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The relationship between Sp(n) and Sp(kn)
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Abstract For any positive integer n, let Sp(n) denotes the smallest positive integer such

that Sp(n)! is divisible by pn, where p be a prime. The main purpose of this paper is using

the elementary methods to study the relationship between Sp(n) and Sp(kn), and give an

interesting identity.
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§1. Introduction and Results

Let p be a prime and n be any positive integer. Then we define the primitive numbers
of power p (p be a prime) Sp(n) as the smallest positive integer m such that m! is divided by
pn. For example, S3(1) = 3, S3(2) = 6, S3(3) = S3(4) = 9, · · · . In problem 49 of book [1],
Professor F.Smarandache asked us to study the properties of the sequence {Sp(n)}. About this
problem, Zhang Wenpeng and Liu Duansen [3] had studied the asymptotic properties of Sp(n),
and obtained an interesting asymptotic formula for it. That is, for any fixed prime p and any
positive integer n, they proved that

Sp(n) = (p− 1)n + O

(
p

ln p
lnn

)
.

Yi Yuan [4] had studied the asymptotic property of Sp(n) in the form
1
p

∑

n≤x

|Sp(n + 1)− Sp(n)|,

and obtained the following result: for any real number x ≥ 2, let p be a prime and n be any
positive integer,

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| = x

(
1− 1

p

)
+ O

(
lnx

ln p

)
.

Xu Zhefeng [5] had studied the relationship between the Riemann zeta-function and an
infinite series involving Sp(n), and obtained some interesting identities and asymptotic formulae
for Sp(n). That is, for any prime p and complex number s with Res > 1, we have the identity:

∞∑
n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

,

where ζ(s) is the Riemann zeta-function.
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And, let p be a fixed prime, then for any real number x ≥ 1 he got
∞∑

n=1
Sp(n)≤x

1
Sp(n)

=
1

p− 1

(
lnx + γ +

p ln p

p− 1

)
+ O(x−

1
2+ε),

where γ is the Euler constant, ε denotes any fixed positive number.
Chen Guohui [7] had studied the calculation problem of the special value of famous Smaran-

dache function S(n) = min{m : m ∈ N, n|m!}. That is, let p be a prime and k an integer with
1 ≤ k < p. Then for polynomial f(x) = xnk + xnk−1 + · · ·+ xn1 with nk > nk−1 > · · · > n1, we
have:

S(pf(p)) = (p− 1)f(p) + pf(1).

And, let p be a prime and k an integer with 1 ≤ k < p, for any positive integer n, we have:

S
(
pkpn

)
= k

(
φ(pn) +

1
k

)
p,

where φ(n) is the Euler function. All these two conclusions above also hold for primitive function
Sp(n) of power p.

In this paper, we shall use the elementary methods to study the relationships between
Sp(n) and Sp(kn), and get some interesting identities. That is, we shall prove the following:

Theorem. Let p be a prime. Then for any positive integers n and k with 1 ≤ n ≤ p and
1 < k < p, we have the identities:

Sp(kn) = kSp(n), if 1 < kn < p;

Sp(kn) = kSp(n)− p

[
kn

p

]
, if p < kn < p2, where [x] denotes the integer part of x.

§2. Two simple Lemmas

To complete the proof of the theorem, we need two simple lemmas which stated as following:
Lemma 1. For any prime p and any positive integer 2 ≤ l ≤ p− 1, we have:
(1) Sp(n) = np, if 1 ≤ n ≤ p;
(2) Sp(n) = (n− l + 1)p, if (l − 1)p + l − 2 < n ≤ lp + l − 1.
Proof. First we prove the case (1) of Lemma 1. From the definition of Sp(n) = min{m :

pn|m!}, we know that to prove the case (1) of Lemma 1, we only to prove that pn‖(np)!. That is,

pn|(np)! and pn+1†(np)!. According to Theorem 1.7.2 of [6] we only to prove that
∞∑

j=1

[
np

pj

]
= n.

In fact, if 1 ≤ n < p, note that
[

n

pi

]
= 0, i = 1, 2, · · · , we have

∞∑

j=1

[
np

pj

]
=

∞∑

j=1

[
n

pj−1

]
= n +

[
n

p

]
+

[
n

p2

]
+ · · · = n.

