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DISCUSSION: “A SIGNIFICANCE TEST FOR THE LASSO”

BY JIANQING FAN1 AND ZHENG TRACY KE2

Princeton University

We wholeheartedly congratulate Lockhart, Taylor, Tibshrani and Tibshrani on
the stimulating paper, which provides insights into statistical inference based on
the lasso solution path. The authors proposed novel covariance statistics for test-
ing the significance of predictor variables as they enter the active set, which
formalizes the data-adaptive test based on the lasso path. The observation that
“shrinkage” balances “adaptivity” to yield to an asymptotic Exp(1) null distribu-
tion is inspiring, and the mathematical analysis is delicate and intriguing.

Adopting the notation from the paper under discussion, the main results are that
the covariance statistics (Theorem 1)

(Tk0+1, Tk0+2, . . . , Tk0+d)
d→ (

Exp(1),Exp(1/2), . . . ,Exp(1/d)
)

(1)

for orthogonal designs, and under the global null model (Theorem 2), T1
d→

Exp(1), and under the general model (Theorem 3), P(Tk0+1 ≥ t) ≤ exp(−t) +
o(1). These remarkable results are derived under a number of critical assumptions
such as the normality, the sure screening [borrowing the terminology of Fan and
Lv (2008)] or model selection consistency of the lasso path. As pointed out in Fan
and Li (2001), lasso introduces biases that are hard to account for. This together
with the popularity of lasso give rise to the importance of this work, which results
in informal statistical inference for the lasso. We welcome the opportunity to make
a few comments.

1. Asymptotic null distributions. A natural question is how accurate the ap-
proximation (1) is and whether it holds for more general design matrices. We il-
lustrate this using a small-scale numerical study. We take the same settings as in
Section 5.2 (Table 2) by considering the global null true model with four types of
design matrices: orthogonal, equal correlation, AR(1) and block diagonal, where
the parameter ρ = 0.8. We fix n = 100 and p = 10 and 50. When p = 50, the
marginal distributions of {T1, T2, T3} are very close to the theoretical ones given
by (1). However, when p = 10, the approximation is not accurate for the “equal
correlation” and “AR(1)” designs. Figure 1 depicts the results for p = 10. The ac-
curacies for the “orthogonal” and “block diagonal” designs are reasonable (omit-
ted) and the accuracy for T3 is in general worse than those for T1 and T2.
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FIG. 1. Quantile–quantile plots of the covariance test statistics versus their theoretical distribu-
tions under the global true null model with “equal correlation” design (top panel) and “AR(1)”
design (bottom panel) for n = 100 and p = 10, based on 500 simulations.

To check the bivariate behavior of the covariance statistics T1, T2 and T3, we
transform the statistics to have the asymptotic uniform distribution using (1). The
scatter plots of those transformed statistics are presented in Figure 2 based on 500
simulations. They are approximately uniformly distributed in the unit square. This
demonstrates that the test statistics are indeed asymptotically independent and that
the marginal distributions are accurate for the given setting.

The simulation results presented in Figures 1 and 2 suggest that (1) holds for
more general designs, not just for orthogonal designs. This corresponds to sug-
gesting that Theorem 1 of the main paper holds more generally.

For a more general case in Theorem 3, the authors give a nice upper bound. It
requires a sure screening property and other conditions. A large number of false
positives in the set A0 of the lasso path at step k0 should make the upper bound
very crude and the upper bound is tight when A0 is model selection consistent.
This can easily be seen from the orthogonal design case with the global null true
model. In this case, from (1),

Tk0+1
a∼ Exp(1)/k0,(2)

which is of course stochastically bounded by Exp(1) but this bound can be very
crude when k0 is large.



DISCUSSION 485

FIG. 2. p-values of Tk0 versus those of Tk0+1 for n = 100 and p = 10 with the orthogonal design
matrices (top panel) and n = 100 and p = 50 with the equal-correlation design matrices (bottom
panel) based on 500 simulations.

