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One of our results: let X be a finite set on the plane, 0 < g < 1, then there exists a set
F (a weak g-net) of size at most 7/e2 such that every convex set containing at least e\X\
elements of X intersects F. Note that the size of F is independent of the size of X.

1. Introduction

This paper is about weak e-nets, point selections, convex hulls, and related topics. To
explain what they mean, we start with the assumption that d > 2 and

X c JR.d is a set of n points in general position. (1)
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We only assume general position to simplify the presentation: all of our results can be
extended to any finite set X using an appropriate limit procedure (and suitable extensions
of the definitions). Write (d

x
+l) for the set of all (d + l)-tuples of X. Since the points of X

live in JRd, these (d + l)-tuples can, and will, be called simplices when we consider their
convex hull. This should not cause any confusion.

We deal with the following three problems. Given a (large) set of simplices Jf c (d*j),
find a point that is contained in the maximum possible number of simplices. We call
this the point selection problem (Section 2, proof in Section 6). In the hitting set problem
(Sections 5 and 7), we shall look for a small set E meeting "almost all" simplices in ( ^ J .
Finally, in the weak e-net problem (Sections 4 and 8-10), given a set X and 0 < e < 1,
we look for a small set F such that any convex region C with \X n C\ > s\X\ contains
a point of F. We shall find several upper bounds for min |F|, together with polynomial
algorithms for finding a small set F.

2. Piercing many simplices by one point

A family Jf is called pierceable if there exists a point common to int conv(S) for every
S € Jf. We have the following Point Selection Theorem.

Theorem 2.1. Given d > 2, there exists a constant s = sj such that any family Jtf c (j+j),
with \34?\ = p{/li)- contains a pierceable subfamily Jf" such that

Here, and in what follows, we are using Vinogradov's notation. For two functions /
and g, f ^> g means that there are two absolute constants c\ > 0 and cj € IR such that
/ > c\g + c2 for all values of the parameters. Similarly, / > ^ g means that there are
constants c\{d) > 0 and ci{d) such that / > c\(d)g + C2{d) for all values of the parameters.

The first point selection theorem is due to Boros and Furedi [7]. They show that for
d = 2, the family (x) contains a pierceable subfamily of size (2/9) ("). This is extended for
any dimension in Barany [3], where it is proved that (d^j) contains a pierceable subfamily
of size at least

d + 1

The term "point selection" comes from Aronov et al. [2]. They prove, again when d = 2,
that any family ^C <= (*) of size rc3~a contains a pierceable subfamily of size

log5n

Thus, s = si = 3 + S will do (for any positive <5) in the point selection theorem in the
range p = n~~a, a > 0. Here we prove that, in general, one can take

Sd = (4d + l)d+l. (4)
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3. The multicoloured Tverberg theorem

Our point selection theorem will follow from a nice recent result of Zivaljevic and
Vrecica [19], which was also conjectured in [4]. The result is a "multicoloured" version of
Tverberg's theorem [16]. One form of the latter says that any set of (d + l)r points in TR.d

can be partitioned into t sets, Si, ..., St, each of cardinality d + 1, so that

In the multicoloured version, the (d + l)t points come in d + 1 classes C\, ..., Q+i , or
colours, each of cardinality t, and one wants to find "many" pairwise disjoint sets Sj, . . . ,
Sr, each of cardinality d +1, such that every St is multicoloured (i.e., |S,-nC/| = 1 for every
i and j) and

The question is how large t = T(r,d) must be in order to ensure the existence of such sets
Si, ..., Sr. In the planar case, one can take T(r,2) = r (see [5] or [12]) and this is clearly
best possible. Using tools of algebraic topology, Zivaljevic and Vrecica [19] show that

T(r,d)<2p(r)-1, (5)

where p(r) is the smallest prime that is not smaller than r. It is well known that p(r) < 2r—1,
whence T(r,d) < 4r — 3. We will see later that this is where the value in (4) comes from.

