
International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

269

The Study of AMGA RAP-based Web Application

Taesang Huh, Geunchul Park, Jae-Hyuck Kwak,

Soonwook Hwang and Sunil Ahn

National Institute of Supercomputing and Networking, KISTI, 245 Daehak-ro,

Yuseong-gu, Daejeon, South Korea

{tshuh, gcpark, jhkwak, hwang, siahn}@kisti.re.kr

Abstract

The ARDA Metadata Catalog Grid Application (AMGA) web application has been widely

used; however, it has drawbacks such as easy-to-use interface, no direct building of the

Virtual Organization Membership Service (VOMS) proxy and no maintenance after AMGA

server version 1.3. In response, we adapted a new development procedure and toolkit from

Graphic User Interface (GUI) client, a Client/Server (C/S) program, to a web application to

manage the both Eclipse Rich Client Platform (RCP) and Rich Ajax Platform (RAP) at the

same time. The AMGA web application provides many interesting features for manipulation

of collections, metadata schema, entries, access control, user/group information, federation

and others. Additionally, this web application includes a powerful SQL query editor that

enables users to make complicated sentences under specific query conditions. In this paper,

we describe the implementation of the AMGA web application focusing on the transformation

of AMGA Manager using Eclipse RCP to a RAP-based web application.

Keywords: AMGA, Metadata catalogue, AMGA Manager, Grid computing, Eclipse, RCP,

RAP, Web application

1. Introduction

This paper focuses on the development of a general-purpose AMGA web application

that provides a powerful Eclipse framework allowing engineers and programmers to

quickly and easily embed data and metadata features inside their own applications,

using a standard design-pattern-based approach. AMGA has powerful functionalities to

ensure good performance and scalability, along with a multi-threaded multi-process

based on Database (DB) connection pooling, a hierarchical collection structure,

replication, and a federation mechanism for an efficient distributed environment.

Information retrieval is one of the most important technologies in the internet or

distributed computing system [1]. AMGA is used in the information retrieval system in

the fields of scientific projects. There are many AMGA user communities worldwide:

Belle II, INDICATE, DECIDE, DKRZ, and EUMEDGRID [2-3].

AMGA is universally recognized as the most effective metadata catalog middleware

component in the Grid environment field for locating files using descriptive information

about data and Grid authentication. Unfortunately, interacting with AMGA services is

not always user-friendly, especially for non-expert users, because the only clients

provided are Unix Command Line Interface (CLI) or APIs [4-6]. An AMGA web

version was developed by the Istituto Nazionale di Fisica Nucleare (INFN). However,

this was prototype application designed for a specific environment; there were no

upgrades offered after AMGA server version 1.3, the interface is clumsy, and has

*
 Corresponding author: Sunil Ahn (Ph.D), Email:siahn@kisti.re.kr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24068311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

270

limited login authentication for uploading of the proxy file generated by a pre -

procedure of another User Interface (UI) machine. Moreover, there has been no

professional Client/Server (C/S) software offered for efficient management of all

AMGA contents [7].

In response to these problems, we determined the development and implementa tion

procedure for a general-purpose and intuitive AMGA GUI toolkit from a C/S program

based on transformation of Eclipse Rich Client Platform (RCP), which normally runs as

a desktop application on a personal computer, to a Rich Ajax Platform (RAP)-based

web application that can be deployed in other runtime environments with limited

manpower. The result was AMGA GUI client (AMGA Manager), an easy-to-use and

general-purpose GUI toolkit for AMGA [3]. On top of this framework, we built a web

application that allows users to manage the metadata catalog and administrators to

control AMGA services (setting the configurations in amgad file, and start/stop/restart

service). We have also developed an AMGA web application for access and

management of the metadata catalog from any platform, which requires a

comprehensive approach that embraces technical, organizational and

legal/philosophical dimensions [14]. Users need only a web browser and their valid

authentications: Virtual Organization Membership Service (VOMS), Grid Security

Infrastructure (GSI), Identifier/Password (ID/PW) and certificates [8]. After a

successful login, users are able to browse the hierarchy of AMGA collections, to

inquire about their schema, permissions and entry list. Users also have the ability to

manipulate collections, their metadata schema, entries, access control, user/group

information, federation, plain table, export/import metadata files, service configuration,

service behavior and list of AMGA sites; all of this is accomplished via a user-friendly

web interface that removes complexities to enable easier accessing Grid services,

encapsulates AMGA syntaxes, and provides SQL editor for automatic query

composition, various wizards, and specialized viewers.