This means Sp(n) = np. If n = p, then
∞∑

j=1

[
np

pj

]
= n + 1, but pp † (p2 − 1)! and pp|p2!. This

prove the case (1) of Lemma 1. Now we prove the case (2) of Lemma 1. Using the same method
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of proving the case (1) of Lemma 1 we can deduce that if (l− 1)p + l− 2 < n ≤ lp + l− 1, then
[
n− l + 1

p

]
= l − 1,

[
n− l + 1

pi

]
= 0, i = 2, 3, · · · .

So we have
∞∑

j=1

[
(n− l + 1)p

pj

]
=

∞∑

j=1

[
n− l + 1

pj−1

]

= n− l + 1 +
[
n− l + 1

p

]
+

[
n− l + 1

p2

]
+ · · ·

= n− l + 1 + l − 1 = n.

From Theorem 1.7.2 of reference [6] we know that if (l − 1)p + l − 2 < n ≤ lp + l − 1, then
pn‖((n− l + 1)p)!. That is, Sp(n) = (n− l + 1)p. This proves Lemma 1.

Lemma 2. For any prime p, we have the identity Sp(n) = (n−p+1)p, if p2−2 < n ≤ p2.
Proof. It is similar to Lemma 1, we only need to prove pn‖((n − p + 1)p)!. Note that if

p2 − 2 < n ≤ p2, then
[
n− p + 1

p

]
= p− 1,

[
n− p + 1

pi

]
= 0, i = 2, 3, · · · . So we have

∞∑

j=1

[
(n− p + 1)p

pj

]
=

∞∑

j=1

[
n− p + 1

pj−1

]

= n− p + 1 +
[
n− p + 1

p

]
+

[
n− p + 1

p2

]
+ · · ·

= n− p + 1 + p− 1 = n.

From Theorem 1.7.2 of [6] we know that if p2 − 2 < n ≤ p2, then pn‖((n − p + 1)p)!. That is,
Sp(n) = (n− p + 1)p. This completes the proof of Lemma 2.

§3. Proof of Theorem

In this section, we shall use above Lemmas to complete the proof of our theorem.
Since 1 ≤ n ≤ p and 1 < k < p, therefore we deduce 1 < kn < p2. We can divide 1 < kn <

p2 into three interval 1 < kn < p, (m− 1)p + m− 2 < kn ≤ mp + m− 1 (m = 2, 3, · · · , p− 1)
and p2 − 2 < kn ≤ p2. Here, we discuss above three interval of kn respectively:

i) If 1 < kn < p, from the case (1) of Lemma 1 we have

Sp(kn) = knp = kSp(n).

ii) If (m − 1)p + m − 2 < kn ≤ mp + m − 1 (m = 2, 3, · · · , p − 1), then from the case (2)
of Lemma 1 we have

Sp(kn) = (kn−m + 1)p = knp− (m− 1)p = kSp(n)− (m− 1)p.

In fact, note that if (m − 1)p + m − 2 < kn < mp + m − 1 (m = 2, 3, · · · , p − 1), then

m − 1 +
[
m− 2

p

]
<

[
kn

p

]
< m +

[
m− 1

p

]
. Hence,

[
kn

p

]
= m − 1. If kn = mp + m − 1,



90 Weiyi Zhu No. 4

then
[
kn

p

]
= m, but pmp+m−1 † ((mp + m− 1)p− 1)! and pmp+m−1|((mp + m− 1)p)!. So we

immediately get

Sp(kn) = kSp(n)− p

[
kn

p

]
.

iii) If p2 − 2 < kn ≤ p2, from Lemma 2 we have

Sp(kn) = (kn− p + 1)p = knp− (p− 1)p.

Similarly, note that if p2 − 2 < kn ≤ p2, then p−
[
2
p

]
<

[
kn

p

]
≤ p. That is,

[
kn

p

]
= p− 1. So

we may immediately get

Sp(kn) = kSp(n)− p

[
kn

p

]
.

This completes the proof of our Theorem.
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