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Abstract—This paper presents an energy-efficient high-
throughput and high-precision signal component separator (SCS)
chip design for the asymmetric-multilevel-outphasing (AMO)
power amplifier. It uses a fixed-point piece-wise linear functional
approximation developed to improve the hardware efficiency of
the outphasing signal processing functions. The chip is fabricated
in 45 nm SOI CMOS process and the SCS consumes an active
area of 1.5 mmZ. The new algorithm enables the SCS to run at a
throughput of 3.4 GSamples/s producing the phases with 12-bit
accuracy. Compared to traditional low-throughput AMO SCS
implementations, at 0.8 GSamples/s this design improves the area
efficiency by 25x and the energy-efficiency by 2. This fastest
high-precision SCS to date enables a new class of high-throughput
mm-wave and base station transmitters that can operate at high
area, energy and spectral efficiency.

Index Terms—Application specific integrated circuits (ASIC),
asymmetric multi-level outphasing (AMO) power amplifier, base-
band, energy efficiency, linear amplification by nonlinear compo-
nent (LINC), Signal component separator (SCS), throughput.

I. INTRODUCTION

IGH-THROUGHPUT wireless communication systems

working at the millimeter-wave (mm-wave) frequency
range from 60 GHz to 90 GHz [1]-[7] have recently become
the focus of research and development activity. The availability
of large chunks of bandwidth and maturity of CMOS process
technology provide the opportunity to address several large mar-
kets with bandwidth-demanding communication applications.
Meanwhile, these mm-wave applications place great challenges
on the transceiver design, due to factors such as power-ampli-
fier (PA) efficiency and linearity, high wireless channel loss and
multipath, increasing parasitics for passive components, limited
amplifier gain etc. Even in cellular base stations, the drive to-
ward flexible, multi-standard radio chips, increases the need for
high-precision, high-throughput and energy-efficient backend
processing. The desire to best leverage the available spectrum
for these high-throughput applications, creates the demand for
high-efficiency and high-linearity PAs. While these conflicting
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PA design requirements have been satisfied in the past at low
system throughputs by designing smart digital back-ends, the
multi-GSamples/s throughput required in new applications puts
a significant challenge on digital baseband system design to per-
form the necessary modulation and predistortion operations at
negligible power overhead.

This desire for high-throughput energy-efficient digital base-
band becomes especially prominent for the outphasing PAs
designed to improve the efficiency while satisfying the high-lin-
earity requirements for higher-order signal constellations. At
low throughputs (10-100 MSamples/s), the outphasing PAs
would rely on complex digital signal processing to generate the
outphasing vectors and make it possible to use simple, high-effi-
ciency switching PAs on each path. Examples of the outphasing
PAs include the linear-amplification-by-nonlinear-component
(LINC) PA proposed by Cox in [8], and its more recent mod-
ification: the asymmetric-multilevel-outphasing (AMO) PA
[9]-11]. At high (multi-GSamples/s) throughputs, however,
a radical redesign of the signal component separator (SCS)
digital signal processing implementations is needed to prevent
degradation in net power efficiency due to significant increase
of digital baseband power consumption.

The conventional LINC SCS has been traditionally imple-
mented both in analog and digital designs [12]-[14]. The analog
versions of SCS are obviously not suitable for high-speed and
high-precision applications, so we only consider the digital SCS
implementations. The SCS decomposes the original sample
signal to two signals as required by the LINC/AMO, and the
decomposition involves the computations of several nonlinear
functions. For digitally implemented SCS, a look-up-table
(LUT) is the most common way to realize the nonlinear func-
tions. Considering that the past signal separators mainly work
below 100 MSamples/s with low to medium precision, LUT
indeed is the simplest and most energy-efficient approach.
Even for the recent AMO architecture, LUT is still a preferable
choice for operations under 100 MSamples/s [15]. However,
the traditional LUT-based function map quickly becomes in-
feasible when the throughput and precision requirements go up
to multi-GSamples/s and more than 10-bit range. The LUT size
becomes prohibitively large for on-chip implementations and
gives the penalty in both area and speed. Besides, the number
of LUTs used in the AMO SCS is significantly larger than in
the LINC SCS, so the LUT solutions that can barely work for
LINC render AMO implementations infeasible. On the other
hand, at these high throughputs a direct nonlinear function
synthesis through iterative algorithms like CORDIC [16] or
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TABLE I
LINC AND AMO SCS EQUATIONS

LINC Equations

AMO Equations

A=+/IP+Q?,6 =arctan(¥) (linc1)

A=+/I?+0%2.06= arctan(%) (amol)

o = arccos(44) (linc2)

o = arccos(

al4+A?—ad3 L a3+A —a}
a0 ), 0 = arccos( 1) (amo2)

@1 =0+0,9, =00 (linc3)

@1 =6+04,9 =6 —0p (amo3)

1

flo1) = 1+m:1((p1)’f((p2) = Tran(2) (amo4)

nonlinear filters [17] proves to be more area compact but with
prohibitive power footprint for the overall power efficiency of
the PA.