Getting the sure screening property is difficult for lasso when the irrespre-
sentable condition [Zhao and Yu (2006)] does not hold. This was demonstrated in
Fan and Song (2010) in which the design matrix is generated such that {Xj }p−50

j=1
are i.i.d. standard normal variables and the last 50 predictor variables are

Xk =
s∑

j=1

(−1)j+1

5
Xj +

√
25 − s

5
εk, k = p − 49, . . . , p,

where {εk}pk=p−49 are i.i.d. standard normal variables and {Xj }sj=1 are important
variables. They also noted that the larger the intrinsic model size s, the harder the
irrespresentable condition to hold; the larger the dimensionality, the harder the con-
dition. These follow from the definition of irrespresentable condition. The question
then arises what the null distribution is when there are many false positives or even
some false negatives.

To provide the insights, we fix n = 600, p = 2000, and s = 6, take the re-
gression coefficient vector β with β1 = · · · = βs = 5 and βs+1 = · · · = βp = 0,
and simulated 500 data sets. We computed the test statistic Tk0+1 at k0 = 6 and
k0 = 15. The results are shown in Figure 3. As expected, Theorem 3 continues to
hold, but the bound is uselessly crude. For k0 = 6, there are only 43.4% of the
lasso paths that have the sure screening or equivalently the model selection con-
sistency; others have both false positives and false negatives. As a result, while
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FIG. 3. Quantile–quantile plots of the covariance test statistics versus Exp(1). By taking k0 = 6
and k0 = 15, the percentiles of sure screening are 43.4% and 87.8%, respectively. The black/red dots
correspond to simulations with/without sure screening at step k0. The dash line on the right panel
has slope 1/9, matching the distribution given by (1) with k0 = 6 and d = 9.

Theorem 3 continues to hold, the bound is too crude. We have also taken k0 = 15,
which makes 87.8% of lasso paths to have sure screening. In this case, there are
many (at least 9) false positives. Not knowing the true model size is 6, we compare
it with Exp(1) distribution, which shows again that Theorem 3 is correct, but the
bound is too crude to be useful. Interestingly, although this is not supported by
Theorems 1–3, the test statistic Tk0+1 with k0 = 15 is very close to Exp(1/9), even
though there are many false positives or even false negatives. Is there any deeper
theory underpinning the plot or is it just a coincidence?

Another important condition is the normality assumption. This does not seem
as critical, thanks to the central limit theorem. For the orthogonal design case, the
variable XT

j y is approximately normal under some mild conditions. For the logis-
tic regression and Cox’s proportional hazards models, Figures 8 and 9 of the main
paper show that the covariance test statistic has approximately Exp(1) distribu-
tion. Formal verifications of these results pose some technical challenges, but are
interesting research problems.

2. Choice of the model size k0. The choice of model size k0 is critically
important. First, it should be large enough to ensure the sure screening. Second, it
should not be too large to make overconservative inferences. For the current paper,
k0 directly relates to the null distribution that is used for computing p-values.

Let Tk be the covariance statistic, defined by (7) and simplified in (9) in the
main paper. For a given k0, define

T̃k0,j = jTk0+j for j = 1, . . . , d.

When k0 is the correct model size so that the model selection consistency holds,
from (1), {T̃k0,j }dj=1 is a sequence of i.i.d. Exp(1) random variables. Therefore, the
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average

Qk0 = 1

d

d∑
j=1

T̃k0,j ≈ 1.(3)

A natural choice of k0 is the one that makes Qk0 closest to its expected value 1,
namely

k̂0 = arg min
k in a range

|Qk − 1|.(4)

The rationale is that when k0 is the true model size, for example,

E(Qk0+1) = 1

d

d∑
j=1

j

j + 1
= 1 − 1

d

d∑
j=1

(j + 1)−1,

which is less than 1 and when k < k0, EQk is expected to be much bigger than 1
(see Table 1).

