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PART 1: INTRODUCTION 

 

 

CHAPTER 1 

 

DNA Microarray in Cancer Research 

 

Having the essentially complete sequence of the human genome is similar to 

having all the pages of a manual needed to make the human body. The challenge to 

researchers and scientists in current post-genomic era is to find those missing definitions, 

to use genomic structural information to display and analyze biological processes on a 

genome-wide scale, and to explore gene functions. Although traditional molecular 

biology often takes a reductionist approach to biological questions, it has long been 

recognized that genes act in concert with other partners, often in separate dimensions of 

time and space. To fully understand the underlying biology, these molecular interactions 

may have to be studied from the conceptual framework of the entire genome. With the 

advent of high throughput technologies, the logistical challenge of which approach is 

being overcome. DNA microarray, as one of high-throughput technology, offers the 

ability to measure the expression of thousands of genes simultaneously, providing 

genome-wide views of gene expression from the yeast cells to human cancer cells. By 

supplying quantitative information on cell transcriptomes, this technology has become a 

powerful tool in biomedical research, especially in cancer research and has led to an 

explosion in global gene expression profiling studies. In theory, for human cancer, this 
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knowledge has the potential to lead to optimized, individualized management of patients. 

The goal of this survey is to summarize the basic principles, the different steps involved 

in DNA microarray technology and, more importantly, the proper data analysis 

methodologies and applications in cancer biology.  

 

In general, DNA microarrays are of two kinds, depending on the materials 

arrayed: cDNA microarrays (1) and oligonucleotide arrays (2) and. cDNA arrays are 

generated with a robotic arrayer, printing a double-stranded cDNA onto a solid surface 

such as glass, charged nylon membranes, or nitrocellulose filters. For oligonucleotide 

arrays, in situ synthesis usually produces short 20-25 mers by photolithography 

(Affymetrix) or lengths of up to 60 nt by inkjet technology (Agilent Technologies). 

Another type of oligonucleotide array is made by spotting longer presynthesized 

oligonucleotides (~70 nt) on glass slides (3). While cDNA is easily customizable, 

oligonucleotides generally offer greater specificity as they can be specifically tailored to 

minimize chances of cross-hybridization. Other advantages of oligonucleotide arrays 

include uniformity of probe length and the ability to distinguish specific variants (4).  

 

The hybridization of a test sample to an array can be detected in one of two ways 

(Figure 1.1). cDNA arrays are commonly designed with 2-dye (also known as 2-channel) 

representing cDNAs from experimental and reference RNA samples experiments. Each 

cDNA sample is labeled with its own specific fluorophore. Expression values are 

reported as ratios between two fluorescent values, representing the quantitative difference 

between two cDNA sources. Alternatively, the Affymetrix-like oligonucleotide arrays 

use a single channel system to detect absolute level of gene expression. In addition, 
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Affymetrix designs “perfect match” (PM) and “mismatch” (MM) probes for each probe 

set, where the “mismatch” probe is one nucleotide different from the “match” probe and 

is intended to indicate the level of non-specific binding. However, whether or not to use 

“mismatch” probes is still an open question. For example, MAS5, the default Affymetrix 

probe set algorithm, utilizes both PM and MM probe information, while RMA, an 

algorithm developed by UC Berkeley ignores MM probes.  

 

Pat Brown and his colleagues at Stanford University published the first 

microarray paper using cDNA arrays in 1995 (1).  In general, a typical cDNA microarray 

experiment proceeds as follows: (1) sample preparation and RNA isolation, (2) 

preparation of fluorescently labeled cDNA, (3) hybridization, (4) slide scanning, image 

and data analysis (Figure 1.1). During the experiment, multiple sources of variation may 

be introduced including: mixed cellular composition in tissue, genetic heterogeneity 

within tissue cells, difference in sample preparation, non-specific cross-hybridization of 

spots, different detection efficiencies for the fluorescent labels as well as differences 

between individual slides (4). Thus care must be taken in each step. Once slides are 

scanned, image analysis is first carried out to determine image quality, identify spots and 

output background adjusted fluorescent intensities. A good image shall have a low level, 

uniform background and high signal-to-noise ratio. For spot identification, most 

commercial scanners provide software to transform the colored spots into numerical 

intensities. During spot identification, background signal is also estimated. The most 

common method is to calculate the background signal locally in the vicinity of each spot 

and then subtract it. The ratios of measured background-subtracted Cy5 to Cy3 intensities 
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are further subjected to normalization that is intended to remove systematic errors arising 

from the above variations. 

 

Two major normalization steps are commonly used in the literature: (1) within-

array normalization, (2) between-array normalization. For within-array normalization, a 

simple approach is global mean-centered or median-centered based on the assumption 

that the total integrated intensity across all spots in the microarray should be equal for 

both channels because of the equal amount of RNA used for labeling from each sample.  

Other often used methods include normalization against a subset of housekeeping genes, 

global loess, print-tip loess, robust spline or even 2D-loess to address more profound 

spatial biases (5,6). To adjust differences between arrays, further between-array 

normalization may be required. Common methods include global scale normalization, 

quantile normalization or variance stabilizing normalization (vsn) (5,7,8). As Affymetrix 

oligonucleotide arrays use a single-channel system, the normalization steps are slightly 

different. The first step for affymetrix oligonucleotide arrays is to estimate the absolute 

intensity of individual probe sets which represent primarily annotated transcripts. Each 

probe set is typically represented by a set of 11–20 PM and MM probe pairs. This 

multiple probe feature allows for more robust background assessments and gene 

expression measures, and has facilitated the development of computational or statistical 

methods to translate image data into a single normalized "signal" for mRNA transcript 

abundance. To date, there are many probe set algorithms that have been developed, with 

a gradual movement away from chip-by-chip methods (MAS5), to project-based model-

fitting methods (dCHIP, RMA, GC-RMA etc.). However, it is debating that which one is 
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the rational best method (9,10). The best probe set algorithm may vary from project to 

project (9). After calculating summary probe set intensity, further between-array 

normalization may be needed for some probe set algorithms, for example, MAS5. 

 

The normalized microarray expression values are typically log2-transformed, and 

stored as a two-dimensional table, with genes in the rows and profiles in the columns. As 

thousands of data points may be observed per array, microarray data is often grouped and 

visualized as a heatmap.  Each data point can be presented as a color that quantitatively 

and qualitatively reflects its relative expression within the data.  For example, high 

expression is presented as red while low expression is presented by green; and the 

intensity of the color represents the degree to which the gene is expressed. To better 

present such heatmaps, an unsupervised hierarchical clustering is typically adopted along 

with visualization (11). It orders genes or samples based on their similarity of expression. 

For example, one could cluster the samples in a collection of cancer patient cohort into 

subgroups based on the similarity of their aggregate expression profiles. On the other 

hand, genes that share similar patterns of expression in a biological context could be also 

clustered together. As such a method does not require any priori assumption, it has the 

advantage of being unbiased. More importantly, it allows one to detect the inherent 

patterns hidden in a complex dataset. A success example is given in a breast cancer 

profiling reported by David Botstein and Patrick Brown at Stanford University (12) . By 

employing a two-way hierarchical clustering, they grouped both genes and samples based 

on the similar patterns of gene expression profile, leading to the discovery of molecular 

subtypes of breast cancer. Clustering of the tumors based on overall expression profiles 

firstly divided the samples into two distinct clusters. One cluster of tumors shared 
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relatively high expression of a set of genes expressed in ER+ tumors or breast luminal 

cells, thus being defined as ER+/luminal subtype. The other group of tumor samples 

having relatively low expression of these genes, were further sub-categorized into basal 

cell-like, Erb-B2+, and normal-like subtype, each subtype with a characteristic gene 

expression signature. A follow-up study showed that the ER+/luminal type could be 

further divided into at least two subgroups with different clinical outcome (13).  

 

In addition to unsupervised learning, one common analysis is to perform 

supervised learning analysis, incorporating the prior knowledge of sample information. A 

typical schema for microarray data analysis is to select a subset of genes that can best 

distinguish two classes of training samples such as disease vs. healthy controls and build 

a computation or statistical model that is able to classify training samples as well as 

predict independent, blinded test samples into these classes. Such supervised analyses are 

particularly useful for cancer diagnosis and prognosis. However, they are relying on 

accurate sample information, which may be an issue in cancer given the limitations of 

current histopathologic accuracy. 

 

 A significant effort has been put forth to apply microarray technique to the study 

of cancer (12,14-17), both due to the complexity and heterogeneity of the disease and the 

lack of efficient clinical diagnostic tools and treatments. Cancer can be considered a 

genetic disease, occurring as a result of the progressive accumulation of genetic 

alterations in somatic cells. Because hundreds of genes may be simultaneously involved 

in the mechanisms of tumor formation, high-throughput DNA microarray is in particular 
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useful to screen a large number of genes and thus identify potential interesting marker 

genes. Presently, microarrays have been extensively used in cancer research for several 

applications, including (but not limited to) the following: (1) discovery of novel cancer 

diagnostic and prognostic biomarkers; (2) identification of novel target genes for 

oncogenes or tumor suppresser genes; (3) molecular class discovery, classification and 

prediction; (4) identification of genes associated with drug resistance and prediction of 

clinical response to drug. In the next section, we will review the main strategies thus far 

employed in microarray gene expression profiling studies, as well as the significant 

results obtained from them.  

 

A common goal for cancer microarray profiling is to identify genes differentially 

expressed between two groups of samples, e.g. benign and tumor tissue. Many statistical 

tests can be used to determine the significance of difference of gene expression between 

two groups. Some common tests include student’s t-test, signal to noise ratio, 

permutation test and significance of microarray analysis (SAM). However, as thousands 

of genes are being tested simultaneously, the chance of false positive rate is increased. 

Thus, there is a need to adjust for multiple hypothesis testing. The most often used 

procedures to control false positive rate are estimation of family-wise error rate 

developed by Westfall and Young (18), and false discovery rate introduced by Benjamini 

and Hochberg (19,20). More details of feature gene selection are discussed in Chapter 2.  

 

There have been many successes in using gene expression profiling to identify 

markers of diagnostic and prognostic value. Our previous study in prostate cancer is a 
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good example (15). Prostate cancer is the most frequently diagnosed cancer in American 

men. Screening for prostate-specific antigen (PSA) has led to earlier detection of prostate 

cancer, but elevated serum PSA levels are present in non-malignant conditions such as 

benign prostatic hyperlasia (BPH). cDNA microarrays have been used to examine gene-

expression profiles of more than 50 normal and neoplastic prostate specimens and three 

common prostate-cancer cell lines. Statistical testing was used to sort differentially 

expressed genes between the sample groups. The highest scoring genes were then 

subjected to independent tissue microarrays for validation at the protein level. Hepsin, a 

transmembrane serine protease, was found to be highly expressed at the mRNA level and 

protein level in nearly all of the cancer samples, but not in the benign samples, suggesting 

its role as a novel biomarker for prostate cancer. Another paradigm in biomarker 

discovery is alpha-methylacyl CoA racemase (AMACR) (21-24). Luo et al. (2002) and 

our group reported simultaneously that AMACR is a novel tissue biomarker for prostate 

cancer by cDNA microarrays and independent tissue microarrays. Our group further 

demonstrated that the humoral immune response against AMACR was more sensitive 

and specific than PSA (a clinical prostate cancer marker) in distinguishing sera from 

prostate cancer patients to control subjects (24).   

 

Several groups have used DNA microarrays for classifying tumors from benign 

tissues or distinguishing tumor subtypes on the basis of certain discriminant function. 

Chapter 2 interrogated a wide range of molecular classification methods in detail. The 

first proof-of-principle for microarray-based histological classification was reported by 

Golub et al (16) in 1999. This study demonstrated the feasibility of using expression 
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profiling for cancer diagnosis. Using unsupervised learning on oligonucleotide 

microarrays, leukemia samples are neatly clustered into known acute myelogenous 

leukemia (AML) and acute lymphocytic leukemia (ALL) solely based on gene 

expression. Supervised learning demonstrated that a set of 40 genes that are differentially 

expressed in AML and ALL could accurately predict a group of unknown samples into 

correct categories, again solely based on gene expression profile. Although this 

distinction can be detected using modern histopathology and cell surface phenotypes, this 

study has established a paradigm that tumor expression profiling can be used for cancer 

classification. More recently, Armstrong et al. (25) identified mixed-lineage leukemia 

(MLL), a new molecular subtype of leukemia with a decidedly unfavorable prognosis. 

MLL arises from a chromosomal translocation involving the mixed-lineage leukemia 

gene and has typically been classified with ALL. This study showed that MLL has a 

unique gene expression profile distinct from AML and ALL, demonstrating that the 

differences in gene expression are robust enough to classify disease subtypes. 

  

 One of major obstacles to cancer therapy is the development of drug resistance. 

Cancers may be either primarily resistant to the treatment or develop resistance during 

the process of treatment. Multiple mechanisms of drug resistance have been reported and 

drug resistance is likely to involve a diversity group of genetic factors such as tumor 

suppresser genes, growth factor receptors, DNA repair factors and cell death regulators. 

Presently, it is difficult to predict whether chemotherapy will be effective for individual 

patients. By using cDNA microarrays, Kudoh et al. (26) monitored the expression 

profiles of Doxorubicin-induced and Doxorubicin resistant cancer cells. A subset of the 
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Doxorubicin-induced genes was found to be constitutively over-expressed in cells 

selected for resistance to doxorubicin and may represent the signature profile of 

doxorubicin resistance phenotype. This study demonstrated the feasibility of obtaining 

potential molecular profile or fingerprint of anticancer drugs in cancer cells by DNA 

microarray, which might yield further insights into the mechanisms of drug resistance 

and suggest alternative methods of treatment. 

 

Gene expression profiling of tumors has been also used for outcome prediction. 

Investigators have demonstrated the utility of using pretreatment gene expression 

profiling to determine prognosis. In a retrospective study of 38 patients with diffuse large 

B-cell lymphoma (DLBCL), Alizadeh et al. (14) firstly demonstrated expression-based 

correlates of outcome. They clustered cDNA microarray data and defined two 

molecularly distinct forms of DLBCL. By examining patient survival, they found that the 

defined germinal center B-like (GCB) DLBCL had a significantly better overall survival 

than those with activated B-like (AB) DLBCL. Van’t Veer et al. (27) have also reported 

the use of gene expression profiling to develop an outcome predictor for breast cancer 

metastasis. Primary breast tumors from patients who developed distant metastases within 

5 years were compared with tumors from patients who continued to be disease-free after 

a period of at least 5 years.  Supervised classification was used to identify a set of 70 

genes strongly predictive of a short interval to distant metastases. In a follow-up study 

(28), by using the previously established 70-gene prognosis profile, they classified a 

series of 295 primary breast carcinomas as having a gene-expression signature associated 

with either a poor prognosis or a good prognosis. Among the 295 patients, 180 had a 
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poor-prognosis signature and 115 had a good-prognosis signature. These two groups 

showed markedly different outcome (10-year distant metastasis-free survival, 50.6% vs. 

85.2%). They also demonstrated that the prognosis profile could add value to existing 

clinical and histological criteria. 

  

To date, hundreds of mRNA expression profile studies of various cancers have 

been reported in the literature and a large number of datasets have been made available 

(Figure 1.2). This tremendous resource would speed up the identification of robust 

cancer markers as well as facilitate the development of improved molecular signatures if 

it could be properly and fully utilized. However, due to the lack of a unifying 

bioinformatic resource, the majority of these data sit stagnant and disjointed following 

publication, massively underutilized by the cancer research community. While standards 

and repositories have begun to be established, the full potential of cancer microarray data 

will only be reached when it is unified, logically analyzed, and easily accessible. To this 

end, our lab initiated an effort to systematically curate, analyze and make available all 

public cancer microarray data via a web-based database and data-mining platform, 

designated ‘ONCOMINE’ (http://www.oncomine.org) (29). Besides data collection, our 

effort also includes centralizing gene annotation data from various genome resources to 

facilitate rapid interpretation of a gene’s potential role in cancer. Furthermore, we have 

integrated microarray data analysis with other resources including gene ontology 

annotations and a therapeutic target database so that clinically interesting subsets of genes 

can be focused on. Currently the ONCOMINE database houses 310 independent datasets 

comprising over 500 million gene expression measurements from nearly 22,000 
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microarray experiments. By making these resources easily accessible to public, we hope 

that this work could benefit the identification of potential cancer markers, maximize the 

utility of data, promote an increase in validation performance, and ultimately lead to the 

improved understanding of cancer and the development of novel diagnostic and 

therapeutic strategies. 

 

As noise is known significant in DNA microarrays due to genomic variations, 

experimental artifacts, sampling bias, and cross-hybridization so on, there is high demand 

to validate potential cancer markers or gene signatures in independent datasets or through 

independent experimental techniques. While it is common to use the microarray as a 

screening tool and then to validate a few promising candidates using such as reverse 

transcriptase polymerase chain reaction (RT-PCR), or tissue microarrays, it may under-

utilize the microarray dataset and overlook other potential markers. With the increasing 

number of publicly available gene expression datasets, meta-analysis in combining 

multiple studies to determine the repeatability of one microarray result becomes a 

promising method for in silico validation. For example, our previous study (22) 

demonstrates a statistical model for performing meta-analysis of independent microarray 

datasets. Instead of using the actual expression measurements which may be complicated 

due to distinct microarray technologies, the model utilizes statistic p-values derived from 

individual studies. Differential expression was first assessed independently for each gene 

in each dataset based on a p-value. Then individual study p-values were combined using 

a result that -2log(p-value) has a chi-squared distribution under the null hypothesis of no 

differential expression. The model was first implemented on four publicly available 
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prostate cancer gene expression data sets that compared the gene expression profiles of 

clinically localized prostate cancer to that of benign prostate tissue with the goal of 

identifying genes differentially expressed between the two groups. The analysis revealed 

that four prostate cancer gene expression datasets shared significantly similar results, 

independent of hybridization platforms, demonstrating that combining p-values is useful 

to obtain more precise estimates of significances. Based on this statistical framework for 

inter-study validation, our lab has extended the approach to a large compendium of public 

cancer microarray datasets in a follow-up study (30). We characterized a common 

transcriptional profile that is universally activated in most cancer types relative to the 

normal tissues from which they arose, likely reflecting essential transcriptional features 

of neoplastic transformation (Figure 1.3). In addition, a meta-signature of 

undifferentiated cancer was also uncovered, consisting of 69 genes that were over-

expressed in undifferentiated cancer relative to well differentiated cancer, suggesting 

common molecular mechanisms by which cancer cells progress and dedifferentiate. 

 

While the above studies highlight the use of expression profiling for addressing 

important questions in clinical oncology and demonstrate the potential of DNA 

microarrays in clinic, many challenges remain. The first challenge lies in microarray 

assay development and standardization. Microarray technology is known to be 

susceptible to measurement error due to a long and convoluted chain of decisions on 

sampling, preprocessing, hybridization, calibration, and analysis. Errors and biases may 

involve the sampling of the specimens, their quality, the amount of tissue obtained, 

storage, fixation, plating, and readout of microchips (31). The analytical calibration and 

informatics analysis plan can also be very convoluted. Major decisions need to be made 
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for transformation, normalization, data filtering, removal of technical artifacts, and 

background correction. For each decision node, there are numerous possibilities, and so 

far there is no standard informatics platform available. Another challenge lies in gene 

annotation. For a given probe, there is some uncertainty to map to the correct target gene 

due to non-specific probe design, cross-hybridization or transcript splice variants of same 

gene; some probes may actually represent a different gene than advertised. In addition, 

DNA microarrays measure gene expression at the mRNA level, while gene products 

function at the protein level.  Some inconsistence may exist between mRNA and protein 

level expression. An mRNA can be alternatively spliced prior to translation and 

eventually yield different proteins. Additionally, various post-translational modifications 

may occur in proteins. Another important challenge lies in the availability of sufficient 

numbers of samples. Until now, gene expression profiling has depended mostly on small 

numbers of clinical specimens. Validation of claims has been uncommon, fragmented, 

and incomplete (31). A final challenge relates to the integration of data sets from 

different laboratories using different profiling technologies. While it is surely best to use 

these multiple datasets to validate one another so that the most promising candidate 

biomarkers can be identified, this task is challenging because microarray data exists on a 

variety of scales depending on the specific technological platform utilized as well as the 

experimental procedure. Although there are some successes to integrate different datasets 

to date, more sophisticated methods are required for efficient data comparison and 

integration. 
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In conclusion, DNA microarray is an invaluable and promising technology. 

Developing molecular diagnostic tools by tumor gene expression profiling is conceivable. 

Although many challenges remain ahead, identifying novel molecular targets and 

classifying novel molecular subtypes of cancer on the basis of DNA microarray data may 

facilitate the development of new cancer drug, the design of clinical trials, and the 

planning of cancer therapy. 
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Figure 1.1. Experimental workflow of a typical microarray using either oligonucletide or 

cDNA spotted array technique. [Adapted from Ramaswamy et al., Journal of Clinical 

Oncology. 2002. 20(7):1932-1941] 
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Figure 1.2. Number of expression profiling studies carried out for individual cancer type 

as of early 2007 in ONCOMINE database (http://www.oncomine.org). 
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Figure 1.3. Meta-signature of neoplastic transformation. (A) Sixty-seven genes 

overexpressed in cancer relative to normal tissue counterpart in at least a dozen ‘‘cancer 

vs. normal’’ signatures from independent microarray studies. White boxes signify either 

not present or not significant. Red boxes signify significant overexpression in cancer 

relative to normal tissue, the shade of red indicating the percentage of cancer samples that 

had an expression value greater than the 90th percentile of normal samples. (B) The 

signature was able to significantly predict ‘‘cancer vs. normal’’ status in 32 of 39 

analyses. The two bars above each heat map represent the predicted class (P) and the true 

class (T): red signifies cancer and blue signifies normal tissue. In the color maps, black 

signifies data not available, white signifies less than or equal to the normal class mean 

expression level, and red signifies the degree of over-expression relative to the mean 

normal class expression level. 
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CHAPTER 2 

 

Towards Cancer Classification Using Gene Expression Data 

 

One challenge of cancer treatment is to develop specific therapies for 

pathogenetically distinct tumor types, to maximize efficacy and minimize toxicity. 

Cancer classification and class discovery have thus been central to advances in cancer 

treatment (1). Previously, cancer classification has primarily been on the basis of 

morphological and clinical characteristics of the tumor. However, these traditional 

methods have been reported to have serious limitations (1). Tumors with similar 

histopathological appearance can be molecularly heterogeneous, differently responsive to 

particular therapy, and thus may require different clinical courses (1). To gain a better 

insight into this issue, demand on developing more systematic approaches to examine 

global gene expression has been on the rise. The recent advent of microarray technology 

has made it straightforward to simultaneously monitor the expression patterns of 

thousands of genes. Although still in its early stage of development, current successes 

have indicated its promising future. 

 

To date, various statistical or machine learning techniques have been proposed for 

molecular cancer classification. In this survey report, a comprehensive overview of 

current cancer classification methods will be presented. Due to the high-dimensional 

nature of gene expression data, we will also summary the prevailing feature gene 
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selection methods as it is an integrated part for molecular classification. Finally, we will 

discuss several challenges related to cancer classification and present solutions. A typical 

workflow of molecular cancer classification can be seen in Figure 2.1. 

 

Gene Selection 

Different from traditional data used for classification, gene expression data has 

several unique characteristics as follows: high dimensionality, small sample size and a 

large number of redundant and irrelevant genes. Gene expression data sets usually 

contain thousands to tens of thousands of genes. However, a majority of genes do not 

have expression change between cancer classes. In addition, many genes are redundant 

and highly correlated. Further, current gene expression data sets in the literature have 

relative small set of samples (often less than 100). With such a huge dimension space, it 

appears easy for classic statistical or computational methods to over-fit the data. 

Moreover, inclusion of a large number of irrelevant genes not only increases the 

computation time, but also introduces noise and confuses the classifiers. A common way 

to deal with this issue is to perform gene selection prior to classification in the literature 

in order to improve the performance of classifiers, reduce computational running time, 

and facilitate post-classification analysis for biological insights of genes involved in the 

classification.  

 

The most commonly used gene selection approach is individual gene ranking 

based on some correlation measuring criteria. Each gene is ranked by its correlation with 

the class labels and the top ones are selected. Conventional statistical methods for 
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individual gene selection include student’s t-test, Wilcox rank sum test, logistic 

regression, and Pearson correlation so on. Golub et al. (1) proposed a correlation metric 

measuring the relative correlation between the expression values of a gene and the class 

labels, termed signal-to-noise (S2N). For a gene with two classes (e.g., Class 1 vs. Class 

2), the signal-to-noise statistic is (µClass1-µClass2)/(σClass1+σClass2) where µ and σ are the 

mean and standard deviation of the expression for the gene. This method favors genes 

that have large between-class mean difference and small within-class variation. 

Comparing to t statistic, this method penalizes genes that have higher variance in each 

class more than those genes that have a high variance in one class and a low variance in 

another. Similarly, in order to penalize genes with small standard errors, several attempts 

have been made based on an ad hoc fix by simply adding a constant to the observed 

standard error: 
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Efron et al. (2) simply computed s0 as the 90th percentile of the sei's. In the SAM method 

developed by Tibshirani group at Stanford University (3), s0 is determined based on 

minimizing the coefficient of variation of 
it
~

as a function sei. 

 

Alternatively, Smyth (4) developed a hierarchical model and derived an empirical 

Bayes estimate for the gene-wise variance. This empirical Bayes approach is equivalent 

to shrinkage of the estimated sample variances towards a pooled estimate, resulting in far 

more stable inference when the sample size is small. Similarly, Baldi et al. (5) developed 

a regularized t-test that uses a Bayesian estimate of the variance among gene 
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measurements within an experiment for the identification of statistically significantly 

differential genes. 

  

While genes selected by the above methods are highly correlated with the class 

individually, combining them together may not give the best discrimination power as 

these methods lack the capability of exploiting correlation and interaction among genes. 

In addition, these methods may include redundant genes. For example, genes regulated in 

the same pathway may be included as they contain similar high correlation information 

with the class labels.  Moreover, these methods may not be able to detect genes that are 

complement to each together and contribute to the classification while individual of them 

does not exhibit high correlation with class labels. This is common as tumor 

heterogeneity has been observed in many cancers and some genes may be dys-regulated 

only in a subtype of cancer. One approach to overcome these barriers is to find a group of 

genes that serve together to maximize the classification accuracy. One can monitor the 

change on the expected value of error when one gene is removed. The expected value of 

error is the error rate computed on an infinite number of examples, which can be 

approximated by a cost function computed on the training samples given a training set. 

Guyon et al. (6) proposed a recursive feature elimination (RFE) approach to perform gene 

selection using support vector machine. The basic idea is to apply the SVM classification 

algorithm on the training data, compute the change in cost function for the removal of 

each gene, find the gene that minimizes the cost function change after its removal, and 

then remove that gene and repeat the entire procedure. Finally, a ranked feature list is 

generated. The subset of genes that are top ranked (eliminated last) together yields the 
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optimal classification performance, but those genes are not necessarily the ones that are 

individually most relevant (6) as the method has no effect on correlation metrics. The 

authors found that the SVM-RFE method worked better for cancer classification than the 

individual gene ranking approach and was able to select genes that are directly related 

with cancer, whereas the other method tends to pick up genes that are differential because 

of the different cell compositions in two classes of tissues. 

