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Empirical Distribution of Good Channel Codes
With Nonvanishing Error Probability
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Abstract—This paper studies several properties of channel
codes that approach the fundamental limits of a given (discrete or
Gaussian) memoryless channel with a nonvanishing probability of
error. The output distribution induced by an -capacity-achieving
code is shown to be close in a strong sense to the capacity achieving
output distribution. Relying on the concentration of measure
(isoperimetry) property enjoyed by the latter, it is shown that
regular (Lipschitz) functions of channel outputs can be pre-
cisely estimated and turn out to be essentially nonrandom and
independent of the actual code. It is also shown that the output
distribution of a good code and the capacity achieving one cannot
be distinguished with exponential reliability. The random process
produced at the output of the channel is shown to satisfy the
asymptotic equipartition property.

Index Terms—Additive white Gaussian noise, asymptotic
equipartition property, concentration of measure, discrete mem-
oryless channels, empirical output statistics, relative entropy,
Shannon theory.

I. INTRODUCTION

A RELIABLE channel codebook (or code, for the purposes
of this paper) is a collection of codewords of fixed

duration distinguishable with small probability of error when
observed through a noisy channel. Such a code is optimal
if it possesses the maximal cardinality among all codebooks
of equal duration and probability of error. In this paper, we
characterize several properties of optimal and close-to-optimal
channel codes indirectly, i.e., without identifying the best code
explicitly. This characterization provides theoretical insight
and ultimately may facilitate the search for new good code
families by providing a necessary condition they must satisfy.
Shannon [1] was the first to recognize, in the context of the

additive white Gaussian noise channel, that to maximize infor-
mation transfer across a memoryless channel codewords must
be “noise-like,” i.e., resemble a typical sample of a memoryless
random process with marginal distribution that maximizes mu-
tual information. Specifically, in [1, Sec. 25] Shannon states1:
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1In [1], “white noise” means white Gaussian noise.

To approximate this limiting rate of transmission the
transmitted signals must approximate, in statistical prop-
erties, a white noise.

A general and formal statement of this property of optimal codes
was put forward by Han and Verdú [2, Th. 15]:
Theorem 1: Fix an arbitrary . For any channel with fi-

nite input alphabet and capacity that satisfies the strong con-
verse, and sufficiently large ,

(1)

where is the maximal mutual information output distribu-
tion and is the output distribution induced by the codebook
(assuming equiprobable codewords) of any code
such that as , and

(2)

Therefore, for a finite-input memoryless channel, any capacity-
achieving sequence of codes with vanishing probability of error
must satisfy

(3)

where is the single-letter capacity achieving output distribu-
tion. Furthermore, Shamai and Verdú [3] show that (under reg-
ularity conditions) the empirical frequency of input letters (or
sequential -letter blocks) inside the codebook approaches the
capacity achieving input distribution (or its th power) in the
sense of vanishing relative entropy.
In this paper, we focus attention on memoryless channels and

we extend the result in Theorem 1 to the case of nonvanishing
probability of error. Studying this regime as opposed to van-
ishing probability of error has recently proved to be fruitful for
the nonasymptotic characterization of the maximal achievable
rate [4]. Although for the memoryless channels considered in
this paper the -capacity is independent of the probability of
error , it does not immediately follow that a -achieving code
necessarily satisfies the empirical distribution property (3). In
fact, we will show that (3) fails to be necessary under the av-
erage probability of error criterion.
To illustrate the delicacy of the question of approximating
with , consider a good, capacity-achieving -to- code

for the binary symmetric channel (BSC) with crossover prob-
ability and capacity . The probability of the code-
book under is larger than the probability that no errors
occur: . Under the probability of the codebook is
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—which is exponentially smaller asymptotically since for
a reliable code . On the other
hand, consider a set consisting of a union of small Hamming
balls surrounding each codeword, whose radius is chosen
such that , say. Assuming that the code is decod-
able with small probability of error, the union will be almost
disjoint and hence —the two becoming ex-
ponentially comparable (provided ). Thus, for certain
events, and differ exponentially, while on other, for
less delicate events, they behave similarly. We will show that as
long as the error probability is strictly less than one, the normal-
ized relative entropy in (3) is upper bounded by the difference
between capacity and code rate.
Studying the output distribution also becomes important

in the context of secure communication, where the output due to
the code is required to resemble white noise; and in the problem
of asynchronous communication where the output statistics of
the code imposes limits on the quality of synchronization [5].
For example, in a multiterminal communication problem, the
channel output of one user may create interference for another.
Assessing the average impairment caused by such interference
involves the analysis of the expectation of a certain function
of the channel output . We show that under certain
regularity assumptions on not only one can approximate the
expectation of by substituting the unknown with ,
as in

(4)

but one can also prove that in fact the distribution of will
be tightly concentrated around its expectation. Thus, we are able
to predict with overwhelming probability the random value of

without any knowledge of the code used to produce
(but assuming the code is -capacity-achieving).
Besides (3) and (4), we will show
1) an upper bound on relative entropy in terms
of the cardinality of the employed code;

2) the hypothesis testing problem between and has
zero Stein exponent;

3) the output process enjoys an asymptotic equipartition
property.

