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gdistance-package gdistance: geographic distance calculations

Description

Calculate distances and routes on geographic grids.

Details

Package: gdistance
Type: Package
Version: 1.1-1
Date: 2011-01-04
License: GPL (>=3)
LazyLoad: yes

Distances can be calculated following these steps.

1. Read spatial grid data into the R environment, using the raster package. Function: raster.

2. Construct an object of the class TransitionLayer or TransitionStack. Function: transition.

3. Correct diagonal connections and projection distortions. Function: geoCorrection.

4. Get coordinates for the starting and end points of routes.

5. Calculate distances and routes. Functions: accCost, costDistance, commuteDistance, rSPDistance,
shortestPath, passage, pathInc.

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>
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References

Ray, N. 2005. PATHMATRIX: a geographical information system tool to compute effective dis-
tances among samples. Molecular Ecology Notes 5, 177 - 180. http://cmpg.unibe.ch/software/
pathmatrix/

McRae, B.H. 2006. Isolation by resistance. Evolution 60(8), 1551 - 1561.

McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to model connectivity in
ecology, evolution, and conservation. Ecology 89:2712-2724. http://www.circuitscape.org

See Also

raster

accCost Accumulated Cost Surface

Description

Calculates the accumulated cost surface from one or more origins.

Usage

accCost(x, fromCoords)

Arguments

x object of class TransitionLayer

fromCoords origin point locations (SpatialPoints, matrix or numeric class)

Details

If more than one coordinate is supplied in fromCoords, the function calculates the minimum least-
cost distance from any origin point.

The function uses Dijkstra’s algorithm (as implemented in the igraph package).

Value

RasterLayer

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

References

E.W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik
1, 269 - 271.

http://cmpg.unibe.ch/software/pathmatrix/
http://cmpg.unibe.ch/software/pathmatrix/
http://www.circuitscape.org
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See Also

shortest.paths, geoCorrection, costDistance

Examples

#example equivalent to that in the documentation on r.cost in GRASS
r <- raster(nrows=6, ncols=7, xmn=0, xmx=7, ymn=0, ymx=6, crs="+proj=utm +units=m")

r[] <- c(2, 2, 1, 1, 5, 5, 5,
2, 2, 8, 8, 5, 2, 1,
7, 1, 1, 8, 2, 2, 2,
8, 7, 8, 8, 8, 8, 5,
8, 8, 1, 1, 5, 3, 9,
8, 1, 1, 2, 5, 3, 9)

T <- transition(r, function(x) 1/mean(x), 8)
# 1/mean: reciprocal to get permeability
T <- geoCorrection(T)

c1 <- c(5.5,1.5)
c2 <- c(1.5,5.5)

A <- accCost(T, c1)
plot(A)
text(A)

adjacencyFromTransition

Adjacent cells

Description

Identify pairs of cells that are adjacent.

Usage

adjacencyFromTransition(x)

Arguments

x TransitionLayer

Details

Extracts the indices of those cells that are connected (e.g. cells i,j that have a non-zero value in the
transition matrix).

Cell numbers are unique indices of cells in the original grid. By convention, cell numbers start with
1 in the upper-left corner of the grid and increase from left to right and from top to bottom.
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Value

A two column matrix with each row containing a pair of adjacent cells.

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

See Also

adjacent

Examples

r <- raster(nrows=6, ncols=7, xmn=0, xmx=7, ymn=0, ymx=6, crs="+proj=utm +units=m")
r[] <- runif(6*7)
T <- transition(r, function(x) 1/mean(x), 8)
adjacencyFromTransition(T)

ArithMath-methods Arithmetic and mathematical operations with objects of Transition*
classes

Description

Standard arithmetic operators for computations with Transition* objects and numeric values.
Transition objects must have the same extent and resolution. All arithmetic and mathematical oper-
ations that work on the sparse matrices are available for Transition* objects.

Value

Transition* object or numeric.