In this paper, we present the function synthesis algorithms
and a corresponding chip implementation, designed using an
alternative approach to compute the nonlinear functions, which
is both more area and energy-efficient than state-of-the-art
methods like LUTs, CORDIC or nonlinear filters. The chip
results demonstrate an AMO SCS working at 3.4 GSamples/s
with 12-bit accuracy and over 2x energy savings and 25X area
savings compared to traditional AMO SCS implementation.
The new approach is based on the piece-wise linear (PWL)
approximation of a nonlinear function. The approximation
consists of the computations of LUT, add, and multiply. In
order to minimize the computational cost while maintaining
high accuracy and throughput, we propose a novel algorithm
to find the fixed-point representation of the approximation.
The idea of the fixed-point version of the approximation is to
use as few operations as possible and minimize the number of
input bits to all the operations so as to achieve high throughput.
With these considerations, we are able to achieve a fixed-point
representation of typical LINC or AMO nonlinear functions,
which consists of one small LUT, one adder and one multiplier.
The hardware architecture derived from this special algo-
rithm achieves a nice balance among area, energy-efficiency,
throughput and computation accuracy, which will be presented
in details in the rest of the paper.

The paper is organized as follows. In Section II, we present
the basic principles of LINC and AMO PA architectures and
their corresponding SCSs. In Section III, we introduce the pro-
posed approximation algorithm and an example to illustrate its
derivations and advantages. In Section IV, we present the chip
design of the digital baseband system and the microarchitecture
of each block, followed by the chip measurement results. We
conclude the paper in Section V.

II. SYSTEM OVERVIEW

Both LINC and AMO PAs are outphasing PA architectures
and their digital basebands perform similar computations. The
LINC PA architecture is proposed by Cox in [8] with the moti-
vation to relieve the ever existing trade-off between the power
efficiency and linearity performances of the PA. By decom-
posing the transmitted signal to two constant-amplitude signals,
high-efficiency PAs can be used to amplify the two decomposed
signals without sacrificing the linearity. The AMO PA archi-
tecture, proposed in [9]-[11] improves the average power effi-
ciency further by allowing the two PAs switch among a discrete
set of power supplies rather than fixing on a single supply level.

AMO SCS

—

Multi-level
power supply

Phase modulator Phase modulator|
/

A f(o)= 4
aq f((p1) 1/(15.?3)”((9)) f(<P2) az

Digital baseband (AMO SCS)

f

I, Q symbols
(b)

Fig. 1. (a) LINC, AMO SCS. (b) AMO PA system overview.

Fig. 1(a) shows the working schemes of LINC SCS and AMO
SCS for an arbitrary IQ sample (I,Q). The SCS decomposes the
(LQ) to two signals with phases of ¢, ¢ and amplitudes of
a1, as, where for LINC a; = a3 = a. The outphasing angles
1 and > for both architectures are derived from the equations
summarized in Table I. In AMO equations, a1, as denote the
power supplies of the two PAs respectively. a1, as are restricted
to the set of V = {V1, V5, V3, Vi}, where V; < V5 < 13 <
V, are the four levels of supply voltages. Equations in (amo4)
of Table I are in the signal decomposition process simply due
to the architecture requirement from the digital-to-RF-phase-
converter (DRFPC) [18], which converts the digital outputs to
RF modulated signals and takes a function of the phase f(y)
as the input. Generally, computations in (amo4) depend on the
type of the modulator and may be different than what we present
here.

The typical low-throughput LINC SCS and recent AMO im-
plementations [12]-[15], [19] usually involve the use of co-
ordinate rotational digital computer (CORDIC) [16] and LUT
map for the nonlinear functions in Table I [14], [20]. The ma-
turity of the CORDIC algorithm and simplicity of the LUT



LI et al.: HIGH-THROUGHPUT SIGNAL COMPONENT SEPARATOR FOR ASYMMETRIC MULTI-LEVEL OUTPHASING POWER AMPLIFIERS 371

approach make themselves suitable for the LINC SCS appli-
cations whose throughput is below 100 MSamples/s and with
low to medium resolution (<8 bits for example). However, the
approaches become less attractive or even prohibitive for our
target mm-wave wideband applications where the throughput is
in the multi-GSamples/s range with high phase resolution (> 10
bits for example). In the next section, we show our proposed so-
lution: using fixed-point PWL approximations on the nonlinear
functions which provides a balance among accuracy, power and
area.

III. PROPOSED PIECE-WISE LINEAR APPROXIMATION

A. Algorithm

The motivation for a new approach to the nonlinear func-
tion computation is simple: avoid and replace complex compu-
tations with simple and energy-efficient computations. For ex-
ample, table look-up with LUTs of reasonable sizes, adders and
multipliers are the favorable computations to perform. We also
realize that all functions involved in the SCS computations are
smooth in almost the whole input range. Hence, they are suitable
to be approximated by functions with simple structured basis
functions, such as polynomials, splines and etc. These consid-
erations lead us to the PWL function approximation of the non-
linear functions.

Fig. 2(a) shows the general application of the PWL approxi-
mation to any smooth nonlinear function. The input = is divided
into several intervals, where a linear function y; = a; X x + ¢;,
x € [%4,T;41) is constructed in each interval to approximate the
actual function value in that range. With this approximation, the
computation of the nonlinear function only consists of the linear
function computation in each interval (add and multiply), plus a
relatively small LUT for the linear function parameters a;, ¢; in
each interval. In terms of accuracy, for any function which has a
continuous second-order derivative, the approximation error is
bounded by the interval length, the second-order derivative and
does not depend on higher-order derivatives, as shown in [21],

max
@y <w<aiq

" (@) (@
Here, z;, x; 11 are the boundaries of the " interval and y' is
the second-order derivative in 2:. We observe that the approx-
imation error can be made arbitrarily small as we increase the
number of approximation intervals. These initial examinations
on the computational complexity and approximation accuracy
of the piece-wise linear approximation make it an appealing al-
ternative technique for the LINC and AMO SCS designs.