Throughout the paper, we will observe a number of connec-
tions with the concentration of measure (isoperimetry) and op-
timal transportation, which were introduced into the information
theory by the seminal works [6]–[8]. Although some key results
are stated for general channels, most of the discussion is special-
ized to discrete memoryless channels (DMC) (possibly with a
(separable) input cost constraint) and to the AWGN channel.
The organization of the paper is as follows. Section II

contains the main definitions and notation. Section III proves
a sharp upper bound on the relative entropy .
In Section IV, we discuss various implications of the bounds
on relative entropy and in particular prove approximation
(4). Section V considers the hypothesis testing problem of
discriminating between and . The asymptotic equipar-
tition property of the channel output process is established in
Section VI.

II. DEFINITIONS AND NOTATION

A. Codes and Channels

A random transformation is a Markov kernel
acting between a pair of measurable spaces. An code
for the random transformation is a pair of random trans-
formations and such
that

(5)

where in the underlying probability space and
with equiprobable on , and

forming a Markov chain:

(6)

In particular, we say that (resp., ) is the input (resp.,
output) distribution induced by the encoder . An
code is defined similarly except that (5) is replaced with the
more stringent maximal probability of error criterion:

(7)

A code is deterministic if the encoder is a functional
(nonrandom) mapping. We will frequently specify that a
code is deterministic with the notation or

. A channel is a sequence of random transfor-
mations, indexed by the parameter ,
referred to as the blocklength. An code for the th
random transformation is called an code, and the
foregoing notation specifying average/maximal error proba-
bility and deterministic encoder will also be applied to that
case. The nonasymptotic fundamental limit of communication
is defined as2

(8)

B. Capacity-Achieving Output Distribution

To the three types of channels considered below we also as-
sociate a special sequence of output distributions , defined
as the th power of a certain single-letter distribution 3:

(9)

where is a distribution on the output alphabet defined as
follows.
1) A DMC (without feedback) is built from a single letter
transformation acting between finite spaces
by extending the latter to all in a memoryless way.
Namely, the input space of the th random transformation

is given by4

(10)

2Additionally, one should also specify which probability of error criterion,
(5) or (7), is used.
3For general channels, the sequence is required to satisfy a quasi-

caod property, see [9, Sec. IV].
4To unify notation, we denote the input space as (instead of the more

natural ) even in the absence of cost constraints.
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and similarly for the output space , while
the transition kernel is set to be

(11)

The capacity and , the unique capacity-achieving
output distribution (caod), are found by solving

(12)

2) A DMC with input constraint is a generalization of
the previous construction with an additional restriction on
the input space :

(13)

In this case, the capacity and the caod are found by
restricting themaximization in (12) to those that satisfy

(14)

3) The AWGN( ) channel has input space5

(15)

output space and transition kernel

(16)

where denotes a (multidimensional) normal dis-
tribution with mean and covariance matrix and is
the identity matrix. Then,6

(17)

(18)

As shown in [10] and [11] in all three cases is unique and
satisfies the key property

(19)

for all . Since ,
Property (19) implies that for every input distribution the
induced output distribution satisfies

(20)

(21)

(22)

5For convenience, we denote the elements of as , (for nonrandom
vectors) and (for the random vectors).
6As usual, all logarithms and exponents are taken to arbitrary fixed

base, which also specifies the information units.

As a consequence of (22) the information density is well defined

(23)

Moreover, for every channel considered here there is a constant
such that7

(24)

In all three cases, the -capacity equals for all
, i.e.,

(25)

In fact, see [4]

(26)
for any , a certain constant , called the channel
dispersion, and is the inverse of the standard complemen-
tary normal cdf.

C. Good Codes

We introduce the following increasing degrees of optimality
for sequences of codes. A code sequence is called
1) -achieving or -capacity-achieving if

(27)

2) -achieving if

(28)

3) -achieving or dispersion-achieving if

(29)

4) -achieving if

(30)

D. Binary Hypothesis Testing

We also need to introduce the performance of an optimal bi-
nary hypothesis test, which is one of the main tools in [4]. Con-
sider an -valued random variable which can take proba-
bility measures or . A randomized test between those two
distributions is defined by a random transformation

where 0 indicates that the test chooses . The best per-
formance achievable among those randomized tests is given by8

(31)

7For discrete channels (24) is shown, e.g., in [4, Appendix E].
8We sometimes write summations over alphabets for simplicity of exposition.

For arbitrary measurable spaces is defined by replacing the summa-
tion in (31) by an expectation.
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where the minimum is over all probability distributions
satisfying

(32)

The minimum in (31) is guaranteed to be achieved by the
Neyman–Pearson lemma. Thus, gives the minimum
probability of error under hypothesis if the probability of
error under hypothesis is no larger than .

III. UPPER BOUND ON THE OUTPUT RELATIVE ENTROPY

The main goal of this section is to establish (for each of the
three types of memoryless channels introduced in Section II)
that

(33)

where is the sequence of output distributions induced by a
sequence of codes, and depends on . Further-
more, for all channels except DMCs with zeros in the transition
matrix , in (33) can be replaced by .
We start by giving a one-shot converse due to Augustin [12]

in Section III-A. Then, we prove (33) for DMCs in Section III-B
and for the AWGN in Section III-C.