Author(s)

Jacob van Etten

Examples

#create a new raster and set all its values to unity.
raster <- raster(nrows=18, ncols=36)
raster <- setValues(raster,rep(1,ncell(raster)))

#create TransitionLayer objects
tr1 <- transition(raster,mean,4)
tr2 <- tr1

#arithmetic operations
tr3 <- tr1 * tr2
tr4 <- tr3 * 4
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#mathematical operations
tr5 <- sqrt(tr4)

commuteDistance Commute-time distance

Description

Calculates the resistance distance between points.

Usage

commuteDistance (x, coords)

Arguments

x TransitionLayer object)
coords point locations coordinates (of SpatialPoints, matrix or numeric class)

Details

This function calculates the expected random-walk commute time between nodes in a graph. It is
defined as the effective distance (resistance distance) between the selected nodes multiplied by the
volume of the graph, which is the sum of the conductance weights of all the edges in the graph
(Chandra et al. 1997). The result represents the average number of steps that is needed to commute
between the nodes during a random walk.

The function implements the algorithm given by Fouss et al. (2007).

Before calculating commute-time distances from a TransitionLayer object, see if you need to
apply the function geoCorrection.

Value

distance matrix (S3 class dist or matrix)

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

References

Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensy, R. & Tiwari, P. 1996. The electrical resis-
tance of a graph captures its commute and cover times. Computational Complexity, 6(4), 312-340.

Fouss, F., Pirotte, A., Renders, J.-M. & Saerens, M. 2007. Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Transactions on
Knowledge and Data Engineering, 19(3), 355-369.

McRae, B.H. 2006. Isolation by resistance. Evolution 60(8), 1551-1561.

http://www.circuitscape.org

http://www.circuitscape.org
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See Also

geoCorrection

Examples

#Create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r,rep(1,ncell(raster)))

#Create a Transition object from the raster
tr <- transition(r,function(x) 1/mean(x),4)

#Create two sets of coordinates
sP1 <- SpatialPoints(cbind(c(65,5,-65),c(55,35,-35)))
sP2 <- SpatialPoints(cbind(c(50,15,-40),c(80,20,-5)))

#Calculate the resistance distance between the points
commuteDistance(tr,sP1)

Coords class Coords class

Description

This is a class union, providing a convenient class for coordinates in several formats. The class
accepts coordinates in any of the following formats: 1. SpatialPoints 2. two-columned matrix 3.
vector of length 2

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

showClass("Coords")
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costDistance Cost distance (least-cost distance)

Description

Calculate the least-cost distance between points.

Usage

costDistance(x, fromCoords, toCoords)

Arguments

x object of class TransitionLayer

fromCoords first set of point locations (of SpatialPoints, matrix or numeric class)

toCoords second, optional set of point locations (of SpatialPoints, matrix or numeric
class)

Details

Cost units between cells are defined as the reciprocal of the values in the transition matrix.

The function uses Dijkstra’s algorithm, as implemented in the igraph package.

A projection correction is needed for accuracy in the case of grid data for a longlat raster (see
function geoCorrection).

Value

distance matrix (S3 class dist or matrix)

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

References

E.W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik
1, 269-271.

See Also

accCost, geoCorrection
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Examples

#create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r,runif(ncell(r),0,1))

#create a Transition object from the raster
tr <- transition(r,function(x) 1/mean(x),8)

#asymmetric
ncf <- function(x) max(x) - x[1] + x[2]
tr2 <- transition(r,ncf,8, symm=FALSE)

#create two sets of coordinates
sP1 <- cbind(c(65,5,-65),c(55,35,-35))
sP2 <- cbind(c(50,15,-40),c(80,20,-5))

#from and to identical
costDistance(tr,sP1)
costDistance(tr2,sP1)

#from and to different
costDistance(tr,sP1,sP2)
costDistance(tr2,sP1,sP2)

genDist Genetic distances and coordinates of haplogroup R1b1b2 populations
in Europe

Description

genDist: Genetic distances between 23 populations of Y-chromosome haplogroup R1b1b2 in Eu-
rope, calculated from haplotype microsatellite data (see source). The distance measure used is the
negative logarithm of the shared proportion of alleles.

popCoord: Geographic coordinates of the same populations.