4. Piercing all large convex sets

A set F c Rrf is called a weak s-net for X if, for every Y <= X with |Y"| > en, the
intersection Fnconv(Y) is nonempty. At a DIMACS workshop in 1990, E. Welzl [17]
asked whether there exists a weak e-net for X whose size depends only on e and d. This
had been proved true in the planar case in [4] before Welzl posed his question; however,
the bound 0(e~1026) given in [4] is enormous compared to the bound in the following
weak e-net theorem.

Theorem 4.1. For any X czTR.d there exists a weak e-net F with

\F\ <Cd fi-^Mi-'/s).

Here, s is the constant s<i of the point selection theorem. In the planar case, (3) gives
S2 = 3 + S, i.e., a weak e-net of size O(£~(2+y)) for any positive 5'. We present here a
separate argument for the planar case.

Theorem 4.2. For any J c R 2 there exists a weak e-net of size le~2.

The proof works in any dimension but gives O(e~2d~') for the size of the weak e-net;
for d > 2, this bound is worse than the bound in Theorem 4.1. Also, in Section 10 we
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give an algorithm with running time O(nlog(l/e)), which, for a planar set, yields an e-net
of size O(g-4-818-).

Define

fd(£) = maxmin{|F| : F is a weak £-net for X},

where the maximum is taken over all X satisfying (1). It is clear that fd(s) > 1/e, so

-<fd(s)<de-(d+m-lM-e

It is not known whether efd (e) is bounded when e tends to 0.

Weak £-nets and the discrepancy of triangles. Consider the case when A" is a set of n
points chosen randomly, independently, and uniformly from the unit square. When e is
fixed and n is large, every triangle of area s (and contained in the unit square) will contain
about en points of X. Using this one can show that there is a weak e-net F for X of size
O((l/e) log(l/e)). On the other hand, finding a lower bound for \F\ leads to the following
old problem of Danzer (see [6] page 285) about irregularities of distributions. How many
points are needed to hit every triangle of area e contained in the unit square?

When X is the vertex set of a regular rc-gon in the plane, there is a weak e-net
of size O((l/e)2log (1/e)), where log* m denotes the function defined by the recursion
log*(2x) = 1 + log* x and log* 1 = 0 . This is a result of Capoyleas [8].

We do not know how large the smallest weak e-net is for a set of n distinct points on
the moment's curve {(t, t2, ..., td) : —oo < t < oo} in Rd.

A generalization of Helly's theorem. In [1] the above Theorem 4.1 is combined with
some additional tools to prove the following Helly-type result, solving an old problem of
Hadwiger and Debrunner.

Theorem. [1] For every p > q > d + 1, there is a (finite) c = c(p,q,d + 1) such that the
following holds: for every family Jf of compact convex sets in Rd with the property that
among any p members of the family some q are pierceable, there is a set F of at most c
points in Rrf so that every member of Jf contains at least one point of F.

An easy consequence of Theorem 4.1 is the following result.

Proposition 4.1. For every n > 0 and for every integer d, there is a c = c(r],d) such that
for every probability measure /j, on JR.d there is a set F of at most c points in Rd so that
every compact, convex set C of measure n(C) > n contains at least one point of F.

Let us sketch a proof of this result. By a usual compactness argument, it is enough
to prove the proposition for any finite family {Cj, . . . , CN} of compact convex sets,
with n(Q) > n for every i. Choose points x\, ..., xn randomly, independently, and
according to the distribution /i. Set X = {x\, •••, xn}. A straightforward applica-
tion of the large deviation theorem of Chernoff [9] says that the probability that
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\X n Q\ < %\X\ is very small. This shows that, with positive probability, for large
enough n we have

\X n Q\ > | \X \ for every i=l,...,N.

Fix such an X and let F be a weak £-net for AT, where e = rj/2. Then, clearly, F intersects
every C, and is of size 0(^'<i+1^1~1/'s'), completing the proof.

Another way of proving the proposition is to use the theorem establishing the Hadwiger-
Debrunner conjecture. Namely, one can show easily that the family of all convex, compact
sets whose measure is at least n satisfies the conditions of that theorem, with p = \d/rj~\ +1
and q = d + 1. This gives that c(rj,d) < c(p,q,d + 1). In fact, the first argument given
above gives a better bound on c(n,d).