The remainder of this paper is organized as follows. Section 2 discusses the background

for the study. Section 3 focuses on the main topic: the design and implementation of the

AMGA web application. Finally, Section 4 concludes the paper.

2. Background

In this section, we briefly describe web application technique, security in AMGA service

and RCP-based AMGA Manager.

2.1. Rich Ajax Platform (RAP)

The RAP is an extension of the RCP for creating plug-in-based, interactive web

applications. The most important advantage of using RAP is the reuse of existing Eclipse

RCP and technologies such as the Standard Widget Toolkit (SWT) and JFace, as well as plug-

ins, extensions and extension points, Open Service Gateway initiative (OSGi) services, and

others. The HTML and JavaScript requirements of web applications are provided for RAP,

and developers do not have to be familiar with those technologies [9]. In [10], the main

benefit of the proposed solution asserts emphatically an increase of code reusability as well as

platform independency, system scalability and modularity. The primary aim of the RAP

project is to enable developers to build Rich Internet Applications (RIA) using Java, without

having to learn a big stack of new technologies by means of the Eclipse development model.

As far as I know, RAP allows developers to build rich, Ajax-enabled web applications using

full Java™ libraries and Java-only APIs, by providing Web-enabled implementation of SWT,

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

271

JFace, and the Eclipse Workbench. Two technology projects (RAP2 and eRCP3) under the

Eclipse.org umbrella provide an alternative runtime environment for RCP applications. In

simple, practical terms, this means that applications normally running as desktop applications

on a PC can be deployed to other runtime environments. Once a user has a ready-to-launch

RCP-based application, transforming it from RCP to RAP makes it possible to launch it on a

server through which clients can use it with a Web 2.0-centric interface on a browser.

Significantly, there is no need for the user to install any further add-ons or plug-ins. In order

to achieve full compatibility between the platforms, many concepts implemented in SWT

need to be adapted to other runtimes. These are hidden behind the public API, which remains

synchronous across all runtime projects [11]. The most important consideration for

transformation of web applications is that RAP applications run multiple user sessions within

a single application instance. Also, so as to change all dependencies according to RAP, RAP

UI libraries and extension points must be considered.

2.2. Security in AMGA

To design the secure connection of AMGA web application, we needed to know the

security of AMGA. AMGA’s security mechanisms are contained entirely from the

mechanisms provided by gLite. The basis for the Grid’s security infrastructure is GSI and on

top of GSI, a service to manage the security policy of a VO. On top of GSI, is the VOMS

which was developed by the European DataGrid (EDG) project, a predecessor of the Enabling

Grids for E-sciencE (EGEE) project [12]. Grid certificate, either GSI or VOMS, are the

preferred way of authenticating users on a Grid setting, as depicted on Figure 1. For

authorization, it would be possible to use the information included in the certificate directly,

such as the distinguished name (DN), or the role and capabilities information encoded in a

VOMS certificate. In fact, this is done by some catalogs, such as the Globus replica location

service [13].

Figure 1. Security in AMGA

In addition, AMGA supports a fully independent local policy with its own users and

groups in dealing with the GSI/VOMS policy. Authorization is done solely using this local

policy. This level of indirection between the GSI/VOMS and the local security policy requires

a system to map between the two of them. This mapping is done after authentication in

accordance with a policy defined by the AMGA administrator, based on one of mapping rules

(the DN, the VO role, and the VO membership) defined in the user certificate [14]. In a

nutshell, there are 4 types of authentication which consists of x.509 certificates, Grid

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

272

certificates, VOMS Certificates, and User ID/Password authentication to access the AMGA

service, which each login procedure needs.

2.3. AMGA Manager

AMGA Manager is a general-purpose GUI toolkit for AMGA service. Its many easy-to-

use features for improving usability and convenience include automatic query composition,

importing and exporting of metadata into a spread sheet, and filtered metadata searching.