Usage

genDist

Format

dist object (genDist) and dataframe (popCoord)

Source

Distances calculated from Table S1 in Balaresque et al. (2010). Coordinates from Table 1.
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References

Balaresque P., et al. 2010. A predominantly Neolithic origin for European paternal lineages. PLoS
Biology 8(1): e1000285.

geoCorrection Geographic Correction

Description

Correct Transition* objects taking into account local distances

Usage

geoCorrection(x, type, ...)

Arguments

x object of class Transition*

type type of correction: "c", "r", or missing (only required for lonlat, see below)

... multpl: matrix with correction factor (TRUE) or corrected values (FALSE, the
default); scl: scale the correction values (default is FALSE)

Details

Geographic correction is necessary for all objects of the class Transition that are either: (1) based
on a grid in a geographic (lonlat) projection and covering a large area; (2) made with directions > 4.

The function will correct for map distortion, as well as for diagonal connections between grid cells
(which cover a longer distance than vertical or horizontal connections).

When working with lonlat grids, users should also anticipate whether they will use methods based
on either least-cost or random walks, and set the type argument accordingly. In the case of least-
cost distances, the correction is only done in East-West direction. In the case of random walks
there should be an additional correction which reduces the conductance in North-South direction
(type="r").

The correction is done by dividing conductance values by the inter-cell distance. Distances are
calculated as great-circle distances for lonlat grids (see function isLonLat()) and Euclidean distances
for all other grids.

In the case of randomised shortest paths, the need for correction is somewhat in between these two
correction methods. We have not developed an analytical solution for this problem yet. With very
low values for theta, you may choose the correction for random walks, and for high values the one
for least-cost paths. Users who want to work with intermediate values of theta are encouraged to
experiment with different solutions.

The values are scaled to get values near 1 if the argument scl is set to TRUE. This is desirable
for subsequent calculations involving random walk calculations. Values are divided by the W-E
inter-cell distance (at the centre of the grid).
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Value

Transition* object

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

r <- raster(ncol=36,nrow=18)
r <- setValues(r,rep(1,times=ncell(r)))
tr <- transition(r, mean, directions=8)

#directly
tr1 <- geoCorrection(tr, type="c", multpl=FALSE)

#the same, but with a separate correction matrix
trCorr <- geoCorrection(tr, type="c", multpl=TRUE)
tr2 <- tr * trCorr

normalize normalize

Description

Normalize the transition matrix.

Usage

normalize(x, ...)

Arguments

x object of class Transition*)

... optional argument method (see below)

Details

Normalization of the weighted adjacency matrix in the Transition* object. Matrix values are di-
vided by their respective row-sums, column-sums, or the product of the square-roots of both (sym-
metric normalization). The default method is row-normalization. To use the other normalization
methods, users can set the optional method argument to either "col" or "symm". For random walk
calculations a symmetric matrix is needed (method = "symm").

Value

TransitionLayer object
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Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

References

von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics and Computing 17(4), 395-416.
http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.0189v1.pdf

Chung, F. 1997. Spectral Graph Theory. Conference Board of the Mathematical Sciences, Wash-
ington.

Examples

r <- raster(ncol=36,nrow=18)
r <- setValues(r,rep(1,times=ncell(r)))
tr <- transition(r, mean, directions=8)

tr1 <- normalize(tr)
tr2 <- normalize(tr, method="symm")

overlap Overlap and nonoverlap of trajectories

Description

Special functions to calculate the degree of overlap and nonoverlap between trajectories

Usage

overlap(a, b)
nonoverlap(a, b)

Arguments

a matrix object

b matrix object

Details

These functions are used by the pathInc() as defaults.