5. Piercing most of the simplices by many points

It turns out that the point selection theorem is closely related to some other results, which
we now describe. We say that a set E misses S € (d*() if E n int conv(S) = 0. (Here,
again, X is assumed to satisfy condition (1).) The following hitting set theorem asserts the
existence of a "small" set E that misses only "few" members of Q ^ ) .

Theorem 5.1. For every n > 0 and X cJR.d, there exists a set E c JR.d that misses at most
G) of X and has size

\E\ <4 nl~s,

where s is the constant sj in the point selection theorem.

In fact we shall show that the hitting set and the point selection theorems are equivalent.
Observe that n may depend on n = \X\\ for instance, one may take n = n~1/s, which

gives a set E of size O(nl~^l^s)) missing at most O(nd+1~1/s) simplices of X. This special
case of Theorem 4 was proved in [4] for d = 2 with s = 343.

We emphasize again that the point selection, the hitting set, and the multicoloured
Tverberg theorems are equivalent. In fact, the multicoloured Tverberg theorem with
r = d + l implies the point selection theorem with s = sj = (T(d + \,d))d+x, and the latter
implies the multicoloured Tverberg theorem with T(r,d) <Cd r. The equivalence of the
point selection and the hitting set theorem is stronger, since it carries over to the exponent
s = Si. It would be interesting to know the smallest possible exponent sj.

Remark on halving planes. As observed in [2] and [4], the point selection theorem (or the
hitting set theorem) implies the following upper bound on the number Hd{X) of halving
hyperplanes a set X a IR** can have:

The simplest way of proving this bound is to use the fact that no line meets more than
( j^ ) halving simplices. (This was proved in [14] for the planar case, but the argument
goes through in R1* without difficulty.) Then the projection of X, and of the halving
simplices of X, to IR1*"1 gives rise to a family Jf in IR''"1 (on n points) so that no point
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is contained in more than {d
n_^) simplices of Jf. By the point selection theorem, 3f has

a pierceable subfamily of size »</ pSd~l Q), where |Jf | = p(f). So we get p <^ H " 1 ^ - 1 , as
required.

6. Proof of the point selection theorem

Here we prove Theorem 2.1. The method is similar to that of [4]. First, we define
V = V(X), the set of crossings determined by d distinct hyperplanes through the points
of X. To this end, let g i , ..., Qd be pairwise disjoint d-tuples from X. Their crossing
is defined as the point of intersection of the hyperplanes aff(Qi), . . . , aff(Qd). Here we
assume that X is in a general position, so that any crossing is a well-defined, unique point.
To this end, condition (1) can be understood as saying that the coordinates of X are in
algebraically independent position. Clearly,

so that nd2 <d \V\ <d nd\
Second, we need a theorem of Erdos and Simonovits [11], which is implicit in Erdos

[10] as well.

Theorem. [11] For all positive integers d and t, there exists a positive constant b = b(d,t)

such that the following holds: if Jt is an arbitrary (d + \)-graph on n vertices and p(d+i)

edges, where n~' <^d p < 1, then ^C contains at least

b/+'nid+1)t

copies of K(t,...,t), the complete (d + l)-partite (d + l)-graph with t vertices in each of its
d + 1 vertex classes.

Proof of Theorem 2.1. Consider the family ^f <= ( ^ J . Then the Erdos-Simonovits
theorem implies that Jif contains at least

copies of K(t,..., t), provided n~' -C^ p < 1. Now choose

t=T(d + l,d) <2p{d + l)-l<4d + l (6)

from the multicoloured Tverberg theorem of Zivaljevic and Vrecica, and consider a copy
of K(t,...,t) in ^f. This consists of d + 1 pairwise disjoint sets C\, . . . , Q+i <= X, each
of size t, such that, for any x\ € Cu . . . , Xd+i € Q+i , the (d + l)-tuple {xi, . . . , xd+l}
belongs to 3tf. By the multicoloured Tverberg theorem, there are d + 1 pairwise disjoint
(d + l)-tuples Si, . . . , Sa+i such that Hf^i' conv(Sj) is nonempty. The general position of
X implies that P|j=^ conv(S,) is a polytope P with nonempty interior.