 

Cancer Classification Method 

While we believe that a fair amount of attention should be paid to gene selection 

as an integral preprocessing step, the central role of cancer classification is to develop 

classification methods to accurately classify cancer classes. One promising use of DNA 

microarray data in cancer classification is to accurately determine individual patient’s 

diagnostic and prognostic status based on his/her individual genomic profile, eventually 

leading to personalized cancer therapy for individual patients. Typically, a classifier, 

which consists of a set of discriminant functions, will be built on a “training” set, and 

then evaluated on an independent “test” dataset that does not participate in the 

development of the classifier. To date, a wide range of supervised classification methods 

have been developed for gene expression data sets. Golub and his co-workers have 

pioneered a molecular classification approach for gene expression-based histological 

classification (1). They selected 50 “informative” genes based on signal-to-noise ratio 

and proposed a weighted voting method to classify acute myeloid leukemia (AML) and 

acute lymphoid leukemia (ALL). They have demonstrated that AML and ALL can be 
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accurately distinguished solely based gene expression values without previous knowledge 

of these classes.  

 

Khan et al. (2001) (7) first attempted to classify four types of the small, round 

blue-cell tumors (SRBCTs) that share similar histopathological characteristics to specific 

diagnostic categories based on their gene expression signatures. They performed 

dimension reduction on the full set of gene expression data by using Principle 

Component Analysis. The first ten components were then trained in artificial neural 

networks (ANNs). The ANNs correctly classified all samples and identified the genes 

most relevant to the classification based on measuring the sensitivity of the classification 

to a change in the expression level of each gene. To test the ability of the trained ANN 

models to recognize SRBCTs, the authors analyzed additional blinded samples, and 

correctly classified them in all cases. The study have successfully demonstrated the 

potential applications of gene expression-based classification methods to classify 

histopathologically similar cancers. 

 

Decision tree, also known as classification trees, is a widely used classification 

method. The construction of the decision tree involves two phases: the growing phase and 

the pruning phase. In the growing phase, a decision tree is built from the training data. 

The purity-based entropy function selects the best gene at each internal node to split the 

data set into subsets that minimizes the misclassification error. In the pruning phase, the 

tree is pruned using some heuristics to avoid overfitting of data and increase the 

generality of the classifier. Using a public colon cancer data set, Zhang et al. (2001) (8) 
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introduced a recursive partitioning classification method based on classification tree and 

demonstrated its high accuracy for discriminating among distinct colon cancer tissues 

with a cross validation misclassification rate of 6-8%. In an extended study (9), in order 

to improve classification and prediction accuracy, the authors proposed a deterministic 

procedure to form forests of classification trees. When two published and commonly used 

data sets are used, they found that the deterministic forests performed far better than the 

single trees.  

 

Some similarity-based classification methods have been also applied for 

molecular cancer classification. One simple yet common method is Nearest Neighbor 

(NN) or its variant, K-Nearest Neighbor (KNN). Briefly, for each testing sample s, its 

class label is determined by the training sample whose expression profiling is most 

similar to s, according to certain distance measure. The distance measure can be any 

similarity/dissimilarity matrix such as Pearson correlation, Euclidean distance, Manhattan 

distance etc. If using KNN (K>1), the class label of s is assigned using majority vote from 

K training samples with highest similarity to s. Utilizing three public cancer gene 

expression data sets, Dudoit et al. (10) compared the performance of different 

classification methods including KNN, linear discriminant analysis, classification trees 

and more recent aggregating classifiers. They found that the nearest-neighbor, diagonal 

linear discriminant analysis (DLDA) in general had the smallest misclassification rates, 

whereas fisher linear discriminant analysis (FLDA) had the highest.  
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From a different point of view, one may consider the training process of a 

classifier as a process to find a hyperplane that best separates the training samples into 

different groups according to their classes. The best hyperplane could be the one with 

maximum margin, where margin is defined as the distance from a hyperplane to the sets 

of data points that are closest to it. Such a hyperplane is more robust and may less prone 

to change when given a slightly different training set. One of max-margin classification 

algorithms is Support Vector Machine (SVM), which has been widely used in data 

mining applications including molecular classification based on gene expression data (11-

14). Mukherjee et al. (11) first demonstrated that SVM yielded superior performance for 

gene expression-based classification tasks. Ramaswamy et al. (12) extended SVM 

method to solve multiclass problems by employing a simple one-versus-all technique. 

Guyon et al. (6) proposed a SVM-RFE method to perform gene-selection, and recent 

study (13) extended it to be MSVM-RFE for multiclass gene selection. The ability of 

SVM for producing hyperplane with maximized margin and for tuning the amount of 

training errors has made SVM especially suitable for the gene expression data 

classification (15). 

 

Another popular similarity-based classification method in molecular cancer 

classification is nearest shrunken centroid method (PAM) developed by Tibshirani et al. 

(16). One major modification to standard nearest centroid classification is that it 

"shrinks" each of the class centroids toward the overall centroid for all classes by an 

amount termed as the threshold. This shrinkage has led to two advantages: 1) more 

accuracy on classification by reducing the effect of noisy genes, 2) automatic gene 
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selection. In a comparison of PAM to six other classification algorithms including SVM, 

KNN, DLDA, and RandomForest, the authors have observed that PAM in overall has the 

lowest average error rate and is just slightly behind SVM in average rank. In a recent 

extended study (17), the authors introduced a modified version of linear discriminant 

analysis, termed the "shrunken centroids regularized discriminant analysis" (SCRDA). 

They have claimed that this method often outperforms the PAM method and can be as 

competitive as the support vector machines classifiers.  

 

Recently, one class of machine learning technique, Evolutionary Algorithm (EA) 

has also been introduced to cancer classification on gene expression data (18-23). For 

example, researchers including our lab have demonstrated one EA approach, genetic 

programming (GP) could be a promising approach for discovering comprehensible rule-

based classifiers from gene expression profiling data (19,20,22,24). Our lab applied GP to 

cancer gene expression data to select feature genes and develop molecular classifiers 

(24). By examining GP on one Small Round Blue Cell Tumors (SRBCTs), one lung 

adenocarcinoma and five prostate cancer datasets, we have found that GP classifiers, 

which often comprise five or less genes, successfully predicted cancer classes. Further, 

we have demonstrated that GP classifiers remain predictive ability on independent 

datasets across microarray platforms. 

 

Gene expression profiles have been also used to predict disease or treatment 

outcome of patients. Van 't Veer et al. (25) compared primary breast tumors from patients 

who developed distant metastases within 5 years to tumors from patients who continued 
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to be disease-free after a period of at least 5 years.  Correlation-based supervised 

classification successfully identified a set of 70 genes with an expression signature 

strongly predictive of a short interval to distant metastases. Beer et al. (26) developed a 

compound covariate predictor and generated a risk index based on the top 50 genes which 

identified low-risk and high-risk stage I lung adenocarcinomas with significantly 

different outcome. Other common methods include semi-supervised principle 

components (27), penalized Cox regression (28), and threshold gradient descent method 

(29) etc.  

 

Challenges in Cancer Classification 

Although results of molecular classification obtained thus far seem promising, 

there are still considerable challenges. In this section, we discuss some important issues 

in cancer classification and review current solutions thus far. However, these questions 

are still open. Further research is needed to fully address these issues.  

 

The first challenge lies in the unique characteristic of high-throughput data: the 

huge dimensionality and high co-linearity. High-throughput data such as DNA 

microarray usually contain a large number of genes yet relatively small sample size. Such 

data disable application of standard discrimination methods. For example multivariate 

logistic regression, can not be directly applied to obtain the parameter estimates on gene 

expression data. Presently, the prevailing strategies include pre-filtering by gene selection 

as described in the previous section, performing dimension deduction, or using 

regularized statistical models. One way to achieve dimension reduction is to transform 
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the large number of genes to a new set of variables which are uncorrelated and ordered 

such that the first few account for most of the variation in the data. Principle component 

analysis (PCA) is one of well known methods. It transforms the original variables (genes) 

to a new set of predictor variables, which are linear combinations of the original 

variables. In mathematical terms, PCA sequentially maximizes the variance of the 

original data. Khan et al (7) applied PCA to SRBCT gene expression data and used the 

first 10 principle components to train a neural network. Other dimension deduction 

methods include singular value decomposition (SVD), the partial least squares (PLS) and 

sliced inverse regression (SIR) so on. One major disadvantage of these dimension 

deduction methods is the loss of gene information as the followed classification algorithm 

is developed solely upon the new variables. Interestingly, some researchers utilized these 

dimension-reduction methods to remove highly correlated genes in a gene predictor 

where individual gene selection may be carried out first to form the predictor (27,30). A 

large portion of genes selected by individual gene ranking are often redundant or highly 

correlated. In term of classification accuracy, it is thus necessary to remove such genes as 

they do not contribute much towards the performance of a classifier although they may be 

important in biological relevance. For example, such groups of genes may reflect an 

essential de-regulated pathway for the cancer progression. 

 

In addition to dimension deduction, the other approach is to use the regularized 

estimation methods. A common regularization is to add a penalty function to a 

multivariate partial likelihood in order to stabilize the parameter estimates.  Commonly 

employed penalty functions include L2 and L1 penalizations. For example, classical linear 
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regression with L2 penalty is known as “ridge regression”(31).  Li et al. (32) was the first 

to investigate L2 penalized estimation of the Cox model in the high-dimension and low-

sample size settings and applied their method to gene expression profile for censored 

patient outcome. One limitation of L2 penalization is that it uses all the genes in the 

prediction and does not provide a way of select relevant genes. An alternative is to use L1 

penalized estimation, which was proposed by Tibshirani et al. (33) and was called the 

least absolute shrinkage and selection operator (Lasso). Using newly developed least 

angle regression (LARS) by Efron et al. (34), Gui et al. (28) proposed an efficient way to 

estimate L1 penalized Cox regression model , termed LARS-Lasso. Friedman et al. (35) 

have recently proposed a step-wise optimization method termed threshold gradient 

descent (TGD) and demonstrated its application in classification problems. Interestingly, 

they showed that with different threshold value, TGD can approximate the estimates of 

partial least square, ridge regression, Lasso and LARS. Gui et al. (29) further extended 

the TGD method to the Cox regression model for selecting genes that are associated with 

patient survival and building a predictive model to predict the risk of a future patient.  

 

It has to be anticipated that in situations where the number of genes exceeds by 

far the number of samples in the data, the overfitting of naively applied statistical 

strategies and resulting over-optimism of the prediction error may be overwhelming. This 

leads to another challenge in molecular classification about how to estimate unbiased 

prediction error rate. The standard practice for performance validation is to use a set of 

samples as a training set for the development of the prediction model and use a 

completely independent set of samples for estimating the prediction error. However, it is 
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rare to obtain readily available sufficiently large numbers of specimens that are amenable 

to microarray analysis and accompanied by the necessary clinical information. Thus the 

sample size of a typical microarray study is usually less than 100. To maximize the utility 

of samples, gene expression profile studies generally estimate prediction accuracy using 

the same data by proper application of resampling methods such as cross-validation or 

bootstrapping. These methods use the data efficiently and are almost unbiased when used 

correctly. However, it does have significant variance when used with small sample size 

and can be subject to bias if used naively. For example, an inappropriate usage of cross-

validation may lead to two types of biases: selection bias and optimization bias 

(parameter selection bias). A proper cross-validation leaves out a single ‘test fold’ of the 

data, selects the model, variables and parameters solely based on the remaining ‘training 

folds’ and then evaluates the misclassification rate on the test fold. When averaged over 

folds, this should provide a nearly unbiased estimate of the true misclassification rate of 

the classifier. A ‘selection’ bias’ can occur when a subset of variables are selected based 

on all the available data and then the error rate is estimated by cross-validation using this 

fixed set of variables. On the other hand, an ‘optimization bias’ may occur if cross-

validation is used to estimate the error rate for multiple sets of free parameters, and then 

the set of parameter values with the lowest estimated error rate is chosen for the final 

classifier (36). This happens because the same data is used to both select a set of 

parameters and to estimate the error rate. To deal with this issue, a separate two-level 

cross-validation is needed to estimate its error rate. As suggested by Wood et al (36), 

two-level cross-validation should be used as follows. Assumed K fold cross validation is 

used, at the top level, one of K1 folds of data is left out for the purpose of assessing the 
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error rate of the finished classifier. At the lower level, K2-fold cross-validation is then 

performed on the remaining data to select the optimal value of any free parameters. When 

all parameters are selected, the classifier can be tested on the left-out fold at the top level. 

By repeating this for all K1 folds at the top level, one can generate a cross-validated 

assessment of the cross-validated choice. To simplify the procedure, one may select K2 = 

K1-1, so that the same fold structure can be used for both levels.  

 

Even perfect and complete cross-validation may suffer from unknown external 

validity, making molecular classifiers difficult to move towards clinical practice. One 

challenge lies in the limited sample size of the data. The profiled set of samples may not 

represent the general populations in clinic. Thus, in order to truly assess the classifier 

performance, one may perform a completely independent validation which may include 

but not limited to different data samples from independent disease centers, same 

protocols and same definition of analytical end point, and independent testing by 

independent research investigators so on. Another challenge is the fact that the genes 

selected for each proposed profile may be not stable. Different splits of the training and 

validation data may result in very different sets of genes being selected. Some genes may 

be valid only in the reported dataset. Ein-Dor et al. (37) have reported that thousands of 

samples are needed to generate a robust gene list for predicting outcome in cancer. This is 

about 100-fold larger than the sample sizes currently being used to date. Thus new 

methods may be needed in selecting the robust genes relevant to cancer classification.  
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One may question why not to estimate prediction accuracy using existing external 

datasets as there are numerous gene expression profiles reported in the literature. In 

theory, this is a most rigorous validation. However, one challenge lies in the lack of a 

unified microarray platform and standardized procedure to integrate public datasets. The 

challenge is two-folds. First, there is no unified microarray platform thus far. For an 

instance, Affymetrix platforms measure the absolute mRNA expression levels of 

individual genes of individual samples while cDNA microarrays measure the relative 

mRNA expression change between two samples. Different reference samples may be 

used for cDNA arrays on different studies. In addition, datasets from different platforms 

may contain different sets of genes. To address these issues, efficient methods for data 

transformation and gene annotation need to be developed. Second, even when a unified 

platform is used for gene expression profiling, systematic biases may still exist between 

datasets from different laboratories. Non-standardization of data may introduce noise and 

error into the classification accuracy. Special care must be taken to inter-study 

classification. A simple approach to normalize inter-study datasets is to standardize 

individual genes within each dataset with zero mean and unit variance after between-

array normalization. This procedure transforms and makes same genes of different 

datasets at the same location and scale. In practice, this is similar to calculate relative 

gene expression levels of individual sample to a reference sample where each gene’s 

expression level equals mean expression value of the gene across all samples in the 

dataset. This method was used in Chapter 3 to validate a breast cancer outcome 

signature developed from a training set on multiple independent datasets. The signature 

successfully dichotomized the patients in individual datasets into high-risk and low-risk 
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groups with strongly different outcome. However, this method may not work well on 

datasets with small sample sizes. Warnat et al. (38) used median rank scores and quantile 

discretization to derive numerically comparable measures of gene expression from 

different platforms. The basic idea of this method is to transform gene expression values 

of different microarray platforms to a common numerical range by replacing numerical 

values of one study by numerical values from the other study, with respect to the relative 

ranks of expression values within each study. Our lab also developed a data integration 

method based on poe (probability of expression) transformation (39). The poe model 

transformed the raw gene expression data into signed probability of differential 

expression for each gene in each sample, thus providing a unified measure across studies. 

The platform-free scaleless property of this model is particularly useful for data 

integration in the domain of gene expression profiling. Further, the transformation 

improved contrast in each data set by removing the influence of extreme expression 

values. Following this poe model, we combined multiple breast cancer studies (n = 305 

samples) and developed a 90-gene meta-signature, which demonstrated strong association 

with survival in breast cancer patients.  A more advanced method was proposed by 

Benito et al. (40) for the identification and adjustment of systematic biases present within 

microarray data sets. They presented a new approach, called 'Distance Weighted 

Discrimination (DWD)', to adjust system biases in microarray datasets. The new method 

was shown to be very effective in removing systematic biases present in published breast 

tumor cDNA microarray data sets and could be used to merge multiple breast tumor data 

sets completed on different microarray platforms. 
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Taken together, in this chapter, we provided a comprehensive survey on the 

existing cancer classification methods. As an important step of classification, feature 

gene selection was presented in detail as well. Molecular classification based on gene 

expression profiling has been rapidly evolving from an interesting scientific concept to a 

clinical tool in the last decade. It provides a more systematical and unbiased way for 

cancer diagnosis and prognosis. Through this survey, we conclude that, although the 

progress of molecular classification varies for different cancers and there are still a great 

amount of work that needs to be further addressed, the results obtained so far is 

promising and the future is possibly fascinating.  
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Figure 2.1.A typical workflow of molecular cancer classification and prediction model. 
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PART 2: GENE EXPRESSION-BASED CANCER DIAGNOSIS AND 

PROGNOSIS  

 

 

CHAPTER 3 

 

A Transcriptional Fingerprint of Estrogen in Human Breast Cancer Predicts 

Patient Survival  

 

Estrogen signaling plays an essential role in breast cancer progression, and 

Estrogen Receptor (ER) status has long been a marker of hormone responsiveness. 

However, ER status alone has been an incomplete predictor of endocrine therapy, as 

some ER+ tumors, nevertheless, have poor prognosis. Here we sought to use expression 

profiling of ER+ breast cancer cells to screen for a robust estrogen-regulated gene 

signature that may serve as a better indicator of cancer outcome. We identified 532 

estrogen-induced genes and further developed a 73-gene signature that best separated a 

training set of 286 primary breast carcinomas into prognostic subtypes by step-wise 

cross-validation. Notably, this signature predicts clinical outcome in over ten patient 

cohorts as well as their respective ER+ sub-cohorts. Further, this signature separates 

patients who have received endocrine therapy into 2 prognostic subgroups, suggesting its 

specificity as a measure of estrogen signaling, and thus hormone sensitivity. The 73-gene 

signature also provides additional predictive value for patient survival, independent of 

other clinical parameters, and outperforms other previously reported molecular outcome 
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signatures. Taken together, these data demonstrate the power of using cell culture 

systems to screen for robust gene signatures of clinical relevance. 

  

Breast cancer is the most common type of cancer among women in the 

industrialized world, accounting for nearly 1 of every 3 cancers diagnosed. Estrogen is 

essential for the normal growth and differentiation of the mammary gland, and plays a 

critical role in the pathogenesis and progression of breast cancer (1). Increased lifetime 

exposure to estrogen is a well-known factor for increased breast cancer risk (1), and 

drugs that block the effects of estrogen has been used to inhibit the growth of hormone-

dependent breast cancers (2). In the last few decades, systemic adjuvant therapy to 

patients with predicted poor prognosis has significantly increased breast cancer survival 

(3). Current prognostic markers for breast cancer include tumor stage, size, histological 

grade, and estrogen receptor status. However, approximately 1 out of 4 patients 

diagnosed with breast cancer nevertheless die from the disease (4), indicating the 

insufficiency of current prognostic biomarkers. In addition, a large number of patients 

with ER-positive tumors failed on endocrine therapy, suggesting the need of more precise 

biomarkers of therapy prediction.  

 

Taking advantage of global expression profiling, molecular predictors have been 

developed to classify and predict patient prognosis (5-10). This prognostication of breast 

cancer outcome may be used for the selection of high-risk patient for adjuvant therapy. 

Transcriptional changes of these predictor genes are presumed to reflect the activity of 

essential signaling pathways in tumors and thus greatly increase the prediction power. 
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For example, the expression of prostate-specific-antigen (PSA) indicates the activation of 

androgen receptor and serves as a much better diagnostic/prognostic biomarker of 

prostate cancer than androgen receptor itself. Similarly, for several decades ER status has 

been used as a marker of hormone responsiveness to guide adjuvant therapy, with ER+ 

tumors having significantly better clinical outcome (11). Some ER+ tumors, nevertheless, 

incur disease recurrence, indicating that ER status alone is an incomplete assessor and 

additional biomarkers are required. A transcriptional fingerprint of estrogen may better 

reflect the activity of estrogen signaling, thus being a more definitive predictor of breast 

cancer recurrence and patients’ response to hormonal therapy. 

 

In this study, we attempted to delineate downstream effector genes of estrogen 

signaling. We hypothesized that these genes may indicate an activated state of estrogen 

receptor, and thus predict cancer outcome and hormone responsiveness. To identify 

robust estrogen-regulated genes, we employed three ER+, estrogen-responsive breast 

cancer cell lines, MCF-7, T47D and BT-474. We stimulated these cells with 17β-

estradiol to emulate the transcriptional events induced by estrogen signaling in vivo. To 

ensure that we capture the transcriptional changes due to direct regulation by estrogen, 

rather than downstream effects, we focused primarily on early time-points (0, 1, 2, 4, 8, 

12 and 24hrs) following estrogen stimulation (12). By a time-course analysis on 

expression profiling of these cell lines, we identified 532 estrogen-induced probe sets, 

representing 446 unique genes (FDR<0.01, see Methods and Figure 3.1a).  

 



 45 

Several lines of evidence support that the genes we selected represent a true 

downstream transcriptional network of estrogen signaling. Firstly, a subset of these 

genes, including PGR, PDZK1, CTSD, MYC, MYB, MYBL1, MYBL2, STK6, Ki-67 

and GREB1, have been previously confirmed to be induced by estrogen (13-15). 

Secondly, Molecular Concept Map (MCM) analysis (16), which allows for the 

identification of molecular correlates of our gene set, revealed significant enrichment of 

‘up-regulated by estrogen treatment’ signatures (P-values<=0.001, Odds ratios >=4.35) 

previously identified by several independent groups (17-19) (Figure 3.1b). To evaluate 

the biological relevance of our gene set in vivo  ̧ MCM analysis of cancer profiling 

concepts found strong enrichment of ‘over-expressed in ER+ breast cancer’ concepts 

derived from a number of human breast cancer profiling studies executed by independent 

investigators (5,8,10,20). Therefore, our estrogen-regulated gene set is relevant to 

previously identified gene sets of estrogen regulation reported from both in vitro cell line 

experiments and in vivo tumor profiling. Interestingly, integrative analysis with a public 

genome-wide location data of ER occupancy (21) showed that a highly significant 

portion (P <0.00001) of our estrogen-induced genes are direct targets of ER, suggesting 

that our gene set may represent the direct transcriptional network evoked by activated 

ER. 

 

To obtain an overall annotation of our estrogen-regulated genes, we performed 

MCM analysis on Gene Ontology (GO) concepts. Significantly enriched gene ontology 

(GO) categories include “DNA replication”, “regulation of cell cycle”, “protein folding”, 

“tRNA processing”, “cytokinesis”, “DNA replication”, and “DNA repair” (Figure 3.1c). 
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This result is consistent with previously reported functions of estrogen-regulated genes 

(13,22). 

 

Intriguingly, another distinct interaction network revealed by MCM analysis 

enriched in the ‘over-expressed in high grade breast cancer’ signatures from various 

datasets such as the Miller et al. (5), Sotirious et al (20), and van de Veer et al. (9) 

datasets (Figure 3.1d). Notably, this enrichment network also includes several concepts 

of ‘over-expressed in metastasis, dead or recurrent breast cancers’, suggesting a link 

between our gene signature and breast cancer outcome. Thus, we next attempted to 

confirm this survival association using breast cancer expression profiling datasets. We 

performed k-mean clustering (k=2) with Pearson correlation distance of 286 node-

negative primary breast carcinomas (10). Kaplan-Meier (KM) survival analysis revealed 

that the resulted two clusters differed significantly in patient outcome (P = 0.002). The 

“high-risk” group with poorer outcome has higher expression of several known ER 

targets (13,15), such as MYBL1, MYBL2, MKI67, and MCM2. By contrast, “good-

outcome” genes that are over-expressed in the “low-risk” group include PGR, CD44, 

ADD1, and PTGER3.  

 

To develop an optimal outcome predictor using top survival-related genes, we 

ranked the 532 estrogen-regulated genes by their corresponding survival significance and 

performed step-wise cross-validation. Our results demonstrated a set of top-ranked 73 

genes (Table 3.1) that yielded optimal survival association with the least cross-validation 

error (Figure 3.2a). This 73-gene signature successfully dichotomized the 286 training 
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samples into high-risk and low-risk groups with significantly different outcome (P < 

0.00001, Figure 3.2b). Importantly, by performing 1000 Monte Carlo simulations we 

found that the probability for a randomly selected subset of 73 genes to cluster the same 

samples with equivalent or better significance was less than 0.001, re-affirming that the 

performance of our 73-gene signature could not be achieved by chance.  

 

To validate the prediction power of our 73-gene signature, we collected all public 

breast carcinoma datasets (n=11) with available patient survival information from 

ONCOMINE (23) database. The 73-gene signature was then applied to predict individual 

samples within each dataset into either “high-risk” or “low-risk” group using nearest 

centroid classification. Strikingly, in 10 out of these 11 datasets KM survival analysis 

revealed a remarkable outcome difference between the predicted “high-risk” and “low-

risk” groups (Figure 3.3a-j). For the only dataset wherein our outcome signature failed to 

predict, it revealed a marginally significant (log-rank P = 0.15, Figure 3.3k) association 

with distance metastasis within 5 years. To the best of our knowledge, this is the first 

study thus far that reports a breast cancer outcome predictor which is validated 

extensively in such many independent patient cohorts.  

 

We observed that our gene signature correctly predicted most ER- breast tumors 

within individual datasets as “high-risk”. As a subset of ER+ tumors relapses regardless 

of standard anti-hormone therapy, they may as well have poor prognosis. It is therefore 

important to identify these patients for more effective adjuvant therapies. We thus 

examined the ability of our predictor in stratifying the ER+ tumors into prognostic 
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subgroups. We have taken the ER+ samples from each dataset and carried out KM 

survival analysis for the predicted “high-risk” and “low-risk” groups by the 73-gene 

signature. Notably, KM survival analysis demonstrated a strong discriminative power of 

our 73-gene signature in distinguishing ER+ patients with different prognoses (Figure 

3.4). 

 

Prognostication of breast cancer outcome may guide the respective selection of 

patients at high risk for systemic adjuvant therapy. However, there is no guarantee that 

these selected patients will actually benefit from the therapy. It is therefore of important 

clinical value to predict therapy responsiveness and to spare some patients from 

unnecessary adjuvant therapies which have side effects that may cause more harm than 

good. For example, endocrine therapy may be sufficient for some node-positive and ER-

positive patients, and more aggressive adjuvant therapy may not additionally help these 

patients. Out of the 11 datasets we analyzed above, four contained patient treatment 

information. We extracted hormone-treated samples from each dataset and assessed 

whether our gene predictor was able to predict patient response to hormonal therapies. 

Again, we predicted the hormone-treated samples into “high-risk” and “low-risk” groups. 

Importantly, in each cohort we observed significantly different outcome for the two 

predicted groups, suggesting an ability of our signature in therapy prediction (Figure 

3.3j, Figure 3.5a-c).  

 

To further confirm the association of our gene signature with estrogen sensitivity, 

we determined whether the 73-gene signature is able to classify ER+/ER- cell lines in 
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vitro. We performed hierarchical clustering based on the expression pattern of the 73 

genes in 5 ER- and 3 ER+ cell lines. Interestingly, we found that the 73 genes perfectly 

separated the 8 cell lines into their respective ER+ and ER-clusters, demonstrating that 

our signature genes are specific to estrogen signaling. Furthermore, as we selected our 

estrogen-induced genes based on expression induction at relative early time points (no 

later than 24hrs) following 17β-estradiol treatment, we hypothesized that this subset of 73 

genes is also enriched for direct targets of ER. Concordantly, comparative analysis with 

ER-occupied genes described in a previous study (21) identified a significant overlap 

(P=0.0001), re-confirming the specificity of our signature to estrogen activity.  