In order to benefit from the nice properties of the PWL ap-
proximation, we need to tailor it to be hardware-implementation
friendly. Most importantly, all the arithmetic computations have
to be converted to their fixed-point counterparts, and the ques-
tion is whether the resulting fixed-point computations are able
to operate at multi-GSamples/s throughputs with high accuracy.
The most seemingly obvious solution is a direct quantization
of the parameters in the floating-point representation of the ap-
proximation formula. However, this may not be an optimal solu-
tion if throughput is the major concern and bottleneck, because
the operands of the add and multiply a;, ¢; are quantized to have

N y=f(x) P
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: |
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Fig. 2. (a) The general concept of PWL approximation. (b) Proposed fixed-
point PWL approximation.

the same long bits as the output, and these long-bit arithmetics
are likely to be in the critical timing path. Further optimization
of the long multiplication would only add complexity to the de-
sign. In what follows, we present a modified formulation of the
fixed-point PWL approximation and show its capability of run-
ning at a much higher throughput than the direct quantization
version of the approximation.

The setup of our problem is to compute a nonlinear function
of m-bit output with m-bit input - € [0, 1), using the PWL ap-
proximation. An m-bit input  can be decomposed to x; and
Xy asx = | 1 \ Lo ], where m = my + ma.

— -
m1—MSB bit mo—LSB bit
Naturally, 2; divides the input range to 2™ intervals and it is
the indexing number of those intervals. Fig. 2(b) shows an en-
largement of the i*" interval of the approximation, where
takes its ¢*" value, and x5 takes 2”*? values, ranging from 0 to
2™2 — 1. Under this setup, we have our proposed fixed-point
scheme shown in (2).

Y; = b; -1 -I—kZ(ILQ*SZ]_)/ i:(],l,...2"“71.
— - —_—
m1 —MSDB bit mgo—LSB bit
' . _ (2)
Here, y; = [y([5.0]). y([i. 1]}, - y([i. N2 — 1])]7,

Ty = (1/N)[0,1, -+, No — 1], 1 = [1,1,---,1]T € RM,
Ny =2 No=2m2 N =2" m=1mq+ma, k;, 5, b; R
and they are all fixed-point numbers.

The underlying idea of this formulation is to compute the
m-bit output part by part. In the linear function of each interval,
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we use the term b; to represent the most significant 1y bits of
the function value, and the term k; - (2 — S; - 1) to achieve
the lower-significant 7y bits of accuracy. Then y; is simply
the concatenation of the two parts. The procedures to find the
fixed-point representations of the three parameters &;, S;, b; in
(2) are described in the following steps.

Step 1: Obtain the Floating-Point Version of the PWL Ap-
proximation: The optimal real coefficients of the linear function
in each interval in terms of /5 norm can be found by least-square
optimization (3), where the design variables are £} and b] € R.
The superscripts denote that they are floating-point real num-
bers; 2 and y; are defined as in (2).

min fly; — (K - w2+ - 1), fori=0,1.2,.. Ny — 1,
(3)

The approximation error bound in (1) shows that the error is pro-
portional to (z;+1 — =;)2, which in the fixed-point input case,
equals 27271 Let m; = [m/2], then it is possible to realize
the required output m-bit accuracy with only 2(*/2! intervals.
Since the number of intervals determines the number of address
bits of the LUT that stores the parameters of the linear func-
tion in each interval, this LUT (2/"*/2! entries) is considerably
smaller than a direct map from input to output (2™ entries). The
following steps determine the fixed-point parameter values, i.e.,
the content of the LUT.

Step 2: Obtain the Fixed-Point Value b;: b; can be achieved
simply by quantizing the b} to m -bit. As we mentioned before,
the m-bit output is constructed part by part with b; as the con-
stant term in the i'" interval, representing the major part of the
function value in that interval. As long as the functional value
increment in each interval is less than 27" that is, the func-
tional derivative |y'(x)| < 1, it is enough to use the m1-MSB
of b; to represent the m1-MSB of the output.

Step 3: Obtain the Fixed-Point Value S;: Since Step 2 yields
a b; with a maximum quantization error of 27™!, to compen-
sate for the accuracy loss of &] — b;, an extra parameter .S} is
introduced such that k] S} = b7 — b;. Its fixed-point counterpart
S; is derived as in (4)

I A (] —b,,;))
S; = quantize (7(]4) . 4)
The number of bits of S; is determined such that £7.S; has the
accuracy of m + 1 bits. From our experience with the functions
involved in the SCS design, S; usually has the number of bits
around or a few more (i.e. 2—4) bits than m /2, depending on the
derivative &, of the function in each interval.

Step 4: Obtain the Fixed-Point Value k;: The slope of the
function in the i*" interval k; can also be obtained by simply
quantizing its floating-point counterpart from the optimization
procedure in Step 1. As shown in (2), the term &;(z3 — S; - 1)
contributes to the second part of the output- the mo LSBs. Since
x2 — 5; has an accuracy of at least m bits, k; has to have at least
ma bits to make the m» LSBs of the output.

The above procedure not only provides a way to obtain the
three fixed-point parameters of the linear function in each in-
terval, but also provides benefit in the high-throughput hard-
ware micro-architecture design. Fig. 3(a) shows the micro-ar-
chitecture of the approximation and (b) shows more clearly how
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Fig. 3. (a) Micro-architecture of the PWL approximation. (b) Illustration of the
computations in the PWL approximation.

the computations are carried out. There are essentially 3 arith-
metic operations involved: LUT, one adder, and one multiplier.
The LUT takes the m; MSBs of the input as the address and
outputs the parameters b;, k;, S; in the corresponding interval.
Then the linear function computations follow accordingly. From
Fig. 3(a), we notice that for all arithmetic computations, the
operands have only mq, mso or [ 4+ mq bits, but not m bits
as input. As we discussed in Step 1, it is a good choice to set
my = [m/2], hence with operands of m /2 bits (roughly) in all
computations, we are able to achieve the m-bit output.