A. Augustin’s Converse

The following result first appeared as part of the proofs in [12,
Satz 7.3 and 8.2] by Augustin and formally stated in [13, Sec.
2]. Note that particularizing Theorem 2 to a constant function
recovers the nonasymptotic converse bound that can be derived
from Wolfowitz’s proof of the strong converse [14].
Theorem 2 ([12], [13]): Consider a random transformation
, a distribution induced by an code, a

distribution on the output alphabet and a function
. Then, provided the denominator is positive,

(34)

with the infimum taken over the support of .
Proof: Fix a code and the function .

Denoting by the th codeword, we have

(35)
since is a suboptimal test to decide between
and , which achieves error probability no larger than when

is true. Denoting the event

(36)

we can bound

(37)

(38)

(39)

(40)

where (37) is by taking the arithmetic average of (35) over ,
(40) is by Jensen’s inequality, and (38) is by the standard esti-
mate of , e.g., [4, (102)],

(41)

with distributed according to .
Remark 1: Following an idea of Poor and Verdú [15] we may

further strengthen Theorem 2 in the special case of .
The maximal probability of error for any test of hypotheses

satisfies

(42)
where the information density is as defined in (23), are
arbitrary, , is equiprobable on
and . Indeed, since we get
from [16, Lemma 35]

(43)

Multiplying by and using resulting bound in place of
(41) we repeat steps (37)–(40) to obtain

(44)

which in turn is equivalent to (42).
Choosing we can specialize

Theorem 2 in the following convenient form.
Theorem 3: Consider a random transformation , a dis-

tribution induced by an code and an auxiliary
output distribution . Assume that for all we have

(45)

and

(46)

for some pair of constants and . Then, we
have

(47)
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Remark 2: Note that (46) holding with a small is a natural
nonasymptotic embodiment of information stability of the un-
derlying channel, cf. [9, Sec. IV].
A simple way to estimate the upper deviations in (46) is by

using Chebyshev’s inequality. As an example, we obtain
Corollary 4: If in the conditions of Theorem 3 we replace

(46) with

(48)

for some constant , then we have

(49)

B. DMC

Notice that when is chosen to be a product distribution,
such as , becomes a sum of independent
random variables. In particular, (24) leads to a necessary and
sufficient condition for (3).
Theorem 5: Consider a memoryless channel belonging to one

of the three classes in Section II. Then, for any and
any sequence of capacity-achieving codes we
have

(50)

where is the output of the encoder.
Proof: The direction is trivial from property (20)

of . For the direction we only need to lower bound
since, asymptotically, it cannot exceed . To that

end, we have from (24) and Corollary 4:

(51)

Then, the conclusion follows from (27) and the following iden-
tity applied with :

(52)

which holds for all such that the unconditional relative
entropy is finite.
We remark that Theorem 5 can also be derived from a simple

extension of the Wolfowitz converse [14] to an arbitrary output
distribution , e.g., [16, Th. 10], and then choosing

. Note that Theorem 1 allows us to conclude (50) but only
for capacity-achieving codes with vanishing error probability,
which are a subclass of those considered in Theorem 5.
Fano’s inequality only guarantees the left side of (50) for code

sequences with vanishing error probability. If there was a strong
converse showing that the left side of (50) must hold for any se-
quence of codes, then the desired result (3) would
follow. In the absence of such a result we will consider three
separate cases in order to show (3), and, therefore, through The-
orem 5, the left side of (50).
1) DMCWith : For a given DMC denote the param-

eter introduced by Burnashev [17]

(53)

Note that if and only if the transition matrix does not
contain any zeros. In this section, we show (33) for a (regular)
class of DMCs with by an application of the main in-
equality (47). We also demonstrate that (3) may not hold for
codes with nondeterministic encoders or unconstrained max-
imal probability of error.
Theorem 6: Consider a DMC with and ca-

pacity (with or without an input constraint). Then, for
any there exists a constant such that
any code satisfies

(54)

where is the output distribution induced by the code. In
particular, for any capacity-achieving sequence of such codes
we have

(55)

Proof: Fix which differ in the th letter only.
Then, denoting we have

(56)

(57)

(58)

where (57) follows from

(59)

Thus, the function is -Lipschitz in Ham-
ming metric on . Its discrete gradient (absolute difference of
values taken at consecutive integers) is bounded by and
thus by the discrete Poincaré inequality (the variance of a func-
tion with countable support is upper bounded by (a multiple of)
the second moment of its discrete gradient) [18, Th. 4.1f] we
have

(60)

Therefore, for some and all we have

(61)

where (61) follows from

(62)

and (61) follows from (60) and the fact that the random variable
in the first variance in (61) is a sum of independent terms.
Applying Corollary 4 with and

we obtain

(63)
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We can now complete the proof:

(64)

(65)

(66)

where (65) is because satisfies (19) and (66) follows from
(63). This completes the proof of (54).
Remark 3: As we will see in Section IV-A, (55) implies

(67)

[by (132) applied to ]. Note also that tra-
ditional combinatorial methods, e.g., [19], are not helpful in
dealing with quantities like , or -ex-
pectations of functions that are not of the form of cumulative
average.
Remark 4: Note that any code is also an

code for all . Thus , the constant in (54), is a non-
decreasing function of . In particular, (54) holds uniformly in
on compact subsets of . In their follow-up to this paper,
Raginsky and Sason [20] use McDiarmid’s inequality to derive
a tighter estimate for .
Remark 5: Equation (55) need not hold if the maximal prob-

ability of error is replaced with the average or if the encoder is
allowed to be random. Indeed, for any we construct
a sequence of capacity-achieving codes which do
not satisfy (55) can be constructed as follows. Consider a se-
quence of codes with and