 

As estrogen may also play an important role in the development of glioma (24) 

and lung cancer, especially lung adenocarcinoma (25,26), we examined our outcome 

signature in 3 glioma and 1 lung adenocarcinoma datasets. Notably, our gene signature 

successfully predicted patient outcome, with P=0.0006 for the Freije et al. Glioma (27), 

P=0.008 for the Phillips et al. Glioma (28), P=0.11 for the Nutt et al. Glioma (29) and 

P=0.006 for the Bhattacharjee et al. lung adenocarcinoms (30) dataset (Figure 3.5d-j). 

 

Global gene expression profiling of breast cancer has yielded a number of 

prognostic signatures in the last decade. To properly evaluate the predictive power of our 

signature, we compared it with established clinical parameters as well as previously 

reported gene predictors. We first compared our signature with an 822-gene estrogen-

regulated signature (termed as “estrogen-SAM”) developed by Oh and the co-workers 

(14) based on SAM analysis that classified the ER+ cases of the Rosetta data set (n=225)  
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into prognostic subtypes (8). We selected the Rosetta data as the test dataset since it has 

been routinely used as a validation dataset for breast cancer outcome signatures. 

Multivariate Cox proportional-hazards regression analysis of these patients showed that 

both our signature and the estrogen-SAM signature were significant predictors for 

relapse-free survival (RFS), independent of standard clinical factors (RFS P=0.002 and 

P=0.004 respectively, Table 3.2). Importantly, our outcome signature was by far the 

strongest predictor for both relapse-free and overall survival (OS) (RFS P=0.002, Hazard 

ratio [HR]: 2.24, 95% Confidence Interval [CI]: 1.35-3.70; and OS P=0.001, HR: 3.27, 

95% CI: 1.62-6.62). Thus, our outcome signature achieved better predictive power while 

using substantially fewer genes. In addition, our signature comprised solely of estrogen-

regulated genes, thus representing the biological significance of estrogen activity. By 

contrast, the estrogen-SAM signature genes were selected based on their differential 

expression between two tumor subtypes predefined by estrogen-regulated genes, and 

hence may or may not themselves be regulated by estrogen. 

 

We next extended the comparison of our signature and the estrogen-SAM 

signature to the Rosetta 70-gene signature as well using the Rosetta data set. As the 

Rosetta signature utilized a subset of 44 samples during its development, to avoid 

potential bias these samples were excluded from our analysis. Importantly, our signature 

and the Rosetta 70-gene signature were both significant predictors of relapse-free 

survival (P=0.026 and P=0.021 respectively, Table 3.3) in this dataset. Surprisingly, our 

signature was the only significant predictor of overall survival (P=0.008), independent of 

other clinical parameters and signatures. To further compare the performance of our 
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signature to previously reported breast cancer gene signatures, we examined their 

respective predictive abilities on multiple datasets. As shown in the Table 3.4,  the 

Rosetta 70-gene signature, Oncotype DX gene predictor, and our gene signature 

demonstrated superior performance over other signatures while our gene signature 

showed overall best performance. 

 

To investigate the molecular difference between our signature and other breast 

cancer gene predictors of similar size, we examined the number of overlapping genes. 

Interestingly, only two (PRC1 and CENPA), one (CD44) and three (BRRN1, CDCA8, 

and MYBL2) genes overlapped between our 73-gene signature and the Rosetta 70-gene 

signature (9), the Wang et al (10) 76-gene signature, and the Miller et al (5) 32-gene 

signature, respectively. This lack of overlap suggests that our signature is comprised of 

genes distinct from previously reported gene predictors. Nevertheless, two-way 

contingency table analysis revealed strong associations between prediction results of 

individual samples made by our outcome signature and the Rosetta 70-gene signature, the 

wound-response signature and the intrinsic-subtype model (7) (Table 3.5). These 

findings are consistent with previously reported study that distinct gene predictors, 

although with little overlap in terms of gene identity, may have high rates of concordance 

in prediction results for individual samples (31). Taken together, our distinct gene 

signature outperformed other known predictors while being concordant in outcome 

prediction of individual samples.  
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There is established precedence for clinical use of molecular markers to help 

decide customized therapy for individuals with breast cancer. For example, ER and PR, 

and ERBB2 have been used to assess potential response to hormonal therapy and 

Herceptin, respectively. However, a single marker such as ER has been found insufficient 

to fully stratify patient into different diagnostic/prognostic subtypes. In this study, we 

aimed to identify a transcriptional fingerprint of estrogen, which reflects the downstream 

activity of estrogen signaling pathway, and thus may be a more efficient predictor of 

breast cancer recurrence.  

 

Unlike most previously reported breast cancer signatures that were developed 

using supervised analysis based on patient diagnosis/prognosis status (5-10), our 

signature was discovered by specifically selecting estrogen-regulated genes, thus 

representing the activities of estrogen signaling, a key biological characteristic of breast 

cancer tumors. We profiled gene expression of three breast cancer cell lines during early 

time-points following estrogen treatment. We observed that over 80% of our estrogen-

regulated genes were already activated within 1-2 hr following estrogen treatment in 

MCF7 breast cancer cell line. Genome-wide location analysis confirmed that a significant 

portion of these genes are directly occupied by ER, suggesting an enrichment of direct 

ER target genes in our signature. In addition, our gene signature distinguishes ER+ and 

ER- patients, as well as separates patients who did well with hormonal therapy from 

those who did not, indicating its specificity in monitoring estrogen activity.  
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In developing the 73-gene outcome signature we focused on in vitro estrogen-

regulated genes and further selected a subset that is associated with patient outcome in 

vivo in human breast tumors. These genes are unique as they represent a subset of 

downstream targets of estrogen signaling that are predictive of breast cancer outcome.  

The 73-gene signature predicts breast cancer outcome in 10 out of 11 datasets we 

analyzed. Besides correctly assigning most ER- tumors in each dataset into high-risk 

group, this signature is able to stratify the ER+ samples into prognostic subtypes, 

suggesting that it may better reflect tumor aggressiveness than ER status alone. Most 

importantly, our signature provides additional prognostic information beyond standard 

clinical factors and yields overall best performance against previously reported breast 

cancer outcome predictors. 

 

Further validation and refinement of our signature using additional datasets with 

larger cohorts of breast cancer patients will help to strengthen its clinical value. This 

study lays the ground for future characterization of individual signature genes to facilitate 

in the understanding of breast cancer progression as well as help select genes with critical 

roles in estrogen response for breast cancer therapy. Furthermore, as RT-PCR assays of 

paraffin-embedded tissues have recently been developed (6), it is technically feasible to 

develop an RT-PCR assay of our 73-gene signature for future validation and, potentially 

later on, for clinical usage. Our signature may be useful in selection of high-risk patients 

for adjuvant therapy as well as in sparing some hormone-sensitive patients from 

aggressive therapy.  
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Methods and Materials 

Cell culture: Breast cancer cell lines (MCF-7, T47-D, BT-474) were maintained as 

previously described (32). For defined estrogen culture experiments, cells were rinsed in 

PBS, grown in steroid-depleted media (phenol red-free IMEM (Improved Minimal 

Essential Media) supplemented with 10% charcoal stripped calf bovine serum for 2 days, 

and treated with 10-9 M 17β-estradiol for 1, 2, 4, 8, 12 or 24 hours as described 

previously (13). 

 

RNA extraction and microarray experiments: RNA was isolated, labeled and hybridized 

according to the Affymetrix protocol (Affymetrix GeneChip Expression Analysis 

Technical Manual, Rev. 3) by the University of Michigan Comprehensive Cancer Center 

Affymetrix and cDNA Microarray Core Facility as described previously (13). All 

primary array data have been deposited in the Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) with series number GSE3834.  

 

Affymetrix microarray data analysis: Data from microarray experiments were calculated, 

normalized and log2-transformed using RMAExpress (33). As described previously (13), 

the MCF-7 profiles were generated on the Affymetrix U133A platform, and the other 

profiles were generated on the Affymetrix U133 Plus 2.0 platform; we thus only 

considered 22,283 probe sets that were common in both platforms for subsequent 

analysis. Expression values within each cell line were first z-transformed to zero mean 

and unit variance. Time-course experiments were analyzed using EDGE (12) to identify 

genes differentially expressed in estrogen-treated relative to estrogen-starved cells. 

http://www.ncbi.nlm.nih.gov/geo/
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Multiple hypothesis testing was adjusted by False Discovery Rate (FDR). 1,314 probe 

sets were identified differentially expressed over time with FDR less than 0.01. These 

genes were then subjected to hierarchical clustering, which resulted in one estrogen-

induced gene cluster containing 532 probe sets and the other estrogen-inhibited gene 

cluster containing 782 probe sets. For subsequent analyses, only genes in the estrogen-

induced cluster were used as we are more interested in estrogen-activated events during 

tumor progression. 

 

Analysis of primary breast tumor data using the estrogen-regulated gene set: All primary 

breast tumor sets used in this study were collected by ONCOMINE (23) from previous 

publications or from the NCBI GEO database. Genes within each dataset were 

normalized to zero mean and unit variance. The largest Affymetrix U133A breast cancer 

dataset (10), containing 286 primary breast carcinomas, was used as the training set to 

conduct cross-validation and to develop an optimal gene set as previously described (34). 

All other datasets were used as independent test sets for validation purpose. The basic 

cross-validation procedure is as follows: (1) fit Cox regression model and calculate the 

Cox score for each gene in the Wang et al training set; (2) choose a set J of possible 

values of Cox scores S from step (1), and let pmin=1, emin=1. (3) For each S in J, do the 

following: (4) perform k-means clustering (k=2) using only genes with absolute Cox 

scores greater than S. (5) perform a log-rank test to test whether the two clusters have 

different survival rates. Name the p-value of this test as p. (6) If p > pmin, then return to 

step 3. (7) perform 10-fold cross-validation by nearest centroid classification based on the 

class memberships defined by the clusters obtained in step 3. Name the misclassification 
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error as e. (8) If e ≤ emin, then let Sopt = S, pmin= p, and emin= e, and return to step 3. 

Otherwise return to step 3 without changing the value of Sopt. The optimal value of S is 

the value of Sopt when cycle of this procedure terminates, and the optimal gene signature 

is designated as genes with absolute Cox scores greater than Sopt. The two clusters from 

k-means clustering based on these optimal genes are designated accordingly as either 

“high-risk” or “low-risk” by Kaplan-Meier (KM) survival analysis. Individual samples in 

the test data sets are then predicted as “high-risk” or “low-risk” by nearest centroid 

classification. When both the training and the test datasets used the same affymetrix 

platform, probe set IDs were used to cross-refer the two datasets. Otherwise, gene 

symbols were used to map genes from the training set to the test sets. When multiple 

report identifiers were found for one gene on a given platform, expressions of such 

reporter IDs were averaged per gene.     

 

Survival Analysis: KM survival plots were compared by log-rank test in R (the R 

Foundation, http://www.r-project.org) for individual datasets. The end point of interest 

for survival analysis is recurrence-free survival unless the dataset only provides overall 

survival information. Multivariate Cox proportional-hazards regression analysis was 

conducted on van de Vijver et al. dataset in R. Concordance of sample prediction 

memberships by different signatures was tested in SPSS 11.5 for windows (SPSS Inc., 

Chicago, IL, USA). 

 

http://www.r-project.org/
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Table 3.1. Description of the 73 Genes in the outcome signature 

 

Affy_U133A 

Probe Set 
Gene Symbol 

Affy_U133A 

Probe Set 

Gene 

Symbol 

202148_s_at PYCR1 220038_at SGK3 

203564_at FANCG 204498_s_at ADCY9 

209773_s_at RRM2 208922_s_at STX5 

202954_at UBE2C 218620_s_at HEMK1 

202095_s_at BIRC5 208688_x_at EIF3S9 

202870_s_at CDC20 212022_s_at MKI67 

221436_s_at CDCA3 206364_at KIF14 

214096_s_at SHMT2 218663_at HCAP-G 

218336_at PFDN2 206976_s_at HSPH1 

221520_s_at CDCA8 218270_at MRPL24 

214095_at SHMT2 218009_s_at PRC1 

203145_at SPAG5 209408_at KIF2C 

204092_s_at AURKA 204817_at ESPL1 

218726_at DKFZp762E1312 38158_at ESPL1 

211881_x_at IGL@ 204962_s_at CENPA 

206472_s_at TLE3 203755_at BUB1B 

202107_s_at MCM2 222039_at LOC146909 

216913_s_at KIAA0690 204441_s_at POLA2 

219215_s_at SLC39A4 212949_at BRRN1 

201710_at MYBL2 219502_at NEIL3 

201584_s_at DDX39 210466_s_at SERBP1 

204252_at CDK2 204633_s_at RPS6KA5 

219910_at HYPE 203710_at ITPR1 

201421_s_at WDR77 215193_x_at HLA-DRB1 

213906_at MYBL1 212473_s_at MICAL2 

211576_s_at COL18A1 213933_at PTGER3 

218984_at PUS7 202464_s_at PFKFB3 

205284_at KIAA0133 220266_s_at KLF4 

220177_s_at TMPRSS3 212848_s_at C9orf3 

204489_s_at CD44 202417_at KEAP1 

204490_s_at CD44 204792_s_at IFT140 

209835_x_at CD44 200706_s_at LITAF 

205322_s_at MTF1 215273_s_at TADA3L 

218481_at EXOSC5 221261_x_at MAGED4 

220029_at ELOVL2 214736_s_at ADD1 

208305_at PGR 220935_s_at CDK5RAP2 

209273_s_at HBLD2   
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Table 3.2. Multivariate Cox proportional hazards analysis of the 73-gene outcome 

signature in the Van de vijver et al. ER+ data set. The total number of samples is 225. 

 

  Relapse-Free Survival Overall Survival 

Variable 
Hazard Ratio 

(95% CI) 
p-value 

Hazard Ratio 

(95% CI) 
p-value 

Our estrogen-regulated signature 2.24 (1.35-3.70) 0.002 3.27 (1.62-6.62) 0.001 

The Oh et al. Estrogen-SAM 

genesignature (IIE vs. IE) 
2.32 (1.31-4.11) 0.004 2.24 (0.95-5.28) 0.066 

Age 0.94 (0.89-0.98) 0.004 0.94 (0.89-1.00) 0.069 

Size (diameter >2cm vs. <2cm) 1.49 (0.93-2.37) 0.095 1.41 (0.76-2.61) 0.280 

Tumor Grade     

    (intermediate vs. well diff.) 1.40 (0.72-2.72) 0.320 2.02 (0.65-6.28) 0.230 

    (poorly vs. well diff.) 1.30 (0.64-2.63) 0.460 2.86 (0.91-9.02) 0.070 

Node status     

    (1-3 vs. 0 positive nodes) 1.82 (0.93-3.57) 0.082 1.65 (0.66-4.18) 0.290 

    (>3 vs. 0 positive nodes) 2.87 (1.23-6.74) 0.015 2.22 (0.69-7.11) 0.180 

Hormonal or chemotherapy vs. 

no adjuvant therapy 0.33 (0.16-0.66) 0.002 0.43 (0.17-1.13) 0.086 
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Table 3.3. Multivariate Cox proportional hazards analysis of the 73-gene outcome 

signature with two known predictors in the Van de vijver et al ER+ data set. Samples 

used for Van't veer et al. training model were excluded, leading to 181 samples in total. 

 

  Relapse-Free Survival Overall Survival 

Variable 
Hazard Ratio 

(95% CI) 
p-value 

Hazard Ratio 

(95% CI) 
p-value 

Our estrogen-regulated signature 2.01 (1.09-3.72) 0.026 3.63 (1.40-9.42) 0.008 

70-gene Signature (poor vs. 

good) 2.42 (1.14-5.14) 0.021 2.37 (0.72-7.85) 0.160 

The Oh et al. Estrogen-SAM 

gene signature (IIE vs. IE) 
1.83 (0.95-3.52) 0.070 1.71 (0.62-4.75) 0.300 

Age 0.97 (0.92-1.03) 0.340 1.00 (0.92-1.07) 0.900 

Size (diameter >2cm vs. <2cm) 1.18 (0.68-2.04) 0.560 1.29 (0.60-2.77) 0.510 

Tumor Grade     

    (intermediate vs. well diff.) 0.97 (0.47-2.00) 0.930 1.33 (0.39-4.49) 0.650 

    (poorly vs. well diff.) 0.67 (0.29-1.54) 0.350 1.63 (0.46-5.75) 0.450 

Node status     

    (1-3 vs. 0 positive nodes) 1.86 (0.90-3.88) 0.096 1.76 (0.63-4.92) 0.280 

    (>3 vs. 0 positive nodes) 3.56 (1.39-9.14) 0.008 2.84 (0.77-10.5) 0.120 

Hormonal or chemotherapy vs. 

no adjuvant therapy 0.33 (0.16-0.68) 0.003 0.38 (0.14-1.03) 0.056 
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Table 3.4. Performance comparisons of the estrogen-regulated signature with previously reported breast cancer signatures. Individual 

gene signatures were extracted from the original literature. Except for Oncotype DX and estrogen-regulated predictors were trained in 

Wang et al. breast dataset, the other signatures were trained in each respective dataset. Each signature was used to perform k-mean 

clustering and patients were separated into high-risk and low-risk groups, which were used as a training model to predict samples in 

other datasets by nearest centroid classification. The best signature for each dataset was highlighted in bold. 
 

Signature Source

Log-rank

P-value*

Hazard Ratio 

(95% CI)

C-Index (95% 

CI)**

Log-rank

P-value

Hazard Ratio 

(95% CI)

C-Index (95% 

CI)

Log-rank

P-value

Hazard Ratio 

(95% CI)
C-Index (95% CI)

Number of Genes

Wang_Breast 1.03E-06 2.60 (1.75, 3.86) 0.63 (0.58, 0.67) 0.0007 1.90 (1.30, 2.78) 0.58 (0.54, 0.63) 0.09 1.39 (0.95, 2.04) 0.55 (0.50, 0.59)

Pawitan_Breast 1.20E-07 8.60 (3.3, 22.41) 0.73 (0.66, 0.80) 0.0002 3.65 (1.77, 7.53) 0.65 (0.57, 0.74) ######## 10.3 (3.13, 34.0) 0.71 (0.65, 0.78)

Miller_Breast 0.0004 2.59 (1.50, 4.46) 0.62 (0.56, 0.69) 0.0001 2.71 (1.60, 4.61) 0.63 (0.56, 0.69) 0.001 2.51 (1.43, 4.41) 0.61 (0.55, 0.68)

Vantveer_Breast 0.0003 2.90 (1.58, 5.33) 0.64 (0.57, 0.71) 0.03 1.87 (1.04, 3.36) 0.58 (0.51, 0.65) 0.04 1.91 (1.03, 3.56) 0.58 (0.51, 0.65)

Sotirious_Breast 9.09E-06 2.98 (1.80, 4.93) 0.66 (0.60, 0.72) 0.0005 2.30 (1.42, 3.74) 0.64 (0.58, 0.70) 0.0007 2.41 (1.42, 4.08) 0.64 (0.58, 0.69)

Bild_Breast 0.0001 3.10 (1.69, 5.68) 0.64 (0.58, 0.71) 0.005 2.17 (1.24, 3.81) 0.60 (0.52, 0.67) 0.33 1.34 (0.75, 2.40) 0.55 (0.47, 0.62)

Oh_Breast 0.01 2.71 (1.23, 5.95) 0.62 (0.53, 0.71) 0.009 2.59 (1.23, 5.42) 0.61 (0.52, 0.71) 0.04 2.21 (1.01, 4.86) 0.60 (0.51, 0.69)

Sorlie_Breast 0.003 2.44 (1.32, 4.48) 0.62 (0.54, 0.69) 0.12 1.58 (0.88, 2.84) 0.57 (0.49, 0.64) 0.19 1.49 (0.82, 2.72) 0.57 (0.49, 0.64)

Vandevijver_Breast 1.76E-06 2.76 (1.79, 4.25) 0.64 (0.59, 0.69) 0.001 1.99 (1.31, 3.03) 0.59 (0.54, 0.65) ######## 2.73 (1.73, 4.31) 0.63 (0.58, 0.68)

Signature Source

Log-rank

P-value

Hazard Ratio 

(95% CI)

C-Index (95% 

CI)

Log-rank

P-value

Hazard Ratio 

(95% CI)

C-Index (95% 

CI)

Log-rank

P-value

Hazard Ratio 

(95% CI)
C-Index (95% CI)

Number of Genes

Wang_Breast 0.62 1.12 (0.73, 1.72) 0.52 (0.48, 0.57) 0.0002 2.05 (1.39, 3.01) 0.60 (0.55, 0.65) 0.001 1.86 (1.26, 2.74) 0.59 (0.54, 0.63)

Pawitan_Breast 0.07 1.94 (0.93, 4.06) 0.57 (0.49, 0.65) ######## 8.67 (3.03, 24.8) 0.71 (0.65, 0.78) ######## 4.73 (2.11, 10.6) 0.68 (0.60, 0.76)

Miller_Breast 0.008 2.04 (1.19, 3.48) 0.59 (0.53, 0.66) 0.0002 2.66 (1.54, 4.59) 0.64 (0.57, 0.70) 0.008 2.03 (1.19, 3.46) 0.59 (0.53, 0.66)

Vantveer_Breast 0.002 2.53 (1.37, 4.67) 0.59 (0.53, 0.66) ######## 6.81 (3.35, 13.9) 0.71 (0.65, 0.78) 0.0003 2.98 (1.61, 5.50) 0.64 (0.57, 0.71)

Sotirious_Breast 0.33 1.30 (0.77, 2.19) 0.55 (0.49, 0.61) ######## 2.93 (1.77, 4.87) 0.66 (0.60, 0.72) 0.0009 2.23 (1.37, 3.64) 0.65 (0.59, 0.70)

Bild_Breast 0.0006 2.67 (1.49, 4.79) 0.62 (0.54, 0.69) 0.04 1.78 (1.01, 3.13) 0.60 (0.54, 0.67) 0.04 1.80 (1.03, 3.16) 0.59 (0.52, 0.66)

Oh_Breast 0.12 1.80 (0.86, 3.77) 0.57 (0.47, 0.67) 0.001 3.59 (1.59, 8.12) 0.66 (0.57, 0.75) 0.0003 4.91 (1.87, 12.9) 0.66 (0.58, 0.74)

Sorlie_Breast 0.001 2.61 (1.41, 4.81) 0.61 (0.54, 0.67) 0.01 2.17 (1.18, 3.99) 0.60 (0.53, 0.68) 0.0002 3.10 (1.64, 5.83) 0.64 (0.57, 0.72)

Vandevijver_Breast 0.0006 2.15 (1.37, 3.36) 0.58 (0.53, 0.63) ######## 3.31 (2.10, 5.22) 0.66 (0.61, 0.70) ######## 3.40 (2.18, 5.32) 0.67 (0.62, 0.71)

32 70

14 76 64

Miller et al. Van't veer et al. Oncotype Dx 

16

Our Signature Wang et al. Pawitan et al.

*This result is not adjusted for established clinical parameters such as stage, grade, and receptor status 

**C-index: concordance index (area under the curve) for censored data calculated using Hmisc package in R.
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Table 3.5. Two-way contigency table analysis measuring the association association 

among different breast cancer outcome signatures in the van de vijver et al. data set 

 

A. Two-way contigency table on Van de 

vijver et al. Data Set (n=295)  

B. Two-way contigency table on Van de 

vijver et al. Data Set (n=295) 

Our Estrogen-

regulated Signature 

70-gene signature (# 

of patients) 
 

Our Estrogen-

regulated Signature 

Wound-response 

signature (# of 

patients) 

Good Poor  Activated Quiescent 

           Low-Risk 106 53             Low-Risk 98 61 

           High-Risk 9 127             High-Risk 130 6 

       

Statistics for two-way table analysis  Statistics for two-way table analysis 

          p-value <0.0001             p-value <0.0001  

          Cramer's V 0.617              Cramer's V 0.404   

       

C. Two-way contigency table on Van de 

vijver et al. Data Set (n=295)  

D. Two-way contigency table on Van de 

vijver et al. ER+ tumors (n=225) 

Intrinsic Subtype 

Our Estrogen-

regulated Signature (# 

of patients)  
Our Estrogen-

regulated Signature 

Estrogen-SAM 

signature (# of 

patients) 

Low-Risk High-Risk  Group IE Group IIE 

Basal-like 3 50             Low-Risk 90 58 

Luminal A 108 15             High-Risk 12 65 

Luminal B 13 42     

HER2+ and ER- 9 26  Statistics for two-way table analysis 

Normal-like 26 3            p-value <0.0001  

              Cramer's V 0.431   

Statistics for two-way table analysis     

          p-value <0.0001      

          Cramer's V 0.720       
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Figure 3.1. Identification and molecular concept map analysis of estrogen-induced genes. 

a. Heatmap representation of 532 in vitro estrogen-induced genes across three ER+, 

estrogen sensitive breast cancer cell lines (MCF-7, T47-D, and BT-474) following 17β-

estradiol treatment. Each row represents a gene, and each column represents a sample 

treated with estrogen for different time periods (0, 1, 2, 4, 8, 12 or 24 hours with 

replicates). b-d. Molecular concept map analysis (MCM) of the estrogen-induced genes 

(yellow node with black frame) showing enrichment networks of (b) previously reported 

estrogen-regulated molecular concepts both in vitro and in vivo, (c) gene ontology 

concepts, and (d) breast cancer progression and prognosis concepts. Each node represents 

a molecular concept. The node size is proportional to the number of genes in the concept. 

Each edge represents a statistically significant enrichment. Concepts of “up-regulated 

genes by estrogen treatment” are indicated by light green nodes. Blue, holly green and 

purple nodes represent genes up-regulated in ER+ cancer, high-grade breast cancer, and 

patients with poor outcome, respectively. Enriched gene ontology terms are represented 

by orange nodes. 
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Figure 3.2. Estrogen-regulated genes stratified breast cancer samples into two groups 

with significantly different prognoses. a. Representation of step-wise cross-validation on 

the Wang et al. training set. The left panel presents the number of misclassified samples 

by cross-validation, and the right panel presents survival difference of the resulted two 

clusters when a particular set of genes were used. The X-axis represents the number of 

top genes, ordered by their corresponding survival significance. The dashed line indicates 

the threshold used to select the optimal gene signature. b. K-mean clustering 

representation of the 73 estrogen-regulated genes in the training cohort (left) and its 

Kaplan-Meier survival plot (right). The 73 genes were selected based on minimal 

misclassification error by 10-fold cross validation in the space of the initial identified 532 

genes (Panel a.) 
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Figure 3.3. The 73-gene outcome signature predicts clinical outcome of breast cancer. 

The low-risk and high-risk groups in each study were predicted on the basis of the 

expression patterns of the 73 signature genes as described in the Method. KM analysis 

was used to evaluate the significance of outcome difference between the two groups. P 

values were calculated by the log-rank test. 
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Figure 3.4. The 73-gene outcome signature predicts clinical outcome of ER+ breast 

cancer. The ER+ breast cancer samples were extracted from their respective datasets and 

the significance of outcome difference between the low-risk and high-risk groups were 

estimated by KM survival analysis. P values were calculated by the log-rank test. The Ma 

et al. data set is not included in this analysis since nearly all of its samples are ER+ and 

thus have been presented in Figure 3.3. 
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Figure 3.5. The 73-gene outcome signature predicts clinical outcome in tamoxifen-

treated breast cancer subcohorts (a-c), gliomas (d-f), and lung adenocarcinoma (g). The 

low-risk and high-risk groups were predicted by the 73-gene signature with nearest 

centroid classification. KM analysis was used to evaluate the significance of outcome 

difference between the two groups. P values were calculated by the log-rank test. 
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CHAPTER 4 

 

Molecular Classification of Cancer using Genetic Programming 

 

Despite important advances in microarray-based molecular classification of 

tumors, its application in clinical settings remains formidable. This is in part due to the 

limitation of current analysis programs in discovering robust biomarkers and developing 

classifiers with a practical set of genes. Genetic Programming (GP) is a type of machine 

learning technique that uses evolutionary algorithm to simulate natural selection as well 

as population dynamics, hence leading to simple and comprehensible classifiers. Here we 

applied GP to cancer gene expression profiling data to select feature genes and build 

molecular classifiers by mathematical integration of these genes. Analysis of thousands 

of GP classifiers generated for a prostate cancer dataset revealed repetitive use of a small 

set of highly discriminative feature genes, many of which are known disease-associated. 