Value

matrix

Note

The functions are provided here to assist the user in defining alternative measures of overlap /
nonoverlap.

http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.0189v1.pdf
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Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

passage Probability of passage

Description

Calculates for each cell the number of passages of a random-walk or randomised shortest paths with
given origin(s) and destination(s). Either the total or the net number of passages can be calculated.
In the case of multiple origins or destinations, each receives equal weight.

Usage

passage(x, origin, goal, theta, ...)

Arguments

x Object of class Transition

origin SpatialPoints, matrix or numeric object with coordinates or RasterLayer object
with origin cells set to TRUE

goal SpatialPoints, matrix or numeric object with coordinates or RasterLayer object
with origin cells set to TRUE

theta If zero or missing, a random walk results. If a numeric value 0 < theta < 20 is
given, randomised shortest paths are calculated; theta is the degree from which
the path randomly deviates from the shortest path

... Additional arguments: totalNet ("total" or "net"), and output ("RasterLayer" or
"Transition")

Details

The net number of passages between i and j is defined as: abs( passages from i to j - passages from
j to i ).

Defaults for additional argument totalNet is "net" and for output it is "RasterLayer".

Random walk requires a symmetric transition matrix.

Value

RasterLayer or Transition object, depending on the output argument.

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>. Implementation of randomised shortest paths
based on Matlab code by Marco Saerens.
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References

McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to model connectivity in
ecology, evolution, and conservation. Ecology 89:2712-2724.

Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-path problems: two
related models. Neural Computation, 21(8):2363-2404.

See Also

commuteDistance, pathInc

Examples

#create a new raster and set all its values to unity.
raster <- raster(nrows=18, ncols=36)
raster <- setValues(raster,rep(1,ncell(raster)))

#create a Transition object from the raster
tr <- transition(raster,mean,4)
trC <- geoCorrection(tr, type="c", scl=TRUE)
trR <- geoCorrection(tr, type="r", scl=TRUE)

#create two coordinates
sP1 <- SpatialPoints(cbind(-105,55))
sP2 <- SpatialPoints(cbind(105,-55))

#randomised shortest paths with theta = 2
rSPraster <- passage(trC, sP1, sP2, 2)
plot(rSPraster)
points(sP1)
points(sP2)

#randomised shortest paths with theta = 0.05
rSPraster <- passage(trC, sP1, sP2, 0.05)
plot(rSPraster)
points(sP1)
points(sP2)

#randomised shortest paths with theta = 0.05
#and total
rSPraster <- passage(trC, sP1, sP2, 0.05, totalNet = "total")
plot(rSPraster)
points(sP1)
points(sP2)

#random walk
rwraster <- passage(trR, sP1, sP2)
plot(rwraster)
points(sP1)
points(sP2)
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pathInc Incidence of paths from a common origin: overlap and non-overlap

Description

Calculate the overlap and non-overlap of paths departing from a common origin. Two algorithms
are available: random walk and randomised shortest paths.

Usage

pathInc(x, origin, from, to, theta, weight, ...)

Arguments

x transition matrix (class Transition)

origin coordinates of the origin (one point location, SpatialPoints, matrix or numeric
class)

from coordinates of the destinations (SpatialPoints, matrix or numeric class)

to second set of coordinates of the destinations (can be missing)

theta value > 0 and < 20 (randomised shortest paths) or missing (random walk)

weight weight matrix – Reciprocals of the non-zero values are used as weights. If miss-
ing, reciprocals of the transition matrix are used.

... an extra argument for functions to be defined manually (see below)

Details

This is a complex wrapper function that calculates to what extent dispersal routes overlap or do not
overlap.

First, the function calculates the trajectories for all "from" and "to" locations, starting from a single
"origin" location. These trajectories can either be based on random walks or randomised shortest
paths (giving a value to theta).

