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Abstract: We Consider a spherically symmetric thick shell in two different space times. We
have used the equation of motion for thick shell, developed by Khakshournia and Mansouri, to
obtain the equation of motion of a charged spherical shell. We Expand the dynamical equation
of motion of thick shell, to the first order of its thickness, to compare it with the dynamics of
charged thin shell. It is shown that the effect of thickness is to speed up the collapse of the
shell.
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1. Introduction

The thin shell formalism of general relativity (GR) has found wide applications in GR

and cosmology. This formalism was first developed in [1] and applied to the gravitational

collapse problem [2]. Studies on gravitational collapse, dynamics of bubbles and domain

walls in inflationary models, wormhole, signature changes, structure and dynamics of

voids in the large scale structure of the universe are some of the applications (cf [3] and

references their in). Thin shells are considered as zero thickness objects with a δ- function

singularity in their energy-momentum and Einstein’s tensors.

However the dynamics of a real thick shell has been rarely discussed in the literature

because of the complexity to define it within GR and to find its exact dynamical equations.

The outstanding paper that modifies the Israel thin shell equations to treat the motion of

spherical and Planar thick domain walls is that of Garfinkle and Gregory [4], see also [5].
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According to the results of that paper, the effect of thickness in the first approximation

is to reduce effectively the energy density of the wall compared to the corresponding thin

domain wall, and therefore to increase the collapse velocity of the wall in vacuum.

I use the formalism developed by Mansouri and Khakshournia(MK) [6] to treat a

charged thick shell. The organization of this paper is as follows. In Section 2 I give

a brief introduction to MK junction condition of thick shell. I describe the dynamics

of charged spherically symmetric thick shell Section 3. A general conclusion is given in

Section 4.

2. The Junction Conditions

Consider a spherically symmetric thick shell with two boundaries Σ1 and Σ2 dividing

the space –time into three regions: Min inside the inner boundary Σ1, Mout outside the

outer boundary Σ2, and M for the thick shell having two boundaries Σ1 and Σ2. First of

all , write down the appropriate junction condition on each boundary Σj(j = 1, 2) treated

as a three dimensional timelike hypersurface. The continuity of the second fundamental

form of Σj, or the extrinsic curvature tensor Kab of Σj, so that consider Σ1(Σ2) as

a boundary surface separating M region from Min(Mout). This crucial requirement is

formulated as

[Kab]
Σj
= 0 (j = 1, 2), (1)

where the square bracket indicates the jump of Kab across Σj, ([Kab] = K+
ab−K−

ab). Latin

indices range over the intrinsic coordinates of Σj denoted by (τj, θ, φ), where τj is the

proper time of Σj. In particular, the angular component of equation (1) on each boundary

is written as

Kθ+
θ |Σ1 −Kθ−

θ |Σ1 = 0 (2)

Kθ+
θ |Σ2 −Kθ−

θ |Σ2 = 0 (3)

where the superscript +(-) refers to the side of Σj towards which the corresponding unit

space like normal vector nα(−nα) points. It means that on Σ1(Σ2), the superscript +

refers to the region M(Mout) and the superscript - refers to the region Min(M). Adding

equations (2) and (3), to get

Kθ+
θ |Σ2 −Kθ−

θ |Σ1 + Kθ+
θ |Σ1 −Kθ−

θ |Σ2 = 0. (4)

In the next section, this general equation will be applied to the case of a collapsing

charged shell.

3. Dynamics of Charged Thick Shell

Consider a spherical thick shell immersed in two different spherically symmetric

space-times. The space-time outside the shell is described by Reissner-Nordstrom (RN)

metric:

ds2
o = −fdt2 + f−1dr2 + r2dΩ2 (5)
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where

f = 1− 2m

r
+

e2

r2
= 1− F (r)

r
= 1 + Φ (r) (6)

where F (r) or Φ(r) is an real function, and e is the electric charge.

The space-time inside the shell is described by Minkowski metric:

ds2
i = −dT 2 + dr2 + r2dΩ2 (7)

where

dΩ2 = dθ2 + sin2 θdφ2

is the line element on the unit sphere. The induced intrinsic metric on Σj may be

represented as

ds2
∣∣
Σj

= −dτ 2
j + R2

j (τj)
(
dθ2 + sin2 θdφ2

)
(j = 1, 2),

where Rj(τj) being the proper radius of Σj. Now, define the constant commoving thick-

ness of the shell as follows 2δ = r2 − r1 where r1 and r2 are commoving radii of the

boundaries Σ1 and Σ2 respectively. Using the metric (5),(7) the relevant extrinsic curva-

ture tensors in the region M are

Kθ+
θ |Σ1 =

1

R1

√
1 + Ṙ2

1 −
F (r1)

R1

Kθ−
θ |Σ2 =

1

R2

√
1 + Ṙ2

2 −
F (r2)

R2

(8)

and the relevant extrinsic curvature tensors in the regions Min and Mout are

Kθ+
θ |Σ2 =

1

R2

√
1 + Ṙ2

2 −
R (r2)

R2

Kθ−
θ |Σ1 =

1

R1

√
1 + Ṙ2

1 (9)

where Rj ≡ R (rj, τ) and R(r2) is the radius of the spherical shell within the commoving

surface r2.

