Scientia Magna

Vol. 2 (2006), No. 4, 87-90

The relationship between $S_{p}(n)$ and $S_{p}(k n)$

Weiyi Zhu

College of Mathematics, Physics and Information Engineer, Zhejiang Normal University Jinhua, Zhejiang, P.R.China

Abstract

For any positive integer n, let $S_{p}(n)$ denotes the smallest positive integer such that $S_{p}(n)$! is divisible by p^{n}, where p be a prime. The main purpose of this paper is using the elementary methods to study the relationship between $S_{p}(n)$ and $S_{p}(k n)$, and give an interesting identity.

Keywords The primitive numbers of power p, properties, identity

§1. Introduction and Results

Let p be a prime and n be any positive integer. Then we define the primitive numbers of power p (p be a prime) $S_{p}(n)$ as the smallest positive integer m such that m ! is divided by p^{n}. For example, $S_{3}(1)=3, S_{3}(2)=6, S_{3}(3)=S_{3}(4)=9, \cdots$. In problem 49 of book [1], Professor F.Smarandache asked us to study the properties of the sequence $\left\{S_{p}(n)\right\}$. About this problem, Zhang Wenpeng and Liu Duansen [3] had studied the asymptotic properties of $S_{p}(n)$, and obtained an interesting asymptotic formula for it. That is, for any fixed prime p and any positive integer n, they proved that

$$
S_{p}(n)=(p-1) n+O\left(\frac{p}{\ln p} \ln n\right)
$$

Yi Yuan [4] had studied the asymptotic property of $S_{p}(n)$ in the form $\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right|$, and obtained the following result: for any real number $x \geq 2$, let p be a prime and n be any positive integer,

$$
\frac{1}{p} \sum_{n \leq x}\left|S_{p}(n+1)-S_{p}(n)\right|=x\left(1-\frac{1}{p}\right)+O\left(\frac{\ln x}{\ln p}\right)
$$

Xu Zhefeng [5] had studied the relationship between the Riemann zeta-function and an infinite series involving $S_{p}(n)$, and obtained some interesting identities and asymptotic formulae for $S_{p}(n)$. That is, for any prime p and complex number s with $\operatorname{Re} s>1$, we have the identity:

$$
\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}=\frac{\zeta(s)}{p^{s}-1}
$$

where $\zeta(s)$ is the Riemann zeta-function.

And, let p be a fixed prime, then for any real number $x \geq 1$ he got

$$
\sum_{\substack{n=1 \\ S_{p}(n) \leq x}}^{\infty} \frac{1}{S_{p}(n)}=\frac{1}{p-1}\left(\ln x+\gamma+\frac{p \ln p}{p-1}\right)+O\left(x^{-\frac{1}{2}+\varepsilon}\right),
$$

where γ is the Euler constant, ε denotes any fixed positive number.
Chen Guohui [7] had studied the calculation problem of the special value of famous Smarandache function $S(n)=\min \{m: m \in N, n \mid m!\}$. That is, let p be a prime and k an integer with $1 \leq k<p$. Then for polynomial $f(x)=x^{n_{k}}+x^{n_{k-1}}+\cdots+x^{n_{1}}$ with $n_{k}>n_{k-1}>\cdots>n_{1}$, we have:

$$
S\left(p^{f(p)}\right)=(p-1) f(p)+p f(1)
$$

And, let p be a prime and k an integer with $1 \leq k<p$, for any positive integer n, we have:

$$
S\left(p^{k p^{n}}\right)=k\left(\phi\left(p^{n}\right)+\frac{1}{k}\right) p
$$

where $\phi(n)$ is the Euler function. All these two conclusions above also hold for primitive function $S_{p}(n)$ of power p.

In this paper, we shall use the elementary methods to study the relationships between $S_{p}(n)$ and $S_{p}(k n)$, and get some interesting identities. That is, we shall prove the following:

Theorem. Let p be a prime. Then for any positive integers n and k with $1 \leq n \leq p$ and $1<k<p$, we have the identities:
$S_{p}(k n)=k S_{p}(n)$, if $1<k n<p ;$
$S_{p}(k n)=k S_{p}(n)-p\left[\frac{k n}{p}\right]$, if $p<k n<p^{2}$, where $[x]$ denotes the integer part of x.

§2. Two simple Lemmas

To complete the proof of the theorem, we need two simple lemmas which stated as following:
Lemma 1. For any prime p and any positive integer $2 \leq l \leq p-1$, we have:
(1) $\quad S_{p}(n)=n p$, if $1 \leq n \leq p$;
(2) $S_{p}(n)=(n-l+1) p$, if $(l-1) p+l-2<n \leq l p+l-1$.

Proof. First we prove the case (1) of Lemma 1. From the definition of $S_{p}(n)=\min \{m$: $\left.p^{n} \mid m!\right\}$, we know that to prove the case (1) of Lemma 1, we only to prove that $p^{n} \|(n p)!$. That is, $p^{n} \mid(n p)$! and $p^{n+1} \dagger(n p)$!. According to Theorem 1.7.2 of $[6]$ we only to prove that $\sum_{j=1}^{\infty}\left[\frac{n p}{p^{j}}\right]=n$. In fact, if $1 \leq n<p$, note that $\left[\frac{n}{p^{i}}\right]=0, i=1,2, \cdots$, we have

$$
\sum_{j=1}^{\infty}\left[\frac{n p}{p^{j}}\right]=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j-1}}\right]=n+\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots=n .
$$

