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I. INTRODUCTION

For short bunches of high-energy electrons or positrons, typical for modern accelerators and photon sources, one
of the important elements of the beam dynamics is the effect of coherent synchrotron radiation (CSR) of the beam
[1]. In vacuum, if the reduced wavelength of the radiation exceeds the bunch length, the beam radiates coherently,
and the power of the radiation increases many orders of magnitude relative to the incoherent radiation at the same
wavelength. Typically, however, CSR at such wavelengths is suppressed due to the shielding effect of the conducting
walls of the vacuum chamber. CSR at shorter wavelengths can still play a role in a microwave instability causing
microbunching of the beam [2].
Synchrotron radiation of a relativistic beam moving in a toroidal chamber with conducting walls has been extensively

studied in the past (see, e.g., [3–5]). Many important features of the radiation has been analyzed based on the direct
solution of the Maxwell equations for rectangular cross section of the chamber, in the limit of large values of the
azimuthal number n. In particular case of parallel conducting plates, the method of image charges was used in
Ref. [6]. Unfortunately, these methods can only be used for a rectangular cross section of the chamber, and are not
applicable to other shapes encountered in practice.
In this paper, we study radiation of a relativistic particle moving in circular orbit inside of a toroidal chamber, using

a different approach. We introduce a small parameter ε equal to
√
a/R, where a is the characteristic chamber size

and R is the toroid radius. A relativistic particle circulating inside the toroid can resonantly excite the synchronous
electromagnetic modes that have phase velocity equal to particle’s velocity v ≈ c. As discussed in Refs. [3, 4], for a
given toroid, the synchronous modes have wavenumbers k greater than a minimal value kmin = ωmin/c:

k � ωmin

c
∼ R1/2

a3/2
∼ 1
εa

� a−1 . (1)

Using the scaling ka ∼ ε−1 that follows from Eq. (1) and considering only modes that have phase velocity close to
the speed of light, we simplify Maxwell’s equations, keeping only terms of the lowest order in ε. We then solve these
equations for the synchronous modes and find the intensity of the particle’s radiation into each mode.
The advantage of this approach is that instead of dealing with a solution of full set of Maxwell’s equations for a

chosen geometry of the toroidal chamber we first simplify the equations using an appropriate scaling of the relevant
parameters of the problem (such as k, R, and a). The simplified equations do not contain the small parameter ε.
In this paper, we focus on two cases—rectangular and round cross sections of the toroid. The first case allows an
analytical solution for the eigenmodes and permits a detailed comparison with the results known in the literature.
The second case relies on a numerical solution of the equations and demonstrates applicability of the new method to
the cross sections with the shapes other than the rectangular one.
Throughout the paper we assume perfect conductivity of the walls. We also consider relativistic particles with the

Lorentz factor γ � 1.
The paper is organized as follows. In Section II we simplify Maxwell’s equations in the limit of small ε, and in

Section III we formulate boundary conditions for the equations. A variational principle for the equations is derived
in Appendix A. In Section IV we obtain an analytical solution for the rectangular cross section of the toroid. In
Section V we present expressions for the energy radiated into synchronous modes by a moving charge and introduce
the impedance associated with those modes and the longitudinal wake. The derivation of the radiative energy loss is
given in Appendix B. In Section VI we present results for numerically computed parameters of the lowest modes for
the cases of square and round cross sections. In Appendix C we derive a formula for the group velocity of toroidal
modes. In Appendix D we consider a limit of high frequency and show that our results in this limit reduce to the
standard formulae for the synchrotron radiation in free space.

II. EQUATIONS FOR ELECTROMAGNETIC FIELD

In this section we will derive equations for the electric and magnetic fields in the toroidal waveguide. We consider
a smooth toroidal vacuum chamber of radius R and arbitrary cross section. The geometry of the problem and the
choice of the coordinate system is shown in Fig. 1. We use the cylindrical coordinate system r, θ, z and the notation
x for the difference x = r −R.
We assume that all components of the field have the following dependence on time and the azimuthal angle θ

E,H ∝ e−iωt+ikRθ . (2)
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FIG. 1: Smooth toroidal vacuum camera for circular (left) and rectangular (right) cross sections with R the major
radius of the toroid. It is assumed that a particle’s orbit goes through the center of the toroidal chamber and has the
same radius R. A segment is removed for illustration purposes.

We are interested in such solutions of Maxwell’s equations which have the phase velocity equal to the velocity of the
particle

ω

k
= v ≈ c

(
1− 1

2γ2

)
. (3)

To keep track of order of magnitudes, we will assume that x and z coordinates are of order of ε0 ∼ 1 and the orbit
radius R is of order of ε−2, where ε2 ∼ a/R is a formal small parameter of the problem. According to Eq. (1), k is
assigned the order of ε−1. We will also assume that γ ∼ ε−1. As we will see below, if the transverse to the orbit
components of the fields Er, Ez, Hr, Hz are of order of one, then the longitudinal components Eθ,Hθ ∼ ε. The latter
can be explained by the fact that in the limit of high frequencies which we consider here the effect of the walls is
relatively small, and the electromagnetic waves are almost transverse relative to the direction of the propagation θ.
From the Maxwell equations

iω

c
Hr =

ikR

r
Ez − ∂Eθ

∂z
,

−iω
c
Er =

ikR

r
Hz − ∂Hθ

∂z
,

(4)

using Eq. (3) and the smallness of Eθ and Hθ we find to the lowest order

Hr = Ez , Hz = −Er . (5)