To obtain the dynamical equation of the thick shell, expand the following quantities

in a Taylor series around (r0), the mean commoving radius of the thick shell,

R (rj, τ) = R (r0, τ) + εjδR
′ (r0, τ) + 0

(
δ2

)
(10)

F (rj) = F (R0) + εjδF
′ (r0) + 0

(
δ2

)
(11)

R (r2) = R (r0) + δR′ (r0) + 0
(
δ2

)
(12)

where ε1 = −1 and ε2 = +1. Using equations (10), (11), (12) in the expressions (8) and

(9), and keeping only terms up to the first order of δ, to get

Kθ−
θ |Σ1 =

1

R0

√
1 + Ṙ2

0(1 + δ(
R′

0

R0

− Ṙ0Ṙ
′
0

1 + Ṙ2
0

)),
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Kθ+
θ |Σ2 =

1

R0

√
1 + Ṙ2

0 −
R(r0)

R0

(1− δ(
R′

0

R0

−
Ṙ0Ṙ

′
0 − R′(r0)

2R0
+

R′0R(r0)

2R2
0

1 + Ṙ2
0 − R(r0)

R0

)),

Kθ+
θ |Σ1 =

1

R0

√
1 + Ṙ2

0 −
F (r0)

R0

(1 + δ(
R′

0

R0

−
Ṙ0Ṙ

′
0 − F ′(r0)

2R0
+

R′0F (r0)

2R2
0

1 + Ṙ2
0 − F (r0)

R0

)),

Kθ−
θ |Σ2 =

1

R0

√
1 + Ṙ2

0 −
F (r0)

R0

(1 + δ(
R′

0

R0

−
Ṙ0Ṙ

′
0 − F ′(r0)

2R0
+

R′0F (r0)

2R2
0

1 + Ṙ2
0 − F (r0)

R0

)), (13)

where R0 ≡ R (r0, τ). Substituting equation (13) into equation (4) and noting that

F (r0) ≡ R(r0), then the thick shell’s equation of motion written up to the first order in

δ is

α−β = 2δ
F ′ (r0)

2βR0

−δ

[
R′

0

R0

(α− β) +
Ṙ0Ṙ

′
0

αβ
(α− β) +

1

2βR0

(
R′ (r0) +

R′
0F (r0)

R0

)]
(14)

where α =
√

1 + Ṙ2
0

and β =
√

1 + Ṙ2
0 − R(r0)

R0
≡

√
1 + Ṙ2

0 − F (r0)
R0

.

This is the generalization of thin shell dynamical equation up to the first order of the

thickness.

To verify the thin shell limit of this thick shell dynamical equation, consider the

following definition for the surface energy density of the infinitely thin shell [1],

σ =

+ε∫

−ε

ρ (r, τ) dn (15)

Where n is the proper distance in the direction of the normal nµ and 2ε is the physical

thickness of the shell. With the metric (5) equation (15) takes the form

σ =

+δ∫

−δ

ρ (r, τ)√
1 + Ṙ2 − F (r)

R

dr (16)

Since ∂m
∂R

= 4πR2ρG, then equation (16) can be written as

8πGσ =

+δ∫

−δ

2∂m
∂R

dr

R2

√
1 + Ṙ2 − F (r)

R

=

+δ∫

−δ

F ′ (r)

R2

√
1 + Ṙ2 − F (r)

R

dr (17)

Substituting equations (10) and (11) into equation (17) and integrate it up to the first

order in δ to get

8πGσ = 2δ
F ′ (r0)

R2
0

√
1 + ˙̇R2

0 − F (r0)
R0

+ 0
(
δ2

)
(18)
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Substituting equations (18) into equation (14) to get

α−β = 4πGσR0− δ

[
R′

0

R0

(α− β) +
Ṙ0Ṙ

′
0

αβ
(α− β) +

1

2βR0

(
R′ (r0) +

R′
0F (r0)

R0

)]
(19)

When δ tends to zero the second term on the right hand side goes to zero, then this

equation reduced to the equation of motion of charged thin shell.

Rewrite the dynamical equation of thick shell (19) in the form

α− β = 4πGR0σ̃ (20)

where

σ̃ = σ − δ

4πGR0

[
R′

0

R0

(α− β) + Ṙ0Ṙ
′
0

(
α− β

αβ

)
+

1

2βR0

(
R′ (r0) +

R′
0F (r0)

R0

)]
(21)

It has the same form of the equation of thin shell with the effective surface density σ̃.

From equation (21) note that the shell starting its collapse at rest when the velocity

Ṙ is negative during the collapse, it becomes more negative with r so that Ṙ
′
0 ≺ 0, so

ṘṘ
′
0 must be positive. Also, the radius of the shell layers is increased with rso that

R′ (r0)〉0. Therefore all terms within the bracket on the right hand side of equation (21)

are positive. This leads to the result σ̃〈σ. Solving equation (20) for Ṙ2 to get

Ṙ2
0 = −1 + 4π2G2σ̃2R2

0 +
F (r0)

2R0

+
F 2 (r0)

64π2G2σ̃2R4
0

. (22)

It follows that Ṙ2 becomes larger with smaller σ̃ and R0〉R (r0). Substituting by (6) into

equation (22) to get

Ṙ2
0 = −1 + 4π2G2σ̃2R2

0 +
m

R0

+
m2

16π2G2σ̃2R4
0

+
e2

2R2
0

(−1− m

8π2G2σ̃2R3
0

+
e2

32π2G2σ̃2R4
0

)

Therefore the first order thickness corrections to the Israel thin shell approximation

speed up the collapse of the shell.

4. Conclusion

I applied the modified Israel formalism which developed by MK to the case of the

collapse of a charged thick shell in RN and obtained the zero thickness limit of the charged

thin shell equation, and Israel thin shell equation with e =0.

It has been shown that the effect of thickness up to the first order in the shell thickness,

is to speed up the collapse of the shell.
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