GP classifiers often comprise five or less genes and successfully predict cancer types and 

subtypes. Importantly, GP classifiers generated in one study is able to predict samples 

from an independent study, which may have used different microarray platforms. In 

addition, GP yielded better or similar classification accuracy as conventional 

classification methods. Further, the mathematical-expression of GP classifiers provides 

insights into relationships between classifier genes. Taken together, this study has 

demonstrated that GP may be valuable for generating effective classifiers containing a 

practical set of genes for diagnostic/prognostic cancer classification.  
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The development of high-throughput microarray-based technology will 

potentially revolutionize cancer research in a number of areas including cancer 

classification, diagnosis and treatment. Expression profiling at the mRNA level can be 

used in the molecular characterization of cancer by simultaneous assessment of a large 

number of genes (1-5). This approach can be used to determine gene expression 

alterations between different tissue types such as those obtained from healthy controls 

and cancer patients. Analysis of such large-scale gene expression profiles of cancer will 

facilitate the identification of a subset of genes that could function as diagnostic or 

prognostic biomarkers. The development of molecular classifiers that allow segregation 

of tumors into clinically relevant molecular subtypes beyond those possible by 

pathological classification may subsequently serve to classify tumors with unknown 

origin into different cancer types or subtypes. However, due to the large number of genes 

and the relatively small number of patient cases available from such studies, it remains a 

challenge to find a robust gene signature for reliable prediction. 

  

As discussed in Chapter 2, a number of computational and statistical models 

have been developed for molecular classification of tumors. However, many of methods 

are often developed using parametric statistical techniques and thus have difficulty in 

finding non-linear relationships between genes. Alternatively, complex models such as 

neural networks often deliver “black box” solutions for classification and do not give 

insight into relationships between genes. In this study, we present a machine learning 

approach called Genetic Programming (GP) for molecular classification of cancer. GP 
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belongs to a class of evolutionary algorithms and was first introduced by Koza (6) in 

1992. Recently, GP has been shown to be a promising approach for discovering 

comprehensible rule-based classifiers from medical data (7,8) as well as gene expression 

profiling data (9-14). However, the potential of GP in cancer classification has not been 

fully explored. For example, GP classifiers identified from one dataset have not been 

validated in independent datasets. Here, we applied GP algorithm to cancer expression 

profiling data to identify potentially informative feature genes, build molecular classifiers 

and classify tumor samples. A basic flowchart of GP has been described in Figure 4.1 

and typical parameters used in GP have been detailed in Table 4.1. We tested GP in one 

Small Round Blue Cell Tumors (SRBCTs), one lung adenocarcinoma and five prostate 

cancer datasets (Table 4.2), and evaluated the generality of GP classifiers within and 

across datasets. In addition, we compared the performance of GP with that of other 

common classification techniques, such as linear discriminant analysis and support vector 

machines, for prediction accuracy. 

 

To investigate the ability of GP to robustly select feature genes, we examined 

gene occurrences across classifiers generated from our GP system. Our results revealed 

that a small set of genes was frequently selected. For example, an analysis of feature 

genes in a set of 1000 best classifiers from GP to distinguish primary prostate cancer 

from metastatic samples on LaTulippe et al. (Memorial Sloan-Kettering Cancer Center, 

MSKCC) prostate dataset (15) indicated a high tendency of GP in selecting certain genes 

across classifiers (Figure 4.2). Figure 4.2A presents the normalized z score (16) of the 

frequency of each gene in the 1000 classifiers that contains a total of 2000 gene 



 72 

occurrence, with the X-axis representing Gene Index. As shown in the figure, only 261 

out of the total 3547 genes used for this study occurred at least once. Interestingly, 46 of 

them occurred at least twelve times (z score >=15, p<0.0001, Table 4.3). The fact that 

this small set of genes has dominated the generated classifiers implies that such genes 

may be truly important for prostate cancer metastasis, and may serve as discriminative 

biomarkers for cancer progression. As GP is stochastic and may give different solutions 

in each run, it is interesting to examine the reproducibility of gene selection across 

independent runs. Thus, we created another independent set of 1000 classifiers using 

identical GP parameters on the same training set. A total of 264 genes occurred at least 

once in this set of GP classifiers. Notably, 206 of them were common in both sets and a 

highly positive correlation of z scores of these gene between the two sets was observed 

(R2 = 0.94, P < 1x10-5, Figure 4.2B). 

 Next we examined the 46 most frequently occurring feature genes in the above 

analysis (Table 4.3). Strikingly, the top 3 probes represented the same gene, MYH11, 

which has been reported to be down-regulated in multiple metastatic cancers (17). 

Another top-listed gene was EZH2, encoding a polycomb group protein that we and 

others have previously characterized as over-expressed in aggressive epithelial tumors 

(18,19). We therefore hypothesized that the top frequently occurring genes might serve as 

a multiplex signature to distinguish metastatic prostate cancer from primary prostate 

cancer. To test this, hierarchical clustering was performed to group cancer samples based 

on the expression patterns of these genes. As shown in Figure 4.3A, these top 46 genes 

clustered tumor samples into their corresponding diagnostic classes (metastatic or 

primary prostate cancer), each with a unique expression signature. Interestingly, the same 
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set of genes also successfully classified the independent Yu et al. (Pittsburgh) prostate 

cancer dataset. Similar results were observed when samples of the SRBCT dataset were 

clustered based upon the top 54 frequent feature genes (z score >=14) derived from the 

training samples of this dataset (Figure 4.3B). In addition, we also selected the top 26 

feature genes (z score >=40) from the 2000 classifiers developed from the Lapointe et al. 

(Stanford) prostate cancer training dataset. Hierarchical clustering based on the 

expression pattern of these genes grouped tumors of four independent prostate cancer 

datasets with high classification accuracy (Figure 4.3C-F).  

To further investigate whether such feature genes can be used to predict class 

memberships of validation samples, we carried out class prediction of the SRBCT dataset 

by diagonal linear discriminant analysis (DLDA) and k-nearest neighbor analysis (kNN, k 

=3). The top 54 frequent genes selected from the 2000 classifiers generated from the 

training samples of SRBCT data were used as a gene signature to predict the validation 

samples. Both DLDA and kNN analysis predicted all of the 20 validation samples with 

100% accuracy (data not shown), confirming that the frequent genes derived from GP are 

truly discriminative genes and capable of predicting unknown samples.  

 

Next we sought to examine the performance of GP classifiers comprising only a 

handful feature genes. We first evaluated the ability of GP classifiers to accurately 

classify four diagnostic classes of cancers (NB, RMS, EWS and BL) within the SRBCT 

dataset (20). A set of 63 training samples was used by GP to generate distinguishing 

classifiers through cross-validation. Classification was performed in a binary mode 

(target versus non-target class). For each target class, the top 10 best classifiers were 
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selected and employed to predict a validation set of 20 samples. Most of the classifiers 

achieved 100% sensitivity and specificity on the training set. Similar prediction accuracy 

was observed when these classifiers were applied to the 20 blinded validation samples. 

The best classifiers (Table 4.4) perfectly predicted all of the validation samples. The 

average prediction accuracy of the top 10 classifiers for each target class was 98.5% for 

BL (95% confidence interval [CI] = 0.97-1.00), 92.5% for EWS (95% CI = 0.89-0.96), 

95.5% for NB (95% CI = 0.91-1.00), 95.5% for RMS (95% CI = 0.92-0.99). Overall, GP 

classifiers achieved comparable classification and prediction performance as the method 

described in the original study, while using much less genes. This high prediction 

accuracy, however, might be partially due to the fact that the 4 cancer types here are 

much more heterogeneous than the subtypes of any single cancer.  

 

Thus, we next examined GP in classifying subtypes of lung adenocarcinoma, 

wherein samples were designated as “high-risk” or “low-risk” based on the original 

publication information (21). One hundred classifiers were generated by GP from 66 

training samples and the top five were found to have the highest training accuracy of 

98.5%. When these 5 classifiers were applied to the 20 test samples, we found a maximal 

prediction accuracy of 98.5% and an average prediction rate of 84.0% (95% CI, 0.70-

0.99), being comparable with that of other classification methods as described in the later 

session.  

 

A more challenging work is to validate classifiers across independent datasets. 

We thus investigated whether GP could distinguish molecular subtypes of a single cancer 



 75 

class from independent datasets. Two prostate cancer datasets (Pittsburgh, and MSKCC 

sets) were used to evaluate GP in classifying primary or metastatic prostate cancer. Genes 

within each dataset were standardized to have zero mean and unit variance, given that 

similar proportion of metastatic samples was observed in both datasets. The MSKCC 

samples were used as a training set to generate GP classifiers. The 20 classifiers that 

perfectly classified primary from metastatic prostate cancer in the training set were 

selected for prediction. When these classifiers were applied to predict the independent 

Pittsburgh prostate cancer samples, the best classifiers (Table 4.4) correctly predicted all 

metastatic prostate cancers, and 58 out of 62 clinically localized prostate cancers. This 

led to 100% sensitivity and 93.5% specificity. The average prediction accuracy of all of 

the 20 classifiers was 95.2% sensitivity (95% CI = 0.87-1.00) and 82.1% specificity (95% 

CI = 0.65-0.99).  

  

The above two prostate cancer datasets were hybridized using the same 

Affymetrix HG-U95Av2 platform and shared similar proportion ratios of target/non-

target samples. Next, we examined whether classifiers generated by GP could predict 

samples from independent studies that have used different microarray platforms. Three 

prostate cancer datasets (2,22,23) (UM, Stanford, and Pittsburgh datasets) were used to 

test GP classifiers in predicting benign prostate and primary prostate cancer (PCA) 

samples. Among them, the Stanford and UM datasets used spot cDNA microarrays while 

the Pittsburgh data used affymetrix HG-U95Av2 oligonucleotide arrays. Two-thirds of 

the Stanford samples were used as a training set to generate GP classifiers, whereas the 

other one-third, the UM and Pittsburgh samples were all considered as validation 
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samples. We used GP to generate 2000 classifiers and selected the top 26 frequently 

occurring genes (z-score >=40) as potential feature genes. To examine whether these 

genes are present in all three microarray platforms we cross-referenced them to the UM 

and Pittsburgh datasets using gene symbols. Out of these 26 genes, 12 are present in all 

three datasets. We thus entered these 12 genes into the GP system to start a new round of 

5-fold cross-validation on the Stanford training set. Five perfect classifiers were achieved 

and applied to the validation set. Prediction accuracy in the Stanford validation samples 

ranged from 84.4% to 90%. However, the classifiers performed poorly on UM and 

Pittsburgh datasets. We suspected that this might be due to the discrepancy in the 

proportion ratio of PCA/benign samples and/or the probe intensity difference across array 

platforms, which led to divergence in the constant D of a classifier (e.g. GENE[A] / 

GENE[B] - GENE[C] > D). However, we believe that the relationships between the 

classifier genes, although with varying values of D, may still be predictive across studies, 

given that the classifier genes are putative discriminative genes. For instance, one of the 

classifier, formulated as ‘IF (MYO6 + AMACR) >= -2.6776 THEN PCA’ (see Table 

4.5), did not predict well on the validation sets. However, the expression value of 

“MYO6 + AMACR” might still be predictive. To test this, we transformed the five 

classifiers individually as described in Methods and calculated a prediction score for each 

validation sample by computing the left-side of each classifier-inequality on a continuous 

scale. The predictive ability of each classifier on each validation set was then assessed 

using the Area under ROC Curve (AUC). Notably, all classifiers were strongly 

significant (p-values < 5x10-4, Figure 4.4, Table 4.5) in both the Stanford and Pittsburgh 

validation sets. The lowest AUC was 0.91 (95% CI = 0.80-1.00) and 0.87 (95% CI = 
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0.79-0.95) respectively. For UM dataset, except for one classifier being marginally 

significant (AUC=0.64, p-value =0.09), all other classifiers were also strongly significant 

(p-values < 5x10-4).  

 An ensemble “meta-classifier” combining multiple classifiers in general yields 

better prediction performance, as it involves more genes and multiple predictive 

signatures. Thus, we composed a “meta-classifier” based on the above 5 classifiers. For 

each sample, the calculated prediction scores of the five classifiers were totaled to an 

overall prediction score which was then defined as the prediction score of the “meta-

classifier” for that sample. As expected, this “meta-classifier” revealed higher AUCs in 

each dataset (0.96, 0.99, 0.99 for the Stanford, UM and Pittsburgh set respectively, p-

values <5x10-4, see Figure 4.4, and Table 4.5) 

  

 Examination of classifier genes have revealed that GP classifiers (Table 4.4 and 

4.5) are much simpler than predictors reported by other approaches (1,3,5,20,21,24-27), 

where more than ten genes are often required to build an effective predictor. GP, by 

contrast, can utilize only 2-5 genes to produce effective classifiers and achieve high 

prediction power. This simplicity may owe to the relatively strict expression constraints 

(Table 4.1) and the use of a non-parametric method in selecting informative genes rather 

than usual parametric statistical techniques. Further, unlike some other non-parametric 

approaches such as neural networks and support vector machines, GP is transparent in 

that the entire procedure for classifier generation and evolution is readily available for 

inspection and adjustment. GP also revealed interesting quantitative relationship between 

within-classifier genes. Studying the specific genes used by a classifier and their 
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relationships may provide valuable information about gene interactions, transcriptional 

regulatory pathways, and clinical diagnosis. 

 

One important criterion to assess a classification approach is how it performs in 

comparison to other commonly used algorithms in the same research area. To evaluate 

the performance of GP, the Burkitt lymphomas (‘BL’) in the SRBCT dataset and the 

high-risk class in the lung adenocarcinoma data were chosen as the target classes and five 

classification methods including Compound Covariate Predictor (CCP), 3-Nearest 

Neighbors (3NN), Nearest Centroid (NC), Support Vector Machines (SVM), and 

Diagonal Linear Discriminant Analysis (DLDA) were selected as comparing counterparts 

of the GP method. To produce a fair comparison, we took into account the small number 

of genes used by GP classifiers and conducted the comparison tests based on either 5- or 

10-gene classifiers.  

  

The same training and validation sets as described previously were used to 

evaluate the performance of each classification method. The basic procedure was defined 

by two steps: (1) two-sample student t-test was conducted for each gene in the training 

set, and the 5 or 10 genes with the smallest p-values were selected as test classifiers, (2) 

expression data of the selected 5 or 10 genes across the training samples were used to 

build a training model, which was subsequently applied to the validation samples. Each 

individual validation sample was predicted as either ‘target-class’ or ‘non-target class’. 

Misclassification rate was defined as the percentage of validation samples that were 

misclassified by a test classifier. Since GP generates multiple classifiers, the average of 
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the misclassification rates of the top GP classifiers derived from the training set was used 

to represent the misclassification rate of a typical well-performing GP classifier. For the 

SRBCT data, we used the averaged misclassification rate of the top 10 classifiers because 

there were 10 perfect classifiers generated from the training samples to classify ‘BL’ and 

‘Non-BL’. Similarly, the 5 classifiers having the least classification error in the training 

set were used for the lung adenocarcinoma dataset. As shown in Table 4.6, the error rates 

were comparable across different methods. The GP system ranked the 2nd and the 3rd in 

the SRBCT and the lung adenocarcinoma datasets respectively when 5-gene classifiers 

were evaluated. We believe that this may reflect the general prediction strength of GP 

system when only a small number of genes are chosen. 

 

 An intrinsic advantage of GP is that it automatically selects a small number of 

feature genes during “evolution” (12). The “evolution” of classifiers from the initial 

population seamlessly integrates the process of gene selection and classifier construction. 

By contrast, gene selection must be performed in a separate stage for many other 

classification algorithms such as kNN, weighted voting, and DLDA. Moreover, it is 

relatively easier for GP to keep the number of genes used in one classifier small. As GP 

searches a larger space than most traditional classification approaches, there is an 

increased chance of GP in finding a better performing classifier. By identifying and 

utilizing a small number of genes and developing transparent and human-comprehensible 

rule-based classifiers, GP stands as a good algorithm of choice.  
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 The challenge of the field of molecular classification lies in the tradeoff of 

prediction power and the number of genes used. We have therefore stringently tested GP 

classifiers, which comprised of 5 or less genes, in achieving high prediction accuracy in 

datasets with varying levels of classification complexity. Unlike other studies (13,28) 

validating their classifiers using cross-validation within a dataset, our result not only 

demonstrated that the top GP classifiers easily classified and predicted the SRBCT 

dataset, which contained 4 classes of physiologically heterogeneous cancers, with 100% 

accuracy, but also showed optimal performance in classifying and predicting subtypes of 

prostate cancer, for samples either of the same study or of a different study that used the 

same microarray platform.  In addition, GP-selected feature genes stay discriminative 

even for cancer samples examined in different studies that used greatly different 

microarray platforms. Due to this robustness and stability of GP feature genes, we expect 

GP classifier to be highly applicable to clinical diagnosis.  

 

 A major issue in GP as well as other machine learning systems is data over-fitting 

due to a large number of variables and a small number of cases in microarray profiling. 

This occurs when the classifier is strongly biased towards the training set and generates 

poor prediction generality in validation samples. To address this, our study restricted the 

complexity of classifiers and adopted an n-fold cross-validation strategy. By limiting the 

size and complexity of classifiers using the minimum description length principle of risk 

minimization (29), the system was forced to generate the most salient features likely to be 

the most general solutions (30). By re-sampling using n-fold cross-validation, classifiers 

derived from the training samples were re-examined in the test-fold samples to test how 
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well the learning algorithm could be generalized. If the fitness on the training data in one 

fold is significantly better than the fitness on the test data, it may indicate that there is an 

issue of over-fitting in the data. Therefore, a careful examination of the samples may be 

necessary.  

 

 Another issue for GP is that it is computationally intensive. The estimated running 

time increases along with the complexity of the problem, and the number of variables. 

This can be partially resolved by using parallel processing which segments the problem 

into parts running on different processors simultaneously and then synchronizes among 

them. In addition, variable pre-filtering may also reduce the running time. As described in 

the result section, GP typically selects those inherently discriminative genes and usually a 

small set of genes dominates the selection. Thus, a pre-filtering such as excluding genes 

with small variances may significantly reduce the running time yet not affect the 

performance of classifiers. 

 

 Taken together, in this study we systematically evaluated the feasibility of GP in 

feature selection and cancer classification. By examining the feature genes used by GP 

classifiers we have demonstrated that GP is able to robustly select a set of highly 

discriminative genes. In addition, the mathematical expression of GP classifiers reveals 

interesting quantitative relationships between genes. By testing GP classifiers generated 

from training sets in validation sets, we have shown that GP classifiers can successfully 

predict tumor classes and outperform most of other classification methods when only a 

limited number of genes are allowed to build a classifier. Our work suggests that GP may 
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be useful for feature selection and molecular classification of cancer using a practical set 

of genes. 

 

MATERIALS AND METHODS 

Datasets. All datasets were obtained from ONCOMINE (31) or requested from the 

original authors. The Small Round Blue Cell Tumor (SRBCT) data (20) contained 88 

samples from four types of cancer cells: neuroblastoma (NB), rhabdomyosarcoma 

(RMS), the Ewing family of tumors (EWS), and Burkitt lymphomas (BL). The entire 

dataset, excluding five non-SRBCT samples, was divided into a training set (63 samples) 

and a validation set (20 samples) as described in the original study. The lung 

adenocarcinoma dataset (21) contains 86 lung cancer samples. The samples were then 

subdivided into a high- or low-risk group as requested from the authors. Twenty eight 

high-risk and 38 low-risk samples were included in the training set while the remaining 

20 samples were considered as the validation set.  

  

Three prostate cancer datasets (2,22,23) from the University of Michigan 

(Dhanasekaran et al, UM), Stanford University (Lapointe et al., Stanford) and the 

University of Pittsburgh (Yu et al, Pittsburgh) respectively were used to classify primary 

prostate cancer (PCA) from benign prostate samples (BENIGN). A total of 56 samples 

were randomly selected from Stanford dataset as the training set. The rest of the Stanford 

samples, UM and Pittsburgh sets were treated as validation sets. Two prostate cancer 

datasets including the Pittsburgh and MSKCC datasets (15,23) were also retrieved to 

distinguish metastatic prostate cancer (MET) and PCA. Detailed study information is 

shown in Table 4.2. 
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Genetic Programming for classification: In this study, we used genetic programming to 

discover classifiers that are capable of classifying samples into different cancer types 

based on gene expression patterns. Genetic programming (GP) (6) is an evolutionary 

algorithm that simulates natural selection and population dynamics to search for 

intelligible relationships amongst the constituents in a system (classifiers in this study). A 

generic GP classifier-based prediction is shown as: IF ‘(GENE[A] / GENE[B] - 

GENE[C]) > D’ THEN ‘TARGET CLASS’, where the IF clause is generated by GP, 

“TARGET CLASS” is pre-defined in the initial configuration file, D is a constant, and 

GENE[A], GENE[B] and GENE[C] represent the expression levels of gene A, B, and C 

respectively. 

 

A basic flowchart for the GP system is given in Figure 4.1A. Briefly, the system 

randomly selects inputs such as gene identifiers and constant values, which are used to 

represent the expression values of corresponding genes. Such selected inputs are then 

combined with the function operators such as arithmetic or Boolean operators to compose 

tree-based GP classifiers, an example of which is given in Figure 4.1B. Such classifiers 

are eventually accumulated to form an initial population, where a small subgroup of 

classifiers is then selected to create a ‘mating group’. Each classifier in this ‘mating 

group’ is assessed by a fitness function defined as the area under the receiver-operator 

characteristic curve (ROC-AUC), which is used widely to assess the accuracy of a 

diagnostic test that yields continuous test results in clinical research areas. The two fittest 

classifiers are then selected as ‘mating’ parents by a tournament selection scheme and 
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‘mated’ to produce ‘offspring’ via selective genetic operators such as crossover, or 

mutation. The crossover operator exchanges a subtree of one parent with the other to 

generate offspring (Figure 4.1C), while the mutation operator probabilistically chooses a 

node in a subtree and replace it with a new created subtree randomly. The generated 

offspring then replaces the least-fit parent classifiers in the population. Once new 

offspring fully replaces parent classifiers in the entire population, a new generation that in 

general contains better classifiers is created. This process of mating pool selection, fitness 

assessment, mating and replacement is repeated over generations, progressively creating 

better classifiers until a termination criterion is met (e.g., a perfect classifier with a fitness 

score of 1 or the maximum number of ‘generations’ is reached).  

 

Table 4.1 shows an example of primary GP parameters used to analyze the 

prostate cancer dataset from LaTulippe et al. (MSKCC) study. Given the limited sample 

size of each dataset we employed n-fold cross-validation procedure to estimate the 

generalization of classifiers in predicting samples with unknown class membership. For 

example, when a dataset is selected as the training set, it is randomly subdivided into n 

parts (or folds), wherein classifiers are developed as described in the above GP process 

using samples in n-1 folds. These classifiers are then tested on samples in the left-out fold 

to assess their potential generalization capability since such samples are not involved in 

the development of the classifiers. A good classifier is expected to classify well in the 

training samples as well as the samples in the left-out fold. This process is repeated n 

times with each fold taking turns as the testing fold and the best classifiers are then 

selected based upon overall performance on the training folds and the test fold. 
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We implemented parallel genetic programming algorithm in C (patented by 

Genetics Squared, Inc., Ann Arbor, MI 48104; http://www.genetics2.com). The analyses 

were performed on a parallel computer cluster (7 Dell 1850 1U racks with 2x3.2GHz 

Xeon processor and 1 Dell 1750 1U rack with 1x3.06GHz Xeon processor) running the 

Debian Linux operating system. The running times for different datasets varied from a 

few minutes to a few days, depending on a large number of parameters like the 

complexity of the problem, size of population used in the evolution, number of 

generations, cost of fitness calculation, number of classifiers, and size of the data set, etc. 

For the LaTulippe et al. prostate cancer dataset with the parameters listed in Table 4.1, it 

took approximately three and a half hours to complete a set of 1000 classifiers. 



 86 

Table 4.1 Settings for primary GP parameters used to analyze the Latulippe et al.prostate 

cancer data 

 

Parameter Setting Description* 

Terminal Set All inputs including gene 

expression values, and 

constant values. 

A set where all end (leaf) nodes in the parse trees 

representing the programs must be drawn. A terminal 

could be a variable, a constant or a function with no 

arguments 

Function Set Boolean and floating point 

operators: <, >, <=, =>, *, /, 

+, - 

A set of operators, e.g. +, -, *, ÷. These act as the 

branch points in the parse tree, linking other functions 

or terminals 

Selection  Generational, tournament  

size 5 

An evolution is called “generational” when the entire 

existing population of classifiers is replaced by a new 

created population at every generation. Tournament 

selection is a mechanism for choosing classifiers from 

a population. A group of classifiers are selected at 

random from the population and the best one(s) is 

chosen 

Initial population Each tree was created by 

ramped half-and-half 

Ramped half and half operates by creating an equal 

number of trees with each depth between a pre-

determined minimum and maximum. 

Population size 20000 The number of candidate classifiers in a population 

Number of demes 12 A deme is a separately evolving subset of the whole 

population. The subsets may be evolved on different 

computers. Emigration between subset may occur 

every generation. 

Crossover probability 0.2 The probability of creating a new individual from 

parts of its parents 

Mutation probability 0.2 The probability of a subtree replaced by another, 

some or all of which is created at random 

Termination criteria Fitness score reaches 1 or 

max generations (50) 

A statement or condition to stop the genetic 

programming cycle. 

Initial tree depth 3 The initial distance of any leaf from the root of a tree 

Initial node count 3 The initial number of nodes in a tree. 

Maximum tree depth 7 The maximum distance of any leaf from the root of a 

tree 

Maximum node 

count 

8 The maximum number of nodes in a tree. 

Number of folds 4 The number of parts a training set will be subdivided 

into. 

Deme migration 

frequency 

Every generation The frequency of moving classifiers between isolated 

demes 

Deme migration 

percentage 

5% of individuals The percentage of classifiers moving between two 

demes. 

Fitness the area under the receiver-

operator characteristic curve 

A process which evaluates a member of a population 

and gives it a score or fitness. 