These are relations that hold in a plane electromagnetic wave; in our case they are satisfied approximately to order
ε2.
From the other pair of Maxwell equations

−i ω
c
Hθ =

1
r

∂rEz

∂r
− ∂Er

∂z
,

i
ω

c
Eθ =

1
r

∂rHz

∂r
− ∂Hr

∂z
,

(6)

using Eqs. (5) we express Hθ and Eθ in terms of Er and Ez

Hθ =
i

k

(
∂Ez

∂x
− ∂Er

∂z

)
,

Eθ =
i

k

(
∂Er

∂x
+
∂Ez

∂z

)
,

(7)
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where again we neglected terms of order of ε3.
Having expressed Eθ, Er, Hθ, Hr in terms of Er and Ez, we can now derive equations for Er, Ez if we note that

Ez and Hz (and hence Er) satisfy the wave equation

∆Ez +
ω2

c2
Ez = 0 , ∆Hz +

ω2

c2
Hz = 0 . (8)

Let us write the first of Eqs. (8) as

1
r

∂

∂r
r
∂Ez

∂r
+
∂2Ez

∂z2
+

(
ω2

c2
− k2R2

r2

)
Ez = 0 . (9)

The same equation holds for Hz. Substituting r = R+ x, expanding in small ratio x/R and using Eq. (3), we find

∆⊥Ez + 2k2
(
Λ +

x

R

)
Ez = 0 , (10a)

∆⊥Er + 2k2
(
Λ +

x

R

)
Er = 0 , (10b)

where ∆⊥ = ∂2/∂x2 + ∂2/∂z2,

Λ(ω, k) =
1
2

(
ω2

k2c2
− 1

)
, (11)

and we substituted Er for Hz in Eq. (10b). The parameter Λ measures deviation of the phase velocity ω/k from the
speed of light c.
Although we have separate equations (10) for Er and Ez, in the next section we will see that the functions Er, Ez

are coupled through the boundary conditions on the conducting wall.

III. BOUNDARY CONDITIONS FOR ER, EZ

Let n = (nx, nz) be the normal vector to the toroid’s surface in the plane xz directed toward the metal, while
τ = (−nz, nx) be the vector tangential to the surface in the same plane. For the perfectly conducting wall, the
tangential electric field vanishes at the surface: Eθ = Eτ = 0. The first equality, Eθ = 0, yields:

∂Ez

∂z
+
∂Er

∂x
= 0 . (12a)

The second one gives

nxEz − nzEr = 0 . (12b)

In general case, these boundary conditions couple Eqs. (10) so that one has to solve them together. The two
equations with the boundary conditions constitute an eigenvalue problem—for a given k, the solution exists only for
discreet set of values of ω. If, however, we specify the value of Λ (e.g., Λ = 0, corresponding to waves propagating
with the phase velocity equal to c), then the solution exists only for a discreet set of eigenvalues k. Note that both
the equations and the boundary conditions do not involve complex numbers—this means that the field components
Er and Ez of eigenmodes can always be chosen real. From Eqs. (5) and (7) it follows that Hr and Hz are also real,
and Eθ and Hθ are purely imaginary.
Eqs. (10) with the boundary conditions Eqs. (12) can also be formulated as a variational problem which can be

used for numerical solution of the problem. We derive the corresponding variational functional in Appendix A.

A Rectangular toroid

For a rectangular cross section of the toroidal camera with the width a the size along the horizontal axis x (directed
along the major radius R of the toroid), and the height b the size along the vertical axis z (see Fig. 1Er and Ez), it
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is readily seen that the boundary conditions for the Er and Ez functions separate. Noting that nx = ±1, nz = 0 at
x = ±a/2 while nx = 0, nz = ±1 at z = ±b/2, we find

∂Er

∂x
= 0 at x = ±a/2 , Er = 0 at z = ±b/2 (13a)

for the Er component, and

Ez = 0 at x = ±a/2 , ∂Ez

∂z
= 0 at z = ±b/2 (13b)

for Ez.

B Round toroid

For the toroid with a circular cross-section of radius a we introduce the poloidal angle φ and the radius vector ρ,
such that x = ρ cosφ, z = ρ sinφ. We then have ∂/∂n = ∂/∂ρ, nx = cosφ, nz = sinφ. The boundary condition (12a)
at ρ = a yields:

1
ρ

∂ρEr

∂ρ
cosφ+

1
ρ

∂ρEz

∂ρ
sinφ = 0 . (14a)

The other boundary condition (12b) reduces to

Ez cosφ− Er sinφ = 0 . (14b)

IV. ANALYTICAL SOLUTION FOR RECTANGULAR TOROID

As was pointed out above, in the case of a rectangular toroid Eqs. (10) and the boundary conditions decouple, and
can be solved separately for Er and Ez. This means that there are two sets of modes with different polarization: one
in which Er = 0, and the other with Ez = 0. We will call the first set Ez-modes, or vertically polarized, and the
second one—Er-modes, or horizontally polarized. Separating x and z variables and using the boundary conditions
(13) at z = ±b/2 we find

Er(x, z) = Er(x) sin
[
πp

b

(
z +

b

2

)]
, p = 1, 2, 3 . . . . (15a)

for the Er-modes, and

Ez(x, z) = Ez(x) cos
[
πp

b

(
z +

b

2

)]
, p = 0, 1, 2 . . . (15b)

for the Ez-modes.
In what follows, we will use the notation U(x) both for Er(x) and Ez(x) when it is not important to distinguish

between them. Equation for U takes the form

d2U

dx2
+ 2k2

(
x

R
+ Λ− π2p2

2k2b2

)
U = 0 .

