number

of active firms is different from n− l, for a given l such that n− l > 1. At t, the n− 1 non-

deviating firms follow the given strategies. The deviation outcome is the following. First,

the n− 1 non-deviating firms will play “invest” until l investments will occur. Then, when

there are n− l active firms left, all of them, including the deviator, will play “invest”. With

probability 1
n−l , the deviating firm will successfully invest and receive payoff LN−1 (t). With

the complementary probability, the deviating firm will fail to invest. In the latter case, the

game enters a subgame with n− l−1 active firms in which all firms except for the deviator

will continue to play “invest” at t, until the deviator is the only active firm. By Claim 1,

we can again identify the most profitable deviation within this class: If the outcome of the

randomization device is such that the deviator is unsuccessful in investing when there are

n− l active firms, the deviator will be the last active firm remaining. In this case, it should

then invest at T ∗N . Hence, the highest payoff in this class of deviations is a lottery between

LN−1 (t) and FN−1 (t), with probability n−l−1
n−l assigned to FN−1 (t) , which is worse than

the lottery deriving from the candidate equilibrium strategies because n−l−1
n−l > 1

n .

Third, an analogous argument shows that the class of deviations in which the firm plays

“wait” at t if the number of active firms is different from n−l, for a set of at least two integers

l, such that n− l > 1 for every l, the highest possible payoff is a lottery between LN−1 (t)

and FN−1 (t), which assigns to FN−1 (t) a higher probability than the lottery deriving from
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the candidate equilibrium strategies.

(b)Next, we show that if t belongs to the interval (TN−1, T
∗
N), no strategy profile different

from the ones presented in (a) constitutes an equilibrium. We need to rule out two classes

of strategy profiles: one in which at t, with n active firms, one or more firm plays “wait”

and one or more firms play “invest”, and one in which all active firms play “wait” in an

interval with positive measure starting at t.

We develop the argument by induction. First we show it holds for n = 2 active firms.

Then we show that if it holds for n = m ≥ 2, then it holds for n = m + 1. Finally, we

conclude that it holds for any n ≥ 2 by the induction principle.

The statement holds for n = 2. We consider two classes of strategy profiles: one in

which at t, with two active firms, one firm plays “wait” and the other plays “invest”, and

one in which both active firms play “wait” in an interval with positive measure starting at

t.

No strategy profile in the first class can be an equilibrium, because the firm who plays

“wait” ends up being the last active firm in the game, thus receiving a payoff no larger

than FN−1 (t), while it could profitably deviate by playing “invest” and receiving a lottery

between LN−1 (t) and FN−1 (t).

Strategy profiles in the second class imply that the first investment in the subgame

occurs strictly later than t and weakly before T ∗N (by Lemma 1), at some τ ∈ (t, T ∗N ], and

the second at T ∗N by Lemma 4. The strategy profiles for which both firms play “invest” at

τ cannot be an equilibrium because both firms get 1
2 [LN−1 (τ) + FN−1 (τ)] while each of

them could deviate by investing at τ − ε and receiving LN−1 (τ − ε). By continuity, ∃ε > 0

small enough that this is profitable. The strategies profiles for which only one of the two

firms plays “invest” at τ cannot be an equilibrium. The firm who does not invest at τ must

invest at T ∗N by Lemma 4, thus receiving FN−1 (τ). It could profitably deviate by investing

at τ − ε and getting LN−1 (τ − ε).

If the statement holds for m, it holds for m+1. Again, we need to consider two classes

of strategy profiles: one in which at time t, with m+ 1 active firms, only ν < m+ 1 play

“invest”, with ν > 0, and one in which all active firms play “wait” in an interval with

positive measure starting at t.

No strategy profile in the first class can be an equilibrium. At t, one of the ν firms will

succesfully invest and the game will enter a subgame with m active firms and calendar time

t. Given the assumption that the statement holds for n =m, in such a subgame all m active
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firms invest immediately until only one is left, which invests at T ∗N . Hence, each of them

receives payoff LN−1 (t) with probability m−1
m and payoff FN−1 (t) with probability 1

m . This

implies that any of the m+1−ν firms who play “wait” at t when there are still m+1 active

firms receives expected payoff 1
m [(m− 1)LN−1 (t) + FN−1 (t)] . It could profitably deviate

by playing “invest” at t with m + 1 active firms. This deviation is profitable because it

increases the probability of receiving LN−1 (t) and decreases the probability of receiving

FN−1 (t).

Strategy profiles in the second class imply that the first investment in the subgame

occurs strictly later than t and weakly before T ∗N (by Lemma 1), at some τ ∈ (t, T ∗N ].

Consider any such profile and denote by ν = 1, ...,m + 1 the number of firms who play

“invest” at time τ if there are m+1 active firms. At τ , one succesful investment occurs and

the game enters a subgame with m active firms. Given the assumption that the statement

holds for n = m, at τ all the m remaining active firms invest immediately until only one is

left, who invests at T ∗N . For ν < m+ 1, there is at least one firm who initally plays “wait”

at τ . This firm receives 1
m [(m− 1)LN−1 (τ) + FN−1 (τ)]. It could profitably deviate by

investing at τ − ε and receiving LN−1 (τ − ε) which is a larger payoff, for ε small enough.