This implies two important improvements in hardware
efficiency: storage and throughput. For a direct LUT imple-
mented function, if both the input and output have m bits, the
storage required is m - 2”7*. With the proposed scheme, the
storage is (2msg + Is + mq) - 2™, which is approximately
1.5m - 2™/2 ~ 2, - 2m/2 assuming m; = my = m/2 (when
m is even) and /, small (<4). A comparison on the storage
usage between the direct LUT map and the fixed-point PWL
approximation approach is illustrated in Table II, for practical
range of /m from 10 to 16. The last column of the table shows
the ratio of LUT size from approximation versus the one from
direct LUT map, which reflects the storage savings of 10—100x
for the range of values of interest. The net area advantage
of our approach versus the direct LUT will depend on the
actual technology and throughput specifications, since these
would dictate the type of the storage elements being used. For
example, in high-throughput applications, register-based LUTs
are needed while in lower throughput conditions, SRAM-based
LUTs can be used. Under both types of LUT implementa-
tions, the additional area consumption brought by one adder
and one multiplier is almost negligible compared to the LUT
area. For example, in 45 nm SOI technology, the direct LUT
implementation of a 16-bit in/out arccos function consumes an
area of 19 mm? in register-based implementation and 0.7 mm?
SRAM implementation. With the PWL approximation, area
consumption reduces to 46200 pm? with register implemen-
tation and 9784 ;m? with SRAM. The adder and multiplier
consume roughly 1280 pm? in total, which is only a small
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TABLE II
STORAGE COMPARISON EXAMPLES BETWEEN A DIRECT LUT MAP APPROACH
AND FIXED-POINT PIECE-WISE LINEAR APPROXIMATION APPROACH

m | Direct LUT size L1 (bits) | Approx. LUT size L2 (bits)| Improvement
ratio(L1/L2)

10 10210 20%2° 24

12 12x212 2420 2°

14 14x214 28x27 20

16 16x210 32x28 27

portion compared to the overall area consumption. Obviously,
the PWL approximation has a large advantage in storage size
and the advantage becomes more prominent as the input and
output size increases. As for the throughput, because of the
short operands and LUT address, the whole chain of operations:
LUT, add and multiply can be easily pipelined into a few stages
depending on the process and throughput requirement. For ex-
ample, with a 45 nm SOI process, we use two pipeline stages:
table lookup, adder in the first pipeline stage and multiply in the
second pipeline stage, and this structure can sustain roughly a
2-GSamples/s throughput to compute a 15-bit input and output
nonlinear function.

As aside note, an alternative way to write our formulation (2)
is

yi:]{7¢'I2+(—]€i5i'1+bi'1)=/<7i~$2+(1i. %)

To compare the two formulations, we consider the following
two aspects: storage size and arithmetic computation com-
plexity. In terms of storage size, formulation (2) requires
(m1+ma+mg+1,) 2™ = (2ma+my +1,)- 2™ bits while
(5) requires (mq + mo + ma) - 2™ = (2mo + mq) - 2™ bits.
Formulation (2) does require a little bit more storage of {,, - 2"
bits, however, it brings the advantage of shorter operands of
the add operation. In terms of arithmetic operation complexity,
formulation (2) requires an adder with ms + I, and mo-bit
operands, an multiplier with ms + I, and ms-bit operands,
while (5) requires an m-bit full adder and m»-bit multiplier. As
m gets large, the long adder in (5) may need further pipelining
and complicates the design at high throughput. Furthermore, the
optimization lets b; represent the first 721 bits while it chooses
k; and S; in (2) so that k;(x2 — S;) exactly represent the rest of
the m bits, to avoid any overflow and an additional adder. Our
design is more throughput rather than area-limited, therefore
with the above considerations, we choose to use formulation (2)
to achieve a higher throughput with more compact arithmetic
hardware.

B. Piece-Wise-Linear Design Example

In this section, we show an example of computing a
normalized 16-bit input, 16-bit output arccosine function
y = arccos(x)/(27) using the proposed PWL approximation
approach. This function is one of the functions in the actual
AMO SCS design.

First, we obtain a floating-point representation of the
PWL approximation through the following least-square
minimization:

2, where

min || Az — |

T
4 1, 1, -, 1
I 1 N-1 ;
N2 N2 ’ N2 Nx2
T s T
= [ o b1 N1:|
bl T T T s
ko kT 3 Py
Yo,0 Yn-1,0
Yo1 YnN-1.1
B= (6)
Yo N -1 UN-1,N-14d vy N

Here, N = 8, half of the number of input bits; v; ; = y([¢, j]) =
arccos((2Vi+7)/22N)/(27),4,5 =0,1,... N — 1, and i acts
as the address for the LUT. The optimal floating-point parame-
ters b", k" yield a maximum absolute error < 2~ for the input
range z € [(,0.963]. For input z € (0.963, 1], the PWL approx-
imation does not behave as well because of the large derivative
value when the input approaches 1. However, this case only hap-
pens when the input sample vector nearly aligns with the two
decomposed vectors, namely A is approaching a1 + a2 and «,
as — 0. One solution is to redefine the threshold values such
that those samples use a set of higher level of power supplies so
as to avoid the situations of 1, o — 0.