To proceed further we introduce the dimensionless coordinate

ξ = x
(
2k2

R

)1/3

and dimensionless parameters ξ0 and ξa

ξ0 =
π2p2R2/3

(2k2)2/3b2
− (

2k2R2
)1/3

Λ, ξa = a
(
2k2

R

)1/3

. (16)
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This yields the equation

d2U

dξ2
+ (ξ − ξ0)U = 0 . (17)

The boundary conditions at ξ = ±ξa/2 read
U(ξ) = 0 ,

for the Ez wave, and

d

dξ
U(ξ) = 0 ,

for the Er wave.
General solution of Eq. (17) involves the Airy functions Ai and Bi:

U(ξ) = C1 Ai(ξ0 − ξ) + C2 Bi(ξ0 − ξ) , (18)

where C1,2 are unknown constants to be found from the boundary conditions. Boundary conditions for Er yield the
dispersion equation

Ai′(ξ0 − ξa/2)Bi′(ξ0 + ξa/2) = Ai′(ξ0 + ξa/2)Bi′(ξ0 − ξa/2) , (19a)

and the boundary conditions for Ez yield

Ai(ξ0 − ξa/2)Bi(ξ0 + ξa/2) = Ai(ξ0 + ξa/2)Bi(ξ0 − ξa/2) . (19b)

We will mark a sequence of eigenvalues of Eqs. (19) by an integer index m. This index is defined so as to indicate the
number of nodes in the function U(ξ) on the interval −ξa/2 � ξ < ξa/2. For the Er modes, m takes values 0, 1, 2 . . ..
For the Ez modes, due to the boundary condition U(−ξa/2) = 0, the values of m are 1, 2, 3 . . ..
Let us consider the case when Λ = 0, that is the waves that have the phase velocity equal to the speed of light.

Note that, in this case,

ξ0 =
π2

ξ2a

(p a
b

)2

, (20)

and hence from the dispersion equations (19) one can find the relation between ξa and the parameter p a/b. The latter
can be expressed as

k =
(
R

a3

)1/2

Fm

(p a
b

)
, (21)

where Fm is a function defined from the solution of Eqs. (19). The plot of this function for both Er and Ez modes for
a few lowest radial mode numbers m is shown in Fig. 2. From this figure, one can see that the minimal frequency in
a rectangular toroidal waveguide is attained for the Er mode with m = 0. For example, in the case of a square cross
section, a = b, this minimal frequency is ωmin = 4.78 cR1/2a−3/2. Note that kmin = ωmin/c confirms the estimate used
in Eq. (1).

A Limit of High Frequency, ω � ωmin

In the limit of high frequencies, ω � ωmin ∼ cR1/2a−3/2, the exact solution for the rectangular cross section can
be considerably simplified. In this limit, as we will show below,

ξ0 + ξa/2 � 1 , (22)

and the factors Ai(ξ0 + ξa/2)Bi(ξ0 − ξa/2)/Bi(ξ0 + ξa/2) and Ai′(ξ0 + ξa/2)Bi′(ξ0 − ξa/2)/Bi′(ξ0 + ξa/2) in the
dispersion relations (19) are exponentially small. The latter reduces to

Ai′(ξ0 − ξa/2) = 0 (23a)
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FIG. 2: Solution of the dispersion equation Λ = 0 for various mode numbers m indicated on the plot: Er mode—
magenta (also indicated by symbol r), Ez mode—blue (indicated by symbol z). The dashed line shows the approximate
solution discussed in Sec. IVA.

for the Er wave, and to

Ai(ξ0 − ξa/2) = 0 (23b)

for the Ez wave. The argument of the Airy function in Eqs. (23) is a large negative number and we can use the
asymptotic formula

Ai(ξ) ≈ 1√
π (−ξ)1/4

sin
[2
3
(−ξ)3/2 +

π

4

]
, (24)

which is actually valid with high accuracy for ξ � −1. We obtain

ξ0 ≈ ξa
2

−
[
3π
2

(
m± 1

4

)]2/3

, (25)

where the upper sign corresponds to the Er mode while the lower one corresponds to the Ez mode. The radial mode
number m runs over values 1, 2, 3, . . . for the Er mode and 0, 1, 2, . . . for the Ez mode.
Using the definitions of ξa and ξ0, Eq. (16), we find

Λ =
π2p2

2k2b2
+
1
2

[
3π
kR

(
m± 1

4

)]2/3

− a

2R
. (26)

Eigenfunctions of toroidal modes in this limit can be also simplified:

Er = Ai(ξ0 − ξ) (27a)

for the Er mode, and

Ez = Ai(ξ0 − ξ) (27b)

for the Ez one. The modes are evanescent in the inner part of the camera, closer to the axis of the toroid, where the
argument ξ0 − ξ of the Airy function is positive, and oscillate in the outer part.
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Solving Eqs. (20) and (25) together, we find the function Fm in Eq. (21):

Fm(ζ) =
π ζ√
2
F

(
2
3

(
m± 1/4
ζ

)2
)
, (28)

where

F(q) =
{
q1/3 +

[
1 + q −

√
1 + 2q

]1/3

+
[
1 + q +

√
1 + 2q

]1/3
}3/2

.

Approximate solution (28) is shown in Fig. 2 by dashed lines. It is very close to the exact solution, shown in solid
lines, everywhere except for the Er, m = 0 modes in the case p a/b � 1 (the lowest curve in Fig. 2), where a more
accurate treatment reveals that Fm(ζ) = 301/4

√
πζ.