The following simple geometric argument shows that there is an S, and there are subsets
Qt cz Si (i = 1, ..., d + 1, i =£ j) with |Q,-| = d such that the crossing of the g,'s lies
in int conv(S/). Consider a facet F of the polytope P. It lies in a (uniquely determined)
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facet of a (uniquely determined) simplex conv(S,), say, conv(Si). Thus F lies in aff(gi)
for a (uniquely determined) Q\ a S\, where \Q\\ = d. Then the (d — 1)-dimensional
polytope Pi = aff(2i) n f]^ conv(Sj) has nonvoid (d — l)-dimensional interior. So it has
a facet F\ that lies in a facet of one of the simplices conv(S,) (i > 2), say conv(S2). Thus
Fi lies in a hyperplane aff(<22) for a (uniquely determined) d-tuple Qi ci S2. Then the
(d - 2)-dimensional polytope P2 = aS{Q\) n aff(g2) n f)^ conv(S,) has nonvoid (d - 2)-
dimensional interior, and so on. We end up with a zero-dimensional polytope, i.e., a
singleton

{»} = aff(Qi) n . . . n aS{Qd) n conw(Sd+1).

Then v is a crossing in the interior of conv(S<*+i).
Now we give a lower bound for the number of pairs (S, v) with S e Jt, v € V, and

v e int conv(S). Such a pair can be identified with the (d + l)-tuple of sets (S,Qi,..., Qd).
As we have seen, every K(t,..., t) contains such a (d + 1)-tuple with

d

P | aff(Gi) c int conv(S).
i = l

A given (d + l)-tuple (S,Qi,...,Qd) can appear in at most

copies of K(t,..., t). Consequently

, , , . , . ._.,, number of copies of iC(t,...,t)
|{(S,,) € Je x F : v G int conv(S)}| > — ^ ^ '

This shows that there is a crossing u in at least

simplices of Jf. Let Jf' be the set of those (d + l)-tuples of #f whose convex hull contains
v. Then, indeed, ffl is pierceable and

/ " ( ; ) .7)

Here t comes from (6). In the hypergraph theorem we needed p ~^>d n~' , but (7) holds
trivially if this condition is violated, since then

•
Remark (1). We deduced the point selection theorem from the multicoloured Tverberg
theorem of Zivaljevic and Vrecica. Now we show, in turn, that the latter follows from the
point selection theorem. To see this, take d +1 sets Ci , . . . , Q+i in Rd , each of cardinality
t, and set X = Uf^1 Q. Define Jt to be the complete (d + l)-partite (d + l)-graph with
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{d + l)-partition Cu . . . , Cd+\. Then n = t(d + 1) and \3V\ = td+1 >d (d
n
+x). By the point

selection theorem, Jf has a pierceable subfamily 3%" of size

Consider the largest integer r for which there exist pairwise disjoint (d + l)-tuples Si, . . . ,
Sr in M". Then any other S € Jf" intersects \Jr

i=l S,, and the number of such (d + l)-tuples
is at most (d + l)rtd. Since here we counted Si, ..., Sr as well, we get

(d + \)rtd > \X*\ >d td+1,

which shows that, indeed, T(r,d) < t <C<f r.

Remark (2). We mention further that the proof method of the point selection theorem
cannot give a selection exponent sd smaller than (d + l) ' d + 1 ' . This is because T(r,d) > r
implies that t > d + 1 in (6).

7. Proof of the hitting set theorem

Proof of Theorem 5.1. We are going to use a greedy algorithm to produce the hitting set
E.