(68)

For all such that this code cannot have repeated code-
words and we can additionally assume (perhaps by reducing
by one) that there is no codeword equal to ,
where is some fixed letter in such that

(69)

(the existence of such relies on the assumption ).
Denote the output distribution induced by this code by .
Next, extend this code by adding identical codewords:

. Then, the minimal average probability of
error achievable with the extended codebook of size

(70)

is easily seen to be not larger than . Denote the output distribu-
tion induced by the extended code by and define a binary
random variable

(71)

with distribution

(72)

which satisfies . We have then

(73)

(74)

(75)

(76)

where (73) is by (52), (74) follows since is binary, (75) is by
noticing that , and (76) is by (55). It is clear
that (69) and (76) show the impossibility of (55) for this code.
Similarly, one shows that (55) cannot hold if the assump-

tion of the deterministic encoder is dropped. Indeed, then we
can again take the very same code and make its
encoder randomized so that with probability it outputs

and otherwise it outputs the original code-
word. The same analysis shows that (76) holds again and thus
(55) fails.
The counterexamples constructed above can also be used to

demonstrate that in Theorem 3 (and hence Theorem 2) the as-
sumptions of maximal probability of error and deterministic
encoders are not superfluous, contrary to what is claimed by
Ahlswede [13, Remark 1].
2) DMC With : Next, we show an estimate for

differing by a factor from (33) for the
DMCs with .
Theorem 7: For any DMC with capacity (with

or without input constraints), , and there
exists a constant with the property that for any sequence
of codes we have for all

(77)

In particular, for any such sequence achieving capacity, we have

(78)

Proof: Let and denote the codewords
and the decoding regions of the code. Denote the sequence

(79)

with to be further constrained shortly. According to
the isoperimetric inequality for Hamming space [19, Corol-
lary I.5.3], there is a constant such that for every

(80)
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(81)

(82)

(83)

where the -blowup of is defined as

(84)

denotes the th Hamming neighborhood of a set and we as-
sumed that was chosen large enough so there is sat-
isfying (83).
Let

(85)

and consider a subcode , where
and note that we allow repetition of codewords.

Then, for every possible choice of the subcode we denote by
and the input/output distribution induced by ,

so that for example

(86)

We aim to apply the random coding argument over all equally
likely choices of a subcode . Random coding among
subcodes was originally invoked in [7] to demonstrate the exis-
tence of a good subcode. The expected (over the choice of )
induced output distribution is

(87)

(88)

(89)

Next, for every we denote by the minimal possible
average probability of error achieved by an appropriately
chosen decoder. With this notation we have, for every possible
value of :

(90)

(91)

(92)

(93)

(94)

where (90) is by (52), (91) is by (19), (92) is by Fano’s in-
equality, (93) is because , and (94) holds
for some by the choice of in (85) and by

(95)

Taking the expectation of both sides of (94), applying con-
vexity of relative entropy and (89) we get

(96)

Accordingly, it remains to show that

(97)

To that end, for every subcode define the suboptimal random-
ized decoder that chooses for ,

(98)

where is a list of those indices for which
. Since the transmitted codeword is equiprobable on

, averaging over the selection of we have

(99)
because each can belong to at most enlarged
decoding regions and each is chosen independently
and equiprobably among all possible alternatives. The av-
erage (over random decoder, , and channel) probability of
error can be upper bounded as

(100)

(101)

(102)

(103)

where (100) reflects the fact that a correct decision requires that
the true codeword not only belong to but that it be the
one chosen from the list; (101) is by Jensen’s inequality applied
to and (99); (102) is by (83); and (103) is by (85). Since
(103) also serves as an upper bound to the proof of
(97) is complete.
Remark 6: Claim (78) fails to hold if either themaximal prob-

ability of error is replaced with the average, or if we allow the
encoder to be stochastic. Counterexamples are constructed ex-
actly as in Remark 5.
Remark 7: Raginsky and Sason [20] give a sharpened version

of (77) with explicitly computed constants but with the same
remainder term behavior.
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C. Gaussian Channel

Theorem 8: For any and there exists
such that the output distribution of any
code for the AWGN( ) channel satisfies9

(104)

where . In particular, for any capacity-
achieving sequence of such codes we have

(105)

Proof: Denote by and the densities of
and , respectively. The argument proceeds step

by step as in the proof of Theorem 6 with (106) taking the place
of (60) and recalling that property (19) holds for the AWGN
channel too. Therefore, the objective is to show

(106)

for some . Poincaré’s inequality for the Gaussian
measure, e.g., [21, (2.16)] states that if is an -dimensional
Gaussian measure, then

(107)

Since conditioned on , the random vector is Gaussian,
the Poincaré inequality ensures that the left side of (106) is
bounded by

(108)

Therefore, the reminder of the proof is devoted to showing that
the right side of (108) is bounded by for some . An
elementary computation shows

(109)

(110)

(111)

For convenience, denote

(112)

and notice that since we have also

(113)

Then,

(114)

9More precisely, our proof yields the bound
.