To see the accuracy of this method, we note that it is typically the hardest to dif-
ferentiate the choice of k0 and k0 + 1 when the true model size is k0. The variance
of the difference is

var(Qk0 − Qk0+1) = d−2 var(Tk0+1 + · · · + Tk0+d − dTk0+d+1)

= d−2(
1 + 2−2 + · · · + d−2 + d2/(d + 1)2)

.

It follows that

E(Qk0 − Qk0+1)

var(Qk0 − Qk0+1)1/2 =
∑d

j=1(j + 1)−1

(1 + 2−2 + · · · + d−2 + d2/(d + 1)2)1/2

� log(d)√
1 + π2/6

as d → ∞.

TABLE 1
Selection of the model size k0. n = 500 and the true k0 = 2. Based on 1000 simulations, the mean of

Qk (with standard deviation in the parenthesis) and the distribution of selected k̂0 are displayed

p d k 0 1 2 3 4

10 6 mean Qk 9.30 (2.3) 4.40 (1.3) 0.76 (0.43) 0.48 (0.28) 0.33 (0.22)
prob(k̂0 = k) 0.0% 0.5% 79.9% 15.2% 4.4%

1000 6 mean Qk 6.31 (2.0) 3.00 (1.1) 0.93 (0.39) 0.66 (0.29) 0.53 (0.24)
prob(k̂0 = k) 0.0% 0.04% 64.5% 20.5% 10.8%

1000 20 mean Qk 2.58 (0.62) 1.53 (0.36) 0.85 (0.20) 0.72 (0.17) 0.64 (0.16)
prob(k̂0 = k) 0.0% 22.3% 61.6% 11.6% 4.5%
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Thus, the signal to noise ratio is large when d is large, but increases slowly with d .
Therefore, in practice, we do not wish to take a too large d due to the accuracy of
approximation (1).

We conducted a numerical experiment where n = 500 and p = 10 and
1000. The predictors {Xj }pj=1 are i.i.d. standard normal variables. Let β =
(6,6,0, . . . ,0)T , so the true k0 = 2. For fixed d = 6 and d = 20 (only when
p = 1000), we selected k̂0 from {0, . . . ,4} to minimize |Qk − 1|. Table 1 sum-
marizes the results based on 1000 simulations. When p = 10, the percentiles of
k̂0 = 2 (accurate) and k̂0 = 3 (overshooting by 1) are about 80% and 15%, and
there are almost no undershootings (k̂0 < 2). When p = 1000, the accuracy de-
creases to about 65%, but there are still almost no undershootings. Interestingly,
when we increase d to 20, the results become inferior, with about 22% of under-
shootings. This suggests that d should not be chosen too large that smooths out the
signals in Qk for k < k0 and makes (1) inaccurate.

3. Power of the tests. When we test the first few variables that enter the ac-
tive set of lasso, it is very often that there remain true active variables not yet se-
lected. The covariance test statistics are just one of many possibilities, constructed
carefully and intriguingly and supported by the nice asymptotic null distribution.
However, they are not necessarily the most powerful tests.

To understand the possible loss of the power of the covariance test, we consider
again the simplest setting where the design matrix is orthogonal, k0 = 0 (so the
null hypothesis is the global null) and σ = 1. It follows that

T1 = V1(V1 − V2),

where V1 and V2 are the first and second largest elements of {|XT
j y| : 1 ≤ j ≤ p}.

The factor V1 − V2 makes the null distribution very beautiful, but this can also
reduce the power of the statistic V1, which is equal to square root of the maximum
drop in RSS.

To demonstrate this, consider the specific alternative

β1 = β2 = θ, β3 = · · · = βp = 0,

where θ 
 √
log(p). With probability tending to 1, |XT

1 y| and |XT
2 y| are the

largest two elements. As a result, V1 is stochastically equivalent to that of
(θ + max{ε1, ε2}) + op(1) and V1 − V2 = |ε1 − ε2| + op(1) with ε1, ε2 being in-
dependent standard normal variables. It follows that

T1/θ
d→ ∣∣N(0,

√
2)

∣∣ and V1/θ
d→ 1.(5)

