Random Oracle Reducibility

CRYPTO 2011

Paul Baecher, Marc Fischlin

Emmy

Introduction

Two Cryptographic Schemes. . .

Secure under assumptions \mathbb{A}

Secure under assumptions \mathbb{B}

- Possible comparison criteria
- which scheme is more efficient?
- how do \mathbb{A} and \mathbb{B} relate?
- purpose-specific properties (e.g. ciphertext size)?
- rather easy to compare in the standard model

Two Cryptographic Schemes \#2

Secure under \mathbb{A}
Secure under \mathbb{B}

Two Cryptographic Schemes \#2

Secure under \mathbb{A} in the ROM

Secure under \mathbb{B} in the ROM

- Comparison "biased" by random oracle dependency

Comparing The Schemes

- Comparison "biased" by random oracle dependency
- e.g. $\mathbb{A} \subsetneq \mathbb{B}$, but H more demanding than G
- RO G: provide randomness
- RO H: POWHF, CR, ...
- perhaps H even uninstantiable!

Secure under \mathbb{A} Secure under \mathbb{B} in the ROM in the ROM

The Reduction Approach

- Formalizing exact requirements is tedious
- instead, use the cryptographer's approach: reduction
- A^{H} secure $\Rightarrow B^{T^{H}}$ secure
- any hash function which makes A secure also makes B secure
- uninstantiability of B implies uninstantiability of A

The Reduction Approach

- Formalizing exact requirements is tedious
- instead, use the cryptographer's approach: reduction
- A^{H} secure $\Rightarrow B^{T^{H}}$ secure
- any hash function which makes A secure also makes B secure
- uninstantiability of B implies uninstantiability of A
- may require a non-trivial transformation T (stateless, deterministic, efficient)
- guarantee "structural compatibilty"
- i.e., relative security amongst two schemes

Random Oracle Reducibility

Semi-formal Definition

Scheme A \{strictly,strongly, weakly\} reduces to scheme B if for every H there exists a transformation T such that

- strictly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow B$ is $G_{B}^{T^{H}}$-secure under \mathbb{B}
where $G_{S}^{\mathcal{O}}$ defines a security game (think IND-CCA for example) for scheme S

Semi-formal Definition

Scheme A \{strictly,strongly, weakly\} reduces to scheme B if for every H there exists a transformation T such that

- strictly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow B$ is $G_{B}^{T^{H}}$-secure under \mathbb{B}
- weakly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow B$ is $G_{B}^{T^{H}}$-secure under $\mathbb{A} \cup \mathbb{B}$
where $G_{S}^{\mathcal{O}}$ defines a security game (think IND-CCA for example) for scheme S

Semi-formal Definition

Scheme A \{strictly,strongly, weakly\} reduces to scheme B if for every H there exists a transformation T such that

- strictly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow B$ is $G_{B}^{T^{H}}$-secure under \mathbb{B}
- strongly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow \begin{cases}B \text { is } G_{B}^{T^{H}} \text {-secure under } & \mathbb{A} \cup \mathbb{B} \text { and } \\ B \text { is } G_{B}^{T H^{\prime}} \text {-secure under } & \mathbb{B} \text { for some } H^{\prime} \\ & \text { relying on } \mathbb{H}^{\prime}\end{cases}$
- weakly:
A is G_{A}^{H}-secure under $\mathbb{A} \Rightarrow B$ is $G_{B}^{T^{H}}$-secure under $\mathbb{A} \cup \mathbb{B}$
where $G_{S}^{\mathcal{O}}$ defines a security game (think IND-CCA for example) for scheme S

Example

Example: Hashed EIGamal

- Twin hashed EIGamal (THEG) encryption scheme [CKS09]
- extends hashed EIGamal (HEG) encryption scheme, but milder assumption
- DH assumption as opposed to strong DH assumption
- IND-CCA secure given an IND-CCA symmetric scheme
- hence superior at first glance

Example: Hashed EIGamal

- Twin hashed EIGamal (THEG) encryption scheme [CKS09]
- extends hashed EIGamal (HEG) encryption scheme, but milder assumption
- DH assumption as opposed to strong DH assumption
- IND-CCA secure given an IND-CCA symmetric scheme
- hence superior at first glance
- our result: THEG* is strongly reducible to HEG

Proof of Reducibility

- THEG* is strongly reducible to HEG
- Proof strategy

1. show weak reducibility from THEG* to HEG
2. prove THEG* secure on its own (in the ROM)

- strong reducibility then follows

Scheme Details

HEG (scheme A)
$\operatorname{Enc}_{A}(m):$
$y \leftarrow \mathbb{Z}_{q}$
$k \leftarrow H\left(g^{y}, X^{y}\right)$
$c \leftarrow \mathbf{E}_{k}(m)$
return $\left(g^{y}, c\right)$

THEG* (scheme B)
$\operatorname{Enc}_{B}(m):$
$y \leftarrow \mathbb{Z}_{q}$
$k_{0} \| k_{1} \leftarrow G\left(g^{y}, X_{0}^{y}, X_{1}^{y}\right)$
$c \leftarrow \mathbf{E}_{k_{0}}(m)$
return $\left(g^{y}, c, k_{1}\right)$

Scheme Details

HEG (scheme A)
$\operatorname{Enc}_{A}(m):$
$y \leftarrow \mathbb{Z}_{q}$
$k \leftarrow H\left(g^{y}, X^{y}\right)$
$c \leftarrow \mathbf{E}_{k}(m)$
return $\left(g^{y}, c\right)$

THEG* (scheme B)
$\operatorname{Enc}_{B}(m):$

$$
\begin{aligned}
& y \leftarrow \mathbb{Z}_{q} \\
& k_{0} \| k_{1} \leftarrow G\left(g^{y}, X_{0}^{y}, X_{1}^{y}\right) \\
& c \leftarrow \mathbf{E}_{k_{0}}(m) \\
& \text { return }\left(g^{y}, c, k_{1}\right)
\end{aligned}
$$

- Oracles H and G : need transformation function
- $T^{H}(a, b, c)=H(a, b) \| H(a, c)$

Proof Details

- Handling hash oracle queries
- alleged adversary \mathcal{B} against THEG*
- algorithm \mathcal{A} performs $T^{H}(a, b, c)=H(a, b) \| H(a, c)$

Proof Details

- Handling decryption queries
- algorithm \mathcal{A} simulates second key half

Proof Details

- Handling the encryption challenge query
- algorithm \mathcal{A} simulates second key half

Proof Details

- Algorithm \mathcal{A} outputs whatever \mathcal{B} outputs
- all queries are simulated perfectly
- thus, \mathcal{A} is successful whenever \mathcal{B} is
- THEG* * is secure in the ROM (rather technical, see paper)
- hence strongly reducible

Further Results/Applications

Results on Signature Schemes

More examples of (strict) random oracle reductions

- probabilistic RSA FDH signatures reducible to Guillou-Quisquarter signatures
- probabilistic RSA FDH signatures reducible to PSS signatures
- Schnorr signatures reducible to BLS signatures
recall: reducibility allows to argue about instantiability

The End

Thank you!

References

David Cash, Eike Kiltz, and Victor Shoup.
The twin DiffieHellman problem and applications.
Journal of Cryptology, 22(4):470-504, October 2009.