To prove that the condition Eq. (22) is satisfied at high frequencies we will show that it is satisfied if either m or p
(or both) are much greater that unity. Since ξ0 > 0, we need to prove that ξa � 1; for simplicity, we will assume that
a ∼ b. For m � 1, from Eq. (25) it follows that ξa � m2/3, and indeed ξa is large for large m. If, however, m ∼ 1,
then it follows from Eq. (25) that ξa ∼ ξ0 , which together with Eq. (20) gives ξa ∼ p2/3, and again ξa is large when
p � 1. Hence the result of this subsection is applicable to modes that have at least one eigennumber much larger
than unity.
Remarkably, approximate formulae of this section give accurate numerical result even at the edge of applicability

region, specified by Eq. (22). For example, Eq. (28) yields Fm(1) = 5.00, which differs from exact value exact value
4.78 by 4.4%.
We note here that our solution can also be simplified in the limit where the condition opposite to Eq. (22) is

satisfied. However, we will not consider this case here because the modes in this limit have phase velocities that are
greater than the speed of light and cannot be excited by the beam.

V. RADIATION OF A MOVING CHARGE

In the preceding sections, we formulated equations whose solution gives synchronous eigenmodes propagating with
the phase velocity close to the speed of light. A relativistic particle moving in a circular orbit inside the toroid
will resonantly interact with these modes and will deposit part of its kinetic energy into the electromagnetic field
of the modes. The strength of the interaction can be characterized by the amount of energy radiated into a given
synchronous mode. As is shown in Appendix B, the radiated energy per unit length of the path dW/ds is given by
the following formula:

dW

ds
=
e2

4P
|E0|2

∣∣∣∣ 1vg − 1
v

∣∣∣∣
−1

, (29)

where P is the averaged over time energy flow in the mode, vg is the group velocity, and E0 is the amplitude of
the longitudinal electric field of the mode on the particle’s trajectory. A related parameter, which is usually used in
accelerator physics, is the loss factor κ defined as the energy loss of a unit charge:

κ =
1
e2
dW

ds
=

1
4P

|E0|2
∣∣∣∣ 1vg − 1

v

∣∣∣∣
−1

. (30)

From Eq. (29) we see that in order to calculate the radiated energy for each mode one has to know the energy flow
P and the group velocity of the mode vg. The former can be expressed as an integral over the cross section of the
chamber of the component of the Pointing vector Sθ along the direction of propagation,

P =
∫
Sθ dx dz , (31)

where

Sθ =
c

8π
(−ErHz + EzHr) =

c

8π
(
E2

r + E
2
z

)
, (32)

and we took into account that the averaging over time introduces a factor of 1/2 in Sθ. The quantity P can be easily
calculated by numerical integration if the fields are available.
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Calculation of the group velocity using the definition vg = ∂ω/∂k requires numerical differentiation of the dispersion
relation. There is however an alternative method of calculation of vg, more suitable for numerical analysis. We recall
that in a waveguide with straight axis the group velocity is equal to the ratio of energy flux throughout the cross
section of the waveguide to the energy density integrated over the cross section. In toroid, this relation takes the form

vg =
∫
Sθ dx dz∫

w (1 + x/R) dx dz
, (33)

where

w =
1
16π

(
E2 +H2

)
(34)

is the averaged over time the energy density in the wave. The geometric factor 1+x/R in Eq. (33) takes into account
that the infinitesimal volume in the toroid is equal to (1 + x/R) dx dz ds. Expression for vg in terms of the fields Er

and Ez, which follows from Eqs. (33) and (34) is obtained in Appendix C:

vg
c
= 1− 2

R

∫
dx dz x (E2

r + E
2
z )∫

dx dz (E2
r +E2

z )
− Λ . (35)

Eqs. (31), (32), and (35) give explicit expressions for the energy radiated into an eigenmode in terms of the field
components Er, Ez and the longitudinal electric field on the axis E0.

A Wake and impedance

A longitudinal impedance Z(ω) generated by the radiation of a point charge in a single mode has a resonant
character. In the vicinity of the resonance it can be described by the following formula [3]

Z(ω) =
iκ

(ω − ωs) + iΓ/2
, (36)

where Γ is the resonance width associated with the finite conductivity of the wall and κ is the loss factor. In the limit
of a perfectly conducting wall, which we consider here, Γ → 0, and

Z(ω) = κπδ(ω − ωs) + iκP 1
ω − ωs

, (37)

where P denotes the Cauchy principal part. This impedance corresponds to the following wake function w(s) (see.
e.g. [7])

w(s) = 2κ cos
ωss

c
, (38)

which simply means that the charge excites the synchronous wave with the amplitude of the longitudinal electric field
in the wave equal to 2κe2.