Then, for all unique pairs of trajectories, it calculates the extent to which these trajectories overlap
or diverge. These values are given back to the user as a list of (distance) matrices.

If only "from" coordinates are given, the function calculates symmetric distance matrices for all
combinations of points in "from". If both "from" and "to" coordinates are given, the function cal-
culates a matrix of values with rows for all locations in "from" and columns for all locations in
"to".

Overlap is currently calculated as the minimum values of each pair of trajectories compared. Non-
overlap uses the following formula: Nonoverlap = max(0,max(a,b)*(1-min(a,b))-min(a,b)) (see van
Etten and Hijmans 2010).

Value

list of dist objects or list of matrices
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Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>. Implementation of randomised shortest paths
based on Matlab code by Marco Saerens.

References

McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to model connectivity in
ecology, evolution, and conservation. Ecology 89:2712-2724.

Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-path problems: two
related models. Neural Computation, 21(8):2363-2404.

van Etten, J., and R.J. Hijmans. 2010. A geospatial modelling approach integrating archaeobotany
and genetics to trace the origin and dispersal of domesticated plants. PLoS ONE 5(8): e12060.

Examples

#Create TransitionLayer
r <- raster(ncol=36,nrow=18)
r <- setValues(r,rep(1,times=ncell(r)))
tr <- transition(r,mean,directions=4)

#Two different types of correction are required
trR <- geoCorrection(tr, type="r", multpl=FALSE)
trC <- geoCorrection(tr, type="c", multpl=FALSE)

#Create TransitionStack
ts <- stack(trR, trR)

#Points for origin and coordinates between which to calculate path (non)overlaps
sP0 <- SpatialPoints(cbind(0,0))
sP1 <- SpatialPoints(cbind(c(65,5,-65),c(-55,35,-35)))

#Randomised shortest paths
#rescaling is needed: exp(-theta * trC) should give reasonable values
trC <- trC / median(transitionMatrix(trC)@x) #divide by median of the non-zero values
pathInc(trC, origin=sP0, from=sP1, theta=2)

#Random walk
pathInc(trR, origin=sP0, from=sP1)

#TransitionStack as weights
pathInc(trR, origin=sP0, from=sP1, weight=ts)

#Demonstrate use of an alternative function
#The current default is to take the minimum of each pair of layers

altoverlap <- function(a, b)
{
aV <- as.vector(a[,rep(1:ncol(a), each=ncol(b))])
bV <- as.vector(b[,rep(1:ncol(b), times=ncol(a))])
result <- matrix(aV * bV, nrow = nrow(a), ncol=ncol(a)*ncol(b))
return(result)
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}

pathInc(trR, origin=sP0, from=sP1, weight=ts, functions=list(altoverlap))

raster-methods RasterLayer from TransitionLayer object

Description

Create a RasterLayer from a TransitionLayer with a call to the generic function raster.

The n x n transition matrix of the TransitionLayer is transformed to form the values n cells of a
raster.

The following methods to ‘reduce’ the transition matrix are available with the optional argument
reduceMethod):

• colSums

• rowSums

• colMeans

• rowMeans

• NZcolMeans

• NZrowMeans

The latter two methods only take into account the non-zero entries in the transition matrix.

The default is NZcolMeans.

Value

RasterLayer

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

#create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r,runif(ncell(r),0,1))

#create a Transition object from the raster
tr1 <- transition(r,mean,8)

#asymmetric
asf <- function(x) max(x) - x[1] + x[2]
tr2 <- transition(r,asf,8, symm=FALSE)
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#create RasterLayer objects
r1 <- raster(tr1)
r2 <- raster(tr2)
r3 <- raster(tr1, "colMeans")

rSPDistance Randomized shortest path distance

Description

Calculates the randomized shortest path distance between points.