Then, we quantize the terms 4" and £ to 8 bits, and use (4)
to obtain the offset S. It turns out that the offset parameter uses
11 bits. And the resulting accuracy after all the quantization is
< 271 in terms of maximum absolute error.

Table IIT shows the place and route results of the hardware
implementation with the proposed approximation approach, as
well as other approaches as comparisons. There are two versions
of the approximation approach shown there with different ways
of handling the LUT: one version has the LUT programmable
and the other version has it hardwired. The approaches shown
there as comparisons include CORDIC and a 6th order poly-
nomial approximation. CORDIC [22] is a general iterative ap-
proach to implement the trigonometric functions. However, due
to its general purpose, it is much less energy-efficient and with
lower throughput compared to our PWL approximation. The
polynomial approximation, as another alternative to approxi-
mate the nonlinear functions, requires much more multipliers
than the PWL approximation, hence is also less energy-effi-
cient. As a summary, the proposed PWL approximation pro-
vides 6-20x improvement in energy-efficiency with significant
area savings over the competing approaches.

IV. CHIP IMPLEMENTATION

A. Overall Chip Design

The baseband design uses the 64-QAM modulation scheme
and has the target symbol throughput of 1-2 GSym/s. The
system has an oversampling rate of 4 or 2, resulting in a system
sample throughput of 4 GSam/s. The baseband needs to provide
at —60 dB adjacent channel power ratio (ACPR). In order to
meet this specification while overcoming the nonlinearity in
the phase modulator DAC [18], the baseband is designed to
achieve —65 dB ACPR with 12-bit phase quantization.

The baseband system has a block diagram as shown in Fig. 4.
It includes two parts of the design: supporting blocks and
AMO SCS. The supporting blocks upsample and pulse-shape
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TABLE III

COMPARISON BETWEEN PWL, CORDIC IMPLEMENTATIONS OF THE 16-bit INPUT, OUTPUT FUNCTION y{z) = cos™'(z)

Minimal Power consumption | Area (um Xum), Den- | Energy per operation
clock (mW) (post-extraction | sity (%) (pJ/op)
period(ps) simulation)

Proposed PWL (hardwired LUT) 792 3.24 (at 1GHz) 80 x 60, 80% 3.24

Proposed PWL (programmable LUT) | 856 7.23 (at 1GHz) 250 x 240, 77.5% 7.23

Unrolled radix-4 CORDIC 2600 63.1 (at 400MHz) 220 x 200, 81.4% 157.75

6th order polynomial 250 42 (at 1GHz) 200 x 200,70% 42
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Fig. 4. The block diagram of the chip.

the input symbol sequence from the 64-QAM constellation to
appropriate sample sequences, which are then fed to the AMO
SCS blocks. Shown in Fig. 4, the 3-bit I and Q symbols first
pass through a LUT-based nonlinear predistorter with a size
of (219) x 24 and produce 1/Q symbols with 12-bit accuracy
in each dimension. The system is not designed to have a
powerful nonlinear predistorter, so this simple predistortion
table is added only for preliminary symbol-space predistortion.
The table size is chosen such that the predistorter has some
memory while fitting in the die area. Then the 12-bit I and Q
symbols pass through a pulse shaping filter which oversamples
the symbols and produces 12-bit I and Q samples with shaped
spectrum. Interleaving is explored here to achieve even higher
throughput. The shaping filter produces one sample at the
positive edge of the clock and another at the negative edge.
Therefore, two copies of the AMO SCS blocks follow the even
and odd outputs of the filter.

The AMO SCS part, the zoomed-in part in the bottom of
Fig. 4, consists of four main sub-blocks: the Cartesian-to-polar
block, Amplitude-selection block, Outphasing-angle-computa-
tion block, and the angle function f () block. The Cartesian-to-
polar block computes the amplitude square and the angle of
the I/Q samples in polar coordinates, corresponding to equation
(amol) in Table I.

The Amplitude-selection block then takes the value of ampli-
tude square and selects the pair of power supplies for the PAs
in the two paths. Recall that the initial motivation to modify
the LINC architecture to the AMO architecture is to introduce
more supply levels to minimize the combiner loss especially
when the outphasing angle is large. Therefore, the choice of
the power supplies directly affects the average power efficiency.
According to the Wilkinson combiner’s efficiency [9] at sample
amplitude A and two PA’s supply voltages a;, a;

A\ [ p(atasy?
ne(4,0:05) = <<azlaj>> ( P ) ™
e ¢ T

we design the criterion shown in Table IV to select the pair of
power supplies, where

[thy, thy, - the]=[(2V1)?, (V1 + V2)%, (2V2)%, (Vo + V3)?,

(2V3)%, (Vs + Va)2, (2V)?] . (8)

and Vi <V, < V5 < V; are the four available power supply
levels. The criterion is designed to maximize the combiner’s ef-
ficiency (7) by using the smallest pair of power supplies while
still the power levels are large enough to form the transmitted
sample. Obviously, there are more than the 7 levels used here
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Fig. 5. The hardware block diagram of the SCS system.
TABLE IV TABLE V

CRITERION FOR POWER SUPPLY PAIR SELECTION. (A% = I? 4+ (@?)

ai, ap Criterion

Vi, Vi A< thy

Vi, Vo | thy <A2§lh2
Vo, Vo | thy <A2§th3
Vo, V3 | thy < A? <thy
Vs, V3 | thy < A% <ths
Vs, Vi | ths < A% <thg
Vi, Vg | thg <A2§lh7

that can be designed from 4 supply levels. An important factor
that motivates the choice of the 7 levels is the consideration
of minimizing the number of switching events with each of
the power supply. Power supply switching is accompanied by
ringing and slewing, which introduce nonlinear and memory
effects into the system and cause the spectrum outgrowth and
degradation in the linearity performance of the overall trans-
mitter. The rules in (8) make only one adjacent power supply
change when the sample amplitude jumps from one region to an
adjacent region. This is what happens most of the time because
the pulse-shaping filter smooths the I/Q symbol transitions and
limits the jumps between I/Q samples.