(115)

(116)

(117)

(118)

(119)

where (115) is by

(120)

Equation (116) is by (113), in (117) we introduced
which is independent of , (118) is by (120) and

(119) is by the power-constraint imposed on the codebook. In
view of (108), we have succeeded in identifying a constant
such that (106) holds.
Remark 8: Equation (105) need not hold if the maximal prob-

ability of error is replaced with the average or if the encoder
is allowed to be stochastic. Counterexamples are constructed
similarly to those for Remark 5 with . Note also that
Theorem 8 need not hold if the power-constraint is in the av-
erage-over-the-codebook sense; see [16, Sec. 4.3.3].

IV. IMPLICATIONS

We have shown that there is a constant independent
of and such that

(121)

where is the output distribution induced by an arbitrary
code. Therefore, any nec-

essarily satisfies

(122)

as is classically known [22]. In particular, (121) implies that any
-capacity-achieving code must satisfy (3). In this section, we
discuss this and other implications of this result, such as
1) Equation (121) implies that the empirical marginal output
distribution

(123)

converges to in a strong sense (see Section IV-A).
2) Equation (121) guarantees estimates of the precision in the
approximation (4) (see Sections IV-B and IV-E).

3) Equation (121) provides estimates for the deviations of
from its average (see Section IV-C).

4) Relation to optimal transportation (see Section IV-D),
5) Implications of (3) for the empirical input distribution of
the code (see Sections IV-G and IV-H).

A. Empirical Distributions and Empirical Averages

Considering the empirical marginal distributions, the con-
vexity of relative entropy and (3) result in

(124)
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where is the empirical marginal output distribution (123).
More generally, we have [3, (41)]

(125)

where is a th order empirical output distribution

(126)

Knowing that a sequence of distributions converges in
relative entropy to a distribution , i.e.,

(127)

implies convergence properties for the expectations of functions

(128)

1) For bounded functions, (128) follows from the
Csiszár–Kemperman–Kullback–Pinsker inequality (e.g.,
[23]):

(129)

where

(130)

2) For unbounded , (128) holds as long as satisfies
Cramer’s condition under , i.e.,

(131)

for all in some neighborhood of 0; see [24, Lemma 3.1].
Together (128) and (124) show that for a wide class of

functions empirical averages over distributions in-
duced by good codes converge to the average over the capacity
achieving output distribution (caod):

(132)

From (125), a similar conclusion holds for th order empirical
averages.

B. Averages of Functions of

To go beyond empirical averages, we need to provide some
definitions and properties (see [21]).
Definition 1: The function is called -con-

centrated with respect to measure on if for all

(133)

A function is called -concentrated for the channel if it
is -concentrated with respect to every and
and all .
A couple of simple properties of -concentrated

functions:
1) Gaussian concentration around the mean

(134)

2) Small variance

(135)

(136)

Some examples of concentrated functions include:
1) A bounded function with is

-concentrated for any and
any measure . Moreover, for a fixed and a sufficiently
large any bounded function is -concentrated.

2) If is -concentrated then is -concen-
trated.

3) Let be -concentrated with respect to .
Then, so is

(137)

with respect to . In particular, any defined in this way
from a bounded is -concentrated for a memoryless
channel (for a sufficiently large independent of ).

4) If and is a Lipschitz function on with

Lipschitz constant then is -concen-
trated with respect to , e.g., [25, Proposition 2.1]:

(138)

Therefore, any Lipschitz function is -con-
centrated for the AWGN channel.

5) For discrete endowed with the Hamming distance

(139)

define Lipschitz functions in the usual way. In this case, a
simpler criterion is: is Lipschitz with constant
if and only if

(140)



14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 1, JANUARY 2014

Let be any product probability measure on
, then the standard Azuma–Hoeffding estimate shows

that

(141)

and thus any Lipschitz function is -concen-
trated with respect to any product measure on .
Note that unlike the Gaussian case, the constant of con-
centration worsens linearly with dimension . Gener-
ally, this growth cannot be avoided as shown by the co-
efficient in the exact solution of the Hamming isoperi-
metric problem [26]. At the same time, this growth does
not mean that (141) is “weaker” than (138); for example,

has Lipschitz constant in Eu-
clidean space and in Hamming. However, for convex
functions the concentration (138) holds for product mea-
sures even under Euclidean distance [27].

We now show how to approximate expectations of concen-
trated functions.
Proposition 9: Suppose that is -concen-

trated with respect to . Then,

(142)
where

(143)

Proof: Recall the Donsker–Varadhan inequality [28,
Lemma 2.1]. For any probability measures and with

and a measurable function such that
we have that exists (but perhaps is

) and moreover

(144)

Since by (133) the moment generating function of exists
under , applying (144) to we get

(145)

From (133), we have

(146)
for all . Thus, the discriminant of the parabola in (146) must be
nonpositive which is precisely (142).
Note that for empirical averages we

may either apply the estimate for concentration in the example
(137) and then use Proposition 9, or directly apply Proposition
9 to (124); the result is the same:

(147)
for any which is -concentrated with respect to .
For the Gaussian channel, Proposition 9 and (138) yield

Corollary 10: For any there exist two con-
stants such that for any code for the
AWGN( ) channel and for any Lipschitz function
we have

(148)
where is the capacity.
Note that in the proof of Corollary 10, concentration of mea-

sure is used twice: once for in the form of Poincaré’s
inequality (proof of Theorem 8) and once in the form of (133)
(proof of Proposition 9).