Usage

rSPDistance (x, from, to, theta, totalNet = "net", method=1)

Arguments

x TransitionLayer object)

from point locations coordinates (of SpatialPoints, matrix or numeric class)

to point locations coordinates (of SpatialPoints, matrix or numeric class)

theta theta is the degree from which the path randomly deviates from the shortest path,
0 < theta < 20

totalNet total or net movements between cells

method method 1 (as defined in Saerens et al.) or method 2 (a modified version, see
below in Details)

Details

The function implements the algorithm given by Saerens et al. (2009).

Method 1 implements the method as it is. Method 2 uses W = exp(-theta * ln(P)).

Value

distance matrix (S3 class dist or matrix)

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

References

Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-path problems: two
related models. Neural Computation, 21(8):2363-2404.
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See Also

geoCorrection

Examples

#Create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r,rep(1,ncell(raster)))

#Create a Transition object from the raster
tr <- transition(r,mean,4)

#Create two sets of coordinates
sP1 <- SpatialPoints(cbind(c(65,5,-65),c(55,35,-35)))
sP2 <- SpatialPoints(cbind(c(50,15,-40),c(80,20,-5)))

#Calculate the RSP distance between the points
rSPDistance(tr, sP1, sP2, 1)

shortestPath Shortest path

Description

Calculates the shortest path from an origin to a goal.

Usage

shortestPath(x, origin, goal, ...)

Arguments

x TransitionLayer object

origin SpatialPoints, vector or matrix with coordinates, at the moment only the first
cell is taken into account

goal SpatialPoints, vector or matrix with coordinates

... Additional argument: output

Details

As an additional argument output, the desired output object can be specified: either “Transition-
Layer” (default), “TransitionStack” or “SpatialLines”.

If there is more than one path either (1) transition values in the TransitionLayer get values of 1 /
number of paths or (2) the SpatialLines object will contain more than one line.
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Value

Transition object.

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>.

See Also

costDistance, accCost

Examples

#example equivalent to that in the documentation on r.cost/r.drain in GRASS
r <- raster(nrows=6, ncols=7, xmn=0, xmx=7, ymn=0, ymx=6, crs="+proj=utm +units=m")

r[] <- c(2, 2, 1, 1, 5, 5, 5,
2, 2, 8, 8, 5, 2, 1,
7, 1, 1, 8, 2, 2, 2,
8, 7, 8, 8, 8, 8, 5,
8, 8, 1, 1, 5, 3, 9,
8, 1, 1, 2, 5, 3, 9)

T <- transition(r, function(x) 1/mean(x), 8)
# 1/mean: reciprocal to get permeability
T <- geoCorrection(T)

c1 <- c(5.5,1.5)
c2 <- c(1.5,5.5)

#make a SpatialLines object for visualization
sPath1 <- shortestPath(T, c1, c2, output="SpatialLines")
plot(r)
lines(sPath1)

#make a TransitionLayer for further calculations
sPath2 <- shortestPath(T, c1, c2)
plot(raster(sPath2))

Summary-methods Summary methods

Description

The following summary methods are available:

mean, Median, max, min, range, prod, sum, any, all
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Value

a TransitionLayer

Note

These methods compute a summary statistic based on cell values of layers in a TransitionStack. The
result of these methods is always a single TransitionLayer.

Author(s)

Jacob van Etten

Examples

#Create a new raster and set all its values to unity.
raster <- raster(nrows=18, ncols=36)
raster <- setValues(raster,rep(1,ncell(raster)))

#Create a Transition object from the raster
tr <- transition(raster,mean,4)

trS <- stack(tr, tr*2)

#Apply a Summary method
trSum <- sum(trS)

#plot(raster(trMean))

sumReciprocal Reciprocal of the sum of the reciprocals of conductance values in Tran-
sition* objects

Description

Reciprocal of the sum of the reciprocals of conductance Transition* objects

Usage

sumReciprocal(x1, x2)

Arguments

x1 TransitionLayer object

x2 TransitionLayer object
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Details

To calculate the total resistance of two resistors that are serially connected, we should add their
resistance values. However, if we work with conductance values, we need to take the reciprocal
of the summed reciprocals of the conductance values. This function does that when adding two
TransitionLayers with conductance values (matrixValues(tr) == "conductance").