VI. RADIATION IN RECTANGULAR AND CIRCULAR TOROIDS

In this section we will present results of numerical calculations of the mode patterns, frequencies and loss factors
for several lowest modes in the toroids of rectangular and round cross sections.
Calculations for the rectangular cross section are based on the analytical solution developed in Section IV. For the

sake of simplicity, we only consider here the case of the square cross section, a = b.
We remind that in this case there are two uncoupled types of modes—Er and Ez—which are characterized by the

integer numbers m and p, where p is defined in Eqs. (15) and m is equal to the number of zeros in the function U(ξ)
[see Eq. (17)]. The field patterns for a few lowest modes are shown in Fig. 3 and the frequency, group velocity, and
the loss-factors for each mode are given in Table I. The lowest mode in this case is of type Er, with the frequency
equal to 4.78cR1/2a−3/2 and the loss factor κ ≈ 5/a2.
To calculate the eigenmodes for the round cross section we used two approaches. In the first one, the system of

equations for Er and Ez was solved numerically on a triangular mesh, using the PDE Toolbox of the Matlab [8]. The
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FIG. 3: Field patterns for a square cross section of the waveguide: a) Er mode, m = 0, p = 1, b) Er mode, m = 0,
p = 2, c) Ez mode, m = 1, p = 1, d) Er mode, m = 0, p = 3, e) Ez mode, m = 1, p = 2, f ) Er mode, m = 0,
p = 4. For the Ez modes, the graphs show distribution of the Ez component of the field, and for the Er modes—Er

distribution is shown. The color coding palette is shown in the upper right corner of the picture, where the bottom
and the top of the palette correspond to lower and higher values, respectively. Note that the mode profiles are not
normalized, and the patterns of different modes cannot be compared with each other.
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TABLE I: Lowest modes in toroidal waveguide of square cross section. The wavenumber of the mode k, the difference
between c and the group velocity, 1 − vg/c, and the loss factory κ are all normalized by the proper combinations of
R and a.

Type m p kR−1/2a3/2 (1 − vg/c)R/a κa2

Er 0 1 4.78 0.62 4.94

Er 0 2 8.11 0.73 0

Ez 1 1 8.78 0.42 3.01

Er 0 3 11.42 0.79 0.19

Ez 1 2 11.80 0.52 0

accuracy of the numerical solution depends on the number of triangles N ; we evaluated that it scales as (m2+ p2)/N .
The maximum number of N was limited by the run time which grows as N2—we typically used N ≈ 104 at most.
The second approach was based on the variational principle described in Appendix B. In this approach, the

solution was represented as a sum of trial functions with unknown coefficients, and the coefficients were calculated by
minimizing the functional I. The results of both methods agree within 10% with each other. In table II we show the
frequency, group velocity, and the loss-factors for a few lowest modes. Note that the modes in which Ez is an even
and Er is an odd functions of z have a zero loss factor—this is explained by the fact that for these modes, as follows
from Eq. (7), the longitudinal electric field vanishes at the location of the particle z = 0.
The field patterns for the lowest 3 modes that have nonvanishing loss factors (the first, third and fifth lines in the

table II) are shown in Fig. 4.

TABLE II: The lowest modes in a toroidal waveguide with the round cross section. The notations are the same as in
Table I.

kR−1/2a3/2 (1 − vg/c)R/a κa2

2.12 1.08 2.11

2.73 0.79 0

3.96 0.88 0.33

4.07 0.96 0

4.82 0.76 1.04

The lowest modes with m ∼ p ∼ 1 correspond to the waves propagating at an angle θ ∼ √
a/R relative to the

axis of the toroid. Modes with m, p � 1 propagate at smaller angles, and during the process of radiation of such
modes, they do not “feel” the presence of the conducting boundaries of the waveguide. In this limit, we expect that
the spectral density of the radiation approaches that in free space, and, hence, does not depend on the exact shape
of the cross section of the chamber. For the case of a rectangular cross section we prove this assertion in Appendix D
by direct calculation of the spectrum of the radiation in the limit ω � ωmax.

VII. CONCLUSIONS

In this paper we developed a new approach to the calculation of the synchrotron radiation in a toroidal pipe. Using
a small parameter ε =

√
a/R we simplified Maxwell’s equations assuming that the characteristic frequency of the

modes ω ∼ c/aε, and neglected terms of higher order if ε. The resulting equations involve only two components of the
field Er and Ez. For a rectangular cross section of the waveguide, we found an analytical solution of the equations
and analyzed its asymptotics at very high frequency.
Based on Vainshtein’s formulation of the radiation problem, we then obtained an equation which gives radiation

into each synchronous mode. The energy loss involves three characteristics of the mode: the group velocity, the
longitudinal electric field on the orbit, and the energy flow in the mode. We showed how all these three quantities
can be expressed in terms of Ez and Er in a form that allows an easy numerical evaluation.
Finally, we demonstrated the flexibility of the new method by calculating the frequencies and the loss factors for

the lowest modes in a square and round waveguides.
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FIG. 4: Field profiles for a round cross section of the waveguide for the three lowest antisymmetric modes: a)
kR−1/2a3/2 = 2.12, b) kR−1/2a3/2 = 3.95, c) kR−1/2a3/2 = 4.82. The left plot in each pair of graphs shows
distribution of the Er in the mode, and the right one shows the distribution of Ez. The color coding palette is shown
in the upper right corner of the picture.
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APPENDIX A: VARIATIONAL PRINCIPLE

In this Appendix we will show how Eqs. (10) with the boundary conditions (12) can be cast into a variational
principle.
Let us introduce the two-dimensional vector w, w = exEz − ezEr, where ex and ez are unit vectors in x and z

directions. From Eqs. (10) we find that w satisfies the following equation

∆w + λx′w = 0 , (A1)

where λ = 2k2/R, and x′ = x+RΛ. The boundary condition (12b) means that w has only a tangential component
on the boundary,

w · n = 0 . (A2)

The boundary condition (12a) reads

rotw = 0 . (A3)

If we write Eq. (A1) as

K̂w = 0 , (A4)

where K̂ is a linear operator, in order to be able to prove a variational principle, we need to show that the operator
K̂ is symmetric: ∫

dS u · K̂w =
∫
dSw · K̂u , (A5)

where the functions u, w satisfy the boundary conditions (A2) and (A3). To prove the symmetry of K̂, we introduce
a functional I