*Source of some term descriptions: Langdom, WB. (1998). Genetic Programming and Data Structures: 

Genetic Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer. 
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Table 4.2 Gene expression datasets applied to GP system 

 

Class description Authors Journal Array type # of Genes 

Four classes: neuroblastoma 

(NB), rhabdomyosarcoma 

(RMS), Burkitt lymphoma 

(BL), Ewing sarcoma (EWS) 

Khan, J., et al. Nature Medicine, 7:673  cDNA 2308 

Two classes: high-risk group 

and low-risk group. 
Beer, DG et al.  Nature Medicine, 30:41 

Affymetrix 

Hu6800 
7070 

Two classes: primary prostate 

cancer (PCA) and metastatic 

prostate cancer (MET) 

Latulippe, E., et al. Cancer Research. 62:4499 
Affymetrix 

HG_U95A 
3547 

Yu, YP., et al. J Clin Oncol. 22:2790 
Affymetrix 

HG_U95A 
3547 

Two classes: Benign/normal 

prostate (BENIGN) and 

primary prostate cancer 

(PCA) 

Lapointe, J. et al. PNAS. 101:811 cDNA 4168 

Dhanasekaran, SM.  

et al. 
Nature. 412(6849):822 cDNA 16965 

Yu, YP., et al. J Clin Oncol. 22:2790 
Affymetrix 

HG_U95A 
12558 
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Table 4.3 Frequency of gene occurrences in the 1000 GP classifiers for Latulippe et al 

prostate cancer study 

 

Probe Set Gene Symbol Gene Title Counta Z-Score 

37407_s_at MYH11 myosin, heavy polypeptide 11, smooth muscle 112 147.59 

32582_at MYH11 myosin, heavy polypeptide 11, smooth muscle 101 133.02 

767_at MYH11 myosin, heavy polypeptide 11, smooth muscle 96 126.40 

1197_at ACTG2 actin, gamma 2, smooth muscle, enteric 93 122.42 

36931_at TAGLN Transgelin 77 101.23 

32755_at ACTA2 actin, alpha 2, smooth muscle, aorta 65 85.34 

37576_at PCP4 Purkinje cell protein 4 62 81.36 

774_g_at MYH11 myosin, heavy polypeptide 11, smooth muscle 61 80.04 

34203_at CNN1 calponin 1, basic, smooth muscle 31 40.30 

36834_at MOXD1 monooxygenase, DBH-like 1 28 36.33 

39333_at COL4A1 collagen, type IV, alpha 1 27 35.01 

773_at MYH11 myosin, heavy polypeptide 11, smooth muscle 24 31.03 

38834_at TOPBP1 topoisomerase (DNA) II binding protein 1 23 29.71 

685_f_at LOC112714 similar to alpha tubulin 23 29.71 

34878_at SMC4L1 
SMC4 structural maintenance of chromosomes 4-

like 1 22 28.38 

35970_g_at MPHOSPH9 M-phase phosphoprotein 9 22 28.38 

41137_at PPP1R12B 
protein phosphatase 1, regulatory (inhibitor) subunit 

12B 21 27.06 

1884_s_at PCNA proliferating cell nuclear antigen 20 25.73 

40407_at KPNA2 
karyopherin alpha 2 (RAG cohort 1, importin alpha 

1) 20 25.73 

32662_at MDC1 Mediator of DNA damage checkpoint 1 19 24.41 

34376_at PKIG 
protein kinase (cAMP-dependent, catalytic) 

inhibitor gamma 19 24.41 

35742_at C16orf45 chromosome 16 open reading frame 45 19 24.41 

36987_at LMNB2 lamin B2 19 24.41 

39145_at MYL9 myosin, light polypeptide 9, regulatory 18 23.09 

38430_at FABP4 fatty acid binding protein 4, adipocyte 17 21.76 

1599_at CDKN3 cyclin-dependent kinase inhibitor 3 16 20.44 

2012_s_at PRKDC 
protein kinase, DNA-activated, catalytic 

polypeptide 16 20.44 

32305_at COL1A2 collagen, type I, alpha 2 16 20.44 

418_at MKI67 antigen identified by monoclonal antibody Ki-67 16 20.44 

651_at RPA3 replication protein A3, 14kDa 16 20.44 

35474_s_at COL1A1 collagen, type I, alpha 1 15 19.11 

37749_at MEST mesoderm specific transcript homolog (mouse) 15 19.11 

38031_at DDX48 DEAD (Asp-Glu-Ala-Asp) box polypeptide 48 15 19.11 

39990_at ISL1 
ISL1 transcription factor, LIM/homeodomain, 

(islet-1) 15 19.11 

1505_at TYMS thymidylate synthetase 14 17.79 

33924_at RAB6IP1 RAB6 interacting protein 1 14 17.79 

35694_at MAP4K4 
mitogen-activated protein kinase kinase kinase 

kinase 4 14 17.79 

32306_g_at COL1A2 collagen, type I, alpha 2 13 16.46 

32847_at MYLK myosin, light polypeptide kinase 13 16.46 
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37305_at EZH2 enhancer of zeste homolog 2 (Drosophila) 13 16.46 

41081_at BUB1 
BUB1 budding uninhibited by benzimidazoles 1 

homolog 13 16.46 

32272_at K-ALPHA-1 tubulin, alpha, ubiquitous 12 15.14 

36627_at SPARCL1 SPARC-like 1 (mast9, hevin) 12 15.14 

37347_at CKS1B CDC28 protein kinase regulatory subunit 1B 12 15.14 

39519_at KIAA0692 KIAA0692 protein 12 15.14 

40845_at ILF3 interleukin enhancer binding factor 3, 90kDa 12 15.14 

  a Count is the number of occurrences of each gene in 1000 rules. 
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Table 4.4 GP classifiers that distinguish different cancer classes of SRBCT or subtypes 

of prostate cancera 

 

Analysis Classifier Training Errors Test Set Errors 

FNb FP FN FP 

Small ,Round Blue-

Cell Tumor 

IF (HCLS1 – GSTA4 > XPO6) THEN BL 0 0 0 0 

IF (PTPN13 / COX8A > CDK6) THEN EWS 0 0 0 0 

IF (SATB1 > CSDA^2) THEN NB 0 0 0 0 

IF (CDH17/FGFR4 <= MYL4) THEN RMS 0 0 0 0 

Primary Prostate 

Cancer vs. 

Metastatic Prostat 

Cancer 

IF (ARL6IP> MYH11) THEN MET 0 0 0 4 

IF (MYH11 < MYH11) THEN MET 0 0 0 4 

Lung Cancer 

(High-risk vs. Low-

risk) 

IF (LTBP2 - IARS) <= (ADM + CCT2 * FCGR2A) 

THEN High-Risk 
0 1 1 0 

IF (GYPB - MN1) < (ADM + (MCFD2 + CKS2)) 

THEN High-Risk 
1 0 3 0 

a Only one or two classifiers per class per analysis are listed in the table.  
b FN: the number of false negatives; FP: the number of false positives 
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Table 4.5 GP classifiers that classify benign prostate and primary prostate cancer 

 

Classifier 

The Area Under the ROC Curve (AUC) and Its 95% 

Confidence Interval 

Lapointe et al. 

Validation Set 

(Stanford) 

Dhanasekaran et 

al. (UM) 

Yu et al. 

(Pittsburgh) 

IF (ENC1 + GJB1) >= -0.8902 THEN PCA 0.95 (0.87 - 1.00) 0.95 (0.90 - 1.00) 0.92 (0.85 - 1.00) 

IF (MYO6 + AMACR) >= -2.6776 THEN 

PCA 
0.95 (0.88 - 1.00) 0.99 (0.97 - 1.00) 0.95 (0.90 - 1.00) 

IF (TSPAN13 + PRKCBP1 >= -0.4172 

THEN PCA 
0.94 (0.85 - 1.00) 0.88 (0.78 - 0.98) 0.94 (0.90 - 0.99) 

IF (C20ORF74 + DAPK1) >= -0.7765 

THEN PCA 
0.91 (0.80 - 1.00) 0.64 (0.49 - 0.80) 0.87 (0.79 - 0.95) 

IF (IMAGE:396839 + ENC1) >= -0.5513 

THEN PCA 
0.97 (0.91 - 1.00) 0.82 (0.70 - 0.94) 0.89 (0.81 - 0.98) 

Meta-classifier 0.96 (0.87 - 1.00) 0.99 (0.96 - 1.00) 0.99 (0.98 - 1.00) 
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Table 4.6 The misclassification error rates of genetic programming (GP) and other 

common classification models 

 

                                Error Rate (%) 

Algorithm 
SRBCT (BL vs. NON-BL) 

Lung Cancer (High-Risk 

vs. Low-Risk) 
 

5 Genes 10 Genes 5 Genes 10 Genes 

Genetic Programming 1.5 N/A 16 N/A 

Compound Covariate Predictor 5 5 20 25 

3-Nearest Neighbors 5 5 15 30 

Nearest Centroid 5 5 20 25 

Support Vector Machines 0 5 20 25 

Diagonal Linear Discriminant 

Analysis 
5 5 10 20 
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Figure 4.1. A flowchart of the genetic programming (GP) process. A. Briefly, a 

population of tree-based classifiers is first created by randomly choosing gene expression 

data or constant values and combining with arithmetic or Boolean operators. An example 

of tree-based classifiers is represented in B. A small subgroup of classifiers is then 

selected as a “mating group” and each classifier in this “mating group” is assessed by a 
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fitness function, which is defined as the area under the receiver-operator characteristic 

curve (ROC-AUC) in this study. The two fittest classifiers are then selected as ‘mating’ 

parents and ‘mated’ to produce ‘offspring’ by genetic operators (crossover, or mutation). 

The generated offspring then replace the least-fit parent classifiers within the population. 

A new generation of population is generated once the offspring fully replaced ‘parent’ 

classifiers in the population. This process of mating pool selection, fitness assessment, 

mating and replacement is repeated over generations, progressively creating better 

classifiers until a completion criterion is met. After the best classifiers are outputted, 

post-GP analyses are carried out to compute gene occurrence in the classifiers as well as 

to predict on new unknown samples. B. The representation of a genetic programming 

(GP) tree structure for an exemplified classifier, Gene[A] / Gene[B] >3. In general, a GP 

classifier is represented as a tree-based structure composed of the terminal set and 

function set. The terminal set, in tree terminology, are leaves (nodes without branches) 

and may represent as genes or constants. The function set is a set of operators such as 

arithmetic operators (+, −, ×, ÷) or Boolean operators (AND, OR, NOT), acting as the 

branch points in the tree, linking other functions or terminals. C. The representation of a 

crossover operator of GP tree. 
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Figure 4.2. Feature selection in genetic programming. A. The statistical z-score of each 

of the 3547 genes occurring in the 1000 classifiers generated from LaTulippe et al. 

prostate cancer study by GP based on the parameters listed in Table 2. Let Z=[Xi-E(Xi)]/σ, 

where Xi is the frequency times gene i is selected, E(Xi) is the expectation of frequency 

times gene i is selected, σ is the standard deviation of this binomial model. Let, n=1000, 

p, the probability of gene i being selected randomly, is approximately equal to the total 

counts of frequency in 1000 classifiers divided by the number of classifiers (1000), then 

divided by the total number of genes (3547), then E(Xi)=np, and σ = √[np(1-p)]. B. 

Correlation between commonly occurring genes on two independent sets of classifiers. 

Each set contains 1000 classifiers.  



 96 

 
 

Figure 4.3. Top feature genes derived from GP separate tumors into their corresponding 

diagnostic classes. A. Hierarchical clustering using the top 46 most frequent genes 

derived from the 1000 classifiers generated for LaTulippe et al. (MSKCC) dataset. Genes 

were ranked by the frequency of their occurrences in the classifiers. The top 46 frequent 

genes (z score >=15, see Figure 4.2) were selected for hierarchical clustering. The left 

panel is the clustering of metastatic samples and primary prostate cancer samples for the 

MSKCC data, and the right panel is for the Yu et al. (Pittsburgh) validation dataset. Rows 

represent genes and columns represent samples. The green lines in the dendrogram 

indicate primary prostate cancer and the red lines represent metastatic prostate cancer 

samples. B. Hierarchical clustering of the entire SRBCT dataset using the top 54 feature 

genes obtained from the training set. C-F. The top 26 most frequent genes from the 2000 

classifiers generated from Lapointe et al. (Stanford) training set was used to separate 

benign/control prostate samples from primary prostate cancer samples in the Stanford 

training set (C), Stanford validation set (D), Yu et al. (Pittsburgh) validation set (E), and 

Dhanasekaran et al. (UM) validation set (F) respectively. The green lines in the 

dendrogram indicate benign/control prostate samples and the black lines represent 

primary prostate cancer samples. 
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Figure 4.4. The receiver-operator characteristic curves (ROCs) of five classifiers and one 

meta-classifier for three prostate cancer validation sets. The classifiers were generated 

from the Lapointe et al. (Stanford) training set to distinguish benign prostate from 

primary prostate cancer. The ROCs are based on continuous prediction scores computed 

from the left side of the classifier inequality (see Methods). The scores of the meta-

classifier are the mean values of prediction scores from each individual classifier. A., B., 

C. represents the ROC curve for Lapointe et al. (Stanford), Dhanasekaran et al. (UM), 

and Yu et al. (Pittsburgh) validation set respectively. 
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PART 3: NON-INVASIVE TESTS FOR PROSTATE CANCER DIAGNOSIS 

 

 

CHAPTER 5 

 

Autoantibody Signatures in Prostate Cancer 

 

New biomarkers, such as autoantibody signatures, may improve the early 

detection of prostate cancer. With a phage-display library derived from prostate-cancer 

tissue, we developed a phage protein microarray platform to analyze serum samples from 

119 patients with prostate cancer and 138 controls, with the samples equally divided into 

training and validation sets. A 22-phage-peptide detector that was constructed from the 

training set was evaluated on an independent validation set of 128 serum samples (60 

from patients with prostate cancer and 68 from controls). This phage-peptide detector 

resulted in 88.2% specificity (95% Confidence Interval [CI], 0.78 to 0.95) and 81.6% 

sensitivity (95% CI, 0.70 to 0.90) in discriminating between the group with prostate 

cancer and the control group in the validation set. This panel of peptides also performed 

better than did prostate-specific antigen (PSA) in term of classification accuracy (area 

under the ROC-curve for the autoantibody signature, 0.93; 95% CI, 0.88 to 0.97; area 

under the curve for PSA, 0.80; 95% CI, 0.71 to 0.88). Logistic-regression analysis 

revealed that the phage-peptide panel provided additional discriminative power over PSA 

(P<0.001). Taken together, this study demonstrated that autoantibodies against peptides 
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derived from prostate-cancer tissue could be used as the basis for a screening test for 

prostate cancer.  

 

Limitations of the prostate-specific antigen (PSA) test for the early detection of 

prostate cancer (1) indicate the need for other means of screening for this neoplasm. The 

finding that patients with cancer produce autoantibodies against antigens in their tumors 

(2-7) suggests that such autoantibodies could have diagnostic and prognostic value 

(2,6,8-10). For example, mutant forms of the p53 protein elicit anti-p53 antibodies in 30 

to 40% of patients with various types of cancers (11). Recently, we found that patients 

with prostate cancer produce antibodies against alpha-methylacyl-coenzyme A racemase 

(12), an overexpressed protein in epithelial cells of prostate cancer (13-15). This 

autoantibody had 72% specificity and 62% sensitivity in detecting prostate cancer (12), 

indicating that the use of additional prostate-cancer antigens could improve the sensitivity 

and specificity of an autoantibody-based screening test for prostate cancer.  

 

Here we report the use of phage-display microarrays to identify and characterize 

new autoantibody-binding peptides derived from prostate-cancer tissue. A similar 

approach has been used to identify selected antigens for the diagnosis of breast cancer 

(16). To develop a phage-display library of prostate-cancer peptides, we isolated mRNAs 

of prostate cancer tissues and inserted the synthesized cDNA fragments into the T7 phage 

system. Peptides that were encoded by the prostate cancer cDNAs were expressed and 

displayed on the surface of the phage fused to the C-terminal of the capsid 10B protein of 

the phage. This surface complex functioned as bait to capture autoantibodies in serum. To 
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enrich the library for peptides that bind specifically to autoantibodies in patients with 

prostate cancer, we carried out successive rounds of selection and purification, termed 

biopanning (Figure 5.1). Phage clones, each bearing a single fusion peptide derived from 

the prostate-cancer cDNA library, were then selected randomly from the purified library 

to generate protein microarrays on coated glass slides with the use of a robotic spotter. 

Once in a microarray format, the enriched phage clones were used to test serum for 

autoantibodies against prostate cancer peptides.  

 

Initially, we constructed a high-density phage-display microarray containing 2304 

individual phage clones. Five empty clones were also included as negative controls. To 

decrease the complexity of subsequent validation studies, we sought to develop a focused 

array on the basis of the initial high-density arrays. We randomly selected 20 serum 

samples from cancer patients and 11 control samples from the University of Michigan 

collections. After normalization of all values obtained by the scanner, we selected 186 

phage-peptide clones that yielded a ratio of Cy5 to Cy3 greater than 1.2 in at least one of 

the serum samples from prostate cancer patients. These clones, along with negative-

control phage clones, were used to construct a smaller, focused protein microarray for 

subsequent screening of serum samples.  

 

Figure 5.2 shows the training and validation phases of this study. A total of 257 

serum samples from 119 patients with clinically localized prostate cancer and 138 

controls, were tested on the 186-element focused arrays (Table 5.1). In the training 

phase, we analyzed 59 samples from patients with prostate cancer and 70 control samples 
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(Figure 5.2). To identify a best subset of clones for detection of prostate cancer, we used 

a nonparametric-pattern-recognition approach that consisted of a genetic algorithm 

combined with k-nearest neighbour to select a subgroup of "informative" phage peptides 

from the training set based on leave-one-out cross-validation (17). Unlike individual 

feature ranking methods, this approach allows us to find a group of clones that serve 

together to maximize the classification performance even though individual clones may 

not be highly correlated with the diagnostic status of prostate cancer. Using this 

approach, we identified a panel of 22 phage-peptide clones that best distinguished cancer 

patients from control subjects, with 97.1% specificity and 88.1% sensitivity in the 

training set. Figure 5.3A shows a heatmap of the results with the 22 phage-peptide clones 

in the training set.  

  

We next sought to apply this panel of 22 phage peptide clones into an independent 

validation set. By using a weighted voting scheme, we applied these peptides as a class 

detector to classify samples in the independent validation set (128 patients) as either 

prostate cancer or control (see Methods). Notably, only 8 of 68 serum samples from 

controls and 11 of 60 samples from patients with prostate cancer were misclassified in 

this validation set (Figure 5.3B), resulting in a specificity of 88.2% (95% CI, 78% to 

95%) and a sensitivity of 81.6% (95% CI, 70% to 90%). We also observed similar 

performance when using different prediction methods and resampled datasets.  

 

To examine whether if the 22-phage-peptide detector performs better than the 

conventional PSA test, we next calculated receiver-operating-characteristic (ROC) curves 
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for both of them in the validation set. For the 22-phage-peptide detector, different 

threshold values of weighted voting scores were used as cutoff points to plot the true 

positive rate against the false positive rate. For the entire validation set, the ability of the 

panel of 22 phage peptides to discriminate between prostate-cancer samples and control 

samples was significant (P<0.001), with an area under the curve equal to 0.93 (95% CI, 

0.88 to 0.97) (Figure 5.3C). The area under the curve for PSA was 0.80 (P<0.001; 95% 

CI, 0.71 to 0.88), which was expected as these patients were identified primarily by 

elevated PSA levels. Among patients with PSA levels of 4 to 10 ng per milliliter in the 

validation set, the phage-peptide detector remained significant discriminatory power 

(P<0.001) as compared with PSA (P=0.50) in distinguishing serum samples from patients 

with prostate cancer from those of controls. The area under the curve was 0.93 (95% CI, 

0.86 to 1.00) for the phage-display method and 0.56 (95% CI, 0.38 to 0.74) for PSA 

(Figure 5.3D). When the lower limit of PSA was decreased to 2.5 ng per milliliter, the 

discriminatory power of the phage-peptide profile was maintained (P<0.001), with an 

area under the curve of 0.94 (95% CI, 0.88 to 1.00), whereas that for PSA decreased 

slightly to 0.50 (95% CI, 0.33 to 0.66) (Figure 5.3E).  

 

To compare the ROCs for the 22 phage-peptide predictor and PSA, a permutation 

test was performed based on the difference between the AUCs for the two diagnostic 

techniques accounting for the fact that the same samples were used for both assays.  For 

the entire validation set, the difference in AUCs was significant (p < 0.001).  In addition, 

the difference was also significant for the subjects with PSA level between 4-10 ng/ml (p 

= 0.004) and with PSA level between 2.5-10 ng/ml (p < 0.001).  
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To evaluate whether the 22 phage-peptides predictor is a useful supplement to 

PSA, we performed logistic regression on the validation set. We first used cancer 

diagnostic status (cancer/non-cancer) as the response and carried out univariate logistic 

regression for the standardized weighted voting scores and PSA respectively. We found 

that both tests are statistically significant (odds ratio [OR] for the voting scores = 74.22, 

95% CI = 16.17-340.67, p<0.001; OR for PSA = 4.17, 95% CI = 2.05-8.47, p<0.001). 

Next, we performed multivariate logistic regression with disease as the response and fit 

both the voting scores and PSA as covariates. We found that the effect of voting scores 

was strongly significant (OR = 47.69; 95% CI = 9.47-240.21; p<0.001) after adjusting for 

the effect of PSA (OR = 2.91; 95% CI = 1.29-6.56; p=0.01), indicating that the 22 phage-

peptide predictor provides additional predictive value over preoperative PSA level. 

 

We next sequenced the panel of 22 phage-peptide clones. Of these, four were in-

frame and within known expressed transcripts, including bromodomain-containing 

protein 2 (BRD2), eukaryotic translation initiation factor 4 gamma 1 (eIF4G1), ribosomal 

protein L22 (RPL22), and ribosomal protein L13a (RPL13a). The others were not present 

in peptide stretches in known proteins. These clones may be weakly homologous to 

known proteins or may have no distinct homology to the primary sequences of known 

proteins and thus may be "mimotopes" (i.e., stretches of amino acids that mimic an 

antigen but are not homologous at the sequence level). To examine whether the four in-

frame phage-peptide clones (Figure 5.4A) are deregulated in prostate cancer at the 

transcript level and protein level, we performed a meta-analysis of publicly available 
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gene expression datasets in prostate cancer (18-24) as well as a preliminary immunoblot 

analysis. These analyses suggested that the four in-frame phage epitopes are 

overexpressed in prostate cancer (Figure 5.4B and Figure 5.4C).  

 

The use of PSA-based screening for prostate cancer has risen dramatically since 

its introduction in the late 1980s (25,26). However, reliance on PSA for the detection of 

early prostate cancer is still unsatisfactory, especially because of a high rate of false 

positive results (27) — as high as 80% (28,29). This rate results in many unnecessary 

prostate biopsies (30). To circumvent this and other problems of screening for prostate 

cancer, we have begun to evaluate the use of autoantibody signatures to detect prostate 

cancer. 

 

In this study, we used protein microarrays to identify autoantibodies against tumor 

antigens in patients with prostate cancer. Specifically, we constructed phage-protein 

microarrays in which peptides derived from a prostate-cancer cDNA library were 

expressed as a prostate-cancer – phage fusion protein. The phage-protein microarrays 

were screened to identify phage-peptide clones that bind autoantibodies in serum samples 

from patients with prostate cancer but not in those from controls.  By relying on multiple 

immunogenic prostate-cancer peptides, this approach may improve the accuracy of 

prostate cancer diagnosis over a single biomarker such as PSA.  

 

Our results were consistent across a range of clinical and pathological features, 

including PSA level, Gleason grade, stage, and presence or absence of PSA, with 
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sensitivities and specificities ranging from 80 to 90% in discriminating between patients 

with prostate cancer and controls. In addition, this diagnostic performance was 

maintained in the intermediate ranges of PSA (either 4 to 10 ng per milliliter or 2.5 to 10 

ng per milliliter). In addition, our data revealed that the 22-phage-peptide detector 

significantly increased the diagnostic power of PSA alone (P<0.001), suggesting that our 

autoantibody signature may be useful in combination with initial PSA screening to 

improve decision making in biopsy of the prostate.  

 

We have not tested the phage-microarray system for screening for prostate cancer; 

this requires extension and confirmation in community-based screening cohorts. 

Furthermore, it will be important to evaluate the autoantibody signatures associated with 

prostate cancer in patients with prostatitis, autoimmune conditions, and other diseases. 

Although the technique is promising, how it will perform in prospective and multi-

institutional studies remains to be determined.  

 

Methods 

Populations and Samples. This study, which was approved by the institutional review 

board of the University of Michigan Medical School, started in March 2003 and ended in 

December 2004. It had discovery, training, and validation phases. All serum samples, 

unless otherwise indicated, were obtained from patients in the University of Michigan 

Health System. Written informed consent was obtained from all patients.  
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In the discovery phase (biopanning and 2304-element microarrays), 39 prostate-

cancer samples and 21 control samples were used. The training phase involved the use of 

59 prostate-cancer samples and 70 control samples. To evaluate the phage-peptide 

detectors that we developed in the discovery and training phases, we used an independent 

validation set of 60 prostate-cancer samples (48 from the University of Michigan and 12 

from the Dana-Farber Cancer Institute) and 68 control samples. In the 257 prostate-

cancer samples and control samples (which included the training and validation sets, 

Table 5.1), the median levels of PSA were 6.3 ng per milliliter (range, 0.1 to 46.3) and 

1.7 ng per milliliter (range, 0.1 to 24.5), respectively.  

 

Autoantibody Profiling. By iterative biopanning of a phage-display library derived from 

prostate-cancer tissues, we developed phage protein microarrays and used them to 

develop an autoantibody signature to distinguish samples with prostate cancer from those 

of controls. Details concerning the construction of phage-display libraries and preparation 

of the phage-protein microarrays are shown in Figure 5.1.  

 

Normalization and Analysis of the Microarray Data. Slides were scanned and quantified 

using GenePix 4000B scanner (Axon Laboratories). The Cy5/Cy3 ratios were calculated 

for each phage spot, and values for duplicate spots were averaged. The difference 

between duplicates was <5% for 98% of the spots. Analyses of repeated experiments 

using same serum samples revealed that the results were very consistent with correlation 

coefficient greater than 0.9. According to the experimental design, Cy5/Cy3 was utilized 

so as to control the small variations in the amount of phage particles being spotted. The 
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ratio of Cy5/Cy3 for each spot was subtracted by median of Cy5/Cy3 of the negative T7 

empty spots with the observation that the signal for the T7 empty phage on each chip 

highly correlated with the signal intensity for the whole array. A Z-transformation was 

applied to data such that the mean of each clone was zero across arrays and the variance 

was 1.0. Normalized data was then subjected to two-way clustering analysis with use of 

Cluster and TreeView. 

 

Development of Phage-Peptide Predictor. By employing 186-element phage-peptide 

microarray platform, 257 sera samples were tested. These samples were divided into 

training and validation set. Training set was used to build a class prediction model by a 

leave-one-out-cross-validation (LOOCV) strategy in Genetic Algorithm/K-Nearest 

Neighbor (GA/KNN) (k=3 in this study) method (17). The raw data was normalized as 

described above. The normalized array data was then applied to GA for selection of the 

clones and assessment of their relative predictive importance by ranking them based on 

their frequency of occurrence in GA solutions with the top-most clone assigned a rank of 

1. Different numbers of the top-most clones were used to build different KNN prediction 

models. Misclassification error rates were calculated using LOOCV to evaluate the 

performance of the models. As few as 10 phage clones performed with similar accuracy, 

but to maintain a diversity of clones for validation, we used the 22 phage-peptide 

predictor, which yielded the minimal misclassification error ratessensitivity during 

LOOCV. For the validation sample set, a weighted voting scheme was adopted, similar to 

that described previously (31). Briefly, let class 0 and class 1 represent non-cancer and 

cancer samples, respectively. Each informative phage clone, derived from the training 
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set, casts a weighted vote for a class 0 or 1: vx = Tx (ex - bx) where ex is the signal value of 

phage peptide x for each individual validation sample on array images, Tx is the t-statistic 

for comparing the two class means of phage x in the training set, and bx is (µ0 +µ1)/2, 

where µ0, and µ1 denote the means of phage x for class 0 or 1 in the training set. A 

negative vx indicates a vote for class 0 and a positive value indicates a vote for class 1. 