C. Concentration of Functions of

Not only canwe estimate expectations of by replacing
the unwieldy with the simple , but in fact the distribu-
tion of exhibits a sharp peak at its expectation.
Proposition 11: Consider a channel for which (121) holds.

Then, for any which is -concentrated for such channel,
we have for every code

(149)

and,

(150)

Proof: Denote for convenience

(151)

(152)

Then, as a consequence of being -concentrated for
we have

(153)

Consider now a subcode consisting of all codewords such
that for . The number of
codewords in this subcode is

(154)

Let be the output distribution induced by . We have the
following chain:

(155)

(156)

(157)

(158)

where (155) is by the definition of , (156) is by (152), (157)
is by Proposition 9, and the assumption of -concentration
of under , and (158) is by (121).
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Together (154) and (158) imply

(159)
Applying the same argument to , we obtain a similar bound
on and thus

(160)

(161)

where (160) is by (153) and (159); and (161) is by (122). Thus,
(149) is proven. Moreover, (150) follows by (136).
Following up on Proposition 11, [20] gives a bound, which in

contrast to (149), shows explicit dependence on .

D. Relation to Optimal Transportation

Since the seminal work of Marton [8], [29], optimal trans-
portation theory has emerged as one of the major tools for
proving -concentration of Lipschitz functions. Marton
demonstrated that if a probability measure on a metric space
satisfies a inequality

(162)

then any Lipschitz is -concentrated with respect

to for some and any . In (162),
denotes the linear-cost transportation distance, or

Wasserstein-1 distance, defined as

(163)

where is the distance on the underlying metric space
and the infimum is taken over all couplings with fixed
marginals , . Note that according to [30], we
have when the underlying distance on
is .
In this section, we show that (162) in fact directly implies

the estimate of Proposition 9 without invoking either Marton’s
argument or Donsker–Varadhan inequality. Indeed, assume that

is a Lipschitz function and observe that for any
coupling we have

(164)

where the distance is either Hamming or Euclidean depending
on the nature of . Now taking the infimum in the right-hand
side of (164) with respect to all couplings we observe

(165)

and therefore by the transportation inequality (162) we get

(166)

which is precisely what Proposition 9 yields for -
concentrated functions.
Our argument can be turned around and used to prove linear-

cost transportation inequalities (162). Indeed, by the Kan-
torovich–Rubinstein duality [31, Ch. 1], we have

(167)

where the supremum is over all with . Thus, the
argument in the proof of Proposition 9 shows that (162) must
hold for any for which every 1-Lipschitz is -concen-
trated, demonstrating an equivalence between transportation
and Gaussian-like concentration—a result reported in [32, Th.
3.1].
We also mention that unlike general i.i.d. measures, an i.i.d.

Gaussian satisfies amuch stronger -transporta-
tion inequality [33]

(168)

where remarkably does not depend on and the Wasser-
stein-2 distance is defined as

(169)

the infimum being over all couplings as in (163).

E. Empirical Averages of Non-Lipschitz Functions

One drawback of relying on the transportation inequality
(162) in the proof of Proposition 9 is that it does not show
anything for non-Lipschitz functions. In this section, we
demonstrate how the proof of Proposition 9 can be extended
to functions that do not satisfy the strong concentration
assumptions.
Proposition 12: Let be a (single-letter) function

such that for some we have
(one-sided Cramer condition) and .

Then, there exists such that for all
we have

(170)

Proof: It is clear that if the moment-generating function
exists for then it also exists for

all . Notice that since

(171)
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we have for all :

(172)

(173)

(174)

(175)

Then, a simple estimate

(176)
can be obtained by taking the logarithm of the identity

(177)

and invoking (175) and .
Next, we define and consider the

chain

(178)

(179)

(180)

where (178)–(180) follow from (145), and (176)
assuming . The proof concludes by letting in
(180).
A natural extension of Proposition 12 to functions such as

(181)

is made by replacing the step (179) with an estimate

(182)
which in turn is shown by splitting the sum into subsums with
independent terms and then applying Holder’s inequality:

(183)

F. Functions of Degraded Channel Outputs

Notice that if the same code is used over a channel
which is stochastically degraded with respect to then by

the data-processing for relative entropy, the upper bound (121)
holds for , where is the output of the
channel and is the output of when the input is dis-
tributed according to a capacity-achieving distribution of .
Thus, in all the discussions the pair can be re-
placed with without any change in arguments or
constants. This observation can be useful in questions of infor-
mation theoretic security, where the wiretapper has access to a
degraded copy of the channel output.