For a TransitionLayer with resistance values (matrixValues(tr) == "resistance"), the function
will not take reciprocals for that object, but will still take a reciprocal for the final product (which
will consequently have conductance values).

Value

TransitionLayer object containing conductance values.

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

#Create a new raster and set all its values to unity.
raster <- raster(nrows=18, ncols=36)
raster <- setValues(raster,rep(1,ncell(raster)))

#Create TransitionLayer objects
tr1 <- transition(raster,mean,4)
tr2 <- tr1
matrixValues(tr1)

#Set one to resistance
matrixValues(tr2) <- "resistance"

#Sum the two objects
sumReciprocal(tr1,tr2)

transition Create an object of the class Transition

Description

Create a Transition object from a RasterLayer or RasterBrick object. Transition values are calcu-
lated with a user-defined function from the grid values.

Usage

transition (x, transitionFunction, directions, ...)
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Arguments

x RasterLayer or RasterBrick (raster package)
transitionFunction

Function to calculate transition values from grid values

directions Directions in which cells are connected (4, 8, 16, or other), see adjacent

... additional arguments, see methods 1 and 3 below

Details

Users may use one of three methods to construct a Transition* object with this function.

1) TransitionLayer from RasterLayer

transition(x, transisitonFunction, directions, symm)

When a symmetric transition matrix is required, the user should supply a transitionFunction f that
obeys f(i,j) = f(j,i) (a commutative function). The function transition does no commutativity
check. To obtain an asymmetric transition matrix, a non-commutative function should be supplied
and an additional argument ‘symm’ should be set to FALSE.

2) TransitionLayer from RasterBrick

transition(x, transitionFunction="mahal", directions)

This method serves to summarize several layers of data in a single distance measure. The distance
between adjacent cells is the normalized reciprocal of the Mahalanobis distance (mean distance /
(mean distance + distance ij).

3) TransitionStack from RasterLayer

In contrast with the above methods, this method produces resistance matrices by default.

a) Continuous variables - barriers

transition(x, transitionFunction="barriers", directions, symm, intervalBreaks)

This method creates a TransitionStack with each layer containing a discrete boundary between
areas in x. Areas are defined by intervals in x. The argument intervalBreaks is a vector of
interval breaks corresponding to the values in x. If between a pair of cells i and j, min(i,j) < break
AND max(i,j) > break, then the value ij in the transition matrix becomes 1. All other values in
the transition matrix remain 0. The package classInt offers several methods to define intervals. If
symm is changed from the default (TRUE) to "up" or "down", it will give either only the upslope
(symm="up") or downslope (symm="down") barriers.

b) Categorical variables - barriers

transition(x, transitionFunction="barriers", directions)

In this case, areas are defined as categories in the input raster. A raster with a categorical variable
can be created with asFactor(). The layers of the resulting TransitionStack contain all possible
combinations of categories. Which layer contains the combination of categories i and j out of n
categories, can be determined with these formulae:

if symm is TRUE: layer(i,j) = n*(j-1) - j*(j-1)/2 + i-j. if symm is FALSE and i>j: layer(i,j) = ((n*(j-1) -
j*(j-1)/2 + i-j) * 2) - 1. if symm is FALSE and i<j: layer(i,j) = (n*(j-1) - j*(j-1)/2 + i-j) * 2.

c) Categorical variables - areas

transition(x, transitionFunction="areas", directions)



24 transition

Here, areas are also a categorical variable (see under 3b). The layers in the resulting TransitionStack
represent each one area. Connections between two cells which are each inside the area are set to 1.
Connections between a cell inside and a cell outside the area are set to 0.5. Connections between
two cells outside the area are set to 0.