Portability having been one of the most important toolkit-design considerations, the Eclipse

Integrated Development Environment (IDE) helps AMGA Manager work on various

heterogeneous platforms: Linux, Windows, and Mac. Such diverse features help users build

metadata searching environments more easily and faster and boost productivity in managing

large-size metadata on Grid environment. Figure 2 illustrates the connection with Grid proxy

to access AMGA service, collection menu (management), attributes viewer to show attributes

with data type and length, and schema browser including data, attributes, Access Control List

(ACL) and index management.

Figure 2. AMGA Manager: Schema Browser

3. Design and Implementation

3..1 User Requirements

We analyzed the requirements of the Belle II community, one of the largest user groups

using AMGA [6]. As shown in Table 1, Belle II users wanted AMGA web application to have

easy access, simple functions, management of server, low OS dependency, using various

types of web browsers, and a large-scale data in/out processing.

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

273

Table 1. Belle II User Requirements Analysis

Classification User Requirements

Accessibility

• Minimize firewall and security issues

• Run stand-alone against Grid UI

• Use easily with Grid authentications (Grid/VOMS proxy)

• Use directly with X.509 certification and ID/PW authorization

Functions

Simplification
• Simplify a number of functions for Belle II general

users compared with AMGA Manager

Server set-up

• Modify environment variables in configuration files

• Manage a list of AMGA Sites

• Manage AMGA service running (start, stop, restart)

Client OS • Reduce the OS dependency

Interface • Support various web browsers (IE, Firefox, Chrome, etc.)

Data In/out • Support a large-scale data in/out

3.2. Design

The design AMGA web application shares the AMGA Manager design, because this

development is to be transformed mainly in consideration of multi-users and RAP plug-ins,

according to the concept of reuse packages developed by Eclipse RCP (according to the RAP

project, 70% - 90% reuse is possible) [8]. But all features of AMGA Manager are imported

into the web application along with these added administrator functionalities: controlling the

AMGA configuration and the behavior of AMGA services. In Figure 3, this administrative

module directly accesses the AMGA services without using any AMGA APIs or run Linux

commands on the OS platform. Also shown is a list of other, related AMGA services written

according to the amgad configuration, which allow a site administrator to restart the AMGA

service after changing certain variables, in order to improve service performance or change

service environments.

Figure 3. Design Range of AMGA Web Service

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

274

The other functionalities of the AMGA web application are the same as or similar to

AMGA Manger in the aspect of basic GUIs. Although AMGA web application does not have

delicate and complicated functionalities, it provides more convenient accessibility compared

to other AMGA interfaces: AMGA Manager, AMGA APIs and mdclient/mdcli.

3.3. Architecture

The architecture of AMGA web application is shown in Figure 4. AMGA web application

interacts with AMGA server through a set of AMGA Java API and AMGA configuration and

service control API after authentication/authorization in the connection module. The AMGA

configuration and service control API allows to control the service and to change the service

parameters at AMGA server. The RCP source files of collection Management, metadata

management, properties management and SQL editor modules are reused and service

management is made of new RAP coding. Then all RCP components are changed to a web

service, based-on the concept of service-oriented computing, at transformation layer: RAP-

based AMGA web application [15].

Figure 4. AMGA Web Application Architecture

3.4. Development environment

The development environment of AMGA web application consists of the following three

categories:

(1) Server environment:

Server environment has the main role to provide web service relating to AMGA service.

(2) Client development environment:

Client development environment allows developers to transform RCP, AMGA

Manager to RAP, and develop the components of a web service and test the function

level in the AMGA web application.

(3) Client testing environment:

Client testing environment is used only for the purpose to test the web service while

running.

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

275

The development environment, including the test and debug environments, contains an

SLC5 OS-based tomcat servlet container interacting with AMGA (ODBC: psqlodbc-

08.03.0200, Backend DB: Postgresql). We used Eclipse for RCP and RAP developers (a

development toolkit known as Integrated Development Environment (IDE)) in the coding,

debugging and testing phases in order to accelerate the overall development process. As a

prerequisite, JDK 1.7 was installed on the server side as well as client side. On the client side,

the web application was tested in several web browsers (Opera, Chrome, Internet Explorer,

and Firefox) working on various OS platforms (Mac, Debian, and Windows) as in Table 2.