The statistic T1 and the maximum drop of RSS V 2
1 indeed have asymptotic power

one. On the other hand, (5) shows clearly that T1 is corrupted by an extra noise
|N(0,

√
2)| and is therefore less powerful.
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FIG. 4. Power curves based on 1000 simulations. n = 100, p = 10 and the predictors are drawn
i.i.d. from N(0,1). “Cov/Theory” and “Cov/Simulation” refer to the covariance test statistic T1, with
critical value being the 95% quantile of Exp(1) and the sample 95% quantile. “MaxCov/Simulation”
refers to the maximum of T1 and T2, and “RSSdrop/Simulation” refers to the maximum drop in RSS,
with critical values being the sample 95% quantile.

We illustrate this point using a small-scale numerical study. We use similar set-
tings as the left panel of Figure 4 in the main paper (n = 100, p = 10 and “orthog-
onal design”). Instead of having only one truly nonzero regression coefficient, we
set two equal nonzero regression coefficients. Figure 4 shows the estimated power
curves. When there is only one true nonzero coefficient, the covariance test statis-
tic and the maximum drop in RSS have similar powers as shown in Figure 4 of the
main paper. On the other hand, when there are two equal nonzero coefficients, the
statistic of maximum drop in RSS has a larger power, especially when the signal
strength θ is large. Interestingly, when we compute the covariance test statistics in
this case, it is quite often that the first entering variable is not very significant but
the second one is. We also compute the power when looking at the maximum of T1

and T2. It turns out that this test is more powerful than using T1 only. See Figure 4.

4. Validity of the results to other penalties. A natural question is whether
or not the results in the paper are tied to the lasso path. Given many nice bias prop-
erties of folded concave penalty [Fan and Li (2001)] and weighted lasso penalty
[Zou (2006)] functions, it is natural to examine the solution paths created by those
penalty functions.

For a general penalty function pλ(·), we define the covariance test statistic at the
knot λk the same as (5) in the main paper, except that β̂(λk+1) and β̃A(λk+1) are
computed with ‖β‖1 replaced by

∑
j pλ(βj ) in the expressions. Although there

are the issues on the uniqueness of the folded concave penalized least-squares,
Fan and Lv (2011) show that folded concave penalized least-squares estimator is
indeed unique in the sense of restricted global optimality.



490 J. FAN AND Z. T. KE

As in the main paper, we examine the showcase example in which the design
matrix is orthogonal. In this case, the penalized least-squares with folded concave
penalty is unique [Fan and Li (2001)]. By direct calculation,

Tk = Vk · hVk+1(Vk)/σ
2,(6)

where hλ(·) is a thresholding function defined by hλ(x) = arg minu{1
2(u − x)2 +

pλ(u)}. For the SCAD penalty [Fan and Li (2001)] with a parameter a > 2,

T scad
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vk(Vk − Vk+1)/σ

2, Vk ≤ 2Vk+1,

a − 1

a − 2
Vk

(
Vk − a

a − 2
Vk+1

) /
σ 2, 2Vk+1 < Vk < aVk+1,

V 2
k /σ 2, Vk ≥ aVk+1.

We can similarly show that for any fixed k ≥ 1,(
T scad

1 , T scad
2 , . . . , T scad

k

) d→ (
Exp(1),Exp(1/2), . . . ,Exp(1/k)

)
,(7)

under the global null true model.

PROOF. Let F(x) = (2
(x) − 1)I {x > 0}. From the proof of Lemma 3 in
the main paper, for ap = F−1(1 − 1/p) and bp = pF ′(ap), the random variables
W0 = bp(Vk+1 − ap) and Wi = bp(Vi − Vi+1), i = 1, . . . , k, converge jointly:

(W0,W1,W2, . . . ,Wk)
d→ (− logG0,E1,E2/2, . . . ,Ek/k),(8)

where G0,E1, . . . ,Ek are independent, G0 is Gamma distributed with scale pa-
rameter 1 and shape parameter k, and E1, . . . ,Ek are standard exponentials. In
addition, ap, bp → ∞ and ap/bp → 1 as p → ∞.