Value

Transition object

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

#Create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r, runif(ncell(r)))

#Create a Transition object from the raster
tr <- transition(r, transitionFunction=mean, directions=4)
tr #the sparse matrix is of class dsCMatrix (symmetric)

#Create an asymmetric transition matrix
#first, an arbitrary non-commutative function
f <- function(x) max(x) - x[1] + x[2]
tr2 <- transition(r, f, 4, symm=FALSE)
tr2 #the sparse matrix is of class dgCMatrix (=asymmetric)

#Barriers - interval breaks
tr3 <- transition(r, "barriers", 8, intervalBreaks=c(0.25, 0.5, 0.75))
nlayers(tr3)

#Barriers - categories
r <- round(r * 2)
r <- asFactor(r)
tr4 <- transition(r, "barriers", 8)
nlayers(tr4)
plot(raster(tr4[[2]]))

#Areas
r <- round(r * 2)
r <- asFactor(r)
tr5 <- transition(r, "areas", 8)
nlayers(tr5)
plot(raster(tr5[[2]]))
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Transition slots Extract or change elements of Transition* objects

Description

These functions are to be used to access slots of Transition* objects.

Usage

transitionMatrix(x, inflate)
transitionCells(x)
matrixValues(x)

Arguments

x object of class Transition*

inflate logical (default is TRUE)

Transition* classes Transition* classes

Description

TransitionLayer and TransitionStack (or Transition*) are the core classes of the package gdistance.
They are the main input into the functions to calculate distances and routes.

An object of the class TransitionLayer contains two main elements: a. a transition matrix with
transition values between connected cells in a raster - an object of class sparseMatrix (package
Matrix); b. information on the extent, resolution and projection of the underlying raster - an object
of class Raster (package raster).

All slots belong to these two elements from other package, except two additional slots: 1. slot
transitionCells, which is only used internally in the package; 2. slot matrixValues indicates if the
nonzero values of the transition matrix contains conductance or resistance values.

Class TransitionStack contains one or more transition matrices.

Class Transition is the union of TransitionLayer and TransitionStack.

Objects from the Class

Objects can be created by calls of the form new("Transition", nrows, ncols, xmin, xmax, ymin, ymax, projection).
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Slots

transitionMatrix: Object of class "sparseMatrix"

transitionCells: Object of class "integer"

matrixValues: Object of class "character"

ncols: Object of class "integer"

nrows: Object of class "integer"

crs: Object of class "CRS" (sp package)

extent: Object of class "Extent"

layernames: Object of class "vector"

Extends

Class "Raster".

Author(s)

Jacob van Etten <jacobvanetten@yahoo.com>

Examples

showClass("TransitionLayer")

tr <- new("TransitionLayer",nrows=as.integer(36),ncols=as.integer(18),extent=extent(c(xmin=-180,xmax=180,
ymin=-90,ymax=90)),crs=CRS("+proj=longlat +datum=WGS84"))

tr <- new("TransitionLayer",nrows=as.integer(36),ncols=as.integer(18),extent=extent(c(xmin=-180,xmax=180,
ymin=-90,ymax=90)),crs=CRS(""))

Transition* methods Extracting and replacing: class Transition

Description

Methods for functions [ and [<- for object of the class TransitionLayer. Methods for functions [[
and [[<- for object of the class TransitionStack.

Also see adjacencyFromTransition.

Examples

#Create a new raster and set all its values to unity.
r <- raster(nrows=18, ncols=36)
r <- setValues(r,rep(1,ncell(r)))

#Create TransitionLayer objects
tr1 <- transition(r,mean,4)
tr2 <- tr1
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#Extracting and replacing
tr1[cbind(1:9,1:9)] <- tr2[cbind(1:9,1:9)]
tr1[1:9,1:9] <- tr2[1:9,1:9]
tr1[1:5,1:5]
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