Table 2. Development Environment of AMGA Web Application

Server

environment

OS SLC5

Web server Apache Tomcat 6.0.35

Java JDK 1.7

Backend DB Postgresql 9.0.9

ODBC psqlodbc-08.03.0200

AMGA AMGA 2.3(server/client)

Client

development

environment

OS Windows 7

Development toolkit Eclipse for RCP and RAP Developers

Java JDK 1.7 for Windows 64bits

Client

Testing

environment

OS Mac/Debian/Windows XP/7

Java JDK 1.7 for Mac/Linux(32/64bits)/Windows(bit/64bits)

Web browser Opera, Google Chrome, Internet Explorer, Firefox

3.5. Eclipse for RAP

Table 3. Plug-ins for AMGA Web Application

AMGA Manager
kr.re.kisti.amga.editor, kr.re.kisti.amga.voms,

kr.re.kisti.amga.editor.feature

gEclipse

&

VOMS plug-ins

eu.geclipse, eu.geclipse.core, eu.geclipse.core.filesystem,

eu.geclipse.core.jobs, eu.geclipse.core.reporting,

eu.geclipse.efs.gridftp, eu.geclipse.glite.info, eu.geclipse.globus,

eu.geclipse.globus.ui, eu.geclipse.info, eu.geclipse.jsdl,

eu.geclipse.jsdl.model, eu.geclipse.keystore.ui, eu.geclipse.ui,

eu.geclipse.voms, eu.geclipse.voms.ui,

eu.geclipse.workflow.model, org.bouncycastle, org.globus

UI plug-ins

org.eclipse.rap.ui,

org.eclipse.nebula.widgets.nattable.core,

org.eclipse.nebula.widgets.nattable.dataset,

org.eclipse.nebula.widgets.nattable.extension.glazedlists

Entry Point org.eclipse.rap.ui.entrypoint

The Eclipse environment setup for the implementation of AMGA web application

proceeded with the procedure below.

- Install an Eclipse and install RAP tools into the Eclipse IDE

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

276

- Run Eclipse.exe

- Download AMGA Manager plug-ins from SVN
1
 and relating plug-ins in Table 3.

- Setup and check AMGA web application running

- Check web browser: http://127.0.0.1:9090/amga

The RAP tools provide a dedicated launcher to start RAP application directly from

the IDE. The AMGA web application is running at a default port chosen by the launcher

if the RAP application is selected the without port number and the running information

is registered in Eclipse Run menu.

Figure 5 shows our AMGA configuration in the Run/Run Configuration menu to

create a new launch configuration and to start RAP applications directly from the RAP

launcher that was used for applications based on OSGi. During this time, we checked

internal browser, wrote ‘9090’ in the port configuration field and ‘amga’ for Servlet

Path and, selected fms in order to open AMGA web application in a browser.

Figure 5. AMGA Web Application

3.6. Implementation

We first changed all of the RCP-based AMGA Manager dependencies to RAP

versions and performed debugging so as to convert the RCP source files to RAP ones.

Since all AMGA Manager APIs were not available in RAP, and some AMGA Manager

APIs (such as Graphic Context (GC), StyledText, FileDialog and MouseMove Event)

caused up to approximately 1,200 errors. RAP-unsupported APIs, as described above,

were needed to change to alternative APIs: Text for StyledText, Canvas for GC, Upload

for FileDialog, and Canvas for MouseMove. FileDialog isn’t particularly supported by

RAP environment due to browser security restriction, so we had to substitute FileDialog

with Upload plug-in supporting HTTP streaming.