Note that T scad
i = T lasso

i , i = 1, . . . , k, on the event B = {Vi ≤ 2Vi+1,1 ≤ i ≤
k}. By (8) and the fact that apbp → ∞,

P(Vi > 2Vi+1) = P

(
iEi + logG0 −

k∑
j=i+1

jEj > apbp

)
= o(1).

Then P(Bc) ≤ ∑k
i=1 P(Vi > 2Vi+1) = o(1). Therefore, (7) follows immediately

from Lemma 3 and the Slucky’s lemma. �

For the MCP penalty [Zhang (2010)] with a parameter γ > 1, it can be shown
similarly that(

T
mcp
1 , T

mcp
2 , . . . , T

mcp
k

) d→ γ

γ − 1

(
Exp(1),Exp(1/2), . . . ,Exp(1/k)

)
.

For the weighted lasso penalty [Zou (2006)], the solution path depends on order
statistics of variables {w−1

j |XT
j y|}pj=1, where wj is the weight for variable j . These

variables are not identically distributed. It remains an interesting question to what
extent the current results can be generalized.
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5. Further comments. The mathematical results are derived when d and k0
are finite. A more interesting asymptotic framework is to let both d and k0 diverge
with n. See, for example, Fan and Lv (2011) for the joint asymptotic distribution
when the dimensionality grows with sample size.

The beautiful results in the paper are derived under the assumptions that the
signals are very strong and the designs are so nice that sure screening is possible.
These assumptions are difficult to meet in practice. Even when they are met, we
need to specify k0 which is hoped to be small and contains all important variables
(sure screening). Sure screening assumption implies that the null hypothesis is true.
What are we testing: sure screening hypothesis or significance of the newly en-
tered variable? Under the sure screening assumption, why not run the least-squares
based on the screened predictors and use splitted data (when needed), as suggested
in Fan and Lv (2008) and Wasserman and Roeder (2009)? The statistical inference
can be based upon the low-dimensional least-squares theory. To utilize the asymp-
totic null distribution without conservatism, we need to have the model selection
consistency assumption: the first k0 variables contain all important variables. If so,
why do we need the significance tests of the newly entered variables? Relaxing the
model selection consistency to sure screening does not help the matter very much.
Using the standard exponential distribution as the upper bound of the p-values, we
can mislabel many “important variables” as “unimportant ones,” a missed discov-
ery that we strive to avoid in high-dimensional inference.

The authors mentioned in the paper that they plan to construct confidence re-
gions for the lasso β̂(λ) at specific λ. The challenge here is that there are biases
involved in the lasso fit. Another challenge is to give a formal confidence assess-
ment that a group of “unimportant variables” are really unimportant. The efforts
are certainly welcome [see, e.g., Meinshausen, Meier and Bühlmann (2009) and
Zhang and Zhang (2014)]. We would like to note that for the folded-concave pe-
nalized least-squares or likelihood, the resulting estimator is the oracle estimator
with probability tending to one [Fan and Lv (2011)]. Therefore, the confidence
intervals can easily be constructed based on the low-dimensional likelihood in-
ference. However, it also remains to give confidence assessment that a group of
“unimportant variables” are really unimportant.

The authors have mentioned a couple of times the null distribution of the largest
RSS drop. This is equivalent to (1 − γ 2

n ), where γn is the maximum correlation
coefficient between the residuals at the current step of the forward regression and
the covariates. Under the global null true model, this is the maximum spurious
correlation between the response and each variable. The asymptotic distribution
for the maximum spurious correlation in case where all predictors are independent
has been derived in Cai and Jiang (2011). However, we do not expect that the
asymptotic null distribution is accurate enough for many applications.

In conclusion, the idea and results in the main paper are insightful and amaz-
ing. The technical arguments are delicate and ingenious. The authors should be
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congratulated again for successful adaptive inference based on the lasso solution
path. We hope that our comments contribute positively to the understanding of this
seminal article.
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