If instead ν = m + 1, all firms receive payoff 1
m+1 [mLN−1 (τ) + FN−1 (τ)]. Each of them

could profitably deviate by preempting the opponents and investing at τ − ε. This would

yield payoff LN−1 (τ − ε) which is larger than the above, for ε small enough.

This completes the induction argument and we can conclude that if t belongs to the

interval (TN−1, T
∗
N ), no strategy profile different from the ones presented in (a) constitutes

an equilibrium.

(c) We conclude by considering subgames with n > 1 active firms, starting at t = TN−1.

While DN−1(t) > 0 for t ∈ (TN−1, T
∗
N), on the other hand DN−1(t) = 0 for t = TN−1. This

implies that the proof in step (a) also holds for subgames starting at t = TN−1. Hence the

profiles analyzed in (a) also constitute an equilibrium for the subgames with n > 1 active

firms, starting at t = TN−1. Now consider step (b) . It shows that for for t ∈ (TN−1, T
∗
N )

strategy profiles in two classes cannot be an equilibrium: profiles in which at t, with n

active firms, one or more firm plays “wait” and one or more firms play “invest”, and

profiles in which all active firms play “wait” in an interval with positive measure starting

at t. For subgames starting at t = TN−1 instead, while it is true that profiles in the second

class cannot be an equilibrium, strategy profiles in the first class are an equilibrium. The

outcome of such a profile is that n−1 investments occur at TN−1 and one occurs at T ∗N . All
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players receive payoff LN−1 (TN−1) = FN−1 (TN−1). Hence, there is no profitable deviation.

Part (ii). If t belongs to the interval [0, TN−1), it holds that LN−1 (t) < FN−1 (t) and

that LN−1(t) is increasing. Given part (i) of this Lemma, and Lemma 4, if firms follow the

actions prescribed in part (ii) the expected payoff for each of them is

1

2
[LN−1(TN−1) + FN−1 (TN−1)] = LN−1(TN−1) = FN−1 (TN−1)

where the equality comes from the definition of TN−1. The deviation payoff from investing

at some τ before TN−1 is LN−1(τ) < LN−1(TN−1), hence this is an equilibrium.

Next, we show that there is no other action profile compatible with equilibrium. Suppose

that ν ≤ 2 firms play “invest” at τ . The equilibrium payoff for any of these early investors

is
1

ν
[LN−1(τ) + (ν − 1)FN−1 (τ)]

Each of them could profitably deviate by playing “wait” at τ , since FN−1 (τ) > LN−1 (τ).

This concludes the proof of part (ii).

Part (iii). The conclusion that tN−1 = TN−1 follows directly from parts (i) and (ii) and

from Lemma 4. By construction of TN−1, this implies rent equalization for the last two

investors. �

We now identify the algorithm for the construction of the equilibrium investment times

tj for j ∈ {1, ..., N − 1}. The argument is based on the induction principle. Lemma 7

contains a statement for j = N − 2. Lemma 8 shows that if the same statement holds for

j = N − l, then it holds for j = N − l − 1. Lemma 9 concludes that, by the induction

principle, the statement holds for a general j.

Lemma 7 Given tN = T ∗N and tN−1 = TN−1, tN−2 can be constructed as follows.

Part (a) Suppose T ∗N−2 < TN−1. In equilibrium it holds that:

(i) In all subgames starting at t ∈ [TN−2, TN−1), if there are n > 2 active firms, n − 2

investments take place at t.

(ii)In all subgames starting at t ∈ [0, TN−2), if there are 3 active firms, each of them plays

“wait”

(iii) tN−2 = TN−2 and the payoff of the last 3 investors is equalized.

Part (b) Suppose T ∗N−2 ≥ TN−1. In equilibrium it holds that:

(i) In all subgames starting at t ∈ [0, TN−1), if there are n = 3 active firms, each of them
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plays “wait”

(ii) tN−2 = TN−1 and the payoff of the last 3 investors is equalized.

Proof.

Part (a): By Lemma 3 (i), ∃TN−2 ∈ (0 < T ∗N−2], such that DN−2(TN−2) = 0. The proofs

of parts (i) and (ii) follow from arguments similar to the proofs of parts (i) and (ii) of

Lemma 6, respectively.

The conclusion that tN−2 = TN−2 follows directly from parts (i) and (ii) and from

Lemmata 6 and 4. By construction of TN−2, this implies rent equalization for the last three

firms.

Part (b): By Lemma 3 (ii), LN−2 (t) < FN−2 (t) and L′N−2(t) > 0 ∀t < TN−1. The proof

of part (i) follows from arguments analogous to the proof of part (ii) of Lemma 6. The

conclusion that tN−2 = tN−1 = TN−1 follows directly from part (i) and from Lemmata 4

and 6. By construction of TN−1, this implies rent equalization for the last three firms. �

Lemma 8 If the following statement holds for j = N − l, with l ≥ 2, then it holds for

j = N − l − 1.