I = −
∫
dS u · K̂w = −

∫
dS (u ·∆w + λx′u · w) . (A6)

Substituting the vector identities

u ·∆w = u grad divw − u rot rotw
= div(u divw)− divudivw

+ div(u × rotw)− rotu rotw (A7)
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into Eq. (A6), and performing the integration we find that the div terms vanishes because of the boundary conditions
(A2) and (A3), so that

I =
∫
dS (rotu · rotw + divu · divw − λx′u · w) . (A8)

This expression is clearly symmetric with respect to exchange w ↔ u, which proves the relation Eq. (A5).
To obtain the variational principle, we set u = w:

I =
∫
dS

[
(rotw)2 + (divw)2 − λx′w2

]
. (A9)

It is now easy to see that the condition δI = 0, for the functions w that satisfy the boundary conditions Eqs. (A2),
(A3), constitutes a variation principle for the equation (A1).
It follows from Eq. (A6) that if w is a solution of Eq. (A1) with the eigenvalue λ, then I = 0. Using now Eq. (A9),

we can express the eigenvalue λ through integrals of the solution w:

λ =
2k2

R
=

∫
dS

[
(rotw)2 + (divw)2

]∫
dS x′ w2

=

∫
dx dz

[(
∂Ez

∂z + ∂Er

∂x

)2
+

(
∂Er

∂z − ∂Ez

∂x

)2
]

∫
dx dz (x+RΛ) (E2

r + E2
z )

. (A10)

This relation turns out useful in calculation of the group velocity of eigenmodes, see Appendix C.

APPENDIX B: RADIATION OF A RELATIVISTIC CHARGE MOVING IN TORODIDAL CHAMBER

Let us consider a point charge moving with relativistic velocity in the toroidal vacuum chamber along the axis of
the toroid. To calculate the energy radiated by the charge into synchronous modes we will use the approach developed
by Vainshtein [9] (see also [5]). This approach gives an explicit expression for the amplitudes of the modes excited by
an arbitrary distribution of current j(r)e−iωt oscillating with the frequency ω.
Let the index w denote an eigenmode with the frequency ω propagating in the direction of particle’s motion (the

direction in which θ increases), and −w denote the same mode propagating in the opposite direction. The electric
field of the eigenmode w is Ew(r)e−iωt. An external current j(r)e−iωt in the waveguide excites this mode with an
amplitude Cw(s) so that the electric field E in the mode is

E(r) = Cw(s)Ew(r) , (B1)

where s = Rθ is the coordinate along the axis of the toroid. The formula for Cw reads [9]

Cw(s) =
1
Nw

∫ s

−∞
ds dS j(r)E−w(r) , (B2)

where E−w is the electric field of the eigenmode propagating in the opposite direction, Nw is the norm of the mode

Nw =
c

4π

∫
dS (Ew × H−w − E−w × Hw) , (B3)

the integral in Eq. (B2) is taken over the volume to the left of the point at which Cw(s) is evaluated, and the integral
in Eq. (B3) is taken over cross section of the waveguide. We will assume that the fields in the modes w and −w are
chosen so that E−w = −E∗

w, than one can show that the norm is equal to the four times the averaged over time the
energy flow Pw in the mode, Nw = 4Pw [9]. The field E−w can be represented as

E−w(r) = −E∗
w(x, z) e

−ik(ω)s, (B4)

where Ew(x, z) gives the transverse distribution of the electric field in the w eigenmode in the plane x, z, and k(ω) is
the wavenumber as a function of the frequency.
We now calculate the Fourier components of the current corresponding to the point charge moving with velocity v.

The current density has only the θ component

jθ(r, t) = e v δ(x) δ(z) δ(s− vt) . (B5)
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Making Fourier transformation of the current Eq. (B5) yields

1
2π

∫
dt jθ(r, t) eiωt =

e

2π
δ(x) δ(z) eiωs/v . (B6)

Inserting this expression into Eq. (B2) gives the following result for the amplitude Cw:

Cw(s) =
e

2πNw
E0

∫ s

−∞
ds′ e−is′(k(ω)−ω/v)

=
ieE0

2πNw

e−is(k(ω)−ω/v)

k(ω)− ω
v + i0

, (B7)

where E0 = −E∗
w,s(0, 0) = Ew,s(0, 0) is the longitudinal electric field of the eigenmode on the particle’s path and we

took into account that E0 is purely imaginary in our problem (see Eq. (7)). As is seen from Eq. (B7), the function
Cw has a singularity at the frequency of the synchronous mode ωs that satisfies the equation

ωs = vk(ωs) . (B8)

The term i0 in the denominator of Eq. (B7) indicates an infinitesimally small imaginary part that introduces a shift
of the pole from the real axis—in general case the pole can be shifted either up of down from the real axis ω.
Let us now calculate the energy W radiated by the particle per unit time into the synchronous mode. In what

follows, we will assume that the particle’s velocity v ≈ c is greater than the group velocity of the mode vg. We will
drop this assumption at the end of derivation.
First, we find the longitudinal electric field E(s, t) on the axis by making the inverse Fourier transform of the electric

field. Note that k(ω) is an odd function of ω, hence there are always two solutions for ωs with opposite signs. Using
Eq. (B7) we find

E(s, t) =
∫ ∞

−∞
dω CwE0 eik(ω)s−iωt

=
ieE2

0

2πNw

∫ ∞

−∞
dω

eis ω/v−iωt

k(ω)− ω
v + i0

. (B9)