Start with Jf = (d^t) and E = 0. The algorithm proceeds by choosing a maximal
cardinality pierceable subfamily jf' a ^C, together with a point v e HO11* conv(S) : S e
Jf '} . Then set Jf = Jif \Jf' and E = Eu{v}. We stop as soon as \Jf\ < n(d

n
+l). We claim

that when the algorithm stops

\E\ <d /y1"5.

Assume the algorithm produced the sequence of families (d^j) = Jfo => ^ i =>..-=> J?m-
Denote by fe, the index where

It may happen that fe, = fej+i, but that will not matter. We know that

\jeki+l \ j r ^ + i i < |jf*,+ii < 2 - ' ^ n
+

We also know from the point selection theorem that, for j > Iq+i, we have

since the deleted subfamily Jt?j \ Jtfj+x was of maximum cardinality. This shows that

2-i( n \

k- , - k <£•; ^d+l) - 2' ( s-1'+ s
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Since we stop as soon as 2~' < rj, i.e., i > [log 1/77], we get that the basic step of the
algorithm is carried out

RogiA/1

m< £ (ki+1 - ki) < d X 2iis~1)+s <d I1'8

i=0 i=0

times. This proves the claim. •

Remark. The hitting set theorem implies the point selection theorem. Indeed, let Jf c
Q*,) with \Jf\ = p(d"+1). Set n = p/2 and let £ be a set of cardinality Ofa-*5"1') missing
at most ^/(d^i) simplices of X. Define

JVi = {S 6 Jf : £ n int convS ^ 0}.

Clearly, \3tf\\ > §(d+i)- Since £ meets every simplex in Jf i , there is a point v € £ that is
contained in at least

\E\

simplices of JV \.

8. Weak e-nets for convex sets in

Proof of Theorem 4.1. First we give a simple algorithm producing a weak e-net F, of size

Start with F = 0. Check whether there is a set Y a X, \ Y \ > en such that F misses all
simplices of ( ^ , ) . If there is no such Y, stop. In this case £ is a weak e-net for X. If
there is a Y like that, choose a point i; common to at least

simplices from Y. Such a point exists by (2). Set F = F U {v}.
In each step of the algorithm, the number of missed simplices decreases by at least

£ n

Therefore, the algorithm terminates after at most

steps, showing that |£| < d e~{d+l).
To get the sharper estimate in the theorem, we apply the previous algorithm, but instead

of starting with F = 0, we start with F = E, where £ comes from Theorem 5.1, i.e., £
misses at most t](d

n
+^) simplices of X and |£| <C<i nl~s.
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This time the algorithm terminates after

(I +o(\)) n^+\) „ n

steps, producing a weak e-net F of size <Ĉ  |£ | + >/e~^+1' •<<* tfl~s + r}e~^d+1K The right
choice for r\ is e^d+1^s, which gives

\F\ < d ,

•

9. Weak c-nets in the plane

Here we prove Theorem 4.2 by an inductive procedure. Let us start with some remarks
and definitions.

Given k > 3 and a finite set X cz R2, let f{X, k) denote the minimal size of a weak
e-net for X, where e = k/\X\, i.e.,

f(X,k) = min{|F| : F <= R2, int conv(7) f\F j= 0 for every Y cz X with \Y\ > k}.

Note that this definition is stronger than the original, as here we require that F intersect
the interior of conv(C). Consequently, our Theorem 9.1 below is a little stronger than
Theorem 4.2. Let f(n,k) be the maximum of f(X,k), where X satisfies (1) with d = 2, i.e.,
no three points from X lie on a line. Obviously, we have f(k,k) = 1, and, more generally,
f(n, k) = 1 if n < k. In order to bound f(n, k) for small values of k, we shall need a result
of Katchalski and Meir [13] claiming that

f(n, 3) = In - 5. (8)

T h e o r e m 9 . 1 . f(n,k) < 7(n/k)2 for all n>k>3.

Proof. The function f(n, k) is monotonic in the sense that

f(n,k)>f(n',k')

holds for n > ri and k < k'. Since 7n2/25 > 2n — 5 for all n, relation (8) implies that the
theorem holds for k = 3, 4, and 5. From now on we suppose that n > k > 6.