The Outphasing-angle-computation block computes the two
angles between the decomposed and transmitted vectors, corre-
sponding to equations (amo2) and (amo3) in Table I. The steps
of the computations are divided into four sub-blocks in Fig. 4.
Sub-blocks I and IT compute the argument of the arccosine func-
tion (A + a7 — a3)/(2Aa;), including square-root, inverse of
square-root and summation operations. The terms 1 /2a; and
(a3 —a3)/(2a;) in sub-block Il are two programmable constants
and selected after the determination of two supply levels. Then
sub-block IIT computes the arccosine function and IV computes
the final outphasing angles.

The last block of f() computation prepares the input signals
for the phase modulator we use, which take the form of 1/(1 +
tan{p)). The LUT used in this block can also be programmed to
compensate the static nonlinearity of the phase modulator DAC.

As asummary, Table V lists the arithmetic operations for each
functional block.

B. SCS Blocks Design

In this section, we show details of the micro-architecture of
each block in the SCS system. Fig. 5 shows the overall pipelined

SUMMARY OF ARITHMETIC OPERATIONS IN EACH
FUNCTIONAL BLOCK OF THE AMO SCS

Functional block Arithmetic operations
Cartesian-to-polar multiply, division, arctan

Amplitude selection Comparator

SUB_BLK I || square-root, inversion of square-root
Outphasing angles | SUB_BLK II || multiply, add
SUB_BLK III|| arccos
SUB_BLK IV|| add
f(®) block W

hardware block diagram. It is roughly a direct translation from
the conceptual block diagram in Fig. 4. The I/Q samples gener-
ated by the shaping filter first pass through the getTheta block
and produce the ¢ and |/|, |@|. The following getAipha block
then takes |/| and |Q|, selects the two power supplies and com-
putes the angles vy and «s. This roughly corresponds to the Am-
plitude-selection and Outphasing-angle-computation blocks in
Fig. 4. The angles a1 and «y, together with 6, are inputs to the
getPhi block, which computes the function 1/(1 + tan(y)) on
the outphasing angles 1, 2. This represents the f(¢) block
in Fig. 4. The final outputs of the SCS system are fy;1, fea,
quady, quads, and a1, as. Here, quad; and quads are quadrant
indicators of w7 and (s, respectively; fp1, feo are computed
with @1 @9 converted to the first quadrant; o and ay are the
digital codes that control the PA power supply switches. Next,
we see how each sub-block accomplishes its tasks.

1) getTheta Block: Fig. 6(a) shows the micro-architecture of
the getTheta block, which has two main operations as division
and arctan. With the PWL approximation algorithm discussed in
Section III-A, both functions can be realized with the micro-ar-
chitecture in Fig. 3. Before applying the approximation, it is
important to carefully examine the input and output range of
the function, because of the nature of the fixed-point computa-
tion. In order to have a good accuracy with the approximation,
it is desirable to have an input range where the function behaves
smoothly and has a nicely bounded derivative. Consider as an
example the division function. The division function /T has
two input variables, while the presented algorithm assumes a
single variable function. So the computation of /7 is divided
into 1/17, followed by @ x (1 /7). The inversion function 1 /7 has
a discontinuity at / = 0 and its derivative —1/I? becomes large
as || approaching zero. In order to use the PWL approximation
with good accuracy, several preprocessing steps are necessary
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Fig. 6. (a) The hardware block diagram of the getTheta block. (a) The hardware block diagram of the getPhi block.

to massage the input before doing the approximation of the in-
version function 1/7. We implement the following treatments
on the input, corresponding to the divPrep block in Fig. 6(a):

« Step (1): (I, Q) are first transformed to the first quadrant
as (I', Q') where I' = |I| and @' = |Q|. Use a flag of
two bits to indicate whether the current sample (I, @) is
actually negative or not.

Step (2): Swap I’ and Q' if Q' > I’, so the resulting
(I, Q") satisfies Q" /I € (0,1). The boundary values
of 0 and 1 are computed as special cases separately. Again,
use a flag to indicate whether the swap is performed on the
current sample.

Step (3): Shift the input I” such that 7”7 € (1,2). The
shift operation is always valid because the shaping filter
coefficients are programmable and can be designed such
that 7, Q) € [0, 1]. This step just means shifting the bits in
I to the left until the MSB is 1. Record the shifted number
of bits for each sample I”.

Although it is obvious that after the transformations, ¢"'/I”
is different from the desired output )/, these preprocessing
steps can be compensated. Specifically, the swap in Step (2)
and the absolute operation in Step (1) are taken care of after the
computation of #; and the shift operation in Step (3) are taken
care of after the computation of @' x (1/1").

» Step (1): Shift back accordingly after the computation of
Q" x (1/I'"). This is an operation included in the block of
divPost, together with the multiplication Q" x (1/1").
Step (2): After the computation of #’, for values whose flag
indicating a swap operation has happened, § = 7/2 — ¢,
otherwise # = ¢’. This is included in the atanPost block in
Fig. 6(a).

» Step (3): After Step (2), we need to check further if quad-
rant change has happened to the current sample, and adjust
the # accordingly. This is also a part of atanPost block.