Expanding the denominator in the integrand near the pole,

k(ω)− ω

v
+ i0 ≈ (ω − ωs)

(
dk

dω

∣∣∣∣
ω=ωs

− 1
v

)
+ i0

= (ω − ωs)
(
1
vg

− 1
v

)
+ i0 , (B10)

where vg is the group velocity of the mode, vg = dω/dk|ω=ωs
, it is easy to see, that in the case when v > vg the pole is

located below the real axis ω. In front of the particle, where s > vt, we can close the integration path in the integral
of Eq. (B9) by an infinite half circle in the upper plane of ω, and since there are no poles inside such an integration
contour, the integral vanishes. Hence the field in front of the particle is equal to zero.
The field behind the particle, s < vt, can be obtained by shifting the integration path below the real axis, Imω < 0.

The contribution from the poles should be interpreted as radiation field associate with the synchronous modes. It is
easy to find this contribution by calculating the two residues as ω = ±ωs,

E(s, t) =
2eE2

0

Nw

(
1
vg

− 1
v

)−1

cos
[ωs

v
(s− vt)

]
. (B11)

As might be expected, the field behind the particle is a sinusoidal oscillation with the frequency and the wavenumber
equal to those of the synchronous mode w.
Since electric field in front of the particle is zero, the effective electric field that acts on the charge is equal to half

of the field behind it, Eeff = 1
2E(s = vt − 0). The energy lost by the particle per unit length of the path can be

calculated as a work of the force eEeff :

dW

ds
= −eEeff =

e2

Nw
|E0|2

(
1
vg

− 1
v

)−1

. (B12)
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Recalling that Nw = 4Pw, for ultrarelativistic particle, we arrive at Eq. (29) (the index w is suppressed for ease of
notation).
If v < vg, the above derivation remains valid with minor amendments. It is readily seen that in this case the wake

field is located in front of particle, and the formula (B12) is still valid if one substitutes the last factor (1/vg − 1/v)−1

with its absolute value |1/vg − 1/v|−1.

APPENDIX C: AN EXPRESSION FOR VG

We will see below, that the difference 1− vg/c is of the second order in parameter ε and it might seem that in order
to calculate 1 − vg/c one has to know the fields up to the second order. Fortunately, it turns out that the second
order terms cancel out and the final result is formulated in terms of the zeroth and first order terms only.
Recall that Ez, Hz, Er and Hr are of the zeroth order, and Eθ and Hθ are of the first order in ε. Suppose that we

know the functions Ez, Hz, Er and Hr up to the terms of order of ε2, e.i.

Ez = E(0)
z +E(2)

z , Hz = H(0)
z +H(2)

z

Er = E(0)
r +E(2)

r , Hr = H(0)
r +H(2)

r .

where the superscript indicates the order in ε. The terms of the second order in the θ component of the Pointing
vector Sθ, Eq. (32), will be

Sθ =
c

8π

(
−E(0)

r H(2)
z − E(2)

r H(0)
z + E(0)

z H(2)
r + E(2)

z H(0)
r

)
, (C1)

and the terms of the second order in w will be

w =
1
8π

(
E(0)

z E(2)
z + E(0)

r E(2)
r +H(0)

z H(2)
z +H(0)

r H(2)
r + E2

θ +H
2
θ

)
. (C2)

Using Eqs. (5) and (7) for the zero-order components of the fields and substituting Eqs. (C1) and (C2) into Eq. (33)
we find that the second order terms will cancel each other:

vg
c
= 1

− 1
2k2

∫
dx dz

[(
∂Ez

∂z + ∂Er

∂x

)2
+

(
∂Er

∂z − ∂Ez

∂x

)2
]

∫
dx dz (E2

r + E2
z )

− 1
R

∫
dx dz x (E2

r + E
2
z )∫

dx dz (E2
r + E2

z )
. (C3)

Further simplification of this expression is possible by applying the variational principle (A10). According to this
principle, the second term on the right hand side is equal to the third one plus Λ, so that

vg
c
= 1− 2

R

∫
dx dz x (E2

r + E
2
z )∫

dx dz (E2
r +E2

z )
− Λ . (C4)

APPENDIX D: RADIATION IN THE LIMIT OF HIGH FREQUENCIES

When the frequency of the radiation ω is much larger than the critical frequency for the toroidal waveguide
ω � ωmin = ckmin (see Eq. (1)), the shielding effect of the conducting boundaries becomes small. One expects
that in this limit the spectrum of the radiation does not depend on the shape of the boundary and, with increase
of ω, approaches the spectrum of the synchrotron radiation in vacuum. In this Appendix, we will demonstrate, by
direct calculation for the rectangular cross section, that the limit ω → ∞ recovers the well known formulae for the
synchrotron radiation in free space.
Since the radiation in free space has a continuous spectrum, we expect that in the limit of large ω the main

contribution to the radiated energy will come from modes with p,m� 1 (see Section IVA). This means that we can
neglect the addend 1

4 in comparison with m, m± 1
4 → m, in Eqs. (25) and (26).
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Let us first do calculations for the Ez mode; the contribution from the Er mode is similar and its derivation is
outlined at the end of the Appendix. First we calculate the electric field E0 on the axis,