Given the last N − j equilibrium investment times (tj+1, ..., tN), and given rent equalization

for the last (N − j) investors, the j-th equilibrium investment time tj can be constructed as

follows:

Part (a) Suppose T ∗j < tj+1. In equilibrium it holds that:

(i) In all subgames starting at t ∈ [Tj, tj+1), if there are n > N − j active firms, n−N + j

investments take place at t.

(ii) In all subgames starting at t ∈ [0, Tj), if there are n = N − j + 1 active firms, each of

them plays “wait”

(iii) tj = Tj and the payoff of the last N − j + 1 investors is equalized.

Part (b) Suppose T ∗j ≥ tj+1. In equilibrium it holds that:

(i)In all subgames starting at t ∈ [0, tj+1], if there are n = N − j + 1 active firms, each of

them plays “wait”:

(ii) tj = tj+1 and the payoff of the last N − j + 1 investors is equalized.

Proof. Assume that the statement holds for j = N−l. This implies that either tN−l = TN−l

or tN−l = tN−l+1, and that in both cases payoffs of the last l + 1 investors are equalized.
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Now we need to prove that the statement holds for j = N − l − 1.

Part (a): By Lemma 3 (i), ∃TN−l−1 ∈ (0 < T ∗N−l−1], such that DN−l−1(TN−l−1) = 0.

The proofs of parts (i) and (ii) follow from arguments similar to the proofs of parts (i) and

(ii) of Lemma 6, respectively. For part (iii), the conclusion that tN−l−1 = TN−l−1 follows

directly from parts (i) and (ii) and from the assumptions. By construction of TN−l−1, this

implies rent equalization for the last l + 2 firms.

Part (b): By Lemma 3 (ii), DN−l−1(t) < 0 and D′
N−l−1(t) > 0 ∀t < tN−l. The proof

of part (i) follows from arguments analogous to the proof of part (ii) of Lemma 6. The

conclusion that tN−l−1 = TN−l follows directly from part (i) and from the assumptions.

By construction of TN−l, this implies rent equalization for the last l + 2 firms. �

Lemma 9 The statement in Lemma 8 holds for any j ≤ N − 2.

Proof. The result follows from Lemmata 7 and 8 by the induction principle. �

Proof of Proposition 2. First, suppose that the profit structure π is such that tj < tj+1.

By construction, tj solves:

π (j)

r

[
e−rtj − e−rtj+1

]
− [c (tj)− c (tj+1)] = 0.

Differentiating implicitly yields:
∂tj
∂π(j) = −

[e−rtj−e−rtj+1 ]/r
−π(j)e−rtj−c′(tj)

. The numerator is positive,

because tj < tj+1. The denominator is positive as well, because in equilibrium tj < T ∗j+1.

Therefore, tj is decreasing in π (j). Next, suppose instead that the profit structure π is such

that tj = tj+1. That is, suppose that the profit structure π is such that tj+1 ≤ T ∗j . If a

marginal change in π (j) does not affect the inequality tj+1 ≤ T ∗j , tj is affected only by the

flow profit parameters that affect tj+1, hence it is constant in π (j). If instead a marginal

change in π (j) changes the inequality to tj+1 > T ∗j , we fall into the previous case and tj

decreases. �

Proof of Proposition 3. Suppose that for a given profit structure π, tj−k < tj. We

prove that there exists π̂ (j) such that for the modified game with profit structure π̃ with

π̃(l) = π (l) for all l ≤ j − k and all l > j, π̃(j) ∈ (π̂ (j) , π (j − k)) and π̃(l) > π̃(l + 1) for

all l, investment times tj−k and tj are clustered.

For the profit structure π, let z ≥ 1 be the number of investments occurring jointly

in equilibrium at the beginning of the subgame played among the last N − j + 1 players,
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so that tj = ... = tj+z−1. Suppose z = 1. The proof of Proposition 2 shows that in this

case tj strictly decreases in π (j). Moreover, limπ(j)→π(j−k) T
∗
j = T ∗j−k. Since tj < T ∗j , there

exists a π̂ (j) large enough that tj < T ∗j−k in any modified game with profit structure π̃ with

π̃(l) = π (l) for all l ≤ j−k and all l > j, π̃(j) ∈ (π̂ (j) , π (j − k)) and π̃(l) > π̃(l+1) for all

l. Now suppose that instead z > 1. The fact that tj−k < tj implies that T ∗j−k < tj = tj+z−1.

Since T ∗j is strictly decreasing in π (j) and limπ(j)→π(j−k) T
∗
j = T ∗j−k < tj+z−1, there exists

a π (j) sufficiently close to π (j − k) such that T ∗j < tj+1 = ... = tj+z−1, and tj < T ∗j < tj+1

in any modified game with profit structure π with π(l) = π (l) for all l ≤ j−k and all l > j,

π(j) ∈ (π (j) , π (j − k)) , and π(l) > π(l + 1) for all l. Then, starting from the game with

profit structure π the proof for the case z = 1 applies.�
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