With properly designed preprocessing, the input of inversion
function 1/ takes the range of (1, 2), and the input of function
arctan(z) takes the range of (0, 1). In these ranges, the func-
tions have nicely bounded derivatives, enabling them to be suit-
able for the fixed-point PWL approximation. The two function’s
approximation computations are represented by the blocks di-
vApprox and atanApprox in Fig. 6(a), whose micro-architecture
follows the one in Fig. 3(a). The overall getTheta block is able
to achieve a throughput of 2 GSamples/s in the place and route
timing analysis. The look-up tables that store the b, S, and &
for the two functions have sizes as summarized in the first two
lines in Table VI. The table also gives a size comparison to the
LUTs which are used directly to map the nonlinear functions.
There, we can see orders of magnitude of LUT size saved by
using our fixed-point PWL approximation approach. The ac-
curacy column also shows that an output accuracy of 14 bit is
achieved.

2) getAlpha Block: Fig. 7 demonstrates the detailed micro-
architecture of the getd/pha block of Fig. 5, also corresponding
to the conceptual sub-blocks I, II and III of the Outphasing-
angle-computation part in Fig. 4. The oy and &z computations
include two parts: obtain the argument to the arccos function
and calculate the arccos function itself. In order to obtain the
argument (a? + A% — a3)/(2A4a,), we rearrange the terms as

ai + A* —a?
2A(li

1
= 01A+CQZ, and ¢; =

- , Co
Z(Li



LI et al.: HIGH-THROUGHPUT SIGNAL COMPONENT SEPARATOR FOR ASYMMETRIC MULTI-LEVEL OUTPHASING POWER AMPLIFIERS

377

1-clk cycle| 1-clk | 2-clk cycle 2-clk cycle | 2-clk cycle |3-clk cycle 4-clk cycle |
| CyCIe | | Shift | | | |
| | T | | |
| ! ' g o | VPost | ! acodIn™ arccos [
| | L | ay |
I 16~ \/ /-\pprox TT 1 +12 +13 ADDrox —)‘—|15>
(1] =212 | SqrtPrep _}+ : : :
| "% 1 Approx + |12y 1y arccos 1% |
| G 1 ' I |1+ Post| ! I Approx |
! [ N N | | osln |
| [Magpq ! | |
Q=12 shift i ] | ! |
| I T3 : : :
—
l Comparator [, = i 8L
getAlpha A = :

Fig. 7. The hardware block diagram of the getA/pha block.

TABLE VI
SUMMARY OF ACCURACY AND LUT SIZE OF THE
PWL APPROXIMATED FUNCTION BLOCKS

max |error| | PWL Direct Improvement

LUT size | LUT size | ratio

1/x Te-5 30 %27 15x212 | 4

arctan(x) || 6e-5 25 x 27 15x 213 128

VX 2.3e-5 30 x 27 12x29 | 1638

1/y/x 8.2e-5 30x27 12x 21 1638

arccos(x) || 2.4e-5 30x27 15x 213 128

/(1 + | 1.6e-5 26 x 27 10x255 | 100

tan(x))

where constants ¢; and ¢y are programmable values and are se-
lected according to the selection of power supplies. The problem
with using the original formula (a} 4+ A% — a3)/(2Aa;) is the
long-bit division, whose inputs are on the same order of A2. On
the other hand, (9) involves no computations with inputs on the
order of A2,

The computations to obtain the terms A, 1/A4 in (9) include
approximations of the functions \/z and 1/+/%, whose inputs
are the sum of |7|? and |Q?|. Similarly as we discussed for the
division computation, certain input preprocessing is necessary
to avoid the large derivatives near discontinuity point at 0. The
SgrtPrep block of Fig. 7 serves this purpose by scaling the input
to the range of [1/4, 1), namely shifting two bits at a time either
to the left or right until the input fits to the range. Then the ap-
proximations to the two functions are performed and followed
by the postprocessing parts that compensate for the shifting op-
erations done to the inputs. With two more multipliers and one
adder, the computations of (9) are now accomplished. Then the
function arccos(x) takes the input arguments and obtain angles
a1, ez, which is already shown in the previous example. For the
three functions, The LUT sizes and accuracy for the three func-
tions are summarized in Table VI.

3) getPhi Block: Shown in Fig. 6(b) and as the final block
in Fig. 5, getPhi takes the outputs o1, a2 and & from the pre-
vious getAlpha and getTheta blocks and produces the final out-
phasing angles f¢1 and fso. The getPhi block first computes
the outphasing angles ¢1, 2 in the sub-block ftanPrep, then
1/(1 4 tan{y)) block computes the final outputs. Nominally,

the digital baseband SCS’s tasks end after the ftanPrep, deliv-
ering the outphasing angles themselves. However, there may be
additional signal processing task at the interface between the
digital baseband and the DRFPC phase modulator. In our case,
the phase modulator we intend to use requires such a function
on the outphasing angle as input.

After obtaining the outphasing angles as 1 = # — «; and
w2 = B4 ws, we convert them to the first quadrants and use 2-bit
flags quad; and guads to indicate the quadrants. This conver-
sion is necessary both for the sake of the phase modulator input
requirement, as well as acting as a preprocessing step for the
following functional approximation. By limiting the input to the
first quadrant, the function 1/(1 4 tan(y)) has nicely bounded
derivative as —1/(1 + sin(2¢)) in the range of [0, 7/2]. Other-
wise, the function has a discontinuity at 3w /4. So it is suitable
to apply the PWL approximation on this function as well. The
hardware cost in terms of the LUT size is again summarized in
Table VL

C. Experimental Results

With all nonlinear functions properly approximated and pa-
rameters quantized, the tested SCS output produces the signal
spectrum as shown in Fig. 8(a). Compared with the spectrum
at the shaping filter’s output, the SCS block reduces the ACPR
by 2 dB, from 67 dB to 65 dB, due to the approximation and
quantization errors. Fig. 8(b) shows the 64 QAM constellation
diagram between SCS output and ideal input, illustrating that
the SCS introduces EVM of 0.08%.