This means $S_{p}(n)=n p$. If $n=p$, then $\sum_{j=1}^{\infty}\left[\frac{n p}{p^{j}}\right]=n+1$, but $p^{p} \dagger\left(p^{2}-1\right)$! and $p^{p} \mid p^{2}$!. This prove the case (1) of Lemma 1. Now we prove the case (2) of Lemma 1. Using the same method
of proving the case (1) of Lemma 1 we can deduce that if $(l-1) p+l-2<n \leq l p+l-1$, then

$$
\left[\frac{n-l+1}{p}\right]=l-1,\left[\frac{n-l+1}{p^{i}}\right]=0, i=2,3, \cdots .
$$

So we have

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left[\frac{(n-l+1) p}{p^{j}}\right] & =\sum_{j=1}^{\infty}\left[\frac{n-l+1}{p^{j-1}}\right] \\
& =n-l+1+\left[\frac{n-l+1}{p}\right]+\left[\frac{n-l+1}{p^{2}}\right]+\cdots \\
& =n-l+1+l-1=n
\end{aligned}
$$

From Theorem 1.7.2 of reference [6] we know that if $(l-1) p+l-2<n \leq l p+l-1$, then $p^{n} \|((n-l+1) p)!$. That is, $S_{p}(n)=(n-l+1) p$. This proves Lemma 1 .

Lemma 2. For any prime p, we have the identity $S_{p}(n)=(n-p+1) p$, if $p^{2}-2<n \leq p^{2}$.
Proof. It is similar to Lemma 1, we only need to prove $p^{n} \|((n-p+1) p)$!. Note that if $p^{2}-2<n \leq p^{2}$, then $\left[\frac{n-p+1}{p}\right]=p-1,\left[\frac{n-p+1}{p^{i}}\right]=0, i=2,3, \cdots$. So we have

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left[\frac{(n-p+1) p}{p^{j}}\right] & =\sum_{j=1}^{\infty}\left[\frac{n-p+1}{p^{j-1}}\right] \\
& =n-p+1+\left[\frac{n-p+1}{p}\right]+\left[\frac{n-p+1}{p^{2}}\right]+\cdots \\
& =n-p+1+p-1=n
\end{aligned}
$$

From Theorem 1.7.2 of [6] we know that if $p^{2}-2<n \leq p^{2}$, then $p^{n} \|((n-p+1) p)$!. That is, $S_{p}(n)=(n-p+1) p$. This completes the proof of Lemma 2.

§3. Proof of Theorem

In this section, we shall use above Lemmas to complete the proof of our theorem.
Since $1 \leq n \leq p$ and $1<k<p$, therefore we deduce $1<k n<p^{2}$. We can divide $1<k n<$ p^{2} into three interval $1<k n<p,(m-1) p+m-2<k n \leq m p+m-1(m=2,3, \cdots, p-1)$ and $p^{2}-2<k n \leq p^{2}$. Here, we discuss above three interval of $k n$ respectively:
i) If $1<k n<p$, from the case (1) of Lemma 1 we have

$$
S_{p}(k n)=k n p=k S_{p}(n)
$$

ii) If $(m-1) p+m-2<k n \leq m p+m-1(m=2,3, \cdots, p-1)$, then from the case (2) of Lemma 1 we have

$$
S_{p}(k n)=(k n-m+1) p=k n p-(m-1) p=k S_{p}(n)-(m-1) p
$$

In fact, note that if $(m-1) p+m-2<k n<m p+m-1(m=2,3, \cdots, p-1)$, then $m-1+\left[\frac{m-2}{p}\right]<\left[\frac{k n}{p}\right]<m+\left[\frac{m-1}{p}\right]$. Hence, $\left[\frac{k n}{p}\right]=m-1$. If $k n=m p+m-1$,
then $\left[\frac{k n}{p}\right]=m$, but $p^{m p+m-1} \dagger((m p+m-1) p-1)$! and $p^{m p+m-1} \mid((m p+m-1) p)$!. So we immediately get

$$
S_{p}(k n)=k S_{p}(n)-p\left[\frac{k n}{p}\right] .
$$

iii) If $p^{2}-2<k n \leq p^{2}$, from Lemma 2 we have

$$
S_{p}(k n)=(k n-p+1) p=k n p-(p-1) p .
$$

Similarly, note that if $p^{2}-2<k n \leq p^{2}$, then $p-\left[\frac{2}{p}\right]<\left[\frac{k n}{p}\right] \leq p$. That is, $\left[\frac{k n}{p}\right]=p-1$. So we may immediately get

$$
S_{p}(k n)=k S_{p}(n)-p\left[\frac{k n}{p}\right] .
$$

This completes the proof of our Theorem.

References

[1] F. Smarandache, Only problems, not solutions, Chicago, Xiquan Publishing House, 1993.
[2] Tom M. Apostol, Introduction to analytic number theory, New York, Springer-Verlag, 1976.
[3] Zhang Wenpeng and Liu Duansen, On the primitive numbers of power p and its asymptotic property, Smarandache Notions Journal, 13(2002), pp. 173-175.
[4] Yi Yuan, On the primitive numbers of power p and its asymptotic property, Scientia Magna, 1(2005), No. 1, pp. 175-177.
[5] Xu Zhefeng, Some arithmetical properties of primitive numbers of power p, Scientia Magna, 2(2006), No. 1, pp. 9-12.
[6] Pan Chengdong and Pan Chengbiao, The elementary number theory, Beijing University Press, Beijing, 2003.
[7] Chen Guohui, Some exact calculating formulas for the Smarandache function, Scientia Magna, 2(2006), No. 3, pp. 95-97.