Now let X be an n-set. First, find a line L that bisects X into two parts X\ and Xj
of almost equal size, i.e., \X\\ = m, with \m\ — ni2\ < 1. Next we construct a set V such
that V intersects int conv(Y) for every Y cz X, \Y\ > k that has more than t points
on both sides of L. (We shall choose f = |_fc/6J later. For the time being we only need
0 < ( < (fe/2) — 1.) To this end consider the intersections of L with the line segments
connecting xi € X\ to X2 € Xi- There are m\mt such intersection points, u( l ) , . . . , u(m\mi),
indexed consecutively on L. (We may suppose that L is in general position with respect
to the lines zxzi, i.e., all of these intersections are distinct.) Clearly, for any set Y cz X,
\Y| > k that has at least ( + 1 points on both sides of L, conv(Y) contains at least

h = (/+l)(k-/-l)
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of the u(i)'s. For V, choose a point from L between u(h — 1) and u{h), u(2h — 2) and
u(2h - 1), u(3h - 3) and u(3h - 2), etc. Then

What are those sets Y a X, \Y\ > k, whose convex hull contains no point from VI
They are the Y that have at most £ points either in X2 or in X\. But such a Y must have
at least (k — £) points in X\ (or in X2, respectively). So it will be enough to find a weak
ei-net for X\, where ei = (k — £)/m\ (and a weak g2-net for X2 with e2 = (k — £)/m2).
These two sets together with V form a weak e-net for X. Next we apply the induction
hypothesis twice, and obtain

(9)

Using the facts that (m2 + ml) < (n2 + l)/2, m\m2 < n2/4 and for k > 6, ( = [k/6\ one
has (k - if > (25/36)k2 and (if + l)(fc - if - 1) - 1 > (5/36)fe2, we obtain that the right
hand side of (9) is at most (252/50)(n2 + l)//c2 + (36/20)(n2/k2). This is at most 6.98(n//c)2

for n > k > 6. •

Remark. Without finding the fine structure (the clusters) of the set X, one cannot obtain
a smaller e-net than Q(l/e2). This can be seen from the following example. Let C\, C2,
..., C2/,, be disjoint, small circular discs in the plane such that there is no point P lying
in three of the regions conv(C, U C,), except if all the three contain the same disk C,. Put
en/2 points around the centre of each C,. Then, every £-net avoiding |J C; must have at
least £2(1/e2) points.

10. An efficient algorithm to find weak s-nets

By applying the results of [15] and [18], one can give an alternative proof of Theorems 4.1
and 4.2 for d < 3. This proof gives a slightly worse estimate, but has the advantage that
it provides an efficient algorithm for constructing the corresponding weak g-nets. Here is
the assertion for the planar case.

Proposition 10.1. For every set X of n points in the plane and for every e > 0, there is a
weak e-net of size O(e~log4/34). Such a net can be found in time O(«log(l/e)).

Proof. Without loss of generality, we may assume that n is a power of 4. By the main
result of [15], one can find in time O(n) two intersecting lines h and l2 so that the number
of points in each of the four closed regions to which they partition the plane is at least
n/4. Let y be the point of intersection of these two lines, and partition X into four
pairwise disjoint subsets X\, . . . , X$ of cardinality n/4 each, where each Xt is completely
contained in one of the above closed regions. Observe that if a convex set contains at
least one point from each Xt, then it contains y, i.e., Y = {y} is a weak 3/4-net for X.

It follows that any convex set that does not contain y misses completely at least one
of the sets A',, and hence, if it contains at least en points of X, then it contains at least
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a fraction (4/3)e of one of the sets Xj. Therefore, by recursively constructing (4/3)e-nets
in each Xt we conclude that the size f(e) of our net satisfies /(e) < 1 + 4 / ( |E ) (and
f(5) = 1 for all 3 > 3/4). This easily gives the bound stated above. The time t(n, e) for
finding the net in our construction satisfies t(n, e) < O(ri) + 4t(n/4, |e), which implies that
t{n,e) < O(nlog(l/e)), completing the proof. •
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