The digital AMO SCS system is fabricated in a 45 nm SOI
process, with 448578 gates occupying the area of 1.56 mm?2.
The chip runs up to 1.7 GHz (3.4 Gsample/s) at 1.1 V supply. As
shown in the shmoo plot of Fig. 9, lowering the power supply
voltage decreases the dynamic power of the SCS digital system
until it hits the minimum-energy point at lower throughput,
where leakage energy takes over. The minimum-energy point
of 58 pJ per sample or 19 pJ per bit in 64-QAM transmission
(assuming 2x oversampling) is measured at 800 MSamples/s
throughput. For typical PA efficiency of 40% and throughput
of 800 MSamples/s, at peak output power level of 1.8 W, the
total peak PAE is affected by less than 1% (46 mW/(46 mW +
1.8 W/0.4)) by this 64-QAM capable AMO SCS backend.
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The chip photograph is shown in Fig. 10, with annotated
blocks and sizes. The power breakdown of the AMO SCS is
illustrated in Fig. 11(a). Based on the reported post-place and
route power estimation values, the estimated contribution to
the total AMO SCS power at 2 GHz operation is shown. The
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Fig. 11. (a) Power breakdown of the AMO SCS design. (b) Area breakdown
of the AMO SCS design.

large proportion of the clocking power is in part due to the la-
tency-matching register stages on amplitude paths required to
compensate for the depth of the phase computations, and the
leakage power of the getPhi block is due to its programmable
LUT of the f(y) function. The area breakdown of the AMO
SCS is illustrated in Fig. 11(b), which shows the areas of major
functional blocks of the three main functions of the SCS. The
computation of the function of () takes over two thirds of the
area due to its programmable LUTs. A comparison of our work
with other digital/analog implementations of LINC/AMO SCS
is summarized in the first 5 columns of the Table VII. Our work
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TABLE VII
COMPARISON WITH OTHER WORKS
This work [13] [23] [19] [15] [15] [15] [15]
Analog/Digital Digital Analog Analog Digital Digital Digital Digital Digital
Functionality AMO LINC LINC LINC AMO AMO AMO AMO
Technology 45nm 0.25um 0.35um 90nm 90nm 90nm Scaled Scaled
No CMOS CMOS CMOS CMOS CMOS to 45nm to 45nm
CMOS CMOS CMOS
Throughput 3.4GSam/s,| 20MSam/s | 1.5MSam/s | S0MSam/s | 40MSam/s | 40MSam/s | 40MSam/s | Scaled to
0.8GSam/s 0.8GSam/s
Phase 12-bit N/A N/A 8-bit 8-bit Scaled to | Scaled to | Scaled to
Resolution 12-bit 12-bit 12-bit
Power 323mW, 45mW 80mW 0.95mW 0.36mW 8.64mW 4.32mW 86.4mW
46mW
Energy/Sample | 95pJ/Sam, | 2250pJ/Sam| 5333pJ/Sam| 19pJ/Sam | 8.9pJ/Sam | 212pJ/Sam| 106pJ/Sam | 106pJ/Sam
58pJ/Sam
Area | 1.5mm? 0.1mm? 0.6lmm? | 0.06mm? | 0.34mm? | 8.16mm? | 2.04mm? | 40.8mm?

demonstrates a design with the highest throughput and phase
accuracy to date. To show a more fair comparison with other
digital AMO SCS work, we scaled the design in [15] to provide
the same phase accuracy, technology node and throughput. The
scaled performances are summarized in the last 3 columns of the
Table VII, and our design shows more than 2X improvement
in energy-efficiency and 25x improvement in area. As a gen-
eral guideline, for applications with low/medium accuracy (e.g.
less than 8-bit phase resolution) requirement and low/medium
throughput (e.g. up to hundreds of MSamples/s), LUT is still
a good design choice because of its low energy-efficiency, rea-
sonable size and low design complexity. On the other hand, our
proposed approach is more suitable for applications with high
accuracy (e.g. greater than 10-bit phase resolution) and high
throughput (e.g. around GSamples/s) requirements.

V. CONCLUSION

In this paper, we present a chip design of a high-throughput
(3.4 GSamples/s) SCS for the AMO PA architecture. In order
to achieve energy- and area-efficient high-throughput opera-
tion, we developed a new fixed-point piece-wise linear approx-
imation algorithm for the computations of the nonlinear func-
tions in SCS design. This new algorithm and the corresponding
implementation achieve over 2x improvement in energy effi-
ciency and 25x improvement in area efficiency over the tra-
ditional AMO SCS implementations. The algorithm has nice
properties of few and simple arithmetic operations, short arith-
metic operands and small-sized look-up tables, and can be easily
pipelined to run at multi-GSamples/s throughputs. Designed in
45 nm SOI technology, this SCS implementation is the fastest
SCS implementation demonstrated to date. Though we demon-
strate the application of the approximation algorithm with the
AMO SCS, the approximations are directly applicable to LINC
SCS, and enable a new class of wideband wireless mm-wave
communication system designs with high energy and spectral
efficiency.
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