The total vote V0 for class 0 is obtained by summing the absolute values of the negative 

votes over the informative phage-peptides, while the total vote V1 for class 1 is obtained 

by summing the absolute values of the positive votes. The final voting score Vs is V1-V0 

and the final vote for class 0 or 1 is sign (Vs) and the confidence in the prediction of the 

winning class is |V1-V0| / (V0+V1), where Vi is the vote for class i. 

 

Sequence Analysis of 22 Phage Clones. The top 22 phage clones were amplified by PCR 

using T7 capsid forward and reverse primers (Novagen). Briefly, 2 µl of fresh phage 

lysate with titer of ~ 1010 pfu was incubated with 100 µl of 10 mM EDTA, pH 8.0 at 

60°C for 10 min. After centrifuging at 14,000 g for 3 min, 2 µl of denatured phage was 

used for PCR in 100 µl volume of reaction under standard condition. PCR products were 

confirmed on 1% agarose gel containing ethidium bromide. After purifying with 

MultiScreen-FB filter plate (Millipore) following manufacturer's protocol, PCR products 

were sequenced using T7 capsid forward primer to determine the cDNA inserts. DNA 

sequence and translated protein sequence were aligned using NCBI BLAST. 

 

Meta-Analysis of Gene Expression. The gene expression level of four genes, namely 

BRD2, eIF4G1, RPL13a and RPL22, were studied using ONCOMINE (22). Briefly, each 
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gene was searched on the database, and the results were filtered by selecting prostate 

cancer. The data from study classes of benign prostate, prostate cancer and / or metastatic 

prostate cancer with p<0.05 were used to plot the box plots with SPSS11.5. P values for 

each group were calculated using student t-test. 
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Table 5.1 Clinical and pathology information for the training and validation samples. 

 

Variable Training set Validation set  

Clinically localized prostate cancer patients 

No. of patients 59 60 

Mean age (yr)  SD 58.3  7.7 60.81  9.0 

Mean gland weight (g)  SD 49.55  17.17 51.78  19.57 

Dim. Of max tumor (cm)  SD 1.44  0.75 1.62  0.97 

PSA level (ng/ml)   

Mean  SD 6.19  4.58 10.45  9.52 

0 - 2.4 (%) 17.2 7.7 

2.5 -10 (%) 67.2 53.8 

4 - 10 (%) 50 42.3 

> 10 (%) 15.5 38.5 

Gleason grade (%)   

<= 6 35.7 37.3 

>= 7 64.3 62.7 

Primary tumor identification 

(%) 

  

T2a 29.8 43.7 

T2b 59.6 41.7 

T3a 3.5 2.1 

T3b 7 12.5 

Control subjects with no known history of cancer 

No. of patients 70 68 

Mean age (yr)  SD 62.8  8.6 63.6  9.3 

PSA level (ng/ml)   

Mean  SD 2.88  2.57 3.01  2.68 

0 - 2.4 (%) 61.4 59.7 

2.5 -10 (%) 38.6 34.3 

4 - 10 (%) 32.9 29.9 

> 10 (%) 0 5.9 
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Figure 5.1. Schematic representation of the development of phage-protein microarrays to 

characterize autoantibody signatures in prostate cancer. A cDNA library was constructed 

from a pool of total mRNA isolated from prostate-cancer tissue obtained from six 

patients. After digestion, the cDNA library was inserted into the T7 phage vector. The T7 

fusion vectors were then packaged into T7 phages to generate a prostate-cancer cDNA T7 

phage-display library. To enrich the library with clones of peptides reacting with human 

serum from patients with clinically localized prostate cancer and not with serum from 

controls, several cycles of affinity selections (biopanning) were performed. Briefly, the 

phage libraries were preadsorbed onto purified IgGs from the control pool of serum 
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samples (from 10 patients) to remove nonspecific clones. Next, the precleared phage 

libraries were enriched for cancer-specific peptides with the use of a pool of IgGs 

purified from the serum of 19 patients with prostate cancer. The bound phages were 

eluted and propagated by infecting bacterial cells. After five rounds of biopanning, 

enriched prostate-cancer–specific peptide clones were cultured onto LB agar plates. A 

total of 2304 single colonies, including T7 empty phage clones as negative spots and 

antihuman IgG as positive spots, were randomly picked and propagated into 96-well 

plates. Phage-clone lysates were then printed onto coated glass slides with the use of a 

robotic spotter to create a phage-protein microarray. Cy5 (red fluorescent dye)–labeled 

antihuman antibody was used to detect IgGs in human serum that were reactive to peptide 

clones, and a Cy3 (green fluorescent dye)–labeled antibody was used to detect the phage 

capsid protein in order to normalize for spotting. Thus, if a phage clone carries a peptide 

that is reactive to human IgG, after scanning, this spot will be yellow in color; otherwise, 

the spot will remain green, representing an unreactive clone. A total of 31 samples (20 

from patients with cancers and 11 from controls) were tested on the 2304 phage-peptide 

microarray. Analysis of these 31 samples identified 186 phage peptides with the highest 

level of differentiation between cancers and controls, which were then used to develop 

focused microarrays for analyses in the subsequent training and validation phases. 
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Figure 5.2. Overview of the strategy used for the development and validation of 

autoantibody signatures to identify prostate cancer. 
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Figure 5.3. Supervised analyses and validation of autoantibody signatures in prostate 

cancer. A. Heatmap representation of the 22 phage-peptides analyzed for immuno-

reactivity across 129 training samples. B. Heatmap representation of the 22 phage-

peptides for 128 independent validation set of sera from prostate cancer patients and 

controls. Individual peptide clones were represented in rows while serum samples were 

represented in columns. Intensities of yellow color represent positive immunoreactivity 

while intensities of black and blue represent no immunoreactivity. C, Performance of the 

22 phage-peptide predictor as compared with PSA in the validation set. Receiver 

operating characteristic (ROC) curves are based on multiplex analysis of the 22 phage-

peptide biomarkers and serum PSA (n=128; 60 prostate cancer patients and 68 control 

subjects). The red line represents the 22 phage-peptide predictor, and the green line 

represents the PSA test. D, Performance of the 22 phage-peptide predictor in patients 

with PSA levels between 4-10 ng/ml.  The patients were from 128 validation samples 

with total number of 42 (22 cancers and 20 controls). See C for color label. E. 

Performance of the 22 phage-peptide predictor in patients with PSA levels between 2.5 

and 10 ng/ml. Same as D, the samples were a subset of 128 validation group (n=51, 28 

cancers and 23 controls). Color labels are same as C. 
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Figure 5.4. Gene expression meta-analysis of humoral immune response candidates.  A, 

Heatmap representation of the immunoreactivity for four in-frame phage-peptide clones 

assessed across 257 serum samples (Figure 5.2).  See Figure 5.3B for color scheme.  B, 

Relative gene expression levels of in frame phage-peptide clones assessed using publicly 

available DNA microarray data housed in ONCOMINE (www.oncomine.org).  First 

author of each DNA microarray study is provided. P values for each comparison made is 

provided (e.g., benign vs localized prostate cancer (PCA); PCA vs. metastatic prostate 
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cancer (MET)).  C, Immunoblot validation of the overexpression of humoral response 

candidates at the protein level in prostate cancer. D. Expression of the humoral response 

candidate eIF4G1 in prostate cancer by immunofluorescence staining. Panel 1 displays 

clinically localized prostate cancer (left) adjacent to a benign gland (right).  Panel 2 

display magnifications of a single prostate cancer gland. Stains for eIF4G1 (red), E-

cadherin (green) and nuclei (blue) were employed. Scale bar represents 5 µm. E. 

Histogram of staining intensity from immunohistochemistry. Open box represents benign 

tissue cores, while black box represent tumor cores. X-axis is the stain intensity, and y-

axis is the percentage of tissue cores. 
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CHAPTER 6 

 

Multiplexed Urine Test for the Early Detection of Prostate Cancer 

 

Prostate specific antigen (PSA) serum level is currently the standard of care for 

prostate cancer screening in the United States. The PSA test lacks specificity due to 

elevated levels in benign conditions such as benign prostatic hyperplasia (BPH) or 

prostatitis. Thus, additional biomarkers are needed to supplement or potentially replace 

the serum PSA test. Emerging evidence suggests that monitoring the non-coding RNA 

transcript PCA3 in urine may be useful in detecting prostate cancer in patients with 

elevated PSA. Here we provide evidence that a multiplex panel of urine transcripts 

outperforms PCA3 transcript alone for the detection of prostate cancer. We measured the 

expression of 7 putative prostate cancer biomarkers, including PCA3, in sedimented urine 

using quantitative PCR on a cohort of 234 patients presenting for biopsy or radical 

prostatectomy. By univariate analysis, we found that increased GOLPH2, SPINK1 and 

PCA3 transcript expression, and TMPRSS2:ERG fusion status were significant predictors 

of prostate cancer. Multivariate regression analysis demonstrated that a multiplexed 

model including these biomarkers outperformed serum PSA or PCA3 alone in detecting 

prostate cancer. The area under the receiver-operating characteristic curve was 0.758 for 

the multiplexed model versus 0.662 for PCA3 alone, p = 0.003. The sensitivity and 

specificity for the multiplexed model were 65.9% and 76.0%, respectively, and the 

positive and negative predictive values were 79.8% and 60.8%, respectively. Taken 
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together, these results provide the framework for the development of highly optimized, 

multiplex urine biomarker tests for the early detection of prostate cancer. 

 

Prostate cancer is one of the leading causes of cancer-related death in American 

men. Prostate specific antigen (PSA) has been used extensively to screen for prostate 

cancer in the United States, based on early studies showing that PSA levels greater than 4 

ng/ml have predictive value for detecting prostate cancer (1,2). While PSA testing has led 

to a dramatic increase in the detection of prostate cancer (3), PSA as a cancer biomarker 

has substantial drawbacks. For example, PSA is often elevated in benign conditions such 

as benign prostatic hyperlasia (BPH) and prostatitis, likely accounting for the poor 

specificity of the PSA test, which has been reported to be only 20% at a sensitivity of 

80% (4). Further, a study investigating men in the Prostate Cancer Prevention Trial 

showed that even in patients with PSA levels lower than 4ng/ml, over 15% had biopsy-

detectable prostate cancer (5). Taken together, this supports the value of identification 

and characterization of prostate cancer biomarkers that could supplement PSA. 

 

Numerous genes have been identified as promising prostate cancer biomarkers, 

including genes specific for prostate cancer, such as AMACR (6) and PCA3 (7), and 

markers based on recurrent fusions involving TMPRSS2 and ETS family members (such 

as TMPRSS2:ERG) (8). As prostate cells can be detected in the urine of men with 

prostate cancer, urine based diagnostic tests have the advantage of being non-invasive. 

While urine-based testing for PCA3 expression has already been documented in large 

screening programs (9), the feasibility of testing based on other markers has not been 
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rigorously evaluated. Importantly, single marker tests, such as those based on PCA3, 

ignore the heterogeneity of cancer development, and may only capture a proportion of 

cancer cases. To overcome this limitation, multiplexing, or combining, biomarkers for 

cancer detection can improve testing characteristics (10,11). Thus, in this study, we 

sought to explore a multiplexed urine-based diagnostic test for prostate cancer. We 

reported a new outlier gene in prostate cancer which represents a subset of prostate 

cancer and then develop a multiplexed model for urinary dection of prostate cancer by 

combining this new outlier gene with known prostate cancer biomarkers and fusion 

genes.  

 

 Recently, our lab developed a bioinformatics approach termed COPA (cancer 

outlier profile analysis) to nominate candidate oncogenes from transcriptomic data based 

on high expression in a subset of cases (8). When applied to the Oncomine compendium 

of tumor profiling studies (www.oncomine.org) (12), COPA successfully identified the 

ETS family members ERG and ETV1 as high-ranking outliers in multiple prostate cancer 

profiling studies, leading to the discovery of recurrent gene fusions involving the 5’ 

untranslated region of the androgen regulated gene TMPRSS2 with ERG, ETV1, or ETV4 

in prostate cancer cases that over-expressed the respective ETS family member1 (13).  

 

ETS gene fusions occur in 40-80% of prostate specific antigen (PSA)-screened 

prostate cancers, leaving 20-60% of prostate cancers in which the key genetic aberration 

cannot be ascribed to ETS gene fusions. In order to detect new candidate oncogenes in 

ETS negative prostate cancers, our lab performed a COPA-based meta-analysis on 7 

http://www.oncomine.org/
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prostate cancer profiling studies (14-20).  Eleven genes were nominated as outliers in at 

least 4 of the 7 datasets (Figure 6.1A). Consistent with the previous application of COPA 

filtered by causal cancer genes (8), both ERG and ETV1 were high ranking meta-outliers; 

ERG ranked as the 1st meta-outlier (7 studies) and ETV1 as the 5th meta-outlier (4 

studies).  

  

Interestingly, this analysis also identified SPINK1 (serine peptidase inhibitor, 

Kazal type 1), the 2nd ranked meta-outlier, as showing over-expression in prostate cancer 

compared to benign prostate tissue and mutually exclusive over-expression with ERG and 

ETV1 across multiple studies. The profile of SPINK1 expression and scatter plots with 

ERG and ETV1 for two studies (15,20) where SPINK1 was identified as a top-100 outlier 

are shown in Figure 6.1B. We further evaluated the expression of SPINK1 protein in 

prostate cancers. By immunohistochemical (IHC) analysis on tissue microarrays (TMAs), 

we evaluated SPINK1 expression in two independent cohorts, (University of Michigan 

(UM) and Swedish Watchful Waiting (SWW)) representing a total of 392 cases of 

clinically localized prostate cancers that had been previously evaluated for TMRPSS2-

ERG fusion status by fluorescence in situ hybridization (FISH) (21,22). As shown in 

Figure 6.2A-B, in the UM cohort, 10 and 36 of 75 cases were positive for SPINK1 

expression (13.3%) and TMRPSS2-ERG fusions (48%), respectively, with all SPINK1 

positive cases being TMRPSS2-ERG negative (one sided Fisher’s exact test, p = 0.0008). 

In the SWW cohort, 23 and 57 of 312 cases were positive for SPINK1 expression (7.4%) 

and TMRPSS2-ERG fusions (18.3%), respectively, again with all SPINK1 positive cases 

being TMRPSS2-ERG negative (one sided Fisher’s exact test, p = 0.008). 
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We also examined if SPINK1 outlier status was associated with biochemical 

recurrence after surgical resection. In the Glinsky et al. (15) gene expression dataset, 

which contained tumors from 79 patients (with 37 recurrences), 10 of which showed 

outlier mRNA transcript expression of SPINK1 (>0.5 normalized expression units). 

These patients had a significantly higher risk of recurrence than patients without outlier 

SPINK1 expression (hazard ratio: 2.65, 95% CI: 1.16-6.07, log rank p = 0.02) by Kaplan-

Meier analysis (Figure 6.2C). A similar analysis was also conducted on the UM cohort 

(75 cases, 28 recurrences) evaluated for SPINK1 status by IHC. By Kaplan-Meier 

analysis, SPINK1 positive staining was significantly associated with biochemical 

recurrence (hazard ratio: 2.49, 95% CI: 1.01-6.18, p = 0.04, Figure 6.2D). As a final 

validation, we performed IHC for SPINK1 status on an independent cohort of 817 

evaluable prostate cancers (200 recurrences) from the Memorial Sloan Kettering Cancer 

Center (MSKCC). In this MSKCC cohort, we defined SPINK1 positive cases in the 

MSKCC cohort as those with at least one core showing greater than 80% of cells 

showing positive SPINK1 immunoreactivity, resulting in 75 SPINK positive cases (9%), 

consistent with the other analyses. By Kaplan-Meier analysis, SPINK1 positive cases in 

the MSKCC cohort showed significantly shorter time to biochemical recurrence (hazard 

ratio: 2.32, 95% CI: 1.59-3.39, P = 6.96E-06, Figure 6.2E). While the above survival 

analyses were based on univariate analysis, we also performed multivariate Cox 

proportional-hazards regression analyses on the above three datasets and confirmed that 

SPINK1 status predicted recurrence independently of other clinical parameters such as 

Gleason score, lymph node status, surgical margin status and pre-operative PSA. 
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In the above section, we have demonstrated by analyzing 971 cancers from three 

cohorts that SPINK1 outlier status identifies an aggressive subset of ETS-negative 

prostate cancers. In the next section, we sought to determine whether such outlier genes 

as ERG and SPINK1, combining with known prostate cancer biomarkers can improve the 

diagnosis of prostate cancer. 

 

We set out to assess expressions of seven putative prostate cancer biomarkers 

using qRT-PCR technique. These biomarkers included those generally over-expressed in 

prostate cancer, such as PCA3, AMACR and GOLPH2 (6,7), as well as those over-

expressed in subsets of prostate cancers, such as ERG and TMPRSS2:ERG, TFF3, and 

SPINK1 (8,23,24). To develop a multiplexed qPCR based test for prostate cancer, we 

profiled a cohort of 138 patients with prostate cancer (86 positive needle biopsy and 52 

radical prostatectomy patients) and 96 patients with negative needle biopsies from the 

University of Michigan.  

  

All genes were first tested by univariate analysis, with GOLPH2 (P = 0.0002), 

SPINK1 (P = 0.0002), PCA3 (P = 0.001) and TMPRSS2:ERG fusion (P = 0.034) showing 

significant association for discriminating patients with prostate cancer from patients with 

negative needle biopsies (Figure 6.3 and Table 6.1). Both AMACR, which has previously 

been shown to be a sensitive and specific biomarker for prostate cancer in tissues (6) and 

TFF3, which shows high expression in a subset of prostate cancers(23,24), were not 

statistically significant predictors of prostate cancer using urine samples (P = 0.450 and 
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0.189, respectively). The lack of specificity of AMACR and TFF3 in urine may be due to 

expression of these transcripts in urothelial or kidney derived cellular material which can 

also be shed in the urine. While TMPRSS2:ERG fusion was significantly associated with 

the presence of prostate cancer (Figure 6.3 and Table 6.1), ERG overexpression was not 

associated with cancer presence on univariate analysis (P = 0.166), suggesting that cells 

from other tissues may be contributing ERG transcripts to the urine. Additionally, serum 

PSA levels prior to biopsy or prostatectomy were also not associated with cancer 

presence in this cohort (P = 0.376). When tested as individual variables for the ability to 

detect prostate cancer based on the receiver-operating-characteristic curves (ROC), 

GOLPH2 (area under the curve (AUC) = 0.664, P = 2.01E-5), PCA3 (AUC = 0.661, P = 

2.84E-5), and SPINK1 (AUC = 0.642, P = 0.0002) outperformed serum PSA 

(AUC=0.508, p=0.837) (Figure 6.3). Thus, in this analysis we have identified a number 

of novel biomarkers for the non-invasive detection of prostate cancer using patient urine 

instead of biopsy samples. Of the seven markers utilized in this study, only PCA3 was 

previously reported as urinary diagnostic biomarker (9). 

 

To determine if a multiplex model could improve on the performance of these 

single biomarkers, the analyzed prostate cancer biomarkers were next tested in a 

multivariate regression analysis using Akaike Information Criterion (AIC)-based 

backward selection (25) to drop insignificant terms from the model. This analysis 

resulted in a final model that included SPINK1 (P = 7.41E-5), PCA3 (P = 0.003), 

GOLPH2 (P = 0.004) and TMPRSS2:ERG (P = 0.006) (Table 6.1). To evaluate the 

performance of this model for diagnosing prostate cancer, we then performed ROC 
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analysis based on the predicted probabilities derived from the final model. For our cohort, 

we compared the ROC curves from the multiplexed model and PCA3 alone, as urine 

based detection of PCA3 has previously been evaluated in similar cohorts as a single 

biomarker using alternative detection technologies (9,26-29). For example, Van gils et al. 

demonstrated that in a cohort of 534 men presenting for prostate biopsy with serum PSA 

between 3-15 ng/mL, urinary PCA3 detection expression had an area under the ROC 

curve (AUC) of 0.66 compared to 0.57 for serum PSA (9). As shown in Figure 6.4A, in 

our cohort, the AUC for the multiplexed model (0.758, P = 1.91E-11) was significantly 

improved (P=0.003 (30)) compared to the AUC for PCA3 alone (0.662, P = 2.58E-5). At 

the point on the multiplex model ROC with the maximum sum of sensitivity and 

specificity (65.9% and 76.0%, respectively), the positive predictive value was 79.8% and 

the negative predictive value was 60.8% (Figure 6.4A). As we and previous studies used 

different methodologies to detect PCA3 transcripts in patient urine, directly comparing 

AUCs is inappropriate; however, we demonstrate that PCA3 shows improved AUC 

compared to serum PSA, consistent with previous reports (9,26-29). Importantly, we 

demonstrate that a multiplex model including PCA3 significantly improves the predictive 

ability of PCA3 alone, suggesting the ability to improve PCA3 and other single-gene 

based diagnostic tests. The rationale for the multiplex approach is consistent with tests 

offered to breast cancer patients to identify patients at high risk for disease recurrence 

(10,31).  

  

As all samples were used to select the best subset of variables for regression 

analysis, there is a potential to over-optimize the reported AUC. Thus, we used a leave-
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one-out-cross validation (LOOCV) strategy to generate an unbiased AUC. As shown in 

Figure 6.4B, the AUC for the LOOCV multiplex model (0.736) is again significantly 

better (P = 0.006) than that for LOOCV PCA3 alone (0.645). At the point on the LOOCV 

multiplex model ROC with the maximum sum of sensitivity and specificity (62.3% and 

75.0%, respectively), the positive predictive value was 78.2% and the negative predictive 

value was 58.1% (Figure 6.4B).  

 

Lastly, we tested the ability of these genetic markers to predict clinical risk groups 

based on patient parameters. Clinical risk groups were determined by clinical patient data 

that direct the decision to pursue biopsy, to determine treatment, or to stratify patients for 

surveillance regimens (see Methods). We observed only limited associations between 

these prostate cancer biomarkers and clinical risk groups, with GOLPH2, SPINK1 and 

TMPRSS2:ERG status showing marginal correlates with clinical stage, and major 

gleason. As the biomarkers in this study were chosen based on their ability to 

differentiate benign prostate tissue and prostate cancer, it is not surprising that they did 

not show strong association with risk stratification measures, such as Kattan nomogram 

prediction of recurrence or organ confined status. Thus, the ideal marker panel would be 

designed to enable risk stratification based on pre-biopsy urine samples while 

incorporating markers designed to predict cancer presence. Similar to the previously 

described PCR based test for breast cancer recurrence risk, a prostate cancer risk test 

could drive high risk patients to therapies more suited for their disease course (10).  
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In summary, we demonstrate that a multiplexed qRT-PCR based assay on 

sedimented urine collected from patients presenting for prostate biopsy or prostatectomy 

exhibits superior performance relative to serum PSA or PCA3 alone. Of note, the 

multiplex urine test that we present here, which is a combination of PCA3, SPINK1, 

GOLPH2 and TMPRSS2:ERG gene fusion status achieves a specificity and positive 

predictive value of >75%, making it a potentially useful test to complement serum PSA, 

which has poor specificity in detecting prostate cancer. This study establishes a basic 

framework for the development of a urine multiplex test for the early detection and 

prognosis of prostate cancer. Future studies will be directed at improving the 

performance of this first generation urine multiplex test by evaluating additional markers 

for inclusion as well as allow for improved risk stratification and patient counseling prior 

to treatment decision making. 

 

Methods 

Cancer Outlier Profile Analysis (COPA). COPA analysis was performed on 7 prostate 

cancer gene expression data sets (14-20) in Oncomine (www.oncomine.org) as described 

(8). Briefly, for each data set, gene expression values are median-centered, setting each 

gene’s median expression value to zero. Second, the median absolute deviation (MAD) is 

calculated and scaled to 1 by dividing each gene expression value by its MAD. Of note, 

median and MAD are used for transformation as opposed to mean and standard deviation 

so that outlier expression values do not unduly influence the distribution estimates, and 

are thus preserved post-normalization. In each dataset, genes are rank-ordered by their 

COPA scores at three percentile cutoffs: 75th, 90th and 95th. For each dataset, we defined 

http://www.oncomine.org/
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outlier genes as those that ranked in the top 100 COPA scores at any one of the percentile 

the cutoffs. To identify meta-outlier genes, we ranked genes by the number of studies 

where the gene was identified as a top 100 outlier. Genes identified as outliers in the 

same number of studies were further ranked by their average outlier rank across those 

studies.  

 

Immunohistochemsitry (IHC) and fluorescence in situ hybridization (FISH). IHC for the 

University of Michigan (UM) and Swedish Watchful Waiting (SWW) cohorts was 

performed using a mouse monoclonal antibody against SPINK1 (H00006690-M01, 

Abnova, Taipei City, Taiwan) on tissue microarrays (TMA) containing cores from 75 

(UM) and 312 (SWW) evaluable cases of localized prostate cancer. Staining in greater 

than 1% of cancerous epithelial cells was deemed positive. Previously, we have evaluated 

cases on these tissue microarrays for TMRPSS2-ERG fusion status by FISH using break 

apart ERG assays as previously described (21,22). A one-sided Fisher’s exact test was 

used to evaluate the relationship between SPINK1 and fusion status, as these studies were 

performed with the prior hypothesis that there was an inverse correlation between 

SPINK1 expression and fusion status. 

 

MSKCC Immunohistochemistry. IHC for the MSKCC cohort was performed using an in 

house mouse monoclonal antibody against SPINK1 on tissue microarrays containing 

triplicate cores from 817 evaluable cases of localized prostate cancer. The percentage of 

positive tumor cells in each core was estimated and assigned values of 0%, 5%, or 

multiples of 10%. The intensity of the expression was assigned a value of 0, 1, 2, or 3. 
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Triplicate cores from each specimen were scored separately and the presence of tumorous 

tissue in at least two interpretable cores was required to include a case for analysis. We 

considered cases as SPINK1 positive if any of the three cores showed >80% of cancerous 

cells showing positive SPINK1 immunoreactivity (intensity 1-3). 

 

Urine Collection, RNA isolation, amplification and quantitative PCR. This study was 

approved by the Institutional Review Board (IRB) of the University of Michigan Medical 

School and samples were obtained from 276 patients with informed consent following a 

digital rectal exam before either needle biopsy (n=216) or radical prostatectomy (n=60) at 

the University of Michigan Health System (UMHS). Urine was voided into urine 

collection cups containing DNA/RNA preservative (Sierra Diagnostics LLC, Sonora, 

CA). Isolation of RNA from urine and whole transcriptome amplification (WTA) were as 

described in (32). Quantitative PCR (qPCR) was used to detect seven prostate cancer 

biomarkers (AMACR, ERG, GOLPH2, PCA3, SPINK1, TFF3, and TMPRSS2:ERG 

fusions) and the control transcripts PSA and GAPDH from WTA amplified cDNA 

essentially as described(32,33). The primer sequences for ERG (exon5_6)(8), GAPDH, 

(34) AMACR (35) and PSA(36) were previously described and for other biomarkers were 

as follows: 

GOLPH2-f: CTGGTGGCCTGCATCATCGTCTTG, 

GOLPH2-r: GCTGCTCCCGCTGCTTCTCCA, 

PCA3-f: CATGGTGGGAAGGACCTGATGATAC, 

PCA3-r: GATGTGTGGCCTCAGATGGTAAAGTC, 

SPINK1-f: CAAAAATCTGGGCCTTGCTGAGAAC, 
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SPINK1-r: AGGCCTCGCGGTGACCTGAT, 

TFF3-f: AACCGGGGCTGCTGCTTTGACTC, 

TFF3-r: TCCTGCAGGGGCTTGAAACACCA. 