1
 https://amga-qui.googlecode.com/svn/

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

277

if (Activator.getCtx().getAuthMode()==MDServerConnectionContext.AUTH_GRID_PROXY) {

 AuthenticationTokenManagermanager=AuthenticationTokenManager.getManager();

 if (manager.getTokenCount() > 0) {

 java.util.List<IAuthenticationToken>tokens=manager.getTokens();

 for (IAuthenticationTokentk:tokens){

 if (tk.getID().equals(Activator.getTokenID())){

 try {

 break;

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 }

}

Figure 6. Example of Implementation of VOMS API

Figure 6 is an example of implementation of VOMS API. Because the plug-ins

relating to gEclipse VOMS are running on the Eclipse RCP, it is impossible to be

supported from Eclipse RAP. So we needed to implement VOMS API directly for Java

using the library. For that reason, we changed org.eclipse.ui to org.eclipse.rap.ui, the

plug-in for RAP, in consideration of the UI libraries because RCP and RAP needed

different platforms. Session-based singleton was used for a web application to provide

multi-users simultaneous access. We also developed add-on interfaces to handle the

AMGA configurations and services, and to show the list of AMGA sites.

Figure 7. Main Web Page

As illustrated in Figure 7, after a successful login with proper authentication, users

will be able to browse AMGA collections hierarchically according to the specific

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

278

metadata schema with its entries and attributes. At this time, the most of the code is

being executed on the server side, whereas the thin-client side, users’ PC running the

web browser, is only updated when needed.

4. Conclusions

In this paper, we have discussed implementation of a general -purpose AMGA web

application through transformation of the RCP-based AMGA Manager to a RAP-based

web service through Belle II user requirements analysis. A powerful RAP enables to

quickly and easily embed data and metadata features inside their own web service. The

AMGA web application provides the basic manipulation functionalities of AMGA

Manager as well as administrator functionality for manipulation of AMGA

configurations and handling AMGA services. After a successful login, users are able to

browse the hierarchy of AMGA collections, to inquire about their schema, permissions

and entry list. Users also have the ability to manipulate collections, their metadata

schema, entries, access control, user/group information, federation, plain table,

export/import metadata files, service configuration, service behavior and list of AMGA

sites; all of this is accomplished via a user-friendly web interface that removes

complexities to enable easier accessing Grid services, encapsulates AMGA syntaxes,

and provides SQL editor for automatic query composition, various wizards, and

specialized viewers.

In the future, we plan to conduct a further analysis on the requirements of the Belle II

community, which conduct high-energy physics in Japan by porting the AMGA web

service to it; on the basis of that analysis, we will introduce new features that better

reflect users’ requirements. Ultimately, we aim to provide not only precisely

customized AMGA web services for Belle II but also generic AMGA web services for

existing AMGA users. Analogously, we will be able to provide this for other R&D

communities such as biomed infrastructure and medical data management in France,

DKRZ climate research in Germany, the digital library in Italy, and so on.

Acknowledgements

This work has been partially funded by the European Commission as part of the EMI

(Grant Agreement INFSO-RI-261611) project.

References

[1] J. Lee, “Design of Document Profile Database for Browsing in Information Retrieval Systems”, International

Journal of Software Engineering and Its Applications, vol. 1, no. 1, (2007), pp. 78-88.

[2] AMGA, “ARDA Metadata Grid Application”, Available at: http://amga.web.cern.ch/amga, (2008) August 24.

[3] T. Huh, S. Hwang and G. Park, “Implementation of AMGA GUI Client Toolkit : AMGA Manager”, The

Journal of the Korea Contents Association, vol. 12, no. 3, (2012), pp. 421-433.

[4] N. Santos and B. Koblitz, “Metadata services on the grid”, Proceedings of the Advanced Computing and

Analysis Techniques, DESY, Zeuthen, Germany, (2005) 22–27 May.

[5] B. Koblitz, N. Santos and V. Pose, “The AMGA Metadata Service”, Journal of Grid Computing, vol. 6,

(2008), pp. 61-76.

[6] S. Ahn, J. H. Kim, T. huh and S. Hwang, “The Embedment of a Metadata System at Grid Farms at the Belle

II Experiment”, Journal of Korean Physical Society, vol. 59 , no. 4, (2011), pp. 2695-2701.

http://amga.web.cern.ch/amga

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 3, May, 2013

279

[7] S. Scifo and V. Milazzo, “Amga wi - amga web interface”, Conference on Hypermedia And Grid Systems,

IEEE, (2007).