E0 = Eθ|x,z=0 =
i

k

∂Ez

∂z

∣∣∣∣
x,z=0

= − iπp
kb

sin
(πp
2

)
Ez|ξ=0 , (D1)

which tells that it vanishes for even p; for odd p we have

|E0| = πp

kb
|Ez||ξ=0 =

πp

kb
|Ai(ξ0)| , (D2)

where we used Eq. (27b).
The energy radiated per unit path of the particle is given by Eq. (B12):

dW

ds
=

∑
p,m

e2

4P
|E0|2

∣∣∣∣ 1vg − 1
v

∣∣∣∣
−1

. (D3)

where E0, P , and vg are functions of p and m. Since we know that large values of p and m make the dominant
contribution, we will use integration instead of summation. Also, since only odd p contributes, we will add a factor
1/2:

dW

ds
=

1
8
e2

∫ ∞

0

dm

∫ ∞

0

dp
1
P

|E0|2
∣∣∣∣ 1vg − 1

v

∣∣∣∣
−1

=
1
8
e2

∫ ∞

0

dm

∫ ∞

0

dp

∫ ∞

0

dk
1
P

|E0|2
∣∣∣∣ 1vg − 1

v

∣∣∣∣
−1

× δ(kΛ + k/2γ2)
∣∣∣∣ ddk (kΛ +

k

2γ2
)
∣∣∣∣ . (D4)

In the last equation we introduced integration over the wave number k together with the delta function, which takes
explicitly into account the resonance conditions Λ = −1/2γ2; the integration goes over positive half of the k-axis
because Eq. (B12) already takes into account modes propagating in opposite directions. Making use of Eqs. (3)
and (25) one can show that ∣∣∣∣ 1vg − 1

v

∣∣∣∣
−1 ∣∣∣∣ ddk (kΛ +

k

2γ2
)
∣∣∣∣ = v vg

c
≈ c ,

which simplifies Eq. (D4)

dW

ds
=

1
8
c e2

∫
dm

∫
dp

∫
dk

1
P

|E0|2 δ(kΛ + k/2γ2) . (D5)

Using Eq. (27b) and taking into account that in the Ez mode Hr = Ez and Hz = Er = 0, as follows from Eq. (5), it
is easy to find the energy flow P in the mode:

P =
cb

16π2

(
3πmR
4k2

)1/3

(1 + δp0) . (D6)

Now substituting Eqs. (D2), (D6), and (26) into Eq. (D5) we obtain

dW

ds
=

22/3π11/3

31/3

e2

b3R1/3

∫
dm

∫
dp

∫
dk

p2E2
z

m1/3k4/3

× δ
[
k

(
− a

2R
+

1
2γ2

+
π2p2

2k2 b2
+
1
2

(
3πm
kR

)2/3
)]
.

We first integrate over p and get rid of the delta-function

dW

ds
=

25/3π5/3

31/3

e2

bR1/3

∫
dm

∫
dk

p(m)
m1/3k1/3

E2
z , (D7)
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where

p(m) =
kb

π

[
a

R
− 1
γ2

−
(
3πm
kR

)2/3
]1/2

. (D8)

Note, that for a given k, p varies from 1 to pmax = (bk/π)
(
a/R− 1/γ2

)1/2 when m varies from 0 to mmax =
(kR/3π) (a/R− 1/γ2)3/2.
Eq. (D7) is the energy radiated per unit length of the path. If we drop integration over k from that equation and

divide it by v, we obtain the energy loss per dω = v dk, which is the spectral energy loss PE(ω). A simple calculation
yields

PE =
25/3π5/3

(3kR)1/3cb

∫
dmm−1/3 p(m) Ai2

(
π2p2R2/3

22/3k4/3b2
+
(2k2R2)1/3

2γ2

)
, (D9)

where we used Eq. (27) for Ez, Eq. (16) for ξ0 and set Λ = −1/2γ2, v = c. Changing the integration variable from m
to µ, with

µ =
k2/3R2/3

22/3

[
a

R
− 1
γ2

−
(
3πm
kR

)2/3
]

yields the following result

PE(ω) =
25/3e2

c
k1/3R−2/3

∫ ∞

0

dµ
√
µ Ai2

(
µ+

( kR
2γ3

)2/3
)
, (D10)

where in the limit a, b→ ∞ the lower and upper limits of integration are zero and infinity, respectively.
So far we have found the radiation to Ez modes. To calculate radiation PH to Er modes, it is sufficient to note

that Eq. (D6) is also valid for Er modes (except for the p = 0 mode which does not exist), ∂Ez/∂z in Eq. (D1) has
to be substituted with ∂Er/∂x, and that Er in this limit is also equal to the Airy function, Eq. (27a). As a result,
the expression for the spectral energy radiation PH(ω) into Er modes is

PH(ω) =
25/3e2

c
k1/3R−2/3

∫ ∞

0

dµ
1√
µ
Ai′2

(
µ+

( kR
2γ3

)2/3
)
. (D11)

The total energy, radiated per unit path per unit frequency, is the sum of (D10) and (D11):

P (ω) =
e2 ωH γ

c2
25/3 3

√
3ζ
2

∫ ∞

0

dµ

[√
µAi2

(
µ+

(3ζ
4

)2/3
)
+

1√
µ
Ai′2

(
µ+

(3ζ
4

)2/3
)]

, (D12)

where ζ = 2kR/3γ3 and ωH = c/R.
One can show that Eq. (D12) can be cast into the form

P (ω) =
e2 ωH γ

c2
F

(
2kR
3γ3

)
, F (ζ) =

√
3

2π
ζ

∫ ∞

ζ

dζ K5/3(ζ) dζ , (D13)

which coincides with Eq. (74.17) from [10].
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