TMPRSS2:ERG fusions were detected using Taqman primers/probe, with the following 

sequences: 

TM-ERGa3-f: CTGGAGCGCGGCAGGAA, 

TM-ERGa3 -r: CCGTAGGCACACTCAAACAACGA, 

TM-ERGa3_MGB-probe: 5’-MGB-TTATCAGTTGTGAGTGAGGAC-3’. 

Threshold levels were set during the exponential phase of the qPCR reaction using 

Sequence Detection Software version 1.2.2 (Applied Biosystems, Foster City, CA), with 

the same baseline and threshold set for each plate, to generate threshold cycle (Ct) values 

for all genes for each sample.  

 

Outcome Analysis. For Kaplan-Meier analysis of the Glinsky et al.(15) and UM datasets, 

biochemical recurrence was defined as a 0.2 ng/ml increase in PSA or recurrence of 

disease after prostatectomy, such as development of metastatic cancer, if biochemical 

recurrence information was not available.  For the MSKCC cohort, only biochemical 

recurrence, defined as PSA > 0.2 ng/ml after surgical resection with a second 

confirmatory PSA-measurement > 0.2 ng/ml, was considered, as all patients with a 

clinical failure had previously had a biochemical recurrence. For outcome analysis from 

the Glinsky et al. dataset, samples positive for outlier expression of SPINK1 were defined 

as those with greater than 0.5 normalized expression units (as shown in Figure 1B). For 

the IHC analysis of the UM and MSKCC cohorts, positive cases were defined as 
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described above. Kaplan-Meier analysis and multivariate Cox proportional-hazards 

regression were then used to examine the association of SPINK1 with biochemical PSA 

recurrence.  

 

Urinary Data Analysis. qPCR was performed on WTA cDNA from urine collected from 

111 biopsy-negative patients and 165 patients with prostate cancer (105 biopsy positive 

patients and 60 prostatectomy patients). Samples that had PSA Ct values greater than 27 

were excluded to ensure sufficiency of the amount of prostate cells in the samples, 

leading to 105 biopsy-negative and 152 samples from patients with prostate cancer in the 

analysis. For qPCR analysis, we used raw –ΔCt (to stabilize the variance of testing 

variables) as opposed to testing markers against control (2–ΔCt). TMPRSS2:ERG was 

dichotomized as a binary variable to reflect the fusion positive or negative status 

observed in tissue samples(8,37), with positive samples defined as those with Ct values 

less than 37. As PCA3 has been reported to be a prostate tissue-specific marker(7), it was 

normalized against urine PSA (CtPSA-CtPCA3). All other testing variables were adjusted 

against their mean urine PSA and GAPDH values ((CtPSA+CtGAPDH) / 2-CtVariable). We 

excluded 23 samples showing outlier values, as at least one testing variable in those 

samples showed an adjusted value below 3 standard deviations from its sample mean, 

suggesting qPCR failure. This resulted in a final data set of samples from 138 patients 

with prostate cancer (86 positive needle biopsy and 52 radical prostatectomy patients) 

and 96 biopsy-negative patients. 
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Statistical Analysis. Univariate and multivariate logistic regressions were used to 

examine associations between prostate cancer diagnostic status and testing variables. For 

multivariate logistic regression, the Akaike Information Criterion (AIC)-based backward 

selection was used to drop insignificant terms (25). All testing markers were included in 

the initial regression model which was further refined by the AIC-based backward 

selection. After the final model was determined, the predicted probability for each sample 

was used as input to generate the receiver operating characteristic (ROC) curve and the 

area under the curve (AUC) was calculated. As all samples were used for regression 

model generation, the estimated AUC may be over-optimized. To correct this bias, we 

further performed a leave-one-out cross validation. Briefly, one sample was omitted 

while the regression model was trained on the remaining samples to select optimal 

markers and estimate their coefficients. The prediction probability for the left-out sample 

is then calculated based on the model prediction. This procedure was repeated until every 

sample was left out once and the derived prediction probability values were then used for 

ROC analysis. Similarly, PCA3 alone was fitted in a logistic regression model to generate 

an AUC. The difference of AUCs was examined as described previously (30). All 

analyses were performed in R (http://www.r-project.org) and ROC curves were plotted 

in SPSS 11.5 (SPSS Inc., Chicago, IL, USA). 

http://www.r-project.org/
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Table 6.1. Univariate and multivariate logistic regression analyses used to identify urine 

biomarkers for the detection of prostate cancer. For the multivariate analysis, Akaike 

Information Criterion (AIC)-based backward selection was used to drop insignificant 

terms. 

 

Univariate Logistic Regression Analysis 

Variable Coefficient P-value 

GOLPH2 0.4444 0.0002 

SPINK1 0.25 0.0002 

PCA3 0.187 0.001 

TMPRSS2:ERG 0.609 0.034 

ERG 0.043 0.166 

TFF3 0.11 0.189 

PSA (serum) 0.0151 0.376 

AMACR 0.049 0.45 

 

Multivariate Logistic Regression Analysis 

Variable Coefficient P-value 

SPINK1 0.308 7.41E-05 

PCA3 0.191 0.003 

GOLPH2 0.372 0.004 

TMPRSS2:ERG 0.924 0.006 
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Figure 6.1. Meta COPA identifies SPINK1 as a mutually exclusive outlier with ERG and 

ETV1 in prostate cancer. Meta-COPA analysis of 7 prostate cancer gene expression 

profiling datasets in Oncomine. A. Genes were ranked by the number of studies in which 

they scored in the top 100 outliers (ranked by COPA) at any of the three pre-defined 

percentile cutoffs (75th, 90th, 95th). Genes were further ranked by their average COPA 

rank (Avg. Rank) in studies where they ranked in the top 100. B. The expression of 

SPINK1 and scatter plots of ERG vs. SPINK1 and ETV1 vs. SPINK1 expression are 

shown from two studies where SPINK1 ranked as a top 100 COPA outlier. The 

expression of SPINK1, in normalized expression units, for all profiled samples including 

benign prostate tissue (blue), clinically localized prostate cancer (PCa, red) and 

metastatic PCa (Met PCa, green), as well as Gleason pattern 6, 7, 8 or 9 prostate cancer 

(magenta, orange, light blue and purple, respectively) are shown in the top panels. Scatter 

plots are shown for ERG vs. SPINK1 (middle panels) and ETV1 vs. SPINK1 (lower 

panels) for all samples in both studies. 
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Figure 6.2. SPINK1 over-expression identifies an aggressive subset of ETS negative 

prostate cancers and can be detected non-invasively. A-B. SPINK1 expression was 

evaluated in two cohorts (University of Michigan (UM) and Swedish Watchful Waiting 

(SWW)) using immunohistochemsitry (IHC) on tissue microarrays that have previously 

been evaluated for TMRPSS2-ERG status by fluorescence in situ hybridization (FISH). 

A. Representative SPINK1 positive and negative cores are shown, along with cells from 

the same cores negative and positive for TMRPSS2-ERG rearrangement by FISH. A 
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TMRPSS2-ERG rearrangement through intrachromosomal deletion is indicated by loss 

of one 5’ (green) ERG signal. B. Contingency tables for SPINK1 expression and 

TMRPSS2-ERG status and p-values for Fisher’s exact tests for both cohorts are 

indicated. C-E. Relationship between SPINK1 outlier expression and biochemical 

recurrence after surgical resection. Kaplan-Meier analyses of outlier SPINK1 expression 

from the (C) Glinsky et al. DNA microarray dataset and SPINK1 IHC from the (D) UM 

and (E) Memorial Sloan Kettering Cancer Center (MSKCC) cohorts and biochemical 

recurrence after surgical resection are shown. F. Non-invasive detection of SPINK1 

outlier-expression in men with TMRPSS2:ERG negative prostate cancer. Total RNA was 

isolated from the urine of 148 men with prostate cancer and assessed for TMRPSS2:ERG 

and SPINK1 expression by quantitative PCR. Samples above the dashed red line show 

SPINK1 outlier expression (See Methods). Contingency table for SPINK1 outlier 

expression and TMPRSS2:ERG status and the Fisher’s exact test p-value is shown. 
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Figure 6.3. Characterization of candidate urine-based biomarkers of prostate cancer. A-

C, Quantitative PCR (qPCR) was performed on whole transcriptome amplified (WTA) 

cDNA from urine obtained from patients presenting for needle biopsy or prostatectomy. 

Biomarker expression in patients with negative needle biopsies (green) or patients with 

prostate cancer (positive needle biopsy or prostatectomy, red) are shown. Normalization 

was performed using –ΔCt, with PCA3 normalized to urine PSA expression as performed 

previously(26).  AMACR, ERG, GOLPH2, SPINK1 and TFF3 were normalized to the 

average of urine sediment PSA and GAPDH expression. TMPRSS2:ERG gene fusion 

expression was dichotomized as positive or negative. The –ΔCt values of genes that were 

not significant predictors of prostate cancer by univariate analysis (see Table 6.1) are 

shown in A, and the expression of those that were significant predictors are shown in B & 

C. P values from the univariate analysis for the detection of prostate cancer are indicated. 

D, Receiver operator characteristic (ROC) curves for individual variables for the 

diagnosis of prostate cancer. The area under the curves (AUC) for GOLPH2, PCA3, 

SPINK1 and serum PSA are 0.664, 0.661, 0.642 and 0.508, respectively.  
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Figure 6.4. A multiplexed set of urine biomarkers outperforms PCA3 alone in the 

detection of prostate cancer. A. Multivariate regression analysis resulted in a multiplexed 

model including SPINK1, PCA3, GOLPH2 and TMPRSS2:ERG as significant predictors 

of prostate cancer (see Table 6.1). ROC analysis was then performed based on the 

predicted probabilities derived from the final model. The multiplexed model (red) 

showed significantly greater AUC than PCA3 (blue) alone (0.758 vs 0.662, P = 0.003) for 

the detection of prostate cancer. The point on the ROC curve with the maximum sum of 

sensitivity (Sens) and specificity (Spec) is indicated by the dashed line, and the positive 

and negative predictive values (PPV and NPV, respectively) are given. B. As in A, except 

a leave-one-out cross validation (LOOCV) strategy was used to generate unbiased AUCs. 

The AUC for the LOOCV multiplex model is significantly better than LOOCV of PCA3 

alone (0.736 vs. 0.645, P = 0.006). 
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PART 4: AN INTEGRATIVE APPRAOCH TO MODEL PROSTATE CANCER 

PROGRESSION 

 

 

CHAPTER 7 

 

Integrative Genomic and Proteomic Analysis of Prostate Cancer Reveals Signatures 

of Metastatic Progression 

 

Molecular profiling of cancer at the transcript level has become routine. Large 

scale analysis of proteomic alterations during cancer progression has been a more 

daunting task. Here, we employed high-throughput immunoblotting in order to 

interrogate tissue extracts derived from prostate cancer. We identified 64 proteins that 

were altered in prostate cancer relative to benign prostate and 156 additional proteins that 

were altered in metastatic disease. An integrative analysis of this compendium of 

proteomic alterations and transcriptomic data was performed revealing only 48-64% 

concordance between protein and transcript levels. Importantly, differential proteomic 

alterations between metastatic and clinically localized prostate cancer that mapped 

concordantly to gene transcripts served as predictors of clinical outcome in prostate 

cancer as well as other solid tumors.  

 

Prostate cancer is a highly prevalent disease in older men of the Western world 

(1,2). Unlike other cancers, more men die with prostate cancer than from the disease 

(3,4). Deciphering the molecular networks that distinguish progressive disease from non-
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progressive disease will shed light into the biology of aggressive prostate cancer as well 

as lead to the identification of biomarkers that will aid in the selection of patients that 

should be treated (5). To begin to understand prostate cancer progression with a systems 

perspective, we need to characterize and integrate the molecular components involved (6-

9). A number of groups have employed gene expression microarrays to profile prostate 

cancer tissues (10-18) as well as other tumors (19-22) at the transcriptome level but much 

less work has been done at the protein level. Proteins, as opposed to nucleic acids, 

represent the functional effectors of cancer progression and thus serve as therapeutic 

targets as well as markers of disease. 

 

In the present study, we utilized a high-throughput immunoblot approach to 

characterize proteomic alterations in human prostate cancer progression focusing on the 

transition from clinically localized prostate cancer to metastatic disease. Using an 

integrative approach we were able analyze proteomic profiles with mRNA transcript data 

from several laboratories. Our analyses also indicated the proteins that were qualitatively 

concordant with gene expression could be used to define a multiplex gene predictor of 

clinical outcome.  

 

In order to derive a first approximation of the prostate cancer proteome, we 

employed high-throughput immunoblot analysis. This method, while not feasible for use 

on many individual samples, allowed us to screen pooled tissue extracts for qualitative 

levels of hundreds of proteins (and post-translational modifications) using commercially 

available antibodies. The basic approach is illustrated in Figure 7.1A. Extracts from five 
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tissue specimens of benign prostate, clinically localized prostate cancer and metastatic 

prostate cancer from distinct patients were pooled. Each of the 3 pools of tissue extracts 

were run on preparative SDS-PAGE gels, transferred to PVDF, and incubated with 

different antibodies using a miniblot apparatus. Figure 7.1B displays representative data 

using the high-throughput immunoblot approach. Known proteomic alterations in 

prostate cancer progression such as EZH2 (23) and AMACR (24-26) are highlighted in 

red while novel associations such as GSK-3beta and IRAK1 are highlighted in green. To 

further increase the number of proteins analyzed, we used an analogous high-throughput 

immunoblot methodology provided by commercial services (see Methods). Thus, in total 

we assessed 1484 antibodies against 1354 distinct proteins or post-translational 

modifications. Of these antibodies, 521 detected a band of the expected molecular weight 

in at least one of the pooled extracts. Antibodies that did not detect the correct molecular 

weight protein product may represent lack of antibody sensitivity (or poor quality 

antibody) or absence of protein expression in prostate tissues. 

 

To validate the proteomic alterations identified by this screen in individual tissue 

extracts (as opposed to pooled extracts), we analyzed 86 proteins and 2 post-translational 

modifications by conventional immunoblot analysis using 4-5 tissue extracts per class. As 

with most gene expression studies done in prostate, our proteomic screen employed 

grossly dissected tumor specimens. Thus, the proteomic alterations that we detected 

could be due to differences in the stromal-eptihelial ratio of the tissues in addition to 

actual alterations in the epithelial cells. In order to evaluate the proteomic alterations in 

situ, we employed high-density tissue microarrays (27). As only a subset of the identified 
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proteins have antibodies that are compatible with immunohistochemical analysis, a single 

tissue microarray containing 216 specimens from 51 cases was stained using twenty of 

these IHC-compatible antibodies. Representative tissue microarray elements are shown in 

Figure 7.2A. Each tissue microarray element was evaluated by a pathologist and scored 

for staining (scale of 1-4) as per cell type considered (e.g., epithelial, stromal etc…). 

Using an in situ technique such as evaluation by immunohistochemistry allowed us to 

distinguish stromal versus epithelial expressed proteins. In general, proteins that 

demonstrated a decrease in expression in the metastatic tumors most often were stromally 

expressed proteins. As the amount of stroma per unit area decreases with tumor 

progression, metastatic samples demonstrated a parallel significant decrease in protein 

expression of paxillin and ABP-280, among others. In order to visualize and cluster the 

tissue microarray data (28), the qualitative evaluations were normalized (See Methods). 

Similar to gene expression analyses (21,29), unsupervised hierarchical clustering of the 

data revealed that the in situ protein levels could be used to accurately classify prostate 

samples as benign, clinically localized prostate cancer, or metastatic disease (Figure 

7.2B). 

 

This high-throughput immunoblotting of prostate extracts led to the identification 

of a several known and previously unknown proteomic alterations in prostate cancer. For 

example, previous studies have shown that the anti-apoptosis protein, XIAP (30), the 

racemase AMACR (24-26) and the Polycomb Group protein EZH2 (23) are dysregulated 

in prostate cancer progression. Novel associations (increases or decreases in protein 

expression) with prostate cancer progression identified by this screen include the E2 
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ubiquitin ligase UBc9, the cytosolic phosphoprotein stathmin, the death receptor DR3, 

and the Aurora A kinase (STK15), among others. 

 

Having amassed this compendium of proteomic alterations in prostate cancer 

progression, we next examined the general concordance with the prostate cancer 

transcriptome. To this end we developed an integrative model to incorporate qualitative 

proteomic alterations as assessed by high-throughput immunoblotting (but applicable to 

other proteomic technologies), with transcriptomic data derived from 8 prostate cancer 

gene expression studies (Figure 7.3). As both the genomic and proteomic approach 

involve analysis of grossly dissected tissues, this facilitates molecular comparisons to be 

made. The high-throughput immunoblot analysis of benign prostate, clinically localized 

prostate cancer and metastatic disease yielded 521 proteins of the expected molecular 

weight. Immunoreactive bands in each of the three tissue extracts were assessed and 

comparisons were made between benign tissue and clinically localized prostate cancer 

(Figure 7.3A) and between clinically localized prostate cancer and metastatic disease 

(Figure 7.3B). Visually qualified proteins that were over-expressed were coded red, 

under-expressed proteins were coded blue, and unchanged proteins were coded white. 

Based on this analysis, 64 proteins were dysregulated in clinically localized prostate 

cancer relative to benign prostate tissue, while 156 proteins were dysregulated between 

metastatic disease relative to clinically localized prostate cancer. As might be expected, 

most of the proteins analyzed were unchanged in the context of prostate cancer 

progression (i.e., 87.7% (457/521) of the proteins were unchanged between clinically 
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localized prostate cancer and benign and 70.1% (365/521) of the proteins were 

unchanged between clinically localized and metastatic disease). 

 

The set of quantifiable proteins (n=521) was then mapped to the NCBI Locus link 

and UniGene databases to identify each corresponding gene. Data for mRNA was 

extracted for these genes using 8 publicly available prostate cancer gene expression data 

sets (See methods). Over 90% of the genes were represented in at least one microarray 

study, allowing for integrative analysis to be performed. All eight of the prostate profiling 

studies made a comparison between clinically localized prostate cancer and benign tissue, 

while only four of these studies made a comparison between clinically localized disease 

and metastatic disease. Genes which could only be found in one-fourth of studies or less 

were excluded, leading to 481 genes involved in the former comparison and 492 involved 

in the latter comparison. Since we assessed over- and under-expressed genes separately, a 

one-sided t test was conducted per each gene per each profiling study (See Methods). As 

with the proteomic approach, comparisons between benign and clinically localized 

prostate cancer (Figure 7.3A) and localized disease and metastatic disease (Figure 7.3B) 

were made. If an mRNA transcript was significantly over-expressed in a particular study 

it was coded red, under-expressed transcripts were coded blue, and white was used for 

unchanged transcripts. 

 

Figure 7.3 presents an integrative analysis of proteomic data with gene 

expression meta-data in prostate cancer progression. An mRNA transcript alteration was 

considered “concordant” with a proteomic alteration if a majority of the microarray 
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profiling studies (at least 50%) showed the same qualitative differential (increased, 

decreased, or unchanged) as the high-throughput immunoblot approach. According to 

these criteria, 289 (60.1%) out of 481 mRNA transcripts were concordant with protein 

levels in clinically localized prostate cancer relative to benign prostate tissue. Similarly, 

291 (59.1%) out of 492 mRNA transcripts were concordant with protein levels in 

metastatic prostate cancer relative to clinically localized disease. Out of the 156 

proteomic alterations identified between metastatic and localized prostate cancer, 50 were 

concordant with mRNA transcript and 90 were discordant with mRNA transcript while 

the remaining alterations did not have mRNA measurements to map to (Figure 7.3B-C). 

Thus, similar to studies done in yeast (31,32), bacteria (33), and cell lines (34), there was 

only weak concordance between protein and mRNA levels in prostate cancer progression. 

 

To further explore the poor concordance we observed between protein and meta-

data from transcriptomic analyses, we profiled the pooled samples as well as the 

individual samples that comprised the pools on Affymetrix HG-U133 plus 2 microarrays. 

The same integrative analysis was carried out to examine the concordant relationship 

between the protein alterations observed in the pooled tissues by immunoblotting and 

transcript alterations observed in the corresponding pooled and individual tissues. The 

individual samples were included in order to calculate statistical significance for 

transcript alterations. Similar or even lower concordance was observed between protein 

and transcript (61.0% concordance in clinically localized prostate cancer relative to 

benign prostate tissue, and 48.2% for metastatic prostate cancer relative to clinically 

localized disease, Figure 7.4A).  
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We also investigated the protein and mRNA concordance in individual samples. 

We focused on the 86 proteins identified as outliers in the larger high-throughput screen. 

The immunoblot intensities were semi-quantitated and correlation coefficients were 

calculated for each protein (see Methods). We found that a total 55 out of 86 proteins 

were observed to a have a positive correlation with mRNA, which led to 64.0% 

concordance between proteins and transcripts (Figure 7.4B). On sub classification, we 

observed a concordance of 54.7% and 66.3% in case of localized prostate cancer relative 

to benign prostate tissues and the metastatic disease relative to localized prostate cancer 

respectively. 

 

This proteomic screen identified proteins that are altered from benign prostate to 

clinically localized prostate cancer and a distinct set of alterations between clinically 

localized disease to metastatic disease. Since we are interested in the transition from 

clinically localized to metastatic disease we next focused on this comparison. As the 

metastatic tissues analyzed in this study are androgen-independent (35), and by contrast 

the clinically localized tumors are generally androgen-dependent, we evaluated whether 

there was an enrichment of androgen-regulated proteomic alterations discovered by our 

screening. Androgen regulated genes (ARGs) are essential for the normal development of 

the prostate as well as the pathogenesis of prostate cancer (36-38). Pertinent to this 

analysis, Velasco et al. developed a meta-analysis of ARGs which represents a cross-

comparison of 4 gene expression (39-42) and 2 SAGE datasets (43,44). ARGs were then 

defined as a union of these 6 datasets, all of which represented functional induction of 
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mRNA transcript by androgen in vitro. Interestingly, 27 out of the 150 protein alterations 

(exclusive of post-translational modifications) we identified as being differential between 

metastatic and clinically localized disease, were designated as androgen-regulated by the 

Velasco et al (42) ARG compendium. To demonstrate that this finding is statistically 

significant, we selected random sets of 150 genes from the Yu et al. (18) or the Glinsky 

et al. (45) prostate cancer profiling studies and found that the chance of selecting 27 

ARGs was minimal (Ps < 0.001 for both of the Yu et al. and Glinsky et al. data). Thus, 

androgen-regulated proteins are significantly enriched in the differential comparison 

between androgen-dependent and independent prostate cancer. 

 

While examining concordant proteomic alterations, interestingly, we found that 

EZH2, a Polycomb group protein that we and others have previously characterized as 

being over-expressed in aggressive prostate and breast cancer (23,46) was one of the 50 

proteins identified as being concordantly over-expressed in metastatic tissues at the 

mRNA and protein level (Figure 7.3B-C). As EZH2 was a member of this 50 gene 

concordant signature, we hypothesized that proteomic alterations that distinguish 

metastatic prostate cancer from clinically localized disease may serve as a multiplex 

signature of prostate cancer progression when applied to clinically localized disease (i.e., 

“more aggressive” genes would be expressed in progressive prostate cancer). While 

antibodies have yet to be developed to test all of these proteomic alterations in situ by 

immunohistochemistry, we postulated that mRNA transcript levels could be used instead 

due to their concordance with protein levels in this signature.  To test this hypothesis we 

selected prostate cancer gene expression datasets that monitored over 85% of the genes in 
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the concordant genomic/proteomic signature, included biochemical recurrence 

information (time to PSA recurrence), as well as reported on at least 50 clinically 

localized specimens. According to Dobbin et al. (47), the number of samples required for 

developing prognostic markers was approximately 51 or above for a general human gene 

expression dataset with the variance of a gene over samples as 0.5, type I error as 0.001, 

and type II error as 0.05. Thus we chose n=50 as our minimal sample size requirement in 

this analysis. 

 

The prostate cancer gene expression datasets that fulfilled these criteria were 

carried out by Yu et al. (18) and Glinsky et al.(45), both of which represent Affymetrix 

oligonucleotide datasets and each of which measured at least 44 out of the 50 genes in the 

concordant signature. Although the Singh et al. and LaPointe et al. studies reported over 

50 samples in their studies, the number of samples for which we have available follow-up 

information was less than 30 (29 and 20 samples for the LaPointe and Singh dataset, 

respectively). In addition, the average follow-up time for the samples in LaPointe study 

was only 10.7 months. Thus we excluded both datasets in the analysis. We then chose to 

build our prediction models with the Yu et al. data set and test the performance on the 

Glinsky et al. data set. Utilizing an approach described earlier (48), unsupervised 

hierarchical clustering in the space of this 44-gene concordant signature resulted in two 

main clusters of individuals in the Yu et al. study (Figure 7.5A). Kaplan-Meier (KM) 

survival analysis of the clusters indicated that the two groups of individuals are 

significantly different based on time to recurrence status (P = 0.035, Figure 7.5A). 

Notably, when we use the 90 discordant genes (mRNA transcripts that are not 
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qualitatively concordant with protein levels) we found that these signatures did not 

generate a clinical outcome distinction (P= 0.238). Moreover, by permutation test, we 

also observed that random sets of 44 genes did not generate such prognostic distinctions 

(See Methods), indicating that our concordant signature was not likely due to chance. To 

assess the validity of this concordant signature, we utilized the Glinsky et al. study as an 

independent test set (Figure 7.5B). Each of the samples in the Glinsky dataset were 

classified as high- or low-risk based on a k-nearest neighbor (k-NN) model developed 

using the Yu et al. study as a training set (k=3). Based on the class predictions derived 

from the concordant signature, KM survival analysis revealed a significant difference in 

survival based on the risk stratification (P = 0.001, Figure 7.5B). As expected, this was 

not the case with the discordant signature when applied to the Glinsky et al. sample set 

(P= 0.556). A similar result was observed when a predictive model built on the Glinsky et 

al. data was applied to the Yu et al. data (P < 0.001 and P = 0.02 for the Glinsky et al. 

and Yu et al. data, respectively). We then carried out multivariate Cox proportional-

hazards regression analysis of the risk of recurrence on the Glinsky et al. validation set. 

Table 7.1 shows that the concordant signature predicted recurrence independently of the 

other clinical parameters such as surgical margin status, Gleason sum, and pre-operative 

PSA. With an overall hazard ratio of 3.66 (95% CI: 1.36-7.02, P<0.001), it was by far the 

strongest predictor of prostate cancer recurrence in the model. 

 

Next, we sought to refine the concordant signature of prostate cancer progression 

by reducing the number of genes required. By using the Yu et al. study as a training set, 

the 44 concordant genes were ranked by a univariate cox model. The same clustering 
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procedure was employed to identify two clusters based on the top number of genes 

ranging from a minimum of 5 to a maximum of 44. Based on this iterative analysis, we 

identified 9 genes that demarcated two main clusters that differed most significantly by 

KM survival analysis (Figure 7.5A, Methods). The Glinsky et al. study was again used 

as an independent validation set confirming that the 9-gene concordant signature 

identified two groups of individuals which differed significantly based on recurrence 

(Figure 7.5B). Together, this integrative analysis suggests that mRNA transcripts that 

correlate with protein levels in metastatic prostate cancer can be used as gene predictors 

of progression in clinically localized disease. 