[8] N. Santos and B. Koblitz, “Security in distributed metadata catalogues”, Concurrency and Computation:

Practice and Experience, vol. 20, no. 17, (2008), pp. 1995-2007.

[9] Eclipse Foundation, Rich Ajax Platform (RAP), Available at: http://www.eclipse.org/rap/.

[10] C. Pastrone, M. Spirito, R. Tomasi and F. Riz, “A Jabber-Based Management Framework for Heterogeneous

Sensor Network,” International Journal of Software Engineering and Its Applications, vol. 2, no. 3, (2008), pp.

9-24.

[11] B. Muskalla, “Patterns for Single-Sourcing RCP and RAP applications”, EclipseSource version 1.1.4”

[12] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lorentey and F. Spataro, “From

gridmap-file to voms: Managing authorization in a grid environment”, Future Generation Computer Systems,

vol. 21, no. 4, (2005), pp. 549-558.

[13] A. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman and R. Schwartzkopf, “Performance and scalability of

a replica location service”, Proc. of the 13th IEEE International Symposium on High Performance Distributed

Computing (HPDC-13), IEEE Computer Society, (2004), pp. 182-191.

[14] S. Al-Fedaghi, “Developing Web Applications”, International Journal of Software Engineering and Its

Applications, vol. 5, no. 2, (2011), pp. 57-68.

[15] N. Santos and B. Kobliz, “Security in distributed metadata catalogues”, Concurrency And Computation-

Practice & Experience, (2008), vol. 20, pp. 1995-2007.

Authors

Taesang Huh received his B.S. degree in electric, electronic and

computer engineering from Sungkyunkwan University (SKKU), Korea,

in 2000 and the MS degree in information and communications

engineering from Gwangju Institute of Science and Technology (GIST),

Korea in 2002, respectively. He joined Korea Institute of Science and

Technology Information (KISTI) in 2002 and he is a senior researcher of

National Institute of Supercomputing and Networking (NISN) at

KISTI. His research interests include Metadata Catalog, Distributed

Computing, Cloud Storage, e-science and information system.

Geunchul Park received his B.S. and the M.S. degree in computer

engineering from Chungang University (CAU), Korea, in 1998 and in

2000, respectively. He joined KISTI in 2006 and he has been a senior

researcher of NISN at KISTI. His research interests are in the areas of

Metadata Catalog, Grid Computing, Cloud Computing, Data

Management, e-science and database.

Jae-Hyuck Kwak received the B.S. degree in Information and

Computer Engineering from Ajou University in 2001 and the M.S.

degree in Electrical and Computer Engineering from Seoul National

University in 2003. He joined KISTI in 2003. Currently, he is a

senior researcher of NISN at KISTI. His research interests lie

primarily in the issues concerning High Performance Computing,

Distributed Computing Technology, and Data-intensive Computing.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 3, May, 2013

280

Soonwook Hwang received the B.S. degree in mathematics and the

MS degree in computer science from Seoul National University (Korea),

in 1990 and in 1995, respectively. He also received the Ph. D. degree in

computer science from University of Southern California in 2003 under

the supervision of Dr. Carl Kesselman, one of pioneers in Grid

computing. He was a visiting scholar at Information Sciences Institute

(ISI) in US in 2003. He worked for Japanese National Grid Initiative

(NAREGI) as a researcher, which is a Japanese National Grid project

started in 2003 for five years, aiming at developing grid middleware for

next-generation Cyber Science infrastructure. In 2006, he has joined

Korea Institute of Science and Technology Information (KISTI) and has

been a principal researcher of Supercomputing center. His research

interests are in the areas of Grid computing, high throughput computing,

Cloud storage, e-science and information system. Dr Hwang has been

Editor-in-Chief of the Journal of Convergence Information Technology

since 2009 and AMGA supervisor in European Middleware Initiative

(EMI) since 2010.

Sunil Ahn is a research staff in the supercomputing center at KISTI in

Korea. He obtained his Ph.D degree in parallel computing from Seoul

National University (Korea). He has several published journals and

conference articles largely in the grid and its application field.