G. Input Distribution: DMC

As shown in Section IV-A, we have for every -capacity-
achieving code

(184)

As noted in [3], convergence of output distributions can be prop-
agated to statements about the input distributions. This is ob-
vious for the case of a DMC with a nonsingular (more gen-
erally, injective) matrix . Even if the capacity-achieving
input distribution is not unique, the following argument extends
that of [3, Th. 4]. By Theorems 5 and 6, we know that

(185)

Denote the single-letter empirical input distribution by
. Naturally, . However, in view of

(185) and the concavity of mutual information, we must neces-
sarily have

(186)

By compactness of the simplex of input distributions and con-
tinuity of the mutual information on that simplex the distance
to the (compact) set of capacity achieving distributions must
vanish

(187)

If the capacity achieving distribution is unique, then (187)
shows the convergence of in the (strong) sense of
total variation.

H. Input Distribution: AWGN

In the case of the AWGN, just like in the discrete case, (50)
implies that for any capacity achieving sequence of codes we
have

(188)

however, in the sense of weak convergence of distributions only.
Indeed, the induced empirical output distributions satisfy

(189)

where denotes convolution. By (50), (189) converges in rela-
tive entropy and thus weakly. Consequently, characteristic func-
tions of converge pointwise to that of . By
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dividing out the characteristic function of (which is
strictly positive), so do characteristic functions of . Then,
Levy’s criterion establishes (188).
We now discuss whether (188) can be claimed in a stronger

topology than the weak one. Since is purely atomic and
is purely diffuse, we have

(190)

and convergence in total variation (let alone in relative entropy)
cannot hold.
On the other hand, it is quite clear that the second moment of

necessarily converges to that of . Together
weak convergence and control of second moments imply [31,
(12), p. 7]

(191)

Therefore, (188) holds in the sense of topology metrized by the
-distance.
Note that convexity properties of imply

(192)

(193)

where we denoted

(194)

Comparing (191) and (193), it is natural to conjecture a stronger
result. For any capacity-achieving sequence of codes

(195)

Another reason to conjecture (195) arises from considering
the behavior ofWasserstein distance under convolutions. Indeed
from the -transportation inequality (168) and the relative en-
tropy bound (121) we have

(196)

since by definition

(197)

(198)

where denotes convolution of distributions on . Trivially,
for any probability measures , and on we have (e.g.,
[31, Proposition 7.17])

(199)

Thus, overall we have

and (195) would imply that the convolution with the Gaussian
kernel is unable to significantly decrease .
Despite the foregoing intuitive considerations, conjecture

(195) is false. Indeed, define to be the min-
imum achievable average square distortion among all vector
quantizers of the memoryless Gaussian source for
blocklength and cardinality . In other words,

(200)

where the infimum is over all probability measures supported
on equiprobable atoms in . The standard rate-distortion
(converse) lower bound dictates

(201)

and hence

(202)

(203)

which shows that for any sequence of codes with
, the normalized transportation distance stays strictly

bounded away from zero

(204)

Nevertheless, assertion (188) may be strengthened in several
ways. For example, it can be shown that quadratic-forms and
-norms of codewords from good codes have very similar

values (in expectation) to . Full details are avail-
able in [34]. Here we only give two sample statements.
1) Let be a symmetric matrix satisfying

. Then, for any -achieving code
we have

(205)

2) Various upper bounds for the -norms,

, of codewords of good codes are pre-
sented in Table I. A sample result, corresponding to

, is as follows. For any -code for the
AWGN( ) channel at least half of the codewords satisfy

(206)

where is the capacity of the channel and are some
code-independent constants.

I. Extension to Other Channels: Tilting

Let us review the scheme of investigating functions of the
output that was employed in this paper so far. First, an
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TABLE I
AWGN CHANNEL: NORMS OF CODEWORDS,

inequality (121) was shown by verifying that sat-
isfies the conditions of Theorem 3. Then, an approximation of
the form

(207)

follows by Propositions 9 and 11 simultaneously for all concen-
trated (e.g., Lipschitz) functions. In this way, all the channel-
specific work is isolated in proving (121). On the other hand,
verifying conditions of Theorem 3 for may be quite
challenging even for memoryless channels. In this section, we
show how Theorem 3 can be used to show (207) for a given
function in the absence of the universal estimate in (121).
Let be a random transformation, dis-

tributed according to auxiliary distribution and
a function such that

(208)

Let an -tilting of , namely

(209)

The core idea of our technique is that if is sufficiently reg-
ular and satisfies conditions of Theorem 3, then also
does. Consequently, the expectation of under (induced
by the code) can be investigated in terms of the moment-gen-
erating function of under . For brevity, we only present a
variance-based version (similar to Corollary 4).
Theorem 13: Let and be such that (208) holds and

(210)

(211)

Then, there exists a constant such that for any
code we have for all

(212)

Proof: Note that since

(213)

we have for any :

(214)

and from (62)

(215)

We conclude by invoking Corollary 4 with and replaced
by and , respectively.
For example, Corollary 10 is recovered from (212) by taking

, applying (19), estimating the moment-generating
function via (138) and bounding via Poincaré inequality

(216)

V. BINARY HYPOTHESIS TESTING VERSUS

We now turn to the question of distinguishing from
in the sense of binary hypothesis testing. First, a simple data-
processing reasoning yields for any ,

(217)

where we have denoted the binary relative entropy

(218)

From (121) and (217), we conclude: every
code must satisfy

(219)

for all . Therefore, in particular we see that the
hypothesis testing problem for discriminating from
has zero Stein’s exponent , provided that
the sequence of codes with output distribu-
tion , is capacity achieving.
Themain result in this section gives a better bound than (219).
Theorem 14: Consider one of the three types of channels

introduced in Section II. Then, every code must
satisfy

(220)
where depends only on and the constant
from (24).
To prove Theorem 14, we introduce the following converse

whose particular case is [4, Th. 27].
Theorem 15: Consider an code for an arbitrary

random transformation . Let be equiprobable on the
codebook and be the induced output distribution. Then,
for any and we have

(221)
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If the code is then additionally

(222)
when .