 

Next, we sought to explore the generality of the concordant progression signature 

in other solid tumors. We identified four tumor profiling datasets from the Oncomine 

compendium (49) that fulfilled the same criteria that we used in the prostate cancer 

analyses (see above). In 95 primary breast adenocarcinomas (50), tumors bearing the 50-

gene concordant progression signature were more likely to progress to metastasis than 

those lacking this signature (P = 0.0025). We observed a similar result in 80 primary 

breast infiltrating ductal carcinomas (51) (P = 0.002, Figure 7.5C). Moreover, this result 

was also observed in a series of 84 primary lung adenocarcinomas (52) ( P = 0.03; Fig 

5C) and 56 gliomas (53) (P =0.01; Figure 7.5C). Furthermore, we used two common 

gene expression prediction models (diagonal linear discriminant analysis and k-nearest 

neighbor analysis) and conducted direct comparisons of the performances of the 

progression signature and the “study-specific” signature in each individual study where 

such a specific signature was available (see Table 7.2). The result indicated that the 
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progression signature was able to retrieve similar or even superior prediction 

performance in most of the studies, especially when employing the k-nearest neighbor 

prediction model. This is remarkable as this signature was derived exclusively from 

prostate samples but had utility not only in prostate cancer datasets but also in breast 

cancer, lung cancer, and glioma datasets. Again, this suggests that there is likely biology 

inherent in the integrated predictor. Of note, we found that the smaller 9-gene model was 

only effective in discriminating prognostic classes in the Freije et al glioma study 

(P=0.016) but not in the other solid tumor data sets. This suggests that the 9-gene model 

may be relatively specific for prostate cancer while the 50-gene model has more universal 

applicability. Taken together, our observations suggest that the progression 

proteomic/genomic signature identified by the integrative analysis of metastatic prostate 

cancer may have utility in the prognostication of clinically localized solid tumors in 

general. Biologically, this suggests that aggressive tumors of different tissue origin begin 

to share the molecular machinery of a de-differentiated state. 

 

While these proteomic alterations have potential to serve as a multiplex biomarker 

of cancer aggressiveness, they may also shed light into the biology of neoplastic 

progression. As proteins, rather than RNA transcripts, are the primary effectors of the 

cell, they play the central and most distal role in the functional pathways to cancer. 

Interestingly, EZH2, which we previously have shown to have a role in prostate cancer 

progression (23), is a member of this concordant genomic/proteomic signature, 

suggesting that other members of this signature may have utility as biomarkers as well as 

could have a role in the biology of progression. For example, this screen identified 
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Aurora-A kinase (STK15) as being overexpessed in metastatic prostate cancer as well as 

being a member of the 50-gene concordant signature. This serine-threonine kinase has 

been shown to be amplified in a number of human cancers (54,55), play a key role in 

G2/M cell cycle progression (56), and inhibit p53 (57), among other functions. Another 

candidate cancer regulatory molecule in the 50-gene concordant signature was KRIP1 

(KAP-1), which is known to repress transcription via binding the methyltransferase 

SETDB1 (58). 

 

In this study, we initially used a pooling strategy to perform high-throughput 

immunoblot analysis. While it would be more ideal to involve replicate protein 

measurements across multiple prostate tissues and then make comparisons to mRNA, the 

difficulty in monitoring thousands of antibodies on many individual samples and the cost 

of running multiple samples across thousands of antibodies required us to adopt the 

pooling approach. Further, analyses of concordance with mRNA expression on individual 

samples that comprised the pool confirmed the general feasibility of this strategy. We 

also noticed that there were recognized problems with annotations for microarrays. A 

recent study (59) reported that up to 50% Affymetrix probes do not have a matching-

sequence in the Reference Sequence database (Refseq), questioning the reliability of such 

probes. As this study represents an initial foray in the area of integrative analyses, we 

used basic gene identifier-based matching for cross-platform annotations. Another 

potential limitation in the present study is that some immunoblots exhibit reactivity at 

multiple sizes potentially representing multiple protein isoforms. Thus, measuring the 

protein intensity for one ‘expected’ band may not be adequate for determining a 
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correlation with transcripts. However, most of the reported changes here are the result of 

alterations in the reported or predicted molecular weight isoform. In future studies, we 

will investigate the various isoforms and proteolytically cleaved products. 

 

Taken together we provide a general framework for the integrative analysis of 

proteomic and transcriptomic data from human tumors (Figure 7.6). Proteomic profiling 

of prostate cancer progression identified over one hundred altered proteins in the 

transition from clinically localized to metastatic disease (a significant fraction of which 

were androgen regulated). While this approach was useful to integrate high-throughput 

immunoblot data, the general paradigm can also be applied to mass spectrometry or 

protein microarray based technologies as they mature in the future. Differential proteins 

were then mapped to mRNA transcript levels to assess mRNA/protein concordance levels 

in a human disease state. Importantly, gene expression alterations that matched protein 

alterations qualitatively could be used as predictors of prostate cancer progression in 

clinically confined disease. Together, this would suggest that clinically aggressive 

prostate cancer bears a “signature” set of genes/proteins that is characteristic of metastatic 

disease. The observation that the concordant proteomic/genomic signature can be applied 

to other solid tumors suggests commonalities in the undifferentiated state of advanced 

tumors. 

 

Methods 

High-throughput Immunoblot Analysis. Tissues utilized were from the radical 

prostatectomy series at the University of Michigan and from the Rapid Autopsy Program, 
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which are both part of University of Michigan Prostate Cancer Specialized Program of 

Research Excellence (S.P.O.R.E.) Tissue Core. Institutional Review Board approval was 

obtained to procure and analyze the tissues used in this study. To develop the tissue 

extract pools the following frozen tissue blocks were identified: 5 each of benign prostate 

tissues, clinically localized prostate cancer, and hormone-refractory metastatic tissues 

(35). Based on examination of the frozen sections of each tissue block, specimens were 

grossly dissected maintaining at least 90% of the tissue of interest. Total proteins were 

extracted from each tissue by homogenizing samples in boiling lysis buffer. One hundred 

micrograms of protein from each tissue extract pool was boiled in sample buffer and 

subjected to 4-15% preparative SDS-PAGE and transferred to PVDF and probed with 

different antibodies. To supplement the number of proteins analyzed, the same extracts 

were analyzed using two commercial service providers, BD biosciences and Kinexus. 

Validation immunoblots for selected proteins in different functional classes were carried 

out using 4-15% linear gradient SDS-PAGE for protein separation. The signal intensities 

were semi-quantitated using Scion Image software. 

 

Microarray Analysis. Total RNA from the individual and pooled samples were analyzed 

on Affymetrix U133 2.0 Plus arrays by the University of Michigan Comprehensive 

Cancer Center Affymetrix Core. The amount and integrity of RNA was analyzed by 

spectrophotometry and the Agilent Bioanalyzer (Agilent Technologies). Biotin-labled 

cRNA synthesis, hybridization, washing, staining and scanning were done following the 

manufacturer’s protocols (Affymetrix). All RNA samples and arrays met standard quality 

control metrics. 
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Tissue Microarray Analysis (TMA). A prostate cancer progression TMA composed of 

benign prostate tissue, clinically localized prostate cancer, and hormone refractory 

metastatic prostate cancer was developed. These cases came from well fixed radical 

prostatectomy specimens as described previously (24). A total of 216 tissue samples were 

collected from 51 patients. Protein expression was determined using a validated scoring 

method (10,23,24) where staining was evaluated for intensity and the percentage of cells 

staining positive. Benign epithelial glands and prostate cancer cells were scored for 

staining intensity on a 4 tiered system ranging from negative to strong expression.  

Hierarchical clustering on samples and proteins was carried out after data normalization.  

Measurements for duplicated samples in the same patient were averaged and each 

measurement was divided by the global mean of the entire dataset and then base 2 log-

transformed. 

 

Integrative Molecular Analysis. To map the antibodies and their respective protein 

targets, we retrieved the official gene names from the NCBI Locuslink for our 

antibody/protein lists. To complement protein levels, transcriptome data was assembled 

from 8 publicly available prostate cancer gene expression datasets (10-14,16-18) and 

each probe was mapped to Unigene Build #173. Expression values from multiple clones 

or probe sets mapping to the same Unigene Cluster ID were averaged. Each gene in each 

study was normalized across samples so that the mean equaled zero and the standard 

deviation equaled to 1. Missing data was imputed by the k-nearest neighbors (k=5) 

imputation approach (60).  
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The eight prostate cancer profiling studies were included in the analysis of 

clinically localized prostate cancer relative to benign prostate tissue, while only 4 studies 

were included in the analysis of metastatic prostate cancer vs. localized prostate cancer 

due to the availability of metastatic samples in those studies. Genes that were only found 

in one-fourth of studies or less were excluded, leading to 483 genes involved in the 

former analysis and 494 involved in the latter analysis.  A one-sided permutation t-test 

was conducted per gene per study using the multtest package in R 2.0. A gene was 

considered differentially expressed if its p-value was less than 0.05 without adjustment 

for multiple testing.  An mRNA transcript alteration was considered “concordant” with a 

proteomic alteration if a majority of the microarray profiling studies (at least 50%) 

showed the same qualitative differential (increased, decreased, or unchanged) as the high-

throughput immunoblot approach.  The gene/proteins were then assigned to concordant 

and discordant groups based on this criterion. 

 

Integrative Genomic and Proteomic Analysis of Individual Prostate Cancer Samples. We 

carried out profiling of mRNA expression analysis in 13 of the 14 individual samples 

used for the individual protein measurements (one was excluded due to an insufficient 

amount of tissue). We examined the concordance between proteins and transcripts for 

individual samples, focusing on the 86 proteins identified as outliers in the larger high-

throughput screen. The immunoblot intensities were semi-quantitated using Scion Image 

software and the Spearman’s rank correlation was calculated for each protein. An mRNA 



 164 

transcript alteration was considered “concordant” with a proteomic alteration if a positive 

correlation was found. 

 

Clinical Outcomes Analysis. Six different cancer profiling studies (18,45,50-53) were 

used for evaluation of prognostic value of these concordant genes. Average linkage 

hierarchical clustering using an uncentered correlation similarity metric was used to 

identify two main clusters of clinically localized prostate cancer samples based on the 44 

concordant mRNA transcripts that were qualitatively concordant with protein expression 

in the Yu et al. (18) study (only 44 out of 50 of the concordant signature were assessed 

on these arrays). Kaplan-Meier survival analysis of cluster-defined subgroups was then 

conducted and the log-rank test was used to calculate the statistical significance of 

difference between the two subgroups (SPSS 11.5).  High-/low- risk labels were then 

assigned to each group.  A permutation test was performed to evaluate the significance of 

this “progression” concordant signature.  We selected 1000 random sets of 44 genes from 

the Yu et al. data set and then used these gene sets to carry out 1000 independent 

clusterings of the primary prostate cancer samples, and subjected each grouping to 

Kaplan-Meier survival analysis. 

 

To validate the prognostic association of the 44-gene concordant signature, an 

independent (clinically localized) prostate cancer gene expression dataset from Glinsky et 

al. (45) was used. The Yu et al. clustering functioned as the “training set” to define high-

/low-risk groups. Each “test” sample of the Glinsky et al. study was classified into one of 

the two groups based on k-nearest neighbor classification (k=3).  Kaplan-Meier survival 
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curves were plotted for the two groupings. This “progression” signature was then refined 

by reducing the number of genes involved. By using Yu et al. study as a training set, the 

concordant genes were ranked by univariate Cox model. Again, the clustering procedure 

was used to identify two clusters based on the top number of genes (ranging from 5 to 

44).  The Glinsky et al. study was then used as a validation set to verify performance of 

the refined signature by k-nearest neighbors (k=3) prediction analysis. The generality of 

this “progression” signature was evaluated by using other solid tumor datasets. The 

signature was applied to two breast cancer (51)-(50), one lung cancer (52) and one glioma 

(53) gene expression study. Hierarchical clustering was used to identify two main clusters 

for patients in each study and Kaplan-Meier survival analysis was conducted to evaluate 

the statistical significance of differences between survival curves. 

 

Multivariable Analysis. We used a Cox proportional-hazards regression model to carry 

out the multivariate analysis. The dichotomized values of the concordant “progression” 

signature, preoperative PSA, Gleason sum score from prostatectomy specimens, 

preoperative clinical stage, age, and status of surgical margins were included as 

covariates. The calculation was performed with the R 2.0 statistical package. 
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Table 7.1 Multivariable Cox proportional-hazards analysis of the risk of recurrence as a 

first event on the Glinsky et al. validation set. 

 

Table 7.1. Multivariable proportional-hazards analysis of the risk 

of recurrence as a first event on the Glinsky et. al. validation Set 

Variable 
Hazard Ratio 

(95% CI) 
P Value 

High-Risk signature (vs.  

    low-risk signature ) 

    3.66 (1.77 – 7.59) <0.001 

PSA    1.04 (1.00 – 1.09) 0.043 

Gleason Sum Score 

    Score >7 (vs. score <=7) 

 

  1.73 (0.79 – 3.76) 

 

0.17 

Tumor Stage 

    Stage T2 (vs. stage T1) 

 

   0.85 (0.42 – 1.75) 

 

0.67 

Age    1.06 (1.00 – 1.13) 0.06 

Surgical Margins 

    Positive (vs. negative) 

 

    2.18 (0.92 – 5.18) 

 

0.08 
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Table 7.2 Comparisons of the performances of the progression signature and study-

specific signatures in individual study cohort. 

 

Signature 

Cohort 

Glinsky et al. 

(Prostate) 2 

Van’t Veer et al. 

(Breast) 
Huang et al. 

(Breast) 
Freije et al. 

(Glioma) 

# of genes in a signature 1 14 70 164 595 

Diagonal linear discriminant analysis 

Progression signature 73% (19 of 26) 79% (15 of 19) 73% (38 of 52) NA 

Study-specific signature 73% (19 of 26) 79% (15 of 19) 83% (43 of 52) NA 

k-nearest neighbor analysis (k=3) 

Progression signature 77% (20 of 26) 79% (15 of 19) 69% (36 of 52) NA 

Study-specific signature 57% (15 of 26) 68% (13 of 19) 77% (40 of 52) NA 

Kaplan-Meier survival analysis (log rank test) 3 

Progression signature NA NA NA P = 3.7x 10-5 

Study-specific signature NA NA NA P = 2x10-4 

1. The number of genes in a signature reported in the original study. When the signature was applied 

to other datasets, genes were cross-referenced by UniGene cluster IDs and values of multiple 

reporters mapping to the same gene were averaged. 

2. For Glinsky et al. study, we randomly assigned two-thirds samples into a training set and used the 

rest of samples as a validation set due to that the entire data was used as a validation set in the 

original publication; For van’t veer et al. and Freije et al studies, we used same validation sets as 

described in the original publications.  For Huang et al. study, we followed the same strategy as 

described in the study and used a leave-one-out cross validation in order to make a fair 

comparison.  All of accuracies reported here were calculated based on the validation sets. 

3. A log rank test, same as described in the study was used to evaluate the difference of two distinct 

patient groups derived from two main clusters of hierarchical clustering performed on the 

validation set. 
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Figure 7.1 High-throughput immunoblot analysis to define proteomic alterations in 

prostate cancer progression. A, A flowchart of the general methodology employed to 

profile proteomic alterations in tissue extracts. Pooled tissue extracts (n=5 each) from 

clinically localized prostate cancer, hormone-refractory metastatic prostate cancer, and 

benign prostate tissues were separated on preparative SDS-PAGE gels and transferred to 

PVDF membranes. The membranes were incubated with commercial antibodies using a 

miniblotter system. PCA, clinically localized prostate cancer. MET, metastatic prostate 

cancer. B, Representative high-throughput immunoblots performed for pooled benign, 

clinically localized prostate cancer and metastatic prostate cancer tissues. Each lane 

represents analysis of an individual protein. Three representative blots are displayed for 

each tissue extract. Selected proteins altered in prostate cancer progression are 

highlighted. MW, molecular weight. 
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Figure 7.2 Tissue microarray analyses of protein markers deregulated in prostate cancer 

progression. A. Selected images of tissue microarray elements representing immuno-

histochemical analysis of proteins altered in prostate cancer progression. Relative levels 

of proteins as assessed by blinded pathology analysis of tissue microarrays (n=216 

specimens) is provided to the right. B, Cluster analysis of twenty proteins dysregulated in 

prostate cancer progression evaluated for in situ protein levels by tissue microarrays. 

Unsupervised hierarchical clustering of protein levels (columns) and samples (rows) was 

performed and a heatmap generated. Red color represents high protein levels while black 

refers to intermediate levels and green represents low or absent protein levels. 
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Figure 7.3 Integrative analysis of proteomic and transcriptomic meta-data in prostate 

cancer progression. A, Color map of integrative analysis relating protein alterations to 

gene expression in clinically localized prostate cancer relative to benign prostate tissue. 

For gene expression meta-analysis (transcript analysis), the first author of each prostate 

cancer gene expression study is indicated in columns while individual genes are 
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represented as rows.  Red color indicates significantly increased expression at the P=0.05 

threshold level for prostate cancer relative to benign tissue, while blue indicates down-

regulation at the same threshold, and white indicates unchanged expression. Protein 

levels (protein) in pooled clinically localized prostate cancer extracts (as described in 

Figure 7.1), were visually qualified by high-throughput immunoblot analysis as over-

expressed (red), under-expressed (blue), or unchanged (white) and mapped to the 

corresponding mRNA transcript. Proteins which were not expressed (or corresponding 

antibodies that did not produce an immunoreactive band of the correct molecular weight) 

or the corresponding mRNA transcript level was not present in over one fourth of the 

profiling studies were excluded from the integrative analysis. Proteomic alterations in 

prostate cancer that were concordant or discordant with the meta-analysis of gene 

expression were expanded to the right. B, As in A except the integrative analysis was 

carried out between metastatic prostate cancer relative to clinically localized prostate 

cancer. C, Conventional immunoblot validation of selected proteins differentially 

expressed between metastatic prostate cancer and clinically localized prostate cancer. 

Individual tissue extracts from 3-4 benign, 5 clinically localized prostate cancer, and 5 

metastatic prostate cancer samples are shown. 
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Figure 7.4 Integrative genomic and proteomic analysis of pooled and individual prostate 

tissue extracts. A. Color maps of integrative analyses relating protein alterations observed 

in pooled tissues by immunoblotting and transcript alterations observed in the pooled and 
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individual tissues by gene expression analyses. Please refer to Figure 7.3A for color 

scheme. B, Color maps depicting integrative genomic and proteomic analysis of 

individual prostate tissue samples. Proteins in each tissue extract were assessed based on 

intensities derived from conventional immunoblot analysis. We focused on the 86 

proteins identified as outliers in the larger high-throughput screen. Transcriptomic 

profiles from the same samples were derived from Affymetrix microarrays. The 

immunoblot intensities were semi-quantitated and a correlation was calculated for each 

protein. Concordance was defined based on positive correlation between proteins and 

transcripts (See Methods).  
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Figure 7.5 Proteomic alterations in metastatic prostate cancer identify gene predictors of 

cancer aggressiveness. A, A concordant 44- (out of 50) gene predictor was developed 

based on proteomic alterations that were concordant with gene expression (Figure 7.3B) 

and subsequently evaluated for prognostic utility on a prostate cancer gene expression 

dataset (Yu et al.). Hierarchical clustering of the tumor samples (columns) and genes 

(rows) is provided (left panel). Red indicates high relative levels of gene expression while 

green represents low relative levels of gene expression. Horizontal bars above the heat 
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maps indicate the recurrence status of each patient (black box, biochemical or tumor 

recurrence; white box, recurrence-free). Patients were categorized into two major clusters 

defined by the 44-gene signature. The prediction model was further refined to a 9-gene 

signature. Kaplan-Meier survival analysis based on the groups defined by the 44-gene 

concordant cluster (middle panel) and the 9-gene concordant cluster (right panel). B, The 

concordant 44-gene predictor and the refined concordant 9-gene predictor were evaluated 

in an independent prostate cancer profiling dataset. Each sample was assigned to a low-

risk or high-risk group by k-nearest neighbor classification using cluster-defined low-

/high-risk groups of the Yu et al. as a training dataset (left panel; see methods). Kaplan-

Meier plot of the predicted high-/low-risk groups in the space of the concordant 44 genes 

(middle panel) or the concordant 9 genes (right panel). C, Same as A, except the 

concordant predictor was evaluated in other solid tumors. Huang et al. (51) breast 

adenocarcinoma (left panel), Freije et al. glioma (53) (middle panel), and Bhattacharjee 

et al. (52) lung adenocarcinoma (right,). 
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Figure 7.6 Integrative molecular analysis of cancer to identify gene predictors of clinical 

outcome. Proteomic profiles comparing metastatic prostate cancer to clinically localized 

prostate cancer were used to identify a composite gene predictor of clinical outcome in 

localized disease. This integrated proteomic-transcriptomic signature represents a 

prostate cancer progression signature and can be extended to other solid tumors. 
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PART 5: CONCLUSION 

 

 

CHAPTER 8 

 

Conclusion 

 

Molecular cancer classification, the classification of tissue or other specimens for 

diagnostic, prognostic, and predictive purposes on the basis of multiple gene expression, 

has been demonstrated a promising technology for optimizing the management of 

patients with cancer. In this dissertation, I have developed (1) an estrogen-regulated gene 

signature that can robustly predict cancer outcome in human breast cancer; (2) efficient 

yet comprehensible molecular classifiers using genetic programming for cancer 

classification; (3) non-invasive diagnostic tools for early detection of prostate cancer 

based on either patient serum or patient urine profiling; (4) a system approach to model 

metastatic progression in prostate cancer. These results support that high-throughput 

microarray profiling and resulted candidate biomarkers, if used properly and 

thoughtfully, are capable of developing more accurate diagnostic or prognostic tests for 

human cancer in clinic, supplementary to traditional histopathological methods. 

  

Breast cancer is the most common cancer among women in the US, accounting 

for nearly 1 of every 3 cancers diagnosed. Despite of current advance in breast cancer 

research, accurate prognosis for breast cancer patients has been a more daunting task. In 
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this thesis work (Chapter 3), we analyzed gene expression profiles of breast cancer cells 

in vitro and in vivo in order to uncover a molecular signature which may serve as a better 

indicator of cancer outcome. We set out to mine estrogen signaling pathway to identify 

estrogen-regulated genes as estrogen plays an essential role in breast cancer progression. 

We focused on in vitro estrogen-regulated genes and further selected a subset that is 

associated with patient outcome in vivo in human breast tumors. The final 73-gene 

signature developed by leave-one-out cross validation successfully predicts clinical 

outcome in over ten patient cohorts. Besides correctly assigning most ER- tumors in each 

dataset into high-risk group, this signature is able to stratify the ER+ samples into 

prognostic subtypes, suggesting that it may better reflect tumor aggressiveness than ER 

status alone. Most importantly, the signature provides additional prognostic information 

beyond standard clinical factors and yields overall best performance against previously 

reported breast cancer outcome predictors. This signature may be thus valuable in 

selection of high-risk patients for adjuvant therapy as well as in sparing some hormone-

sensitive patients from aggressive therapy.  

 

One important facet of clinical tests is cost-effectiveness, which makes the 

expression profiling of a large number of genes simultaneously less attractive in clinical 

trials. Thus, developing accurate yet simple classifiers using a handful of genes is in high 

demand. In this dissertation, we evaluated the capability of one evolutionary algorithm, 

Genetic Programming (GP), in building molecular classifiers using a practical set of 

genes (Chapter 4). We tested it on one Small Round Blue Cell Tumors (SRBCTs), one 

lung adenocarcinoma and five prostate cancer datasets. We have found that GP 
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repetitively uses a small set of highly discriminative feature genes to produce classifiers, 

which often comprise five or less genes and are able to predict samples correctly in 

independent datasets. As GP utilizes the quantitative information among genes to connect 

genes each other, the classifiers generated by GP are usually simple and human-readable. 

In addition, comparing to other conventional classification methods, GP yields better or 

similar classification performance. Thus, given these unique characteristics of GP, it 

stands out as a good algorithm of choice for application of DNA microarray profiling to 

clinic. 

 

Contrast to breast cancer in women, prostate cancer is the most common form of 

cancer affecting men in the Western world. Current common screening test for prostate 

cancer is to use prostate specific antigen (PSA). While PSA testing has led to a dramatic 

increase in the detection of prostate cancer, it has substantial false positive rate, 

supporting that additional cancer biomarkers or signatures may be required to ameliorate 

the accuracy of prostate cancer diagnosis. As cancer patients produce autoantibodies 

against antigens in their tumors and prostate cells can be detected in the urine of patients 

with prostate cancer, serum/urine based diagnostic tests have the advantage of being non-

invasive. In Chapter 5, we developed a phase-display protein microarrays to analyze 

serum samples from 119 patients with prostate cancer and 138 controls. By profiling 

global humoral immune response of these samples, we discovered 22 phage peptides 

grouped as a predictor that yielded 88.2% specificity and 81.6% sensitivity in 

discriminating between the group with prostate cancer and the control group of a 

validation set and outperformed PSA testing. This work demonstrates the feasibility of 
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multiplex humoral immune response as the basis for a screening test for prostate cancer 

although further extension and confirmation in community-based screening cohorts is 

needed. 

 

In Chapter 6, we combine prostate cancer “outlier” genes and known prostate 

cancer biomarkers to develop a multiplexed qPCR based urine test for detection of 

prostate cancer. Previously identified “outlier” genes (ERG, TMPRSS2:ERG and 

SPINK1) by our lab and known prostate cancer biomarkers such as PCA3, AMACR, 

GOLPH2 are assessed in sedimented urine using qPCR. We analyzed 234 patient 

samples and found that a multiplexed model including  PCA3, GOLPH2, SPINK1 and 

TMPRSS2:ERG yielded an area under roc (AUC) of 0.76, significantly outperforming 

serum PSA or PCA3 alone in detecting prostate cancer (AUC 0.57 for serum PSA, and 

0.66 for PCA3). While urine-based testing for PCA3 expression has already been 

documented in large screening programs, we demonstrate that this multiplexed qRT-PCR 

based assay can further improve the diagnostic accuracy of prostate cancer. 

 

Finally, with the explosion of gene expression data and the advent of high-

throughput proteomic profiling, interrogative efforts in both oncoproteomics and the 

cancer transcriptomics ushered in a ‘systems’ era that necessitates integrated approaches 

to analysis. Chapter 7 delineates an integrative model for culling a molecular signature 

of metastatic progression in prostate cancer from proteomic and transcriptomic analyses. 

Proteomic profiling of prostate cancer progression identified over one hundred altered 

proteins in the transition from clinically localized to metastatic disease. These differential 
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proteins were then mapped to mRNA transcript levels in multiple expression studies to 

assess mRNA/protein concordance levels in prostate cancer, leading to discovery of a 50-

gene signature of prostate cancer progression. While this approach is used to integrate 

high-throughput immunoblot data in this thesis work, the general framework of 

integrating multiple-source data can be extended to other proteomic platforms such as 

quantitative mass spectrometry, or protein microarray based technologies as they mature 

in the future. More critically, the discovered 50-gene signature not only predicts clinical 

outcome in localized prostate cancer, but also can be extrapolated to other solid tumor 

types including primary tumors of the breast, lung, and gliomas, suggesting common 

molecular machinery in poorly differentiated aggressive neoplasms. This is a powerful 

validation of the integrative model showing clinical import. The marriage of such a 

model with those in early detection has the potential to manifest in overt survival benefit 

for cancer patients. 
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Supplementary Information for the individual chapters is available online at the following 

addresses: 

 

CHAPTER 4 

http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1854845&blobname=neo0904_0

292SD1.pdf 

 

CHAPTER 5 

http://content.nejm.org/cgi/content/full/353/12/1224/DC1 

 

CHAPTER 7 

http://www.cancercell.org/cgi/content/full/8/5/393/DC1/ 
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CHAPTER 3 
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