Proof: For a given code, define

(223)

where is themessage and is an arbitrary event of the output
space satisfying

(224)

As in the original metaconverse [4, Th. 26] the main idea is to
use as a suboptimal hypothesis test for discriminating
against . Following the same reasoning as in [4, Th. 27]
one notices that

(225)

and

(226)

Therefore, by definition of we must have

(227)

To complete the proof of (221) we take the infimum in (227)
over all satisfying (224).
To prove (222), we again consider any set satisfying (224).

Denote the codebook and for

(228)

(229)

Since the sets are disjoint, the (arithmetic) average of
is upper-bounded by

(230)

whereas because of (224) we have

(231)

Thus, the following lower bound holds:

(232)

implying that there must exist such that

(233)

For such we clearly have

(234)

(235)

By the maximal probability of error constraint, we deduce

(236)

and thus by the definition of :

(237)

Taking the infimum in (237) over all satisfying (224) com-
pletes the proof of (222).

Proof of Theorem 14: To show (220), we first notice that
as a consequence of (19), (24) and [4, Lemma 59] (see also [16,
(2.71)]) we have for any :

(238)

From [16, Lemma 32] and the fact that the function of in the
right-hand side of (238) is convex, we obtain that for any

(239)
Finally, (239) and (221) imply (220).

VI. AEP FOR THE OUTPUT PROCESS

Conventionally, we say that a sequence of distributions
on (with a countable set) satisfies the asymptotic equipar-
tition property (AEP) if

(240)

in probability. In this section, we will take the AEP to mean
convergence of (240) in the stronger sense of , namely,

(241)

A. DMC

Although the sequence of output distributions induced by
a code is far from being (a finite chunk of) a stationary er-
godic process, we will show that (240) is satisfied for -ca-
pacity-achieving codes (and other codes). Thus, in particular,
if the channel outputs are to be almost-losslessly compressed
and stored for later decoding, bits per sample would
suffice [cf. (67)]. In fact, concentrates up to
around the entropy . Such questions are also interesting
in other contexts and for other types of distributions, see [35],
[36].
Theorem 16: Consider a DMC with (with or

without input constraints) and a capacity achieving sequence of
codes. Then, the output AEP (240) holds.
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Proof: In the proof of Theorem 6, it was shown that
is Lipschitz with Lipschitz constant upper

bounded by . Thus, by (141) and Proposition 11 we find that
for any capacity-achieving sequence of codes (241) holds.
For many practically interesting DMCs (such as those with

additive noise in a finite group), the estimate (241) can be im-
proved to even without assuming the code to be capacity-
achieving. The proof of the following result is more circuitous
than that of (60) which capitalizes on the conditional indepen-
dence of the output given the input.
Theorem 17: Consider a DMC with (with or

without input constraints) and such that is con-
stant on . Then, for any sequence of codes
there exists a constant such that for all sufficiently
large

(242)

In particular, the output AEP (241) holds.
Proof: First, let be a random variable and some event

(think ) such that

(243)

if . Then, denoting ,

(244)

(245)

(246)

where (244) is by (243), (245) is because

(247)

(248)

which in turn follows from identity

(249)

and (246) is because (243) implies .
Next, fix and for any codeword denote for brevity

(250)

(251)

(252)

If we could show that for some

(253)

the proof would be completed as follows:

(254)

(255)

(256)

(257)

where (255) follows for an appropriate constant from
(60), (256) is by (252), and does not depend
on by assumption,10 and (257) is by (253).
To show (253), first note the bound on the information density

(258)

Second, as shown in (61) one may take in Corollary

4. In turn, this implies that one can take and

in Theorem 3, that is

(259)
Then, applying Theorem 2 with to the

subcode consisting of all codewords with
we get

(260)

since and

(261)
Now, we apply (246) to with and

. Since this yields

(262)

for all such that . Since and
we conclude from (262) that there must be a

constant such that (253) holds.

B. AWGN

Following the argument of Theorem 17 step by step with
(106) used in place of (60), we arrive at a similar AEP for the
AWGN channel.
Theorem 18: Consider the channel. Then, for any

sequence of codes there exists a constant
such that for all sufficiently large

(263)

where is the density of .

10This argument also shows how to construct a counterexample
when is nonconstant: merge two constant composi-
tion subcodes of types and such that
where is the channel matrix. In this case, one clearly has

.
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Corollary 19: If in the setting of Theorem 18, the codes are
spherical (i.e., the energies of all codewords are equal) or,
more generally,

(264)
then

(265)

in -probability.
Proof: To apply Chebyshev’s inequality to

we need, in addition to (263), to show

(266)

where . Introducing i.i.d.
we have

(267)

The variances of the second and third terms are clearly ,
while the variance of the first term is by assumption (264).
Then, (267) implies (